Home | History | Annotate | Download | only in crypto
      1 /*
      2  * SHA1 hash implementation and interface functions
      3  * Copyright (c) 2003-2005, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This program is free software; you can redistribute it and/or modify
      6  * it under the terms of the GNU General Public License version 2 as
      7  * published by the Free Software Foundation.
      8  *
      9  * Alternatively, this software may be distributed under the terms of BSD
     10  * license.
     11  *
     12  * See README and COPYING for more details.
     13  */
     14 
     15 #include "includes.h"
     16 
     17 #include "common.h"
     18 #include "crypto/sha1.h"
     19 #include "md5.h"
     20 #include "crypto.h"
     21 
     22 
     23 /**
     24  * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
     25  * @key: Key for HMAC operations
     26  * @key_len: Length of the key in bytes
     27  * @num_elem: Number of elements in the data vector
     28  * @addr: Pointers to the data areas
     29  * @len: Lengths of the data blocks
     30  * @mac: Buffer for the hash (20 bytes)
     31  */
     32 void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
     33 		      const u8 *addr[], const size_t *len, u8 *mac)
     34 {
     35 	unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
     36 	unsigned char tk[20];
     37 	const u8 *_addr[6];
     38 	size_t _len[6], i;
     39 
     40 	if (num_elem > 5) {
     41 		/*
     42 		 * Fixed limit on the number of fragments to avoid having to
     43 		 * allocate memory (which could fail).
     44 		 */
     45 		return;
     46 	}
     47 
     48         /* if key is longer than 64 bytes reset it to key = SHA1(key) */
     49         if (key_len > 64) {
     50 		sha1_vector(1, &key, &key_len, tk);
     51 		key = tk;
     52 		key_len = 20;
     53         }
     54 
     55 	/* the HMAC_SHA1 transform looks like:
     56 	 *
     57 	 * SHA1(K XOR opad, SHA1(K XOR ipad, text))
     58 	 *
     59 	 * where K is an n byte key
     60 	 * ipad is the byte 0x36 repeated 64 times
     61 	 * opad is the byte 0x5c repeated 64 times
     62 	 * and text is the data being protected */
     63 
     64 	/* start out by storing key in ipad */
     65 	os_memset(k_pad, 0, sizeof(k_pad));
     66 	os_memcpy(k_pad, key, key_len);
     67 	/* XOR key with ipad values */
     68 	for (i = 0; i < 64; i++)
     69 		k_pad[i] ^= 0x36;
     70 
     71 	/* perform inner SHA1 */
     72 	_addr[0] = k_pad;
     73 	_len[0] = 64;
     74 	for (i = 0; i < num_elem; i++) {
     75 		_addr[i + 1] = addr[i];
     76 		_len[i + 1] = len[i];
     77 	}
     78 	sha1_vector(1 + num_elem, _addr, _len, mac);
     79 
     80 	os_memset(k_pad, 0, sizeof(k_pad));
     81 	os_memcpy(k_pad, key, key_len);
     82 	/* XOR key with opad values */
     83 	for (i = 0; i < 64; i++)
     84 		k_pad[i] ^= 0x5c;
     85 
     86 	/* perform outer SHA1 */
     87 	_addr[0] = k_pad;
     88 	_len[0] = 64;
     89 	_addr[1] = mac;
     90 	_len[1] = SHA1_MAC_LEN;
     91 	sha1_vector(2, _addr, _len, mac);
     92 }
     93 
     94 
     95 /**
     96  * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
     97  * @key: Key for HMAC operations
     98  * @key_len: Length of the key in bytes
     99  * @data: Pointers to the data area
    100  * @data_len: Length of the data area
    101  * @mac: Buffer for the hash (20 bytes)
    102  */
    103 void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
    104 	       u8 *mac)
    105 {
    106 	hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
    107 }
    108 
    109 
    110 /**
    111  * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
    112  * @key: Key for PRF
    113  * @key_len: Length of the key in bytes
    114  * @label: A unique label for each purpose of the PRF
    115  * @data: Extra data to bind into the key
    116  * @data_len: Length of the data
    117  * @buf: Buffer for the generated pseudo-random key
    118  * @buf_len: Number of bytes of key to generate
    119  *
    120  * This function is used to derive new, cryptographically separate keys from a
    121  * given key (e.g., PMK in IEEE 802.11i).
