1 /* 2 * MD4 hash implementation 3 * Copyright (c) 2006, Jouni Malinen <j (at) w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 */ 14 15 #include "includes.h" 16 17 #include "common.h" 18 #include "crypto.h" 19 20 21 #ifdef INTERNAL_MD4 22 23 #define MD4_BLOCK_LENGTH 64 24 #define MD4_DIGEST_LENGTH 16 25 26 typedef struct MD4Context { 27 u32 state[4]; /* state */ 28 u64 count; /* number of bits, mod 2^64 */ 29 u8 buffer[MD4_BLOCK_LENGTH]; /* input buffer */ 30 } MD4_CTX; 31 32 33 static void MD4Init(MD4_CTX *ctx); 34 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len); 35 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx); 36 37 38 void md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac) 39 { 40 MD4_CTX ctx; 41 size_t i; 42 43 MD4Init(&ctx); 44 for (i = 0; i < num_elem; i++) 45 MD4Update(&ctx, addr[i], len[i]); 46 MD4Final(mac, &ctx); 47 } 48 49 50 /* ===== start - public domain MD4 implementation ===== */ 51 /* $OpenBSD: md4.c,v 1.7 2005/08/08 08:05:35 espie Exp $ */ 52 53 /* 54 * This code implements the MD4 message-digest algorithm. 55 * The algorithm is due to Ron Rivest. This code was 56 * written by Colin Plumb in 1993, no copyright is claimed. 57 * This code is in the public domain; do with it what you wish. 58 * Todd C. Miller modified the MD5 code to do MD4 based on RFC 1186. 59 * 60 * Equivalent code is available from RSA Data Security, Inc. 61 * This code has been tested against that, and is equivalent, 62 * except that you don't need to include two pages of legalese 63 * with every copy. 64 * 65 * To compute the message digest of a chunk of bytes, declare an 66 * MD4Context structure, pass it to MD4Init, call MD4Update as 67 * needed on buffers full of bytes, and then call MD4Final, which 68 * will fill a supplied 16-byte array with the digest. 69 */ 70 71 #define MD4_DIGEST_STRING_LENGTH (MD4_DIGEST_LENGTH * 2 + 1) 72 73 74 static void 75 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]); 76 77 #define PUT_64BIT_LE(cp, value) do { \ 78 (cp)[7] = (value) >> 56; \ 79 (cp)[6] = (value) >> 48; \ 80 (cp)[5] = (value) >> 40; \ 81 (cp)[4] = (value) >> 32; \ 82 (cp)[3] = (value) >> 24; \ 83 (cp)[2] = (value) >> 16; \ 84 (cp)[1] = (value) >> 8; \ 85 (cp)[0] = (value); } while (0) 86 87 #define PUT_32BIT_LE(cp, value) do { \ 88 (cp)[3] = (value) >> 24; \ 89 (cp)[2] = (value) >> 16; \ 90 (cp)[1] = (value) >> 8; \ 91 (cp)[0] = (value); } while (0) 92 93 static u8 PADDING[MD4_BLOCK_LENGTH] = { 94 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 97 }; 98 99 /* 100 * Start MD4 accumulation. 101 * Set bit count to 0 and buffer to mysterious initialization constants. 102 */ 103 static void MD4Init(MD4_CTX *ctx) 104 { 105 ctx->count = 0; 106 ctx->state[0] = 0x67452301; 107 ctx->state[1] = 0xefcdab89; 108 ctx->state[2] = 0x98badcfe; 109 ctx->state[3] = 0x10325476; 110 } 111 112 /* 113 * Update context to reflect the concatenation of another buffer full 114 * of bytes. 