1 /* 2 * Minimal code for RSA support from LibTomMath 0.41 3 * http://libtom.org/ 4 * http://libtom.org/files/ltm-0.41.tar.bz2 5 * This library was released in public domain by Tom St Denis. 6 * 7 * The combination in this file may not use all of the optimized algorithms 8 * from LibTomMath and may be considerable slower than the LibTomMath with its 9 * default settings. The main purpose of having this version here is to make it 10 * easier to build bignum.c wrapper without having to install and build an 11 * external library. 12 * 13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this 14 * libtommath.c file instead of using the external LibTomMath library. 15 */ 16 17 #ifndef CHAR_BIT 18 #define CHAR_BIT 8 19 #endif 20 21 #define BN_MP_INVMOD_C 22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would 23 * require BN_MP_EXPTMOD_FAST_C instead */ 24 #define BN_S_MP_MUL_DIGS_C 25 #define BN_MP_INVMOD_SLOW_C 26 #define BN_S_MP_SQR_C 27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this 28 * would require other than mp_reduce */ 29 30 #ifdef LTM_FAST 31 32 /* Use faster div at the cost of about 1 kB */ 33 #define BN_MP_MUL_D_C 34 35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */ 36 #define BN_MP_EXPTMOD_FAST_C 37 #define BN_MP_MONTGOMERY_SETUP_C 38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C 39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 40 #define BN_MP_MUL_2_C 41 42 /* Include faster sqr at the cost of about 0.5 kB in code */ 43 #define BN_FAST_S_MP_SQR_C 44 45 #else /* LTM_FAST */ 46 47 #define BN_MP_DIV_SMALL 48 #define BN_MP_INIT_MULTI_C 49 #define BN_MP_CLEAR_MULTI_C 50 #define BN_MP_ABS_C 51 #endif /* LTM_FAST */ 52 53 /* Current uses do not require support for negative exponent in exptmod, so we 54 * can save about 1.5 kB in leaving out invmod. */ 55 #define LTM_NO_NEG_EXP 56 57 /* from tommath.h */ 58 59 #ifndef MIN 60 #define MIN(x,y) ((x)<(y)?(x):(y)) 61 #endif 62 63 #ifndef MAX 64 #define MAX(x,y) ((x)>(y)?(x):(y)) 65 #endif 66 67 #define OPT_CAST(x) 68 69 typedef unsigned long mp_digit; 70 typedef u64 mp_word; 71 72 #define DIGIT_BIT 28 73 #define MP_28BIT 74 75 76 #define XMALLOC os_malloc 77 #define XFREE os_free 78 #define XREALLOC os_realloc 79 80 81 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) 82 83 #define MP_LT -1 /* less than */ 84 #define MP_EQ 0 /* equal to */ 85 #define MP_GT 1 /* greater than */ 86 87 #define MP_ZPOS 0 /* positive integer */ 88 #define MP_NEG 1 /* negative */ 89 90 #define MP_OKAY 0 /* ok result */ 91 #define MP_MEM -2 /* out of mem */ 92 #define MP_VAL -3 /* invalid input */ 93 94 #define MP_YES 1 /* yes response */ 95 #define MP_NO 0 /* no response */ 96 97 typedef int mp_err; 98 99 /* define this to use lower memory usage routines (exptmods mostly) */ 100 #define MP_LOW_MEM 101 102 /* default precision */ 103 #ifndef MP_PREC 104 #ifndef MP_LOW_MEM 105 #define MP_PREC 32 /* default digits of precision */ 106 #else 107 #define MP_PREC 8 /* default digits of precision */ 108 #endif 109 #endif 110 111 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ 112 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) 113 114 /* the infamous mp_int structure */ 115 typedef struct { 116 int used, alloc, sign; 117 mp_digit *dp; 118 } mp_int; 119 120 121 /* ---> Basic Manipulations <--- */ 122 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) 123 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) 124 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) 125 126 127 /* prototypes for copied functions */ 128 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) 129 static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 130 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 131 static int s_mp_sqr(mp_int * a, mp_int * b); 132 static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); 133 134 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); 135 136 #ifdef BN_MP_INIT_MULTI_C 137 static int mp_init_multi(mp_int *mp, ...); 138 #endif 139 #ifdef BN_MP_CLEAR_MULTI_C 140 static void mp_clear_multi(mp_int *mp, ...); 141 #endif 142 static int mp_lshd(mp_int * a, int b); 143 static void mp_set(mp_int * a, mp_digit b); 144 static void mp_clamp(mp_int * a); 145 static void mp_exch(mp_int * a, mp_int * b); 146 static void mp_rshd(mp_int * a, int b); 147 static void mp_zero(mp_int * a); 148 static int mp_mod_2d(mp_int * a, int b, mp_int * c); 149 static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); 150 static int mp_init_copy(mp_int * a, mp_int * b); 151 static int mp_mul_2d(mp_int * a, int b, mp_int * c); 152 #ifndef LTM_NO_NEG_EXP 153 static int mp_div_2(mp_int * a, mp_int * b); 154 static int mp_invmod(mp_int * a, mp_int * b, mp_int * c); 155 static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); 156 #endif /* LTM_NO_NEG_EXP */ 157 static int mp_copy(mp_int * a, mp_int * b); 158 static int mp_count_bits(mp_int * a); 159 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); 160 static int mp_mod(mp_int * a, mp_int * b, mp_int * c); 161 static int mp_grow(mp_int * a, int size); 162 static int mp_cmp_mag(mp_int * a, mp_int * b); 163 #ifdef BN_MP_ABS_C 164 static int mp_abs(mp_int * a, mp_int * b); 165 #endif 166 static int mp_sqr(mp_int * a, mp_int * b); 167 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); 168 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); 169 static int mp_2expt(mp_int * a, int b); 170 static int mp_reduce_setup(mp_int * a, mp_int * b); 171 static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu); 172 static int mp_init_size(mp_int * a, int size); 173 #ifdef BN_MP_EXPTMOD_FAST_C 174 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); 175 #endif /* BN_MP_EXPTMOD_FAST_C */ 176 #ifdef BN_FAST_S_MP_SQR_C 177 static int fast_s_mp_sqr (mp_int * a, mp_int * b); 178 #endif /* BN_FAST_S_MP_SQR_C */ 179 #ifdef BN_MP_MUL_D_C 180 static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); 181 #endif /* BN_MP_MUL_D_C */ 182 183 184 185 /* functions from bn_<func name>.c */ 186 187 188 /* reverse an array, used for radix code */ 189 static void bn_reverse (unsigned char *s, int len) 190 { 191 int ix, iy; 192 unsigned char t; 193 194 ix = 0; 195 iy = len - 1; 196 while (ix < iy) { 197 t = s[ix]; 198 s[ix] = s[iy]; 199 s[iy] = t; 200 ++ix; 201 --iy; 202 } 203 } 204 205 206 /* low level addition, based on HAC pp.594, Algorithm 14.7 */ 207 static int s_mp_add (mp_int * a, mp_int * b, mp_int * c) 208 { 209 mp_int *x; 210 int olduse, res, min, max; 211 212 /* find sizes, we let |a| <= |b| which means we have to sort 213 * them. "x" will point to the input with the most digits 214 */ 215 if (a->used > b->used) { 216 min = b->used; 217 max = a->used; 218 x = a; 219 } else { 220 min = a->used; 221 max = b->used; 222 x = b; 223 } 224 225 /* init result */ 226 if (c->alloc < max + 1) { 227 if ((res = mp_grow (c, max + 1)) != MP_OKAY) { 228 return res; 229 } 230 } 231 232 /* get old used digit count and set new one */ 233 olduse = c->used; 234 c->used = max + 1; 235 236 { 237 register mp_digit u, *tmpa, *tmpb, *tmpc; 238 register int i; 239 240 /* alias for digit pointers */ 241 242 /* first input */ 243 tmpa = a->dp; 244 245 /* second input */ 246 tmpb = b->dp; 247 248 /* destination */ 249 tmpc = c->dp; 250 251 /* zero the carry */ 252 u = 0; 253 for (i = 0; i < min; i++) { 254 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ 255 *tmpc = *tmpa++ + *tmpb++ + u; 256 257 /* U = carry bit of T[i] */ 258 u = *tmpc >> ((mp_digit)DIGIT_BIT); 259 260 /* take away carry bit from T[i] */ 261 *tmpc++ &= MP_MASK; 262 } 263 264 /* now copy higher words if any, that is in A+B 265 * if A or B has more digits add those in 266 */ 267 if (min != max) { 268 for (; i < max; i++) { 269 /* T[i] = X[i] + U */ 270 *tmpc = x->dp[i] + u; 271 272 /* U = carry bit of T[i] */ 273 u = *tmpc >> ((mp_digit)DIGIT_BIT); 274 275 /* take away carry bit from T[i] */ 276 *tmpc++ &= MP_MASK; 277 } 278 } 279 280 /* add carry */ 281 *tmpc++ = u; 282 283 /* clear digits above oldused */ 284 for (i = c->used; i < olduse; i++) { 285 *tmpc++ = 0; 286 } 287 } 288 289 mp_clamp (c); 290 return MP_OKAY; 291 } 292 293 294 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ 295 static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) 296 { 297 int olduse, res, min, max; 298 299 /* find sizes */ 300 min = b->used; 301 max = a->used; 302 303 /* init result */ 304 if (c->alloc < max) { 305 if ((res = mp_grow (c, max)) != MP_OKAY) { 306 return res; 307 } 308 } 309 olduse = c->used; 310 c->used = max; 311 312 { 313 register mp_digit u, *tmpa, *tmpb, *tmpc; 314 register int i; 315 316 /* alias for digit pointers */ 317 tmpa = a->dp; 318 tmpb = b->dp; 319 tmpc = c->dp; 320 321 /* set carry to zero */ 322 u = 0; 323 for (i = 0; i < min; i++) { 324 /* T[i] = A[i] - B[i] - U */ 325 *tmpc = *tmpa++ - *tmpb++ - u; 326 327 /* U = carry bit of T[i] 328 * Note this saves performing