1 /* 2 * SHA1 hash implementation and interface functions 3 * Copyright (c) 2003-2005, Jouni Malinen <j (at) w1.fi> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * Alternatively, this software may be distributed under the terms of BSD 10 * license. 11 * 12 * See README and COPYING for more details. 13 */ 14 15 #include "includes.h" 16 17 #include "common.h" 18 #include "crypto/sha1.h" 19 #include "md5.h" 20 #include "crypto.h" 21 22 23 /** 24 * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104) 25 * @key: Key for HMAC operations 26 * @key_len: Length of the key in bytes 27 * @num_elem: Number of elements in the data vector 28 * @addr: Pointers to the data areas 29 * @len: Lengths of the data blocks 30 * @mac: Buffer for the hash (20 bytes) 31 */ 32 void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem, 33 const u8 *addr[], const size_t *len, u8 *mac) 34 { 35 unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */ 36 unsigned char tk[20]; 37 const u8 *_addr[6]; 38 size_t _len[6], i; 39 40 if (num_elem > 5) { 41 /* 42 * Fixed limit on the number of fragments to avoid having to 43 * allocate memory (which could fail). 44 */ 45 return; 46 } 47 48 /* if key is longer than 64 bytes reset it to key = SHA1(key) */ 49 if (key_len > 64) { 50 sha1_vector(1, &key, &key_len, tk); 51 key = tk; 52 key_len = 20; 53 } 54 55 /* the HMAC_SHA1 transform looks like: 56 * 57 * SHA1(K XOR opad, SHA1(K XOR ipad, text)) 58 * 59 * where K is an n byte key 60 * ipad is the byte 0x36 repeated 64 times 61 * opad is the byte 0x5c repeated 64 times 62 * and text is the data being protected */ 63 64 /* start out by storing key in ipad */ 65 os_memset(k_pad, 0, sizeof(k_pad)); 66 os_memcpy(k_pad, key, key_len); 67 /* XOR key with ipad values */ 68 for (i = 0; i < 64; i++) 69 k_pad[i] ^= 0x36; 70 71 /* perform inner SHA1 */ 72 _addr[0] = k_pad; 73 _len[0] = 64; 74 for (i = 0; i < num_elem; i++) { 75 _addr[i + 1] = addr[i]; 76 _len[i + 1] = len[i]; 77 } 78 sha1_vector(1 + num_elem, _addr, _len, mac); 79 80 os_memset(k_pad, 0, sizeof(k_pad)); 81 os_memcpy(k_pad, key, key_len); 82 /* XOR key with opad values */ 83 for (i = 0; i < 64; i++) 84 k_pad[i] ^= 0x5c; 85 86 /* perform outer SHA1 */ 87 _addr[0] = k_pad; 88 _len[0] = 64; 89 _addr[1] = mac; 90 _len[1] = SHA1_MAC_LEN; 91 sha1_vector(2, _addr, _len, mac); 92 } 93 94 95 /** 96 * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104) 97 * @key: Key for HMAC operations 98 * @key_len: Length of the key in bytes 99 * @data: Pointers to the data area 100 * @data_len: Length of the data area 101 * @mac: Buffer for the hash (20 bytes) 102 */ 103 void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len, 104 u8 *mac) 105 { 106 hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac); 107 } 108 109 110 /** 111 * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1) 112 * @key: Key for PRF 113 * @key_len: Length of the key in bytes 114 * @label: A unique label for each purpose of the PRF 115 * @data: Extra data to bind into the key 116 * @data_len: Length of the data 117 * @buf: Buffer for the generated pseudo-random key 118 * @buf_len: Number of bytes of key to generate 119 * 120 * This function is used to derive new, cryptographically separate keys from a 121 * given key (e.g., PMK in IEEE 802.11i). 