    122  */
    123 void sha1_prf(const u8 *key, size_t key_len, const char *label,
    124 	      const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
    125 {
    126 	u8 counter = 0;
    127 	size_t pos, plen;
    128 	u8 hash[SHA1_MAC_LEN];
    129 	size_t label_len = os_strlen(label) + 1;
    130 	const unsigned char *addr[3];
    131 	size_t len[3];
    132 
    133 	addr[0] = (u8 *) label;
    134 	len[0] = label_len;
    135 	addr[1] = data;
    136 	len[1] = data_len;
    137 	addr[2] = &counter;
    138 	len[2] = 1;
    139 
    140 	pos = 0;
    141 	while (pos < buf_len) {
    142 		plen = buf_len - pos;
    143 		if (plen >= SHA1_MAC_LEN) {
    144 			hmac_sha1_vector(key, key_len, 3, addr, len,
    145 					 &buf[pos]);
    146 			pos += SHA1_MAC_LEN;
    147 		} else {
    148 			hmac_sha1_vector(key, key_len, 3, addr, len,
    149 					 hash);
    150 			os_memcpy(&buf[pos], hash, plen);
    151 			break;
    152 		}
    153 		counter++;
    154 	}
    155 }
    156 
    157 
    158 #ifndef CONFIG_NO_T_PRF
    159 /**
    160  * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF)
    161  * @key: Key for PRF
    162  * @key_len: Length of the key in bytes
    163  * @label: A unique label for each purpose of the PRF
    164  * @seed: Seed value to bind into the key
    165  * @seed_len: Length of the seed
    166  * @buf: Buffer for the generated pseudo-random key
    167  * @buf_len: Number of bytes of key to generate
    168  *
    169  * This function is used to derive new, cryptographically separate keys from a
    170  * given key for EAP-FAST. T-PRF is defined in RFC 4851, Section 5.5.
    171  */
    172 void sha1_t_prf(const u8 *key, size_t key_len, const char *label,
    173 		const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len)
    174 {
    175 	unsigned char counter = 0;
    176 	size_t pos, plen;
    177 	u8 hash[SHA1_MAC_LEN];
    178 	size_t label_len = os_strlen(label);
    179 	u8 output_len[2];
    180 	const unsigned char *addr[5];
    181 	size_t len[5];
    182 
    183 	addr[0] = hash;
    184 	len[0] = 0;
    185 	addr[1] = (unsigned char *) label;
    186 	len[1] = label_len + 1;
    187 	addr[2] = seed;
    188 	len[2] = seed_len;
    189 	addr[3] = output_len;
    190 	len[3] = 2;
    191 	addr[4] = &counter;
    192 	len[4] = 1;
    193 
    194 	output_len[0] = (buf_len >> 8) & 0xff;
    195 	output_len[1] = buf_len & 0xff;
    196 	pos = 0;
    197 	while (pos < buf_len) {
    198 		counter++;
    199 		plen = buf_len - pos;
    200 		hmac_sha1_vector(key, key_len, 5, addr, len, hash);
    201 		if (plen >= SHA1_MAC_LEN) {
    202 			os_memcpy(&buf[pos], hash, SHA1_MAC_LEN);
    203 			pos += SHA1_MAC_LEN;
    204 		} else {
    205 			os_memcpy(&buf[pos], hash, plen);
    206 			break;
    207 		}
    208 		len[0] = SHA1_MAC_LEN;
    209 	}
    210 }
    211 #endif /* CONFIG_NO_T_PRF */
    212 
    213 
    214 #ifndef CONFIG_NO_TLS_PRF
    215 /**
    216  * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
    217  * @secret: Key for PRF
    218  * @secret_len: Length of the key in bytes
    219  * @label: A unique label for each purpose of the PRF
    220  * @seed: Seed value to bind into the key
    221  * @seed_len: Length of the seed
    222  * @out: Buffer for the generated pseudo-random key
    223  * @outlen: Number of bytes of key to generate
    224  * Returns: 0 on success, -1 on failure.