an AND operation since 329 * if a carry does occur it will propagate all the way to the 330 * MSB. As a result a single shift is enough to get the carry 331 */ 332 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 333 334 /* Clear carry from T[i] */ 335 *tmpc++ &= MP_MASK; 336 } 337 338 /* now copy higher words if any, e.g. if A has more digits than B */ 339 for (; i < max; i++) { 340 /* T[i] = A[i] - U */ 341 *tmpc = *tmpa++ - u; 342 343 /* U = carry bit of T[i] */ 344 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); 345 346 /* Clear carry from T[i] */ 347 *tmpc++ &= MP_MASK; 348 } 349 350 /* clear digits above used (since we may not have grown result above) */ 351 for (i = c->used; i < olduse; i++) { 352 *tmpc++ = 0; 353 } 354 } 355 356 mp_clamp (c); 357 return MP_OKAY; 358 } 359 360 361 /* init a new mp_int */ 362 static int mp_init (mp_int * a) 363 { 364 int i; 365 366 /* allocate memory required and clear it */ 367 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); 368 if (a->dp == NULL) { 369 return MP_MEM; 370 } 371 372 /* set the digits to zero */ 373 for (i = 0; i < MP_PREC; i++) { 374 a->dp[i] = 0; 375 } 376 377 /* set the used to zero, allocated digits to the default precision 378 * and sign to positive */ 379 a->used = 0; 380 a->alloc = MP_PREC; 381 a->sign = MP_ZPOS; 382 383 return MP_OKAY; 384 } 385 386 387 /* clear one (frees) */ 388 static void mp_clear (mp_int * a) 389 { 390 int i; 391 392 /* only do anything if a hasn't been freed previously */ 393 if (a->dp != NULL) { 394 /* first zero the digits */ 395 for (i = 0; i < a->used; i++) { 396 a->dp[i] = 0; 397 } 398 399 /* free ram */ 400 XFREE(a->dp); 401 402 /* reset members to make debugging easier */ 403 a->dp = NULL; 404 a->alloc = a->used = 0; 405 a->sign = MP_ZPOS; 406 } 407 } 408 409 410 /* high level addition (handles signs) */ 411 static int mp_add (mp_int * a, mp_int * b, mp_int * c) 412 { 413 int sa, sb, res; 414 415 /* get sign of both inputs */ 416 sa = a->sign; 417 sb = b->sign; 418 419 /* handle two cases, not four */ 420 if (sa == sb) { 421 /* both positive or both negative */ 422 /* add their magnitudes, copy the sign */ 423 c->sign = sa; 424 res = s_mp_add (a, b, c); 425 } else { 426 /* one positive, the other negative */ 427 /* subtract the one with the greater magnitude from */ 428 /* the one of the lesser magnitude. The result gets */ 429 /* the sign of the one with the greater magnitude. */ 430 if (mp_cmp_mag (a, b) == MP_LT) { 431 c->sign = sb; 432 res = s_mp_sub (b, a, c); 433 } else { 434 c->sign = sa; 435 res = s_mp_sub (a, b, c); 436 } 437 } 438 return res; 439 } 440 441 442 /* high level subtraction (handles signs) */ 443 static int mp_sub (mp_int * a, mp_int * b, mp_int * c) 444 { 445 int sa, sb, res; 446 447 sa = a->sign; 448 sb = b->sign; 449 450 if (sa != sb) { 451 /* subtract a negative from a positive, OR */ 452 /* subtract a positive from a negative. */ 453 /* In either case, ADD their magnitudes, */ 454 /* and use the sign of the first number. */ 455 c->sign = sa; 456 res = s_mp_add (a, b, c); 457 } else { 458 /* subtract a positive from a positive, OR */ 459 /* subtract a negative from a negative. */ 460 /* First, take the difference between their */ 461 /* magnitudes, then... */ 462 if (mp_cmp_mag (a, b) != MP_LT) { 463 /* Copy the sign from the first */ 464 c->sign = sa; 465 /* The first has a larger or equal magnitude */ 466 res = s_mp_sub (a, b, c); 467 } else { 468 /* The result has the *opposite* sign from */ 469 /* the first number. */ 470 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; 471 /* The second has a larger magnitude */ 472 res = s_mp_sub (b, a, c); 473 } 474 } 475 return res; 476 } 477 478 479 /* high level multiplication (handles sign) */ 480 static int mp_mul (mp_int * a, mp_int * b, mp_int * c) 481 { 482 int res, neg; 483 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 484 485 /* use Toom-Cook? */ 486 #ifdef BN_MP_TOOM_MUL_C 487 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { 488 res = mp_toom_mul(a, b, c); 489 } else 490 #endif 491 #ifdef BN_MP_KARATSUBA_MUL_C 492 /* use Karatsuba? */ 493 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { 494 res = mp_karatsuba_mul (a, b, c); 495 } else 496 #endif 497 { 498 /* can we use the fast multiplier? 499 * 500 * The fast multiplier can be used if the output will 501 * have less than MP_WARRAY digits and the number of 502 * digits won't affect carry propagation 503 */ 504 #ifdef BN_FAST_S_MP_MUL_DIGS_C 505 int digs = a->used + b->used + 1; 506 507 if ((digs < MP_WARRAY) && 508 MIN(a->used, b->used) <= 509 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 510 res = fast_s_mp_mul_digs (a, b, c, digs); 511 } else 512 #endif 513 #ifdef BN_S_MP_MUL_DIGS_C 514 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ 515 #else 516 #error mp_mul could fail 517 res = MP_VAL; 518 #endif 519 520 } 521 c->sign = (c->used > 0) ? neg : MP_ZPOS; 522 return res; 523 } 524 525 526 /* d = a * b (mod c) */ 527 static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 528 { 529 int res; 530 mp_int t; 531 532 if ((res = mp_init (&t)) != MP_OKAY) { 533 return res; 534 } 535 536 if ((res = mp_mul (a, b, &t)) != MP_OKAY) { 537 mp_clear (&t); 538 return res; 539 } 540 res = mp_mod (&t, c, d); 541 mp_clear (&t); 542 return res; 543 } 544 545 546 /* c = a mod b, 0 <= c < b */ 547 static int mp_mod (mp_int * a, mp_int * b, mp_int * c) 548 { 549 mp_int t; 550 int res; 551 552 if ((res = mp_init (&t)) != MP_OKAY) { 553 return res; 554 } 555 556 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { 557 mp_clear (&t); 558 return res; 559 } 560 561 if (t.sign != b->sign) { 562 res = mp_add (b, &t, c); 563 } else { 564 res = MP_OKAY; 565 mp_exch (&t, c); 566 } 567 568 mp_clear (&t); 569 return res; 570 } 571 572 573 /* this is a shell function that calls either the normal or Montgomery 574 * exptmod functions. Originally the call to the montgomery code was 575 * embedded in the normal function but that wasted a lot of stack space 576 * for nothing (since 99% of the time the Montgomery code would be called) 577 */ 578 static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) 579 { 580 int dr; 581 582 /* modulus P must be positive */ 583 if (P->sign == MP_NEG) { 584 return MP_VAL; 585 } 586 587 /* if exponent X is negative we have to recurse */ 588 if (X->sign == MP_NEG) { 589 #ifdef LTM_NO_NEG_EXP 590 return MP_VAL; 591 #else /* LTM_NO_NEG_EXP */ 592 #ifdef BN_MP_INVMOD_C 593 mp_int tmpG, tmpX; 594 int err; 595 596 /* first compute 1/G mod P */ 597 if ((err = mp_init(&tmpG)) != MP_OKAY) { 598 return err; 599 } 600 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { 601 mp_clear(&tmpG); 602 return err; 603 } 604 605 /* now get |X| */ 606 if ((err = mp_init(&tmpX)) != MP_OKAY) { 607 mp_clear(&tmpG); 608 return err; 609 } 610 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { 611 mp_clear_multi(&tmpG, &tmpX, NULL); 612 return err; 613 } 614 615 /* and now compute (1/G)**|X| instead of G**X [X < 0] */ 616 err = mp_exptmod(&tmpG, &tmpX, P, Y); 617 mp_clear_multi(&tmpG, &tmpX, NULL); 618 return err; 619 #else 620 #error mp_exptmod would always fail 621 /* no invmod */ 622 return MP_VAL; 623 #endif 624 #endif /* LTM_NO_NEG_EXP */ 625 } 626 627 /* modified diminished radix reduction */ 628 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) 629 if (mp_reduce_is_2k_l(P) == MP_YES) { 630 return s_mp_exptmod(G, X, P, Y, 1); 631 } 632 #endif 633 634 #ifdef BN_MP_DR_IS_MODULUS_C 635 /* is it a DR modulus? */ 636 dr = mp_dr_is_modulus(P); 637 #else 638 /* default to no */ 639 dr = 0; 640 #endif 641 642 #ifdef BN_MP_REDUCE_IS_2K_C 643 /* if not, is it a unrestricted DR modulus? */ 644 if (dr == 0) { 645 dr = mp_reduce_is_2k(P) << 1; 646 } 647 #endif 648 649 /* if the modulus is odd or dr != 0 use the montgomery method */ 650 #ifdef BN_MP_EXPTMOD_FAST_C 651 if (mp_isodd (P) == 1 || dr != 0) { 652 return mp_exptmod_fast (G, X, P, Y, dr); 653 } else { 654 #endif 655 #ifdef BN_S_MP_EXPTMOD_C 656 /* otherwise use the generic Barrett reduction technique */ 657 return s_mp_exptmod (G, X, P, Y, 0); 658 #else 659 #error mp_exptmod could fail 660 /* no exptmod for evens */ 661 return MP_VAL; 662 #endif 663 #ifdef BN_MP_EXPTMOD_FAST_C 664 } 665 #endif 666 } 667 668 669 /* compare two ints (signed)*/ 670 static int mp_cmp (mp_int * a, mp_int * b) 671 { 672 /* compare based on sign */ 673 if (a->sign != b->sign) { 674 if (a->sign == MP_NEG) { 675 return MP_LT; 676 } else { 677 return MP_GT; 678 } 679 } 680 681 /* compare digits */ 682 if (a->sign == MP_NEG) { 683 /* if negative compare opposite direction */ 684 return mp_cmp_mag(b, a); 685 } else { 686 return mp_cmp_mag(a, b); 687 } 688 } 689 690 691 /* compare a digit */ 692 static int mp_cmp_d(mp_int * a, mp_digit b) 693 { 694 /* compare based on sign */ 695 if (a->sign == MP_NEG) { 696 return MP_LT; 697 } 698 699 /* compare based on magnitude */ 700 if (a->used > 1) { 701 return MP_GT; 702 } 703 704 /* compare the only digit of a to b */ 705 if (a->dp[0] > b) { 706 return MP_GT; 707 } else if (a->dp[0] < b) { 708 return MP_LT; 709 } else { 710 return MP_EQ; 711 } 712 } 713 714 715 #ifndef LTM_NO_NEG_EXP 716 /* hac 14.61, pp608 */ 717 static int mp_invmod (mp_int * a, mp_int * b, mp_int * c) 718 { 719 /* b cannot be negative */ 720 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 721 return MP_VAL; 722 } 723 724 #ifdef BN_FAST_MP_INVMOD_C 725 /* if the modulus is odd we can use a faster routine instead */ 726 if (mp_isodd (b) == 1) { 727 return fast_mp_invmod (a, b, c); 728 } 729 #endif 730 731 #ifdef BN_MP_INVMOD_SLOW_C 732 return mp_invmod_slow(a, b, c); 733 #endif 734 735 #ifndef BN_FAST_MP_INVMOD_C 736 #ifndef BN_MP_INVMOD_SLOW_C 737 #error mp_invmod would always fail 738 #endif 739 #endif 740 return MP_VAL; 741 } 742 #endif /* LTM_NO_NEG_EXP */ 743 744 745 /* get the size for an unsigned equivalent */ 746 static int mp_unsigned_bin_size (mp_int * a) 747 { 748 int size = mp_count_bits (a); 749 return (size / 8 + ((size & 7) != 0 ? 