115 */ 116 static void MD4Update(MD4_CTX *ctx, const unsigned char *input, size_t len) 117 { 118 size_t have, need; 119 120 /* Check how many bytes we already have and how many more we need. */ 121 have = (size_t)((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 122 need = MD4_BLOCK_LENGTH - have; 123 124 /* Update bitcount */ 125 ctx->count += (u64)len << 3; 126 127 if (len >= need) { 128 if (have != 0) { 129 os_memcpy(ctx->buffer + have, input, need); 130 MD4Transform(ctx->state, ctx->buffer); 131 input += need; 132 len -= need; 133 have = 0; 134 } 135 136 /* Process data in MD4_BLOCK_LENGTH-byte chunks. */ 137 while (len >= MD4_BLOCK_LENGTH) { 138 MD4Transform(ctx->state, input); 139 input += MD4_BLOCK_LENGTH; 140 len -= MD4_BLOCK_LENGTH; 141 } 142 } 143 144 /* Handle any remaining bytes of data. */ 145 if (len != 0) 146 os_memcpy(ctx->buffer + have, input, len); 147 } 148 149 /* 150 * Pad pad to 64-byte boundary with the bit pattern 151 * 1 0* (64-bit count of bits processed, MSB-first) 152 */ 153 static void MD4Pad(MD4_CTX *ctx) 154 { 155 u8 count[8]; 156 size_t padlen; 157 158 /* Convert count to 8 bytes in little endian order. */ 159 PUT_64BIT_LE(count, ctx->count); 160 161 /* Pad out to 56 mod 64. */ 162 padlen = MD4_BLOCK_LENGTH - 163 ((ctx->count >> 3) & (MD4_BLOCK_LENGTH - 1)); 164 if (padlen < 1 + 8) 165 padlen += MD4_BLOCK_LENGTH; 166 MD4Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ 167 MD4Update(ctx, count, 8); 168 } 169 170 /* 171 * Final wrapup--call MD4Pad, fill in digest and zero out ctx. 172 */ 173 static void MD4Final(unsigned char digest[MD4_DIGEST_LENGTH], MD4_CTX *ctx) 174 { 175 int i; 176 177 MD4Pad(ctx); 178 if (digest != NULL) { 179 for (i = 0; i < 4; i++) 180 PUT_32BIT_LE(digest + i * 4, ctx->state[i]); 181 os_memset(ctx, 0, sizeof(*ctx)); 182 } 183 } 184 185 186 /* The three core functions - F1 is optimized somewhat */ 187 188 /* #define F1(x, y, z) (x & y | ~x & z) */ 189 #define F1(x, y, z) (z ^ (x & (y ^ z))) 190 #define F2(x, y, z) ((x & y) | (x & z) | (y & z)) 191 #define F3(x, y, z) (x ^ y ^ z) 192 193 /* This is the central step in the MD4 algorithm. */ 194 #define MD4STEP(f, w, x, y, z, data, s) \ 195 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s) ) 196 197 /* 198 * The core of the MD4 algorithm, this alters an existing MD4 hash to 199 * reflect the addition of 16 longwords of new data. MD4Update blocks 200 * the data and converts bytes into longwords for this routine. 