122 */ 123 void sha1_prf(const u8 *key, size_t key_len, const char *label, 124 const u8 *data, size_t data_len, u8 *buf, size_t buf_len) 125 { 126 u8 counter = 0; 127 size_t pos, plen; 128 u8 hash[SHA1_MAC_LEN]; 129 size_t label_len = os_strlen(label) + 1; 130 const unsigned char *addr[3]; 131 size_t len[3]; 132 133 addr[0] = (u8 *) label; 134 len[0] = label_len; 135 addr[1] = data; 136 len[1] = data_len; 137 addr[2] = &counter; 138 len[2] = 1; 139 140 pos = 0; 141 while (pos < buf_len) { 142 plen = buf_len - pos; 143 if (plen >= SHA1_MAC_LEN) { 144 hmac_sha1_vector(key, key_len, 3, addr, len, 145 &buf[pos]); 146 pos += SHA1_MAC_LEN; 147 } else { 148 hmac_sha1_vector(key, key_len, 3, addr, len, 149 hash); 150 os_memcpy(&buf[pos], hash, plen); 151 break; 152 } 153 counter++; 154 } 155 } 156 157 158 #ifndef CONFIG_NO_T_PRF 159 /** 160 * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF) 161 * @key: Key for PRF 162 * @key_len: Length of the key in bytes 163 * @label: A unique label for each purpose of the PRF 164 * @seed: Seed value to bind into the key 165 * @seed_len: Length of the seed 166 * @buf: Buffer for the generated pseudo-random key 167 * @buf_len: Number of bytes of key to generate 168 * 169 * This function is used to derive new, cryptographically separate keys from a 170 * given key for EAP-FAST. T-PRF is defined in RFC 4851, Section 5.5. 171 */ 172 void sha1_t_prf(const u8 *key, size_t key_len, const char *label, 173 const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len) 174 { 175 unsigned char counter = 0; 176 size_t pos, plen; 177 u8 hash[SHA1_MAC_LEN]; 178 size_t label_len = os_strlen(label); 179 u8 output_len[2]; 180 const unsigned char *addr[5]; 181 size_t len[5]; 182 183 addr[0] = hash; 184 len[0] = 0; 185 addr[1] = (unsigned char *) label; 186 len[1] = label_len + 1; 187 addr[2] = seed; 188 len[2] = seed_len; 189 addr[3] = output_len; 190 len[3] = 2; 191 addr[4] = &counter; 192 len[4] = 1; 193 194 output_len[0] = (buf_len >> 8) & 0xff; 195 output_len[1] = buf_len & 0xff; 196 pos = 0; 197 while (pos < buf_len) { 198 counter++; 199 plen = buf_len - pos; 200 hmac_sha1_vector(key, key_len, 5, addr, len, hash); 201 if (plen >= SHA1_MAC_LEN) { 202 os_memcpy(&buf[pos], hash, SHA1_MAC_LEN); 203 pos += SHA1_MAC_LEN; 204 } else { 205 os_memcpy(&buf[pos], hash, plen); 206 break; 207 } 208 len[0] = SHA1_MAC_LEN; 209 } 210 } 211 #endif /* CONFIG_NO_T_PRF */ 212 213 214 #ifndef CONFIG_NO_TLS_PRF 215 /** 216 * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246) 217 * @secret: Key for PRF 218 * @secret_len: Length of the key in bytes 219 * @label: A unique label for each purpose of the PRF 220 * @seed: Seed value to bind into the key 221 * @seed_len: Length of the seed 222 * @out: Buffer for the generated pseudo-random key 223 * @outlen: Number of bytes of key to generate 224 * Returns: 0 on success, -1 on failure. 225 * 226 * This function is used to derive new, cryptographically separate keys from a 227 * given key in TLS. This PRF is defined in RFC 2246, Chapter 5. 228 */ 229 int tls_prf(const u8 *secret, size_t secret_len, const char *label, 230 const u8 *seed, size_t seed_len, u8 *out, size_t outlen) 231 { 232 size_t L_S1, L_S2, i; 233 const u8 *S1, *S2; 234 u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN]; 235 u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN]; 236 int MD5_pos, SHA1_pos; 237 const u8 *MD5_addr[3]; 238 size_t MD5_len[3]; 239 const unsigned char *SHA1_addr[3]; 240 size_t SHA1_len[3]; 241 242 if (secret_len & 1) 243 return -1; 244 245 MD5_addr[0] = A_MD5; 246 MD5_len[0] = MD5_MAC_LEN; 247 MD5_addr[1] = (unsigned char *) label; 248 MD5_len[1] = os_strlen(label); 249 MD5_addr[2] = seed; 250 MD5_len[2] = seed_len; 251 252 SHA1_addr[0] = A_SHA1; 253 SHA1_len[0] = SHA1_MAC_LEN; 254 SHA1_addr[1] = (unsigned char *) label; 255 SHA1_len[1] = os_strlen(label); 256 SHA1_addr[2] = seed; 257 SHA1_len[2] = seed_len; 258 259 /* RFC 2246, Chapter 5 260 * A(0) = seed, A(i) = HMAC(secret, A(i-1)) 261 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + .. 