1 : 0)); 750 } 751 752 753 #ifndef LTM_NO_NEG_EXP 754 /* hac 14.61, pp608 */ 755 static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) 756 { 757 mp_int x, y, u, v, A, B, C, D; 758 int res; 759 760 /* b cannot be negative */ 761 if (b->sign == MP_NEG || mp_iszero(b) == 1) { 762 return MP_VAL; 763 } 764 765 /* init temps */ 766 if ((res = mp_init_multi(&x, &y, &u, &v, 767 &A, &B, &C, &D, NULL)) != MP_OKAY) { 768 return res; 769 } 770 771 /* x = a, y = b */ 772 if ((res = mp_mod(a, b, &x)) != MP_OKAY) { 773 goto LBL_ERR; 774 } 775 if ((res = mp_copy (b, &y)) != MP_OKAY) { 776 goto LBL_ERR; 777 } 778 779 /* 2. [modified] if x,y are both even then return an error! */ 780 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { 781 res = MP_VAL; 782 goto LBL_ERR; 783 } 784 785 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ 786 if ((res = mp_copy (&x, &u)) != MP_OKAY) { 787 goto LBL_ERR; 788 } 789 if ((res = mp_copy (&y, &v)) != MP_OKAY) { 790 goto LBL_ERR; 791 } 792 mp_set (&A, 1); 793 mp_set (&D, 1); 794 795 top: 796 /* 4. while u is even do */ 797 while (mp_iseven (&u) == 1) { 798 /* 4.1 u = u/2 */ 799 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { 800 goto LBL_ERR; 801 } 802 /* 4.2 if A or B is odd then */ 803 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { 804 /* A = (A+y)/2, B = (B-x)/2 */ 805 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { 806 goto LBL_ERR; 807 } 808 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { 809 goto LBL_ERR; 810 } 811 } 812 /* A = A/2, B = B/2 */ 813 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { 814 goto LBL_ERR; 815 } 816 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { 817 goto LBL_ERR; 818 } 819 } 820 821 /* 5. while v is even do */ 822 while (mp_iseven (&v) == 1) { 823 /* 5.1 v = v/2 */ 824 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { 825 goto LBL_ERR; 826 } 827 /* 5.2 if C or D is odd then */ 828 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { 829 /* C = (C+y)/2, D = (D-x)/2 */ 830 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { 831 goto LBL_ERR; 832 } 833 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { 834 goto LBL_ERR; 835 } 836 } 837 /* C = C/2, D = D/2 */ 838 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { 839 goto LBL_ERR; 840 } 841 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { 842 goto LBL_ERR; 843 } 844 } 845 846 /* 6. if u >= v then */ 847 if (mp_cmp (&u, &v) != MP_LT) { 848 /* u = u - v, A = A - C, B = B - D */ 849 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { 850 goto LBL_ERR; 851 } 852 853 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { 854 goto LBL_ERR; 855 } 856 857 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { 858 goto LBL_ERR; 859 } 860 } else { 861 /* v - v - u, C = C - A, D = D - B */ 862 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { 863 goto LBL_ERR; 864 } 865 866 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { 867 goto LBL_ERR; 868 } 869 870 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { 871 goto LBL_ERR; 872 } 873 } 874 875 /* if not zero goto step 4 */ 876 if (mp_iszero (&u) == 0) 877 goto top; 878 879 /* now a = C, b = D, gcd == g*v */ 880 881 /* if v != 1 then there is no inverse */ 882 if (mp_cmp_d (&v, 1) != MP_EQ) { 883 res = MP_VAL; 884 goto LBL_ERR; 885 } 886 887 /* if its too low */ 888 while (mp_cmp_d(&C, 0) == MP_LT) { 889 if ((res = mp_add(&C, b, &C)) != MP_OKAY) { 890 goto LBL_ERR; 891 } 892 } 893 894 /* too big */ 895 while (mp_cmp_mag(&C, b) != MP_LT) { 896 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { 897 goto LBL_ERR; 898 } 899 } 900 901 /* C is now the inverse */ 902 mp_exch (&C, c); 903 res = MP_OKAY; 904 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); 905 return res; 906 } 907 #endif /* LTM_NO_NEG_EXP */ 908 909 910 /* compare maginitude of two ints (unsigned) */ 911 static int mp_cmp_mag (mp_int * a, mp_int * b) 912 { 913 int n; 914 mp_digit *tmpa, *tmpb; 915 916 /* compare based on # of non-zero digits */ 917 if (a->used > b->used) { 918 return MP_GT; 919 } 920 921 if (a->used < b->used) { 922 return MP_LT; 923 } 924 925 /* alias for a */ 926 tmpa = a->dp + (a->used - 1); 927 928 /* alias for b */ 929 tmpb = b->dp + (a->used - 1); 930 931 /* compare based on digits */ 932 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { 933 if (*tmpa > *tmpb) { 934 return MP_GT; 935 } 936 937 if (*tmpa < *tmpb) { 938 return MP_LT; 939 } 940 } 941 return MP_EQ; 942 } 943 944 945 /* reads a unsigned char array, assumes the msb is stored first [big endian] */ 946 static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) 947 { 948 int res; 949 950 /* make sure there are at least two digits */ 951 if (a->alloc < 2) { 952 if ((res = mp_grow(a, 2)) != MP_OKAY) { 953 return res; 954 } 955 } 956 957 /* zero the int */ 958 mp_zero (a); 959 960 /* read the bytes in */ 961 while (c-- > 0) { 962 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { 963 return res; 964 } 965 966 #ifndef MP_8BIT 967 a->dp[0] |= *b++; 968 a->used += 1; 969 #else 970 a->dp[0] = (*b & MP_MASK); 971 a->dp[1] |= ((*b++ >> 7U) & 1); 972 a->used += 2; 973 #endif 974 } 975 mp_clamp (a); 976 return MP_OKAY; 977 } 978 979 980 /* store in unsigned [big endian] format */ 981 static int mp_to_unsigned_bin (mp_int * a, unsigned char *b) 982 { 983 int x, res; 984 mp_int t; 985 986 if ((res = mp_init_copy (&t, a)) != MP_OKAY) { 987 return res; 988 } 989 990 x = 0; 991 while (mp_iszero (&t) == 0) { 992 #ifndef MP_8BIT 993 b[x++] = (unsigned char) (t.dp[0] & 255); 994 #else 995 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); 996 #endif 997 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { 998 mp_clear (&t); 999 return res; 1000 } 1001 } 1002 bn_reverse (b, x); 1003 mp_clear (&t); 1004 return MP_OKAY; 1005 } 1006 1007 1008 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ 1009 static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) 1010 { 1011 mp_digit D, r, rr; 1012 int x, res; 1013 mp_int t; 1014 1015 1016 /* if the shift count is <= 0 then we do no work */ 1017 if (b <= 0) { 1018 res = mp_copy (a, c); 1019 if (d != NULL) { 1020 mp_zero (d); 1021 } 1022 return res; 1023 } 1024 1025 if ((res = mp_init (&t)) != MP_OKAY) { 1026 return res; 1027 } 1028 1029 /* get the remainder */ 1030 if (d != NULL) { 1031 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { 1032 mp_clear (&t); 1033 return res; 1034 } 1035 } 1036 1037 /* copy */ 1038 if ((res = mp_copy (a, c)) != MP_OKAY) { 1039 mp_clear (&t); 1040 return res; 1041 } 1042 1043 /* shift by as many digits in the bit count */ 1044 if (b >= (int)DIGIT_BIT) { 1045 mp_rshd (c, b / DIGIT_BIT); 1046 } 1047 1048 /* shift any bit count < DIGIT_BIT */ 1049 D = (mp_digit) (b % DIGIT_BIT); 1050 if (D != 0) { 1051 register mp_digit *tmpc, mask, shift; 1052 1053 /* mask */ 1054 mask = (((mp_digit)1) << D) - 1; 1055 1056 /* shift for lsb */ 1057 shift = DIGIT_BIT - D; 1058 1059 /* alias */ 1060 tmpc = c->dp + (c->used - 1); 1061 1062 /* carry */ 1063 r = 0; 1064 for (x = c->used - 1; x >= 0; x--) { 1065 /* get the lower bits of this word in a temp */ 1066 rr = *tmpc & mask; 1067 1068 /* shift the current word and mix in the carry bits from the previous word */ 1069 *tmpc = (*tmpc >> D) | (r << shift); 1070 --tmpc; 1071 1072 /* set the carry to the carry bits of the current word found above */ 1073 r = rr; 1074 } 1075 } 1076 mp_clamp (c); 1077 if (d != NULL) { 1078 mp_exch (&t, d); 1079 } 1080 mp_clear (&t); 1081 return MP_OKAY; 1082 } 1083 1084 1085 static int mp_init_copy (mp_int * a, mp_int * b) 1086 { 1087 int res; 1088 1089 if ((res = mp_init (a)) != MP_OKAY) { 1090 return res; 1091 } 1092 return mp_copy (b, a); 1093 } 1094 1095 1096 /* set to zero */ 1097 static void mp_zero (mp_int * a) 1098 { 1099 int n; 