    225  *
    226  * This function is used to derive new, cryptographically separate keys from a
    227  * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
    228  */
    229 int tls_prf(const u8 *secret, size_t secret_len, const char *label,
    230 	    const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
    231 {
    232 	size_t L_S1, L_S2, i;
    233 	const u8 *S1, *S2;
    234 	u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
    235 	u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
    236 	int MD5_pos, SHA1_pos;
    237 	const u8 *MD5_addr[3];
    238 	size_t MD5_len[3];
    239 	const unsigned char *SHA1_addr[3];
    240 	size_t SHA1_len[3];
    241 
    242 	if (secret_len & 1)
    243 		return -1;
    244 
    245 	MD5_addr[0] = A_MD5;
    246 	MD5_len[0] = MD5_MAC_LEN;
    247 	MD5_addr[1] = (unsigned char *) label;
    248 	MD5_len[1] = os_strlen(label);
    249 	MD5_addr[2] = seed;
    250 	MD5_len[2] = seed_len;
    251 
    252 	SHA1_addr[0] = A_SHA1;
    253 	SHA1_len[0] = SHA1_MAC_LEN;
    254 	SHA1_addr[1] = (unsigned char *) label;
    255 	SHA1_len[1] = os_strlen(label);
    256 	SHA1_addr[2] = seed;
    257 	SHA1_len[2] = seed_len;
    258 
    259 	/* RFC 2246, Chapter 5
    260 	 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
    261 	 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
    262 	 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
    263 	 */
    264 
    265 	L_S1 = L_S2 = (secret_len + 1) / 2;
    266 	S1 = secret;
    267 	S2 = secret + L_S1;
    268 	if (secret_len & 1) {
    269 		/* The last byte of S1 will be shared with S2 */
    270 		S2--;
    271 	}
    272 
    273 	hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
    274 	hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
    275 
    276 	MD5_pos = MD5_MAC_LEN;
    277 	SHA1_pos = SHA1_MAC_LEN;
    278 	for (i = 0; i < outlen; i++) {
    279 		if (MD5_pos == MD5_MAC_LEN) {
    280 			hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
    281 			MD5_pos = 0;
    282 			hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
    283 		}
    284 		if (SHA1_pos == SHA1_MAC_LEN) {
    285 			hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
    286 					 P_SHA1);
    287 			SHA1_pos = 0;
    288 			hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
    289 		}
    290 
    291 		out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
    292 
    293 		MD5_pos++;
    294 		SHA1_pos++;
    295 	}
    296 
    297 	return 0;
    298 }
    299 #endif /* CONFIG_NO_TLS_PRF */
    300 
    301 
    302 #ifndef CONFIG_NO_PBKDF2
    303 
    304 static void pbkdf2_sha1_f(const char *passphrase, const char *ssid,
    305 			  size_t ssid_len, int iterations, unsigned int count,
    306 			  u8 *digest)
    307 {
    308 	unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN];
    309 	int i, j;
    310 	unsigned char count_buf[4];
    311 	const u8 *addr[2];
    312 	size_t len[2];
    313 	size_t passphrase_len = os_strlen(passphrase);
    314 
    315 	addr[0] = (u8 *) ssid;
    316 	len[0] = ssid_len;
    317 	addr[1] = count_buf;
    318 	len[1] = 4;
    319 
    320 	/* F(P, S, c, i) = U1 xor U2 xor ... Uc
    321 	 * U1 = PRF(P, S || i)
    322 	 * U2 = PRF(P, U1)
    323 	 * Uc = PRF(P, Uc-1)
    324 	 */
    325 
    326 	count_buf[0] = (count >> 24) & 0xff;
    327 	count_buf[1] = (count >> 16) & 0xff;
    328 	count_buf[2] = (count >> 8) & 0xff;
    329 	count_buf[3] = count & 0xff;
    330 	hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp);
    331 	os_memcpy(digest, tmp, SHA1_MAC_LEN);
    332 
    333 	for (i = 1; i < iterations; i++) {
    334 		hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN,
    335 			  tmp2);
    336 		os_memcpy(tmp, tmp2, SHA1_MAC_LEN);
    337 		for (j = 0; j < SHA1_MAC_LEN; j++)
    338 			digest[j] ^= tmp2[j];
    339 	}
    340 }
    341 
    342 
    343 /**
    344  * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i
    345  * @passphrase: ASCII passphrase
    346  * @ssid: SSID
    347  * @ssid_len: SSID length in bytes
    348  * @iterations: Number of iterations to run
    349  * @buf: Buffer for the generated key
    350  * @buflen: Length of the buffer in bytes
    351  *
    352  * This function is used to derive PSK for WPA-PSK. For this protocol,
    353  * iterations is set to 4096 and buflen to 32. This function is described in
    354  * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0.