201 */ 202 static void 203 MD4Transform(u32 state[4], const u8 block[MD4_BLOCK_LENGTH]) 204 { 205 u32 a, b, c, d, in[MD4_BLOCK_LENGTH / 4]; 206 207 #if BYTE_ORDER == LITTLE_ENDIAN 208 os_memcpy(in, block, sizeof(in)); 209 #else 210 for (a = 0; a < MD4_BLOCK_LENGTH / 4; a++) { 211 in[a] = (u32)( 212 (u32)(block[a * 4 + 0]) | 213 (u32)(block[a * 4 + 1]) << 8 | 214 (u32)(block[a * 4 + 2]) << 16 | 215 (u32)(block[a * 4 + 3]) << 24); 216 } 217 #endif 218 219 a = state[0]; 220 b = state[1]; 221 c = state[2]; 222 d = state[3]; 223 224 MD4STEP(F1, a, b, c, d, in[ 0], 3); 225 MD4STEP(F1, d, a, b, c, in[ 1], 7); 226 MD4STEP(F1, c, d, a, b, in[ 2], 11); 227 MD4STEP(F1, b, c, d, a, in[ 3], 19); 228 MD4STEP(F1, a, b, c, d, in[ 4], 3); 229 MD4STEP(F1, d, a, b, c, in[ 5], 7); 230 MD4STEP(F1, c, d, a, b, in[ 6], 11); 231 MD4STEP(F1, b, c, d, a, in[ 7], 19); 232 MD4STEP(F1, a, b, c, d, in[ 8], 3); 233 MD4STEP(F1, d, a, b, c, in[ 9], 7); 234 MD4STEP(F1, c, d, a, b, in[10], 11); 235 MD4STEP(F1, b, c, d, a, in[11], 19); 236 MD4STEP(F1, a, b, c, d, in[12], 3); 237 MD4STEP(F1, d, a, b, c, in[13], 7); 238 MD4STEP(F1, c, d, a, b, in[14], 11); 239 MD4STEP(F1, b, c, d, a, in[15], 19); 240 241 MD4STEP(F2, a, b, c, d, in[ 0] + 0x5a827999, 3); 242 MD4STEP(F2, d, a, b, c, in[ 4] + 0x5a827999, 5); 243 MD4STEP(F2, c, d, a, b, in[ 8] + 0x5a827999, 9); 244 MD4STEP(F2, b, c, d, a, in[12] + 0x5a827999, 13); 245 MD4STEP(F2, a, b, c, d, in[ 1] + 0x5a827999, 3); 246 MD4STEP(F2, d, a, b, c, in[ 5] + 0x5a827999, 5); 247 MD4STEP(F2, c, d, a, b, in[ 9] + 0x5a827999, 9); 248 MD4STEP(F2, b, c, d, a, in[13] + 0x5a827999, 13); 249 MD4STEP(F2, a, b, c, d, in[ 2] + 0x5a827999, 3); 250 MD4STEP(F2, d, a, b, c, in[ 6] + 0x5a827999, 5); 251 MD4STEP(F2, c, d, a, b, in[10] + 0x5a827999, 9); 252 MD4STEP(F2, b, c, d, a, in[14] + 0x5a827999, 13); 253 MD4STEP(F2, a, b, c, d, in[ 3] + 0x5a827999, 3); 254 MD4STEP(F2, d, a, b, c, in[ 7] + 0x5a827999, 5); 255 MD4STEP(F2, c, d, a, b, in[11] + 0x5a827999, 9); 256 MD4STEP(F2, b, c, d, a, in[15] + 0x5a827999, 13); 257 258 MD4STEP(F3, a, b, c, d, in[ 0] + 0x6ed9eba1, 3); 259 MD4STEP(F3, d, a, b, c, in[ 8] + 0x6ed9eba1, 9); 260 MD4STEP(F3, c, d, a, b, in[ 4] + 0x6ed9eba1, 11); 261 MD4STEP(F3, b, c, d, a, in[12] + 0x6ed9eba1, 15); 262 MD4STEP(F3, a, b, c, d, in[ 2] + 0x6ed9eba1, 3); 263 MD4STEP(F3, d, a, b, c, in[10] + 0x6ed9eba1, 9); 264 MD4STEP(F3, c, d, a, b, in[ 6] + 0x6ed9eba1, 11); 265 MD4STEP(F3, b, c, d, a, in[14] + 0x6ed9eba1, 15); 266 MD4STEP(F3, a, b, c, d, in[ 1] + 0x6ed9eba1, 3); 267 MD4STEP(F3, d, a, b, c, in[ 9] + 0x6ed9eba1, 9); 268 MD4STEP(F3, c, d, a, b, in[ 5] + 0x6ed9eba1, 11); 269 MD4STEP(F3, b, c, d, a, in[13] + 0x6ed9eba1, 15); 270 MD4STEP(F3, a, b, c, d, in[ 3] + 0x6ed9eba1, 3); 271 MD4STEP(F3, d, a, b, c, in[11] + 0x6ed9eba1, 9); 272 MD4STEP(F3, c, d, a, b, in[ 7] + 0x6ed9eba1, 11); 273 MD4STEP(F3, b, c, d, a, in[15] + 0x6ed9eba1, 15); 274 275 state[0] += a; 276 state[1] += b; 277 state[2] += c; 278 state[3] += d; 279 } 280 /* ===== end - public domain MD4 implementation ===== */ 281 282 #endif /* INTERNAL_MD4 */ 283