1100 mp_digit *tmp; 1101 1102 a->sign = MP_ZPOS; 1103 a->used = 0; 1104 1105 tmp = a->dp; 1106 for (n = 0; n < a->alloc; n++) { 1107 *tmp++ = 0; 1108 } 1109 } 1110 1111 1112 /* copy, b = a */ 1113 static int mp_copy (mp_int * a, mp_int * b) 1114 { 1115 int res, n; 1116 1117 /* if dst == src do nothing */ 1118 if (a == b) { 1119 return MP_OKAY; 1120 } 1121 1122 /* grow dest */ 1123 if (b->alloc < a->used) { 1124 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1125 return res; 1126 } 1127 } 1128 1129 /* zero b and copy the parameters over */ 1130 { 1131 register mp_digit *tmpa, *tmpb; 1132 1133 /* pointer aliases */ 1134 1135 /* source */ 1136 tmpa = a->dp; 1137 1138 /* destination */ 1139 tmpb = b->dp; 1140 1141 /* copy all the digits */ 1142 for (n = 0; n < a->used; n++) { 1143 *tmpb++ = *tmpa++; 1144 } 1145 1146 /* clear high digits */ 1147 for (; n < b->used; n++) { 1148 *tmpb++ = 0; 1149 } 1150 } 1151 1152 /* copy used count and sign */ 1153 b->used = a->used; 1154 b->sign = a->sign; 1155 return MP_OKAY; 1156 } 1157 1158 1159 /* shift right a certain amount of digits */ 1160 static void mp_rshd (mp_int * a, int b) 1161 { 1162 int x; 1163 1164 /* if b <= 0 then ignore it */ 1165 if (b <= 0) { 1166 return; 1167 } 1168 1169 /* if b > used then simply zero it and return */ 1170 if (a->used <= b) { 1171 mp_zero (a); 1172 return; 1173 } 1174 1175 { 1176 register mp_digit *bottom, *top; 1177 1178 /* shift the digits down */ 1179 1180 /* bottom */ 1181 bottom = a->dp; 1182 1183 /* top [offset into digits] */ 1184 top = a->dp + b; 1185 1186 /* this is implemented as a sliding window where 1187 * the window is b-digits long and digits from 1188 * the top of the window are copied to the bottom 1189 * 1190 * e.g. 1191 1192 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> 1193 /\ | ----> 1194 \-------------------/ ----> 1195 */ 1196 for (x = 0; x < (a->used - b); x++) { 1197 *bottom++ = *top++; 1198 } 1199 1200 /* zero the top digits */ 1201 for (; x < a->used; x++) { 1202 *bottom++ = 0; 1203 } 1204 } 1205 1206 /* remove excess digits */ 1207 a->used -= b; 1208 } 1209 1210 1211 /* swap the elements of two integers, for cases where you can't simply swap the 1212 * mp_int pointers around 1213 */ 1214 static void mp_exch (mp_int * a, mp_int * b) 1215 { 1216 mp_int t; 1217 1218 t = *a; 1219 *a = *b; 1220 *b = t; 1221 } 1222 1223 1224 /* trim unused digits 1225 * 1226 * This is used to ensure that leading zero digits are 1227 * trimed and the leading "used" digit will be non-zero 1228 * Typically very fast. Also fixes the sign if there 1229 * are no more leading digits 1230 */ 1231 static void mp_clamp (mp_int * a) 1232 { 1233 /* decrease used while the most significant digit is 1234 * zero. 1235 */ 1236 while (a->used > 0 && a->dp[a->used - 1] == 0) { 1237 --(a->used); 1238 } 1239 1240 /* reset the sign flag if used == 0 */ 1241 if (a->used == 0) { 1242 a->sign = MP_ZPOS; 1243 } 1244 } 1245 1246 1247 /* grow as required */ 1248 static int mp_grow (mp_int * a, int size) 1249 { 1250 int i; 1251 mp_digit *tmp; 1252 1253 /* if the alloc size is smaller alloc more ram */ 1254 if (a->alloc < size) { 1255 /* ensure there are always at least MP_PREC digits extra on top */ 1256 size += (MP_PREC * 2) - (size % MP_PREC); 1257 1258 /* reallocate the array a->dp 1259 * 1260 * We store the return in a temporary variable 1261 * in case the operation failed we don't want 1262 * to overwrite the dp member of a. 1263 */ 1264 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); 1265 if (tmp == NULL) { 1266 /* reallocation failed but "a" is still valid [can be freed] */ 1267 return MP_MEM; 1268 } 1269 1270 /* reallocation succeeded so set a->dp */ 1271 a->dp = tmp; 1272 1273 /* zero excess digits */ 1274 i = a->alloc; 1275 a->alloc = size; 1276 for (; i < a->alloc; i++) { 1277 a->dp[i] = 0; 1278 } 1279 } 1280 return MP_OKAY; 1281 } 1282 1283 1284 #ifdef BN_MP_ABS_C 1285 /* b = |a| 1286 * 1287 * Simple function copies the input and fixes the sign to positive 1288 */ 1289 static int mp_abs (mp_int * a, mp_int * b) 1290 { 1291 int res; 1292 1293 /* copy a to b */ 1294 if (a != b) { 1295 if ((res = mp_copy (a, b)) != MP_OKAY) { 1296 return res; 1297 } 1298 } 1299 1300 /* force the sign of b to positive */ 1301 b->sign = MP_ZPOS; 1302 1303 return MP_OKAY; 1304 } 1305 #endif 1306 1307 1308 /* set to a digit */ 1309 static void mp_set (mp_int * a, mp_digit b) 1310 { 1311 mp_zero (a); 1312 a->dp[0] = b & MP_MASK; 1313 a->used = (a->dp[0] != 0) ? 1 : 0; 1314 } 1315 1316 1317 #ifndef LTM_NO_NEG_EXP 1318 /* b = a/2 */ 1319 static int mp_div_2(mp_int * a, mp_int * b) 1320 { 1321 int x, res, oldused; 1322 1323 /* copy */ 1324 if (b->alloc < a->used) { 1325 if ((res = mp_grow (b, a->used)) != MP_OKAY) { 1326 return res; 1327 } 1328 } 1329 1330 oldused = b->used; 1331 b->used = a->used; 1332 { 1333 register mp_digit r, rr, *tmpa, *tmpb; 1334 1335 /* source alias */ 1336 tmpa = a->dp + b->used - 1; 1337 1338 /* dest alias */ 1339 tmpb = b->dp + b->used - 1; 1340 1341 /* carry */ 1342 r = 0; 1343 for (x = b->used - 1; x >= 0; x--) { 1344 /* get the carry for the next iteration */ 1345 rr = *tmpa & 1; 1346 1347 /* shift the current digit, add in carry and store */ 1348 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); 1349 1350 /* forward carry to next iteration */ 1351 r = rr; 1352 } 1353 1354 /* zero excess digits */ 1355 tmpb = b->dp + b->used; 1356 for (x = b->used; x < oldused; x++) { 1357 *tmpb++ = 0; 1358 } 1359 } 1360 b->sign = a->sign; 1361 mp_clamp (b); 1362 return MP_OKAY; 1363 } 1364 #endif /* LTM_NO_NEG_EXP */ 1365 1366 1367 /* shift left by a certain bit count */ 1368 static int mp_mul_2d (mp_int * a, int b, mp_int * c) 1369 { 1370 mp_digit d; 1371 int res; 1372 1373 /* copy */ 1374 if (a != c) { 1375 if ((res = mp_copy (a, c)) != MP_OKAY) { 1376 return res; 1377 } 1378 } 1379 1380 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { 1381 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { 1382 return res; 1383 } 1384 } 1385 1386 /* shift by as many digits in the bit count */ 1387 if (b >= (int)DIGIT_BIT) { 1388 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { 1389 return res; 1390 } 1391 } 1392 1393 /* shift any bit count < DIGIT_BIT */ 1394 d = (mp_digit) (b % DIGIT_BIT); 1395 if (d != 0) { 1396 register mp_digit *tmpc, shift, mask, r, rr; 1397 register int x; 1398 1399 /* bitmask for carries */ 1400 mask = (((mp_digit)1) << d) - 1; 1401 1402 /* shift for msbs */ 1403 shift = DIGIT_BIT - d; 1404 1405 /* alias */ 1406 tmpc = c->dp; 1407 1408 /* carry */ 1409 r = 0; 1410 for (x = 0; x < c->used; x++) { 1411 /* get the higher bits of the current word */ 1412 rr = (*tmpc >> shift) & mask; 1413 1414 /* shift the current word and OR in the carry */ 1415 *tmpc = ((*tmpc << d) | r) & MP_MASK; 1416 ++tmpc; 1417 1418 /* set the carry to the carry bits of the current word */ 1419 r = rr; 1420 } 1421 1422 /* set final carry */ 1423 if (r != 0) { 1424 c->dp[(c->used)++] = r; 1425 } 1426 } 1427 mp_clamp (c); 1428 return MP_OKAY; 1429 } 1430 1431 1432 #ifdef BN_MP_INIT_MULTI_C 1433 static int mp_init_multi(mp_int *mp, ...) 1434 { 1435 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ 1436 int n = 0; /* Number of ok inits */ 1437 mp_int* cur_arg = mp; 1438 va_list args; 1439 1440 va_start(args, mp); /* init args to next argument from caller */ 1441 while (cur_arg != NULL) { 1442 if (mp_init(cur_arg) != MP_OKAY) { 1443 /* Oops - error! Back-track and mp_clear what we already 1444 succeeded in init-ing, then return error. 1445 */ 1446 va_list clean_args; 1447 1448 /* end the current list */ 1449 va_end(args); 1450 1451 /* now start cleaning up */ 1452 cur_arg = mp; 1453 va_start(clean_args, mp); 1454 while (n--) { 1455 mp_clear(cur_arg); 1456 cur_arg = va_arg(clean_args, mp_int*); 1457 } 1458 va_end(clean_args); 1459 res = MP_MEM; 1460 break; 1461 } 1462 n++; 1463 cur_arg = va_arg(args, mp_int*); 1464 } 1465 va_end(args); 1466 return res; /* Assumed ok, if error flagged above. */ 1467 } 1468 #endif 1469 1470 1471 #ifdef BN_MP_CLEAR_MULTI_C 1472 static void mp_clear_multi(mp_int *mp, ...) 