    355  */
    356 void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len,
    357 		 int iterations, u8 *buf, size_t buflen)
    358 {
    359 	unsigned int count = 0;
    360 	unsigned char *pos = buf;
    361 	size_t left = buflen, plen;
    362 	unsigned char digest[SHA1_MAC_LEN];
    363 
    364 	while (left > 0) {
    365 		count++;
    366 		pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count,
    367 			      digest);
    368 		plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left;
    369 		os_memcpy(pos, digest, plen);
    370 		pos += plen;
    371 		left -= plen;
    372 	}
    373 }
    374 
    375 #endif /* CONFIG_NO_PBKDF2 */
    376 
    377 
    378 #ifdef INTERNAL_SHA1
    379 
    380 struct SHA1Context {
    381 	u32 state[5];
    382 	u32 count[2];
    383 	unsigned char buffer[64];
    384 };
    385 
    386 typedef struct SHA1Context SHA1_CTX;
    387 
    388 #ifndef CONFIG_CRYPTO_INTERNAL
    389 static void SHA1Init(struct SHA1Context *context);
    390 static void SHA1Update(struct SHA1Context *context, const void *data, u32 len);
    391 static void SHA1Final(unsigned char digest[20], struct SHA1Context *context);
    392 #endif /* CONFIG_CRYPTO_INTERNAL */
    393 static void SHA1Transform(u32 state[5], const unsigned char buffer[64]);
    394 
    395 
    396 /**
    397  * sha1_vector - SHA-1 hash for data vector
    398  * @num_elem: Number of elements in the data vector
    399  * @addr: Pointers to the data areas
    400  * @len: Lengths of the data blocks
    401  * @mac: Buffer for the hash
    402  */
    403 void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
    404 		 u8 *mac)
    405 {
    406 	SHA1_CTX ctx;
    407 	size_t i;
    408 
    409 	SHA1Init(&ctx);
    410 	for (i = 0; i < num_elem; i++)
    411 		SHA1Update(&ctx, addr[i], len[i]);
    412 	SHA1Final(mac, &ctx);
    413 }
    414 
    415 
    416 #ifndef CONFIG_NO_FIPS186_2_PRF
    417 int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
    418 {
    419 	u8 xkey[64];
    420 	u32 t[5], _t[5];
    421 	int i, j, m, k;
    422 	u8 *xpos = x;
    423 	u32 carry;
    424 
    425 	if (seed_len > sizeof(xkey))
    426 		seed_len = sizeof(xkey);
    427 
    428 	/* FIPS 186-2 + change notice 1 */
    429 
    430 	os_memcpy(xkey, seed, seed_len);
    431 	os_memset(xkey + seed_len, 0, 64 - seed_len);
    432 	t[0] = 0x67452301;
    433 	t[1] = 0xEFCDAB89;
    434 	t[2] = 0x98BADCFE;
    435 	t[3] = 0x10325476;
    436 	t[4] = 0xC3D2E1F0;
    437 
    438 	m = xlen / 40;
    439 	for (j = 0; j < m; j++) {
    440 		/* XSEED_j = 0 */
    441 		for (i = 0; i < 2; i++) {
    442 			/* XVAL = (XKEY + XSEED_j) mod 2^b */
    443 
    444 			/* w_i = G(t, XVAL) */
    445 			os_memcpy(_t, t, 20);
    446 			SHA1Transform(_t, xkey);
    447 			_t[0] = host_to_be32(_t[0]);
    448 			_t[1] = host_to_be32(_t[1]);
    449 			_t[2] = host_to_be32(_t[2]);
    450 			_t[3] = host_to_be32(_t[3]);
    451 			_t[4] = host_to_be32(_t[4]);
    452 			os_memcpy(xpos, _t, 20);
    453 
    454 			/* XKEY = (1 + XKEY + w_i) mod 2^b */
    455 			carry = 1;
    456 			for (k = 19; k >= 0; k--) {
    457 				carry += xkey[k] + xpos[k];
    458 				xkey[k] = carry & 0xff;
    459 				carry >>= 8;
    460 			}
    461 
    462 			xpos += SHA1_MAC_LEN;
    463 		}
    464 		/* x_j = w_0|w_1 */
    465 	}
    466 
    467 	return 0;
    468 }
    469 #endif /* CONFIG_NO_FIPS186_2_PRF */
    470 
    471 
    472 /* ===== start - public domain SHA1 implementation ===== */
    473 
    474 /*
    475 SHA-1 in C
    476 By Steve Reid <sreid (at) sea-to-sky.net>
    477 100% Public Domain
    478 
    479 -----------------
    480 Modified 7/98
    481 By James H. Brown <jbrown (at) burgoyne.com>
    482 Still 100% Public Domain
    483 
    484 Corrected a problem which generated improper hash values on 16 bit machines
    485 Routine SHA1Update changed from
    486 	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
    487 len)
    488 to
    489 	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
    490 long len)