262 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed) 263 */ 264 265 L_S1 = L_S2 = (secret_len + 1) / 2; 266 S1 = secret; 267 S2 = secret + L_S1; 268 if (secret_len & 1) { 269 /* The last byte of S1 will be shared with S2 */ 270 S2--; 271 } 272 273 hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5); 274 hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1); 275 276 MD5_pos = MD5_MAC_LEN; 277 SHA1_pos = SHA1_MAC_LEN; 278 for (i = 0; i < outlen; i++) { 279 if (MD5_pos == MD5_MAC_LEN) { 280 hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5); 281 MD5_pos = 0; 282 hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5); 283 } 284 if (SHA1_pos == SHA1_MAC_LEN) { 285 hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len, 286 P_SHA1); 287 SHA1_pos = 0; 288 hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1); 289 } 290 291 out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos]; 292 293 MD5_pos++; 294 SHA1_pos++; 295 } 296 297 return 0; 298 } 299 #endif /* CONFIG_NO_TLS_PRF */ 300 301 302 #ifndef CONFIG_NO_PBKDF2 303 304 static void pbkdf2_sha1_f(const char *passphrase, const char *ssid, 305 size_t ssid_len, int iterations, unsigned int count, 306 u8 *digest) 307 { 308 unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN]; 309 int i, j; 310 unsigned char count_buf[4]; 311 const u8 *addr[2]; 312 size_t len[2]; 313 size_t passphrase_len = os_strlen(passphrase); 314 315 addr[0] = (u8 *) ssid; 316 len[0] = ssid_len; 317 addr[1] = count_buf; 318 len[1] = 4; 319 320 /* F(P, S, c, i) = U1 xor U2 xor ... Uc 321 * U1 = PRF(P, S || i) 322 * U2 = PRF(P, U1) 323 * Uc = PRF(P, Uc-1) 324 */ 325 326 count_buf[0] = (count >> 24) & 0xff; 327 count_buf[1] = (count >> 16) & 0xff; 328 count_buf[2] = (count >> 8) & 0xff; 329 count_buf[3] = count & 0xff; 330 hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp); 331 os_memcpy(digest, tmp, SHA1_MAC_LEN); 332 333 for (i = 1; i < iterations; i++) { 334 hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN, 335 tmp2); 336 os_memcpy(tmp, tmp2, SHA1_MAC_LEN); 337 for (j = 0; j < SHA1_MAC_LEN; j++) 338 digest[j] ^= tmp2[j]; 339 } 340 } 341 342 343 /** 344 * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i 345 * @passphrase: ASCII passphrase 346 * @ssid: SSID 347 * @ssid_len: SSID length in bytes 348 * @iterations: Number of iterations to run 349 * @buf: Buffer for the generated key 350 * @buflen: Length of the buffer in bytes 351 * 352 * This function is used to derive PSK for WPA-PSK. For this protocol, 353 * iterations is set to 4096 and buflen to 32. This function is described in 354 * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0. 355 */ 356 void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len, 357 int iterations, u8 *buf, size_t buflen) 358 { 359 unsigned int count = 0; 360 unsigned char *pos = buf; 361 size_t left = buflen, plen; 362 unsigned char digest[SHA1_MAC_LEN]; 363 364 while (left > 0) { 365 count++; 366 pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count, 367 digest); 368 plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left; 369 os_memcpy(pos, digest, plen); 370 pos += plen; 371 left -= plen; 372 } 373 } 374 375 #endif /* CONFIG_NO_PBKDF2 */ 376 377 378 #ifdef INTERNAL_SHA1 379 380 struct SHA1Context { 381 u32 state[5]; 382 u32 count[2]; 383 unsigned char buffer[64]; 384 }; 385 386 typedef struct SHA1Context SHA1_CTX; 387 388 #ifndef CONFIG_CRYPTO_INTERNAL 389 static void SHA1Init(struct SHA1Context *context); 390 static void SHA1Update(struct SHA1Context *context, const void *data, u32 len); 391 static void SHA1Final(unsigned char digest[20], struct SHA1Context *context); 392 #endif /* CONFIG_CRYPTO_INTERNAL */ 393 static void SHA1Transform(u32 state[5], const unsigned char buffer[64]); 394 395 396 /** 397 * sha1_vector - SHA-1 hash for data vector 398 * @num_elem: Number of elements in the data vector 399 * @addr: Pointers to the data areas 400 * @len: Lengths of the data blocks 401 * @mac: Buffer for the hash 402 */ 403 void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 404 u8 *mac) 405 { 406 SHA1_CTX ctx; 407 size_t i; 408 409 SHA1Init(&ctx); 410 for (i = 0; i < num_elem; i++) 411 SHA1Update(&ctx, addr[i], len[i]); 412 SHA1Final(mac, &ctx); 413 } 414 415 416 #ifndef CONFIG_NO_FIPS186_2_PRF 417 int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen) 418 { 419 u8 xkey[64]; 420 u32 t[5], _t[5]; 421 int i, j, m, k; 422 u8 *xpos = x; 423 u32 carry; 424 425 if (seed_len > sizeof(xkey)) 426 seed_len = sizeof(xkey); 427 428 /* FIPS 186-2 + change notice 1 */ 429 430 os_memcpy(xkey, seed, seed_len); 431 os_memset(xkey + seed_len, 0, 64 - seed_len); 432 t[0] = 0x67452301; 433 t[1] = 0xEFCDAB89; 434 t[2] = 0x98BADCFE; 435 t[3] = 0x10325476; 436 t[4] = 0xC3D2E1F0; 437 438 m = xlen / 40; 439 for (j = 0; j < m; j++) { 440 /* XSEED_j = 0 */ 441 for (i = 0; i < 2; i++) { 442 /* XVAL = (XKEY + XSEED_j) mod 2^b */ 443 444 /* w_i = G(t, XVAL) */ 445 os_memcpy(_t, t, 20); 446 SHA1Transform(_t, xkey); 447 _t[0] = host_to_be32(_t[0]); 448 _t[1] = host_to_be32(_t[1]); 449 _t[2] = host_to_be32(_t[2]); 450 _t[3] = host_to_be32(_t[3]); 451 _t[4] = host_to_be32(_t[4]); 452 os_memcpy(xpos, _t, 20); 453 454 /* XKEY = (1 + XKEY + w_i) mod 2^b */ 455 carry = 1; 456 for (k = 19; k >= 0; k--) { 457 carry += xkey[k] + xpos[k]; 458 xkey[k] = carry & 0xff; 459 carry >>= 8; 460 } 461 462 xpos += SHA1_MAC_LEN; 463 } 464 /* x_j = w_0|w_1 */ 465 } 466 467 return 0; 468 } 469 #endif /* CONFIG_NO_FIPS186_2_PRF */ 470 471 472 /* ===== start - public domain SHA1 implementation ===== */ 473 474 /* 475 SHA-1 in C 476 By Steve Reid <sreid (at) sea-to-sky.net> 477 100% Public Domain 478 479 ----------------- 480 Modified 7/98 481 By James H. Brown <jbrown (at) burgoyne.com> 482 Still 100% Public Domain 483 484 Corrected a problem which generated improper hash values on 16 bit machines 485 Routine SHA1Update changed from 486 void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int 487 len) 488 to 489 void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned 490 long len) 491 492 The 'len' parameter was declared an int which works fine on 32 bit machines. 493 However, on 16 bit machines an int is too small for the shifts being done 494 against 495 it. This caused the hash function to generate incorrect values if len was 496 greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update(). 497 498 Since the file IO in main() reads 16K at a time, any file 8K or larger would 499 be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million 500 "a"s). 501 502 I also changed the declaration of variables i & j in SHA1Update to 503 unsigned long from unsigned int for the same reason. 504 505 These changes should make no difference to any 32 bit implementations since 506 an 507 int and a long are the same size in those environments. 508 509 -- 510 I also corrected a few compiler warnings generated by Borland C. 511 1. Added #include <process.h> for exit() prototype 512 2. Removed unused variable 'j' in SHA1Final 513 3. Changed exit(0) to return(0) at end of main. 514 515 ALL changes I made can be located by searching for comments containing 'JHB' 516 ----------------- 517 Modified 8/98 518 By Steve Reid <sreid (at) sea-to-sky.net> 519 Still 100% public domain 520 521 1- Removed #include <process.h> and used return() instead of exit() 522 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall) 523 3- Changed email address from steve (at) edmweb.com to sreid (at) sea-to-sky.net 524 525 ----------------- 526 Modified 4/01 527 By Saul Kravitz <Saul.Kravitz (at) celera.com> 528 Still 100% PD 529 Modified to run on Compaq Alpha hardware. 530 531 ----------------- 532 Modified 4/01 533 By Jouni Malinen <j (at) w1.fi> 534 Minor changes to match the coding style used in Dynamics. 535 536 Modified September 24, 2004 537 By Jouni Malinen <j (at) w1.fi> 538 Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined. 539 540 */ 541 542 /* 543 Test Vectors (from FIPS PUB 180-1) 544 "abc" 545 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D 546 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" 547 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1 548 A million repetitions of "a" 549 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F 550 */ 551 552 #define SHA1HANDSOFF 553 554 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) 555 556 /* blk0() and blk() perform the initial expand. */ 557 /* I got the idea of expanding during the round function from SSLeay */ 558 #ifndef WORDS_BIGENDIAN 559 #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \ 560 (rol(block->l[i], 8) & 0x00FF00FF)) 561 #else 562 #define blk0(i) block->l[i] 563 #endif 564 #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \ 565 block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1)) 566 567 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ 568 #define R0(v,w,x,y,z,i) \ 569 z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \ 570 w = rol(w, 30); 571 #define R1(v,w,x,y,z,i) \ 572 z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \ 573 w = rol(w, 30); 574 #define R2(v,w,x,y,z,i) \ 575 z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30); 576 #define R3(v,w,x,y,z,i) \ 577 z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \ 578 w = rol(w, 30); 579 #define R4(v,w,x,y,z,i) \ 580 z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \ 581 w=rol(w, 30); 582 583 584 #ifdef VERBOSE /* SAK */ 585 void SHAPrintContext(SHA1_CTX *context, char *msg) 586 { 587 printf("%s (%d,%d) %x %x %x %x %x\n", 588 msg, 589 context->count[0], context->count[1], 590 context->state[0], 591 context->state[1], 592 context->state[2], 593 context->state[3], 594 context->state[4]); 595 } 596 #endif 597 598 /* Hash a single 512-bit block. This is the core of the algorithm. */ 599 600 static void SHA1Transform(u32 state[5], const unsigned char buffer[64]) 601 { 602 u32 a, b, c, d, e; 603 typedef union { 604 unsigned char c[64]; 605 u32 l[16]; 606 } CHAR64LONG16; 607 CHAR64LONG16* block; 608 #ifdef SHA1HANDSOFF 609 CHAR64LONG16 workspace; 610 block = &workspace; 611 os_memcpy(block, buffer, 64); 612 #else 613 block = (CHAR64LONG16 *) buffer; 614 #endif 615 /* Copy context->state[] to working vars */ 616 a = state[0]; 617 b = state[1]; 618 c = state[2]; 619 d = state[3]; 620 e = state[4]; 621 /* 4 rounds of 20 operations each. Loop unrolled. */ 622 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); 623 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); 624 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); 625 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); 626 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); 627 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); 628 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); 629 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); 630 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); 631 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); 632 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); 633 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); 634 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); 635 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); 636 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); 637 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); 638 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); 639 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); 640 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); 641 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); 642 /* Add the working vars back into context.state[] */ 643 state[0] += a; 644 state[1] += b; 645 state[2] += c; 646 state[3] += d; 647 state[4] += e; 648 /* Wipe variables */ 649 a = b = c = d = e = 0; 650 #ifdef SHA1HANDSOFF 651 os_memset(block, 0, 64); 652 #endif 653 } 654 655 656 /* SHA1Init - Initialize new context */ 657 658 void SHA1Init(SHA1_CTX* context) 659 { 660 /* SHA1 initialization constants */ 661 context->state[0] = 0x67452301; 662 context->state[1] = 0xEFCDAB89; 663 context->state[2] = 0x98BADCFE; 664 context->state[3] = 0x10325476; 665 context->state[4] = 0xC3D2E1F0; 666 context->count[0] = context->count[1] = 0; 667 } 668 669 670 /* Run your data through this. */ 671 672 void SHA1Update(SHA1_CTX* context, const void *_data, u32 len) 673 { 674 u32 i, j; 675 const unsigned char *data = _data; 676 677 #ifdef VERBOSE 678 SHAPrintContext(context, "before"); 679 #endif 680 j = (context->count[0] >> 3) & 63; 681 if ((context->count[0] += len << 3) < (len << 3)) 682 context->count[1]++; 683 context->count[1] += (len >> 29); 684 if ((j + len) > 63) { 685 os_memcpy(&context->buffer[j], data, (i = 64-j)); 686 SHA1Transform(context->state, context->buffer); 687 for ( ; i + 63 < len; i += 64) { 688 SHA1Transform(context->state, &data[i]); 689 } 690 j = 0; 691 } 692 else i = 0; 693 os_memcpy(&context->buffer[j], &data[i], len - i); 694 #ifdef VERBOSE 695 SHAPrintContext(context, "after "); 696 #endif 697 } 698 699 700 /* Add padding and return the message digest. */ 701 702 void SHA1Final(unsigned char digest[20], SHA1_CTX* context) 703 { 704 u32 i; 705 unsigned char finalcount[8]; 706 707 for (i = 0; i < 8; i++) { 708 finalcount[i] = (unsigned char) 709 ((context->count[(i >= 4 ? 0 : 1)] >> 710 ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ 711 } 712 SHA1Update(context, (unsigned char *) "\200", 1); 713 while ((context->count[0] & 504) != 448) { 714 SHA1Update(context, (unsigned char *) "\0", 1); 715 } 716 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() 717 */ 718 for (i = 0; i < 20; i++) { 719 digest[i] = (unsigned char) 720 ((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 721 255); 722 } 723 /* Wipe variables */ 724 i = 0; 725 os_memset(context->buffer, 0, 64); 726 os_memset(context->state, 0, 20); 727 os_memset(context->count, 0, 8); 728 os_memset(finalcount, 0, 8); 729 } 730 731 /* ===== end - public domain SHA1 implementation ===== */ 732 733 #endif /* INTERNAL_SHA1 */ 734