1473 { 1474 mp_int* next_mp = mp; 1475 va_list args; 1476 va_start(args, mp); 1477 while (next_mp != NULL) { 1478 mp_clear(next_mp); 1479 next_mp = va_arg(args, mp_int*); 1480 } 1481 va_end(args); 1482 } 1483 #endif 1484 1485 1486 /* shift left a certain amount of digits */ 1487 static int mp_lshd (mp_int * a, int b) 1488 { 1489 int x, res; 1490 1491 /* if its less than zero return */ 1492 if (b <= 0) { 1493 return MP_OKAY; 1494 } 1495 1496 /* grow to fit the new digits */ 1497 if (a->alloc < a->used + b) { 1498 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { 1499 return res; 1500 } 1501 } 1502 1503 { 1504 register mp_digit *top, *bottom; 1505 1506 /* increment the used by the shift amount then copy upwards */ 1507 a->used += b; 1508 1509 /* top */ 1510 top = a->dp + a->used - 1; 1511 1512 /* base */ 1513 bottom = a->dp + a->used - 1 - b; 1514 1515 /* much like mp_rshd this is implemented using a sliding window 1516 * except the window goes the otherway around. Copying from 1517 * the bottom to the top. see bn_mp_rshd.c for more info. 1518 */ 1519 for (x = a->used - 1; x >= b; x--) { 1520 *top-- = *bottom--; 1521 } 1522 1523 /* zero the lower digits */ 1524 top = a->dp; 1525 for (x = 0; x < b; x++) { 1526 *top++ = 0; 1527 } 1528 } 1529 return MP_OKAY; 1530 } 1531 1532 1533 /* returns the number of bits in an int */ 1534 static int mp_count_bits (mp_int * a) 1535 { 1536 int r; 1537 mp_digit q; 1538 1539 /* shortcut */ 1540 if (a->used == 0) { 1541 return 0; 1542 } 1543 1544 /* get number of digits and add that */ 1545 r = (a->used - 1) * DIGIT_BIT; 1546 1547 /* take the last digit and count the bits in it */ 1548 q = a->dp[a->used - 1]; 1549 while (q > ((mp_digit) 0)) { 1550 ++r; 1551 q >>= ((mp_digit) 1); 1552 } 1553 return r; 1554 } 1555 1556 1557 /* calc a value mod 2**b */ 1558 static int mp_mod_2d (mp_int * a, int b, mp_int * c) 1559 { 1560 int x, res; 1561 1562 /* if b is <= 0 then zero the int */ 1563 if (b <= 0) { 1564 mp_zero (c); 1565 return MP_OKAY; 1566 } 1567 1568 /* if the modulus is larger than the value than return */ 1569 if (b >= (int) (a->used * DIGIT_BIT)) { 1570 res = mp_copy (a, c); 1571 return res; 1572 } 1573 1574 /* copy */ 1575 if ((res = mp_copy (a, c)) != MP_OKAY) { 1576 return res; 1577 } 1578 1579 /* zero digits above the last digit of the modulus */ 1580 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { 1581 c->dp[x] = 0; 1582 } 1583 /* clear the digit that is not completely outside/inside the modulus */ 1584 c->dp[b / DIGIT_BIT] &= 1585 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); 1586 mp_clamp (c); 1587 return MP_OKAY; 1588 } 1589 1590 1591 #ifdef BN_MP_DIV_SMALL 1592 1593 /* slower bit-bang division... also smaller */ 1594 static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1595 { 1596 mp_int ta, tb, tq, q; 1597 int res, n, n2; 1598 1599 /* is divisor zero ? */ 1600 if (mp_iszero (b) == 1) { 1601 return MP_VAL; 1602 } 1603 1604 /* if a < b then q=0, r = a */ 1605 if (mp_cmp_mag (a, b) == MP_LT) { 1606 if (d != NULL) { 1607 res = mp_copy (a, d); 1608 } else { 1609 res = MP_OKAY; 1610 } 1611 if (c != NULL) { 1612 mp_zero (c); 1613 } 1614 return res; 1615 } 1616 1617 /* init our temps */ 1618 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { 1619 return res; 1620 } 1621 1622 1623 mp_set(&tq, 1); 1624 n = mp_count_bits(a) - mp_count_bits(b); 1625 if (((res = mp_abs(a, &ta)) != MP_OKAY) || 1626 ((res = mp_abs(b, &tb)) != MP_OKAY) || 1627 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || 1628 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { 1629 goto LBL_ERR; 1630 } 1631 1632 while (n-- >= 0) { 1633 if (mp_cmp(&tb, &ta) != MP_GT) { 1634 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || 1635 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { 1636 goto LBL_ERR; 1637 } 1638 } 1639 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || 1640 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { 1641 goto LBL_ERR; 1642 } 1643 } 1644 1645 /* now q == quotient and ta == remainder */ 1646 n = a->sign; 1647 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); 1648 if (c != NULL) { 1649 mp_exch(c, &q); 1650 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; 1651 } 1652 if (d != NULL) { 1653 mp_exch(d, &ta); 1654 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; 1655 } 1656 LBL_ERR: 1657 mp_clear_multi(&ta, &tb, &tq, &q, NULL); 1658 return res; 1659 } 1660 1661 #else 1662 1663 /* integer signed division. 1664 * c*b + d == a [e.g. a/b, c=quotient, d=remainder] 1665 * HAC pp.598 Algorithm 14.20 1666 * 1667 * Note that the description in HAC is horribly 1668 * incomplete. For example, it doesn't consider 1669 * the case where digits are removed from 'x' in 1670 * the inner loop. It also doesn't consider the 1671 * case that y has fewer than three digits, etc.. 1672 * 1673 * The overall algorithm is as described as 1674 * 14.20 from HAC but fixed to treat these cases. 1675 */ 1676 static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) 1677 { 1678 mp_int q, x, y, t1, t2; 1679 int res, n, t, i, norm, neg; 1680 1681 /* is divisor zero ? */ 1682 if (mp_iszero (b) == 1) { 1683 return MP_VAL; 1684 } 1685 1686 /* if a < b then q=0, r = a */ 1687 if (mp_cmp_mag (a, b) == MP_LT) { 1688 if (d != NULL) { 1689 res = mp_copy (a, d); 1690 } else { 1691 res = MP_OKAY; 1692 } 1693 if (c != NULL) { 1694 mp_zero (c); 1695 } 1696 return res; 1697 } 1698 1699 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { 1700 return res; 1701 } 1702 q.used = a->used + 2; 1703 1704 if ((res = mp_init (&t1)) != MP_OKAY) { 1705 goto LBL_Q; 1706 } 1707 1708 if ((res = mp_init (&t2)) != MP_OKAY) { 1709 goto LBL_T1; 1710 } 1711 1712 if ((res = mp_init_copy (&x, a)) != MP_OKAY) { 1713 goto LBL_T2; 1714 } 1715 1716 if ((res = mp_init_copy (&y, b)) != MP_OKAY) { 1717 goto LBL_X; 1718 } 1719 1720 /* fix the sign */ 1721 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; 1722 x.sign = y.sign = MP_ZPOS; 1723 1724 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ 1725 norm = mp_count_bits(&y) % DIGIT_BIT; 1726 if (norm < (int)(DIGIT_BIT-1)) { 1727 norm = (DIGIT_BIT-1) - norm; 1728 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { 1729 goto LBL_Y; 1730 } 1731 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { 1732 goto LBL_Y; 1733 } 1734 } else { 1735 norm = 0; 1736 } 1737 1738 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ 1739 n = x.used - 1; 1740 t = y.used - 1; 1741 1742 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ 1743 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ 1744 goto LBL_Y; 1745 } 1746 1747 while (mp_cmp (&x, &y) != MP_LT) { 1748 ++(q.dp[n - t]); 1749 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { 1750 goto LBL_Y; 1751 } 1752 } 1753 1754 /* reset y by shifting it back down */ 1755 mp_rshd (&y, n - t); 1756 1757 /* step 3. for i from n down to (t + 1) */ 1758 for (i = n; i >= (t + 1); i--) { 1759 if (i > x.used) { 1760 continue; 1761 } 1762 1763 /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 1764 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ 1765 if (x.dp[i] == y.dp[t]) { 1766 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); 1767 } else { 1768 mp_word tmp; 1769 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); 1770 tmp |= ((mp_word) x.dp[i - 1]); 1771 tmp /= ((mp_word) y.dp[t]); 1772 if (tmp > (mp_word) MP_MASK) 1773 tmp = MP_MASK; 1774 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); 1775 } 1776 1777 /* while (q{i-t-1} * (yt * b + y{t-1})) > 1778 xi * b**2 + xi-1 * b + xi-2 1779 1780 do q{i-t-1} -= 1; 1781 */ 1782 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; 1783 do { 1784 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; 1785 1786 /* find left hand */ 1787 mp_zero (&t1); 1788 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; 1789 t1.dp[1] = y.dp[t]; 1790 t1.used = 2; 1791 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1792 goto LBL_Y; 1793 } 1794 1795 /* find right hand */ 1796 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; 1797 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; 1798 t2.dp[2] = x.dp[i]; 1799 t2.used = 3; 1800 } while (mp_cmp_mag(&t1, &t2) == MP_GT); 1801 1802 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ 1803 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { 1804 goto LBL_Y; 1805 } 1806 1807 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1808 goto LBL_Y; 1809 } 1810 1811 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { 1812 goto LBL_Y; 1813 } 1814 1815 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ 1816 if (x.sign == MP_NEG) { 1817 if ((res = mp_copy (&y, &t1)) != MP_OKAY) { 1818 goto LBL_Y; 1819 } 1820 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { 1821 goto LBL_Y; 1822 } 1823 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { 1824 goto LBL_Y; 1825 } 1826 1827 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; 1828 } 1829 } 1830 1831 /* now q is the quotient and x is the remainder 1832 * [which we have to normalize] 1833 */ 1834 1835 /* get sign before writing to c */ 1836 x.sign = x.used == 0 ? MP_ZPOS : a->sign; 1837 1838 if (c != NULL) { 1839 mp_clamp (&q); 1840 mp_exch (&q, c); 1841 c->sign = neg; 1842 } 1843 1844 if (d != NULL) { 1845 mp_div_2d (&x, norm, &x, NULL); 1846 mp_exch (&x, d); 1847 } 1848 1849 res = MP_OKAY; 1850 1851 LBL_Y:mp_clear (&y); 1852 LBL_X:mp_clear (&x); 1853 LBL_T2:mp_clear (&t2); 1854 LBL_T1:mp_clear (&t1); 1855 LBL_Q:mp_clear (&q); 1856 return res; 1857 } 1858 1859 #endif 1860 1861 1862 #ifdef MP_LOW_MEM 1863 #define TAB_SIZE 32 1864 #else 1865 #define TAB_SIZE 256 1866 #endif 1867 1868 static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 1869 { 1870 mp_int M[TAB_SIZE], res, mu; 1871 mp_digit buf; 1872 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 1873 int (*redux)(mp_int*,mp_int*,mp_int*); 1874 1875 /* find window size */ 1876 x = mp_count_bits (X); 1877 if (x <= 7) { 1878 winsize = 2; 1879 } else if (x <= 36) { 1880 winsize = 3; 1881 } else if (x <= 140) { 1882 winsize = 4; 1883 } else if (x <= 450) { 1884 winsize = 5; 1885 } else if (x <= 1303) { 1886 winsize = 6; 1887 } else if (x <= 3529) { 1888 winsize = 7; 1889 } else { 1890 winsize = 8; 1891 } 1892 1893 #ifdef MP_LOW_MEM 1894 if (winsize > 5) { 1895 winsize = 5; 1896 } 1897 #endif 1898 1899 /* init M array */ 1900 /* init first cell */ 1901 if ((err = mp_init(&M[1])) != MP_OKAY) { 1902 return err; 1903 } 1904 1905 /* now init the second half of the array */ 1906 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 1907 if ((err = mp_init(&M[x])) != MP_OKAY) { 1908 for (y = 1<<(winsize-1); y < x; y++) { 1909 mp_clear (&M[y]); 1910 } 1911 mp_clear(&M[1]); 1912 return err; 1913 } 1914 } 1915 1916 /* create mu, used for Barrett reduction */ 1917 if ((err = mp_init (&mu)) != MP_OKAY) { 1918 goto LBL_M; 1919 } 1920 1921 if (redmode == 0) { 1922 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { 1923 goto LBL_MU; 1924 } 1925 redux = mp_reduce; 1926 } else { 1927 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { 1928 goto LBL_MU; 1929 } 1930 redux = mp_reduce_2k_l; 1931 } 1932 1933 /* create M table 1934 * 1935 * The M table contains powers of the base, 1936 * e.g. M[x] = G**x mod P 1937 * 1938 * The first half of the table is not 1939 * computed though accept for M[0] and M[1] 1940 */ 1941 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { 1942 goto LBL_MU; 1943 } 1944 1945 /* compute the value at M[1<<(winsize-1)] by squaring 1946 * M[1] (winsize-1) times 1947 */ 1948 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 1949 goto LBL_MU; 1950 } 1951 1952 for (x = 0; x < (winsize - 1); x++) { 1953 /* square it */ 1954 if ((err = mp_sqr (&M[1 << (winsize - 1)], 1955 &M[1 << (winsize - 1)])) != MP_OKAY) { 1956 goto LBL_MU; 1957 } 1958 1959 /* reduce modulo P */ 1960 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { 1961 goto LBL_MU; 1962 } 1963 } 1964 1965 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) 1966 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) 1967 */ 1968 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 1969 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 1970 goto LBL_MU; 1971 } 1972 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { 1973 goto LBL_MU; 1974 } 1975 } 1976 1977 /* setup result */ 1978 if ((err = mp_init (&res)) != MP_OKAY) { 1979 goto LBL_MU; 1980 } 1981 mp_set (&res, 1); 1982 1983 /* set initial mode and bit cnt */ 1984 mode = 0; 1985 bitcnt = 1; 1986 buf = 0; 1987 digidx = X->used - 1; 1988 bitcpy = 0; 1989 bitbuf = 0; 1990 1991 for (;;) { 1992 /* grab next digit as required */ 1993 if (--bitcnt == 0) { 1994 /* if digidx == -1 we are out of digits */ 1995 if (digidx == -1) { 1996 break; 1997 } 1998 /* read next digit and reset the bitcnt */ 1999 buf = X->dp[digidx--]; 2000 bitcnt = (int) DIGIT_BIT; 2001 } 2002 2003 /* grab the next msb from the exponent */ 2004 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; 2005 buf <<= (mp_digit)1; 2006 2007 /* if the bit is zero and mode == 0 then we ignore it 2008 * These represent the leading zero bits before the first 1 bit 2009 * in the exponent. Technically this opt is not required but it 2010 * does lower the # of trivial squaring/reductions used 2011 */ 2012 if (mode == 0 && y == 0) { 2013 continue; 2014 } 2015 2016 /* if the bit is zero and mode == 1 then we square */ 2017 if (mode == 1 && y == 0) { 2018 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2019 goto LBL_RES; 2020 } 2021 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2022 goto LBL_RES; 2023 } 2024 continue; 2025 } 2026 2027 /* else we add it to the window */ 2028 bitbuf |= (y << (winsize - ++bitcpy)); 2029 mode = 2; 2030 2031 if (bitcpy == winsize) { 2032 /* ok window is filled so square as required and multiply */ 2033 /* square first */ 2034 for (x = 0; x < winsize; x++) { 2035 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2036 goto LBL_RES; 2037 } 2038 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2039 goto LBL_RES; 2040 } 2041 } 2042 2043 /* then multiply */ 2044 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 2045 goto LBL_RES; 2046 } 2047 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2048 goto LBL_RES; 2049 } 2050 2051 /* empty window and reset */ 2052 bitcpy = 0; 2053 bitbuf = 0; 2054 mode = 1; 2055 } 2056 } 2057 2058 /* if bits remain then square/multiply */ 2059 if (mode == 2 && bitcpy > 0) { 2060 /* square then multiply if the bit is set */ 2061 for (x = 0; x < bitcpy; x++) { 2062 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 2063 goto LBL_RES; 2064 } 2065 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2066 goto LBL_RES; 2067 } 2068 2069 bitbuf <<= 1; 2070 if ((bitbuf & (1 << winsize)) != 0) { 2071 /* then multiply */ 2072 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 2073 goto LBL_RES; 2074 } 2075 if ((err = redux (&res, P, &mu)) != MP_OKAY) { 2076 goto LBL_RES; 2077 } 2078 } 2079 } 2080 } 2081 2082 mp_exch (&res, Y); 2083 err = MP_OKAY; 2084 LBL_RES:mp_clear (&res); 2085 LBL_MU:mp_clear (&mu); 2086 LBL_M: 2087 mp_clear(&M[1]); 2088 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 2089 mp_clear (&M[x]); 2090 } 2091 return err; 2092 } 2093 2094 2095 /* computes b = a*a */ 2096 static int mp_sqr (mp_int * a, mp_int * b) 2097 { 2098 int res; 2099 2100 #ifdef BN_MP_TOOM_SQR_C 2101 /* use Toom-Cook? */ 2102 if (a->used >= TOOM_SQR_CUTOFF) { 2103 res = mp_toom_sqr(a, b); 2104 /* Karatsuba? */ 2105 } else 2106 #endif 2107 #ifdef BN_MP_KARATSUBA_SQR_C 2108 if (a->used >= KARATSUBA_SQR_CUTOFF) { 2109 res = mp_karatsuba_sqr (a, b); 2110 } else 2111 #endif 2112 { 2113 #ifdef BN_FAST_S_MP_SQR_C 2114 /* can we use the fast comba multiplier? */ 2115 if ((a->used * 2 + 1) < MP_WARRAY && 2116 a->used < 2117 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { 2118 res = fast_s_mp_sqr (a, b); 2119 } else 2120 #endif 2121 #ifdef BN_S_MP_SQR_C 2122 res = s_mp_sqr (a, b); 2123 #else 2124 #error mp_sqr could fail 2125 res = MP_VAL; 2126 #endif 2127 } 2128 b->sign = MP_ZPOS; 2129 return res; 2130 } 2131 2132 2133 /* reduces a modulo n where n is of the form 2**p - d 2134 This differs from reduce_2k since "d" can be larger 2135 than a single digit. 2136 */ 2137 static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) 2138 { 2139 mp_int q; 2140 int p, res; 2141 2142 if ((res = mp_init(&q)) != MP_OKAY) { 2143 return res; 2144 } 2145 2146 p = mp_count_bits(n); 2147 top: 2148 /* q = a/2**p, a = a mod 2**p */ 2149 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { 2150 goto ERR; 2151 } 2152 2153 /* q = q * d */ 2154 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 2155 goto ERR; 2156 } 2157 2158 /* a = a + q */ 2159 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { 2160 goto ERR; 2161 } 2162 2163 if (mp_cmp_mag(a, n) != MP_LT) { 2164 s_mp_sub(a, n, a); 2165 goto top; 2166 } 2167 2168 ERR: 2169 mp_clear(&q); 2170 return res; 2171 } 2172 2173 2174 /* determines the setup value */ 2175 static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) 2176 { 2177 int res; 2178 mp_int tmp; 2179 2180 if ((res = mp_init(&tmp)) != MP_OKAY) { 2181 return res; 2182 } 2183 2184 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { 2185 goto ERR; 2186 } 2187 2188 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { 2189 goto ERR; 2190 } 2191 2192 ERR: 2193 mp_clear(&tmp); 2194 return res; 2195 } 2196 2197 2198 /* computes a = 2**b 2199 * 2200 * Simple algorithm which zeroes the int, grows it then just sets one bit 2201 * as required. 2202 */ 2203 static int mp_2expt (mp_int * a, int b) 2204 { 2205 int res; 2206 2207 /* zero a as per default */ 2208 mp_zero (a); 2209 2210 /* grow a to accommodate the single bit */ 2211 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { 2212 return res; 2213 } 2214 2215 /* set the used count of where the bit will go */ 2216 a->used = b / DIGIT_BIT + 1; 2217 2218 /* put the single bit in its place */ 2219 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); 2220 2221 return MP_OKAY; 2222 } 2223 2224 2225 /* pre-calculate the value required for Barrett reduction 2226 * For a given modulus "b" it calulates the value required in "a" 2227 */ 2228 static int mp_reduce_setup (mp_int * a, mp_int * b) 2229 { 2230 int res; 2231 2232 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { 2233 return res; 2234 } 2235 return mp_div (a, b, a, NULL); 2236 } 2237 2238 2239 /* reduces x mod m, assumes 0 < x < m**2, mu is 2240 * precomputed via mp_reduce_setup. 