    491 
    492 The 'len' parameter was declared an int which works fine on 32 bit machines.
    493 However, on 16 bit machines an int is too small for the shifts being done
    494 against
    495 it.  This caused the hash function to generate incorrect values if len was
    496 greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
    497 
    498 Since the file IO in main() reads 16K at a time, any file 8K or larger would
    499 be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
    500 "a"s).
    501 
    502 I also changed the declaration of variables i & j in SHA1Update to
    503 unsigned long from unsigned int for the same reason.
    504 
    505 These changes should make no difference to any 32 bit implementations since
    506 an
    507 int and a long are the same size in those environments.
    508 
    509 --
    510 I also corrected a few compiler warnings generated by Borland C.
    511 1. Added #include <process.h> for exit() prototype
    512 2. Removed unused variable 'j' in SHA1Final
    513 3. Changed exit(0) to return(0) at end of main.
    514 
    515 ALL changes I made can be located by searching for comments containing 'JHB'
    516 -----------------
    517 Modified 8/98
    518 By Steve Reid <sreid (at) sea-to-sky.net>
    519 Still 100% public domain
    520 
    521 1- Removed #include <process.h> and used return() instead of exit()
    522 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
    523 3- Changed email address from steve (at) edmweb.com to sreid (at) sea-to-sky.net
    524 
    525 -----------------
    526 Modified 4/01
    527 By Saul Kravitz <Saul.Kravitz (at) celera.com>
    528 Still 100% PD
    529 Modified to run on Compaq Alpha hardware.
    530 
    531 -----------------
    532 Modified 4/01
    533 By Jouni Malinen <j (at) w1.fi>
    534 Minor changes to match the coding style used in Dynamics.
    535 
    536 Modified September 24, 2004
    537 By Jouni Malinen <j (at) w1.fi>
    538 Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.
    539 
    540 */
    541 
    542 /*
    543 Test Vectors (from FIPS PUB 180-1)
    544 "abc"
    545   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
    546 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
    547   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
    548 A million repetitions of "a"
    549   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
    550 */
    551 
    552 #define SHA1HANDSOFF
    553 
    554 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
    555 
    556 /* blk0() and blk() perform the initial expand. */
    557 /* I got the idea of expanding during the round function from SSLeay */
    558 #ifndef WORDS_BIGENDIAN
    559 #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
    560 	(rol(block->l[i], 8) & 0x00FF00FF))
    561 #else
    562 #define blk0(i) block->l[i]
    563 #endif
    564 #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
    565 	block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
    566 
    567 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
    568 #define R0(v,w,x,y,z,i) \
    569 	z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
    570 	w = rol(w, 30);
    571 #define R1(v,w,x,y,z,i) \
    572 	z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
    573 	w = rol(w, 30);
    574 #define R2(v,w,x,y,z,i) \
    575 	z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
    576 #define R3(v,w,x,y,z,i) \
    577 	z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
    578 	w = rol(w, 30);
    579 #define R4(v,w,x,y,z,i) \
    580 	z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
    581 	w=rol(w, 30);
    582 
    583 
    584 #ifdef VERBOSE  /* SAK */
    585 void SHAPrintContext(SHA1_CTX *context, char *msg)
    586 {
    587 	printf("%s (%d,%d) %x %x %x %x %x\n",
    588 	       msg,
    589 	       context->count[0], context->count[1],
    590 	       context->state[0],
    591 	       context->state[1],
    592 	       context->state[2],
    593 	       context->state[3],
    594 	       context->state[4]);
    595 }
    596 #endif
    597 
    598 /* Hash a single 512-bit block. This is the core of the algorithm. */
    599 
    600 static void SHA1Transform(u32 state[5], const unsigned char buffer[64])
    601 {
    602 	u32 a, b, c, d, e;
    603 	typedef union {
    604 		unsigned char c[64];
    605 		u32 l[16];
    606 	} CHAR64LONG16;
    607 	CHAR64LONG16* block;
    608 #ifdef SHA1HANDSOFF
    609 	CHAR64LONG16 workspace;