2241 * From HAC pp.604 Algorithm 14.42 2242 */ 2243 static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) 2244 { 2245 mp_int q; 2246 int res, um = m->used; 2247 2248 /* q = x */ 2249 if ((res = mp_init_copy (&q, x)) != MP_OKAY) { 2250 return res; 2251 } 2252 2253 /* q1 = x / b**(k-1) */ 2254 mp_rshd (&q, um - 1); 2255 2256 /* according to HAC this optimization is ok */ 2257 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { 2258 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { 2259 goto CLEANUP; 2260 } 2261 } else { 2262 #ifdef BN_S_MP_MUL_HIGH_DIGS_C 2263 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2264 goto CLEANUP; 2265 } 2266 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) 2267 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { 2268 goto CLEANUP; 2269 } 2270 #else 2271 { 2272 #error mp_reduce would always fail 2273 res = MP_VAL; 2274 goto CLEANUP; 2275 } 2276 #endif 2277 } 2278 2279 /* q3 = q2 / b**(k+1) */ 2280 mp_rshd (&q, um + 1); 2281 2282 /* x = x mod b**(k+1), quick (no division) */ 2283 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { 2284 goto CLEANUP; 2285 } 2286 2287 /* q = q * m mod b**(k+1), quick (no division) */ 2288 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { 2289 goto CLEANUP; 2290 } 2291 2292 /* x = x - q */ 2293 if ((res = mp_sub (x, &q, x)) != MP_OKAY) { 2294 goto CLEANUP; 2295 } 2296 2297 /* If x < 0, add b**(k+1) to it */ 2298 if (mp_cmp_d (x, 0) == MP_LT) { 2299 mp_set (&q, 1); 2300 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) { 2301 goto CLEANUP; 2302 } 2303 if ((res = mp_add (x, &q, x)) != MP_OKAY) { 2304 goto CLEANUP; 2305 } 2306 } 2307 2308 /* Back off if it's too big */ 2309 while (mp_cmp (x, m) != MP_LT) { 2310 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { 2311 goto CLEANUP; 2312 } 2313 } 2314 2315 CLEANUP: 2316 mp_clear (&q); 2317 2318 return res; 2319 } 2320 2321 2322 /* multiplies |a| * |b| and only computes up to digs digits of result 2323 * HAC pp. 595, Algorithm 14.12 Modified so you can control how 2324 * many digits of output are created. 2325 */ 2326 static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2327 { 2328 mp_int t; 2329 int res, pa, pb, ix, iy; 2330 mp_digit u; 2331 mp_word r; 2332 mp_digit tmpx, *tmpt, *tmpy; 2333 2334 /* can we use the fast multiplier? */ 2335 if (((digs) < MP_WARRAY) && 2336 MIN (a->used, b->used) < 2337 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2338 return fast_s_mp_mul_digs (a, b, c, digs); 2339 } 2340 2341 if ((res = mp_init_size (&t, digs)) != MP_OKAY) { 2342 return res; 2343 } 2344 t.used = digs; 2345 2346 /* compute the digits of the product directly */ 2347 pa = a->used; 2348 for (ix = 0; ix < pa; ix++) { 2349 /* set the carry to zero */ 2350 u = 0; 2351 2352 /* limit ourselves to making digs digits of output */ 2353 pb = MIN (b->used, digs - ix); 2354 2355 /* setup some aliases */ 2356 /* copy of the digit from a used within the nested loop */ 2357 tmpx = a->dp[ix]; 2358 2359 /* an alias for the destination shifted ix places */ 2360 tmpt = t.dp + ix; 2361 2362 /* an alias for the digits of b */ 2363 tmpy = b->dp; 2364 2365 /* compute the columns of the output and propagate the carry */ 2366 for (iy = 0; iy < pb; iy++) { 2367 /* compute the column as a mp_word */ 2368 r = ((mp_word)*tmpt) + 2369 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2370 ((mp_word) u); 2371 2372 /* the new column is the lower part of the result */ 2373 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2374 2375 /* get the carry word from the result */ 2376 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2377 } 2378 /* set carry if it is placed below digs */ 2379 if (ix + iy < digs) { 2380 *tmpt = u; 2381 } 2382 } 2383 2384 mp_clamp (&t); 2385 mp_exch (&t, c); 2386 2387 mp_clear (&t); 2388 return MP_OKAY; 2389 } 2390 2391 2392 /* Fast (comba) multiplier 2393 * 2394 * This is the fast column-array [comba] multiplier. It is 2395 * designed to compute the columns of the product first 2396 * then handle the carries afterwards. This has the effect 2397 * of making the nested loops that compute the columns very 2398 * simple and schedulable on super-scalar processors. 2399 * 2400 * This has been modified to produce a variable number of 2401 * digits of output so if say only a half-product is required 2402 * you don't have to compute the upper half (a feature 2403 * required for fast Barrett reduction). 2404 * 2405 * Based on Algorithm 14.12 on pp.595 of HAC. 2406 * 2407 */ 2408 static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2409 { 2410 int olduse, res, pa, ix, iz; 2411 mp_digit W[MP_WARRAY]; 2412 register mp_word _W; 2413 2414 /* grow the destination as required */ 2415 if (c->alloc < digs) { 2416 if ((res = mp_grow (c, digs)) != MP_OKAY) { 2417 return res; 2418 } 2419 } 2420 2421 /* number of output digits to produce */ 2422 pa = MIN(digs, a->used + b->used); 2423 2424 /* clear the carry */ 2425 _W = 0; 2426 for (ix = 0; ix < pa; ix++) { 2427 int tx, ty; 2428 int iy; 2429 mp_digit *tmpx, *tmpy; 2430 2431 /* get offsets into the two bignums */ 2432 ty = MIN(b->used-1, ix); 2433 tx = ix - ty; 2434 2435 /* setup temp aliases */ 2436 tmpx = a->dp + tx; 2437 tmpy = b->dp + ty; 2438 2439 /* this is the number of times the loop will iterrate, essentially 2440 while (tx++ < a->used && ty-- >= 0) { ... } 2441 */ 2442 iy = MIN(a->used-tx, ty+1); 2443 2444 /* execute loop */ 2445 for (iz = 0; iz < iy; ++iz) { 2446 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 2447 2448 } 2449 2450 /* store term */ 2451 W[ix] = ((mp_digit)_W) & MP_MASK; 2452 2453 /* make next carry */ 2454 _W = _W >> ((mp_word)DIGIT_BIT); 2455 } 2456 2457 /* setup dest */ 2458 olduse = c->used; 2459 c->used = pa; 2460 2461 { 2462 register mp_digit *tmpc; 2463 tmpc = c->dp; 2464 for (ix = 0; ix < pa+1; ix++) { 2465 /* now extract the previous digit [below the carry] */ 2466 *tmpc++ = W[ix]; 2467 } 2468 2469 /* clear unused digits [that existed in the old copy of c] */ 2470 for (; ix < olduse; ix++) { 2471 *tmpc++ = 0; 2472 } 2473 } 2474 mp_clamp (c); 2475 return MP_OKAY; 2476 } 2477 2478 2479 /* init an mp_init for a given size */ 2480 static int mp_init_size (mp_int * a, int size) 2481 { 2482 int x; 2483 2484 /* pad size so there are always extra digits */ 2485 size += (MP_PREC * 2) - (size % MP_PREC); 2486 2487 /* alloc mem */ 2488 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); 2489 if (a->dp == NULL) { 2490 return MP_MEM; 2491 } 2492 2493 /* set the members */ 2494 a->used = 0; 2495 a->alloc = size; 2496 a->sign = MP_ZPOS; 2497 2498 /* zero the digits */ 2499 for (x = 0; x < size; x++) { 2500 a->dp[x] = 0; 2501 } 2502 2503 return MP_OKAY; 2504 } 2505 2506 2507 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ 2508 static int s_mp_sqr (mp_int * a, mp_int * b) 2509 { 2510 mp_int t; 2511 int res, ix, iy, pa; 2512 mp_word r; 2513 mp_digit u, tmpx, *tmpt; 2514 2515 pa = a->used; 2516 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { 2517 return res; 2518 } 2519 2520 /* default used is maximum possible size */ 2521 t.used = 2*pa + 1; 2522 2523 for (ix = 0; ix < pa; ix++) { 2524 /* first calculate the digit at 2*ix */ 2525 /* calculate double precision result */ 2526 r = ((mp_word) t.dp[2*ix]) + 2527 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); 2528 2529 /* store lower part in result */ 2530 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); 2531 2532 /* get the carry */ 2533 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2534 2535 /* left hand side of A[ix] * A[iy] */ 2536 tmpx = a->dp[ix]; 2537 2538 /* alias for where to store the results */ 2539 tmpt = t.dp + (2*ix + 1); 2540 2541 for (iy = ix + 1; iy < pa; iy++) { 2542 /* first calculate the product */ 2543 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); 2544 2545 /* now calculate the double precision result, note we use 2546 * addition instead of *2 since it's easier to optimize 2547 */ 2548 r = ((mp_word) *tmpt) + r + r + ((mp_word) u); 2549 2550 /* store lower part */ 2551 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2552 2553 /* get carry */ 2554 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2555 } 2556 /* propagate upwards */ 2557 while (u != ((mp_digit) 0)) { 2558 r = ((mp_word) *tmpt) + ((mp_word) u); 2559 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2560 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); 2561 } 2562 } 2563 2564 mp_clamp (&t); 2565 mp_exch (&t, b); 2566 mp_clear (&t); 2567 return MP_OKAY; 2568 } 2569 2570 2571 /* multiplies |a| * |b| and does not compute the lower digs digits 2572 * [meant to get the higher part of the product] 2573 */ 2574 static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) 2575 { 2576 mp_int t; 2577 int res, pa, pb, ix, iy; 2578 mp_digit u; 2579 mp_word r; 2580 mp_digit tmpx, *tmpt, *tmpy; 2581 2582 /* can we use the fast multiplier? */ 2583 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C 2584 if (((a->used + b->used + 1) < MP_WARRAY) 2585 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 2586 return fast_s_mp_mul_high_digs (a, b, c, digs); 2587 } 2588 #endif 2589 2590 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { 2591 return res; 2592 } 2593 t.used = a->used + b->used + 1; 2594 2595 pa = a->used; 2596 pb = b->used; 2597 for (ix = 0; ix < pa; ix++) { 2598 /* clear the carry */ 2599 u = 0; 2600 2601 /* left hand side of A[ix] * B[iy] */ 2602 tmpx = a->dp[ix]; 2603 2604 /* alias to the address of where the digits will be stored */ 2605 tmpt = &(t.dp[digs]); 2606 2607 /* alias for where to read the right hand side from */ 2608 tmpy = b->dp + (digs - ix); 2609 2610 for (iy = digs - ix; iy < pb; iy++) { 2611 /* calculate the double precision result */ 2612 r = ((mp_word)*tmpt) + 2613 ((mp_word)tmpx) * ((mp_word)*tmpy++) + 2614 ((mp_word) u); 2615 2616 /* get the lower part */ 2617 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); 2618 2619 /* carry the carry */ 2620 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 2621 } 2622 *tmpt = u; 2623 } 2624 mp_clamp (&t); 2625 mp_exch (&t, c); 2626 mp_clear (&t); 2627 return MP_OKAY; 2628 } 2629 2630 2631 #ifdef BN_MP_MONTGOMERY_SETUP_C 2632 /* setups the montgomery reduction stuff */ 2633 static int 2634 mp_montgomery_setup (mp_int * n, mp_digit * rho) 2635 { 2636 mp_digit x, b; 2637 2638 /* fast inversion mod 2**k 2639 * 2640 * Based on the fact that 2641 * 2642 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) 2643 * => 2*X*A - X*X*A*A = 1 2644 * => 2*(1) - (1) = 1 2645 */ 2646 b = n->dp[0]; 2647 2648 if ((b & 1) == 0) { 2649 return MP_VAL; 2650 } 2651 2652 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ 2653 x *= 2 - b * x; /* here x*a==1 mod 2**8 */ 2654 #if !defined(MP_8BIT) 2655 x *= 2 - b * x; /* here x*a==1 mod 2**16 */ 2656 #endif 2657 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) 2658 x *= 2 - b * x; /* here x*a==1 mod 2**32 */ 2659 #endif 2660 #ifdef MP_64BIT 2661 x *= 2 - b * x; /* here x*a==1 mod 2**64 */ 2662 #endif 2663 2664 /* rho = -1/m mod b */ 2665 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; 2666 2667 return MP_OKAY; 2668 } 2669 #endif 2670 2671 2672 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 2673 /* computes xR**-1 == x (mod N) via Montgomery Reduction 2674 * 2675 * This is an optimized implementation of montgomery_reduce 2676 * which uses the comba method to quickly calculate the columns of the 2677 * reduction. 2678 * 2679 * Based on Algorithm 14.32 on pp.601 of HAC. 2680 */ 2681 static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) 2682 { 2683 int ix, res, olduse; 2684 mp_word W[MP_WARRAY]; 2685 2686 /* get old used count */ 2687 olduse = x->used; 2688 2689 /* grow a as required */ 2690 if (x->alloc < n->used + 1) { 2691 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { 2692 return res; 2693 } 2694 } 2695 2696 /* first we have to get the digits of the input into 2697 * an array of double precision words W[...] 2698 */ 2699 { 2700 register mp_word *_W; 2701 register mp_digit *tmpx; 2702 2703 /* alias for the W[] array */ 2704 _W = W; 2705 2706 /* alias for the digits of x*/ 2707 tmpx = x->dp; 2708 2709 /* copy the digits of a into W[0..a->used-1] */ 2710 for (ix = 0; ix < x->used; ix++) { 2711 *_W++ = *tmpx++; 2712 } 2713 2714 /* zero the high words of W[a->used..m->used*2] */ 2715 for (; ix < n->used * 2 + 1; ix++) { 2716 *_W++ = 0; 2717 } 2718 } 2719 2720 /* now we proceed to zero successive digits 2721 * from the least significant upwards 2722 */ 2723 for (ix = 0; ix < n->used; ix++) { 2724 /* mu = ai * m' mod b 2725 * 2726 * We avoid a double precision multiplication (which isn't required) 2727 * by casting the value down to a mp_digit. Note this requires 2728 * that W[ix-1] have the carry cleared (see after the inner loop) 2729 */ 2730 register mp_digit mu; 2731 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); 2732 2733 /* a = a + mu * m * b**i 2734 * 2735 * This is computed in place and on the fly. The multiplication 2736 * by b**i is handled by offseting which columns the results 2737 * are added to. 2738 * 2739 * Note the comba method normally doesn't handle carries in the 2740 * inner loop In this case we fix the carry from the previous 2741 * column since the Montgomery reduction requires digits of the 2742 * result (so far) [see above] to work. This is 2743 * handled by fixing up one carry after the inner loop. The 2744 * carry fixups are done in order so after these loops the 2745 * first m->used words of W[] have the carries fixed 2746 */ 2747 { 2748 register int iy; 2749 register mp_digit *tmpn; 2750 register mp_word *_W; 2751 2752 /* alias for the digits of the modulus */ 2753 tmpn = n->dp; 2754 2755 /* Alias for the columns set by an offset of ix */ 2756 _W = W + ix; 2757 2758 /* inner loop */ 2759 for (iy = 0; iy < n->used; iy++) { 2760 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); 2761 } 2762 } 2763 2764 /* now fix carry for next digit, W[ix+1] */ 2765 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); 2766 } 2767 2768 /* now we have to propagate the carries and 2769 * shift the words downward [all those least 2770 * significant digits we zeroed]. 2771 */ 2772 { 2773 register mp_digit *tmpx; 2774 register mp_word *_W, *_W1; 2775 2776 /* nox fix rest of carries */ 2777 2778 /* alias for current word */ 2779 _W1 = W + ix; 2780 2781 /* alias for next word, where the carry goes */ 2782 _W = W + ++ix; 2783 2784 for (; ix <= n->used * 2 + 1; ix++) { 2785 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); 2786 } 2787 2788 /* copy out, A = A/b**n 2789 * 2790 * The result is A/b**n but instead of converting from an 2791 * array of mp_word to mp_digit than calling mp_rshd 2792 * we just copy them in the right order 2793 */ 2794 2795 /* alias for destination word */ 2796 tmpx = x->dp; 2797 2798 /* alias for shifted double precision result */ 2799 _W = W + n->used; 2800 2801 for (ix = 0; ix < n->used + 1; ix++) { 2802 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); 2803 } 2804 2805 /* zero oldused digits, if the input a was larger than 2806 * m->used+1 we'll have to clear the digits 2807 */ 2808 for (; ix < olduse; ix++) { 2809 *tmpx++ = 0; 2810 } 2811 } 2812 2813 /* set the max used and clamp */ 2814 x->used = n->used + 1; 2815 mp_clamp (x); 2816 2817 /* if A >= m then A = A - m */ 2818 if (mp_cmp_mag (x, n) != MP_LT) { 2819 return s_mp_sub (x, n, x); 2820 } 2821 return MP_OKAY; 2822 } 2823 #endif 2824 2825 2826 #ifdef BN_MP_MUL_2_C 2827 /* b = a*2 */ 2828 static int mp_mul_2(mp_int * a, mp_int * b) 2829 { 2830 int x, res, oldused; 2831 2832 /* grow to accommodate result */ 2833 if (b->alloc < a->used + 1) { 2834 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { 2835 return res; 2836 } 2837 } 2838 2839 oldused = b->used; 2840 b->used = a->used; 2841 2842 { 2843 register mp_digit r, rr, *tmpa, *tmpb; 2844 2845 /* alias for source */ 2846 tmpa = a->dp; 2847 2848 /* alias for dest */ 2849 tmpb = b->dp; 2850 2851 /* carry */ 2852 r = 0; 2853 for (x = 0; x < a->used; x++) { 2854 2855 /* get what will be the *next* carry bit from the 2856 * MSB of the current digit 2857 */ 2858 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); 2859 2860 /* now shift up this digit, add in the carry [from the previous] */ 2861 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; 2862 2863 /* copy the carry that would be from the source 2864 * digit into the next iteration 2865 */ 2866 r = rr; 2867 } 2868 2869 /* new leading digit? */ 2870 if (r != 0) { 2871 /* add a MSB which is always 1 at this point */ 2872 *tmpb = 1; 2873 ++(b->used); 2874 } 2875 2876 /* now zero any excess digits on the destination 2877 * that we didn't write to 2878 */ 2879 tmpb = b->dp + b->used; 2880 for (x = b->used; x < oldused; x++) { 2881 *tmpb++ = 0; 2882 } 2883 } 2884 b->sign = a->sign; 2885 return MP_OKAY; 2886 } 2887 #endif 2888 2889 2890 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 2891 /* 2892 * shifts with subtractions when the result is greater than b. 2893 * 2894 * The method is slightly modified to shift B unconditionally up to just under 2895 * the leading bit of b. This saves a lot of multiple precision shifting. 2896 */ 2897 static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) 2898 { 2899 int x, bits, res; 2900 2901 /* how many bits of last digit does b use */ 2902 bits = mp_count_bits (b) % DIGIT_BIT; 2903 2904 if (b->used > 1) { 2905 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { 2906 return res; 2907 } 2908 } else { 2909 mp_set(a, 1); 2910 bits = 1; 2911 } 2912 2913 2914 /* now compute C = A * B mod b */ 2915 for (x = bits - 1; x < (int)DIGIT_BIT; x++) { 2916 if ((res = mp_mul_2 (a, a)) != MP_OKAY) { 2917 return res; 2918 } 2919 if (mp_cmp_mag (a, b) != MP_LT) { 2920 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { 2921 return res; 2922 } 2923 } 2924 } 2925 2926 return MP_OKAY; 2927 } 2928 #endif 2929 2930 2931 #ifdef BN_MP_EXPTMOD_