    610 	block = &workspace;
    611 	os_memcpy(block, buffer, 64);
    612 #else
    613 	block = (CHAR64LONG16 *) buffer;
    614 #endif
    615 	/* Copy context->state[] to working vars */
    616 	a = state[0];
    617 	b = state[1];
    618 	c = state[2];
    619 	d = state[3];
    620 	e = state[4];
    621 	/* 4 rounds of 20 operations each. Loop unrolled. */
    622 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    623 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    624 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    625 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    626 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    627 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    628 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    629 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    630 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    631 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    632 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    633 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    634 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    635 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    636 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    637 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    638 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    639 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    640 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    641 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
    642 	/* Add the working vars back into context.state[] */
    643 	state[0] += a;
    644 	state[1] += b;
    645 	state[2] += c;
    646 	state[3] += d;
    647 	state[4] += e;
    648 	/* Wipe variables */
    649 	a = b = c = d = e = 0;
    650 #ifdef SHA1HANDSOFF
    651 	os_memset(block, 0, 64);
    652 #endif
    653 }
    654 
    655 
    656 /* SHA1Init - Initialize new context */
    657 
    658 void SHA1Init(SHA1_CTX* context)
    659 {
    660 	/* SHA1 initialization constants */
    661 	context->state[0] = 0x67452301;
    662 	context->state[1] = 0xEFCDAB89;
    663 	context->state[2] = 0x98BADCFE;
    664 	context->state[3] = 0x10325476;
    665 	context->state[4] = 0xC3D2E1F0;
    666 	context->count[0] = context->count[1] = 0;
    667 }
    668 
    669 
    670 /* Run your data through this. */
    671 
    672 void SHA1Update(SHA1_CTX* context, const void *_data, u32 len)
    673 {
    674 	u32 i, j;
    675 	const unsigned char *data = _data;
    676 
    677 #ifdef VERBOSE
    678 	SHAPrintContext(context, "before");
    679 #endif
    680 	j = (context->count[0] >> 3) & 63;
    681 	if ((context->count[0] += len << 3) < (len << 3))
    682 		context->count[1]++;
    683 	context->count[1] += (len >> 29);
    684 	if ((j + len) > 63) {
    685 		os_memcpy(&context->buffer[j], data, (i = 64-j));
    686 		SHA1Transform(context->state, context->buffer);
    687 		for ( ; i + 63 < len; i += 64) {
    688 			SHA1Transform(context->state, &data[i]);
    689 		}
    690 		j = 0;
    691 	}
    692 	else i = 0;
    693 	os_memcpy(&context->buffer[j], &data[i], len - i);
    694 #ifdef VERBOSE
    695 	SHAPrintContext(context, "after ");
    696 #endif
    697 }
    698 
    699 
    700 /* Add padding and return the message digest. */
    701 
    702 void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
    703 {
    704 	u32 i;
    705 	unsigned char finalcount[8];
    706 
    707 	for (i = 0; i < 8; i++) {
    708 		finalcount[i] = (unsigned char)
    709 			((context->count[(i >= 4 ? 0 : 1)] >>
    710 			  ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
    711 	}
    712 	SHA1Update(context, (unsigned char *) "\200", 1);
    713 	while ((context->count[0] & 504) != 448) {
    714 		SHA1Update(context, (unsigned char *) "\0", 1);
    715 	}
    716 	SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform()
    717 					      */
    718 	for (i = 0; i < 20; i++) {
    719 		digest[i] = (unsigned char)
    720 			((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
    721 			 255);
    722 	}
    723 	/* Wipe variables */
    724 	i = 0;
    725 	os_memset(context->buffer, 0, 64);
    726 	os_memset(context->state, 0, 20);
    727 	os_memset(context->count, 0, 8);
    728 	os_memset(finalcount, 0, 8);
    729 }
    730 
    731 /* ===== end - public domain SHA1 implementation ===== */
    732 
    733 #endif /* INTERNAL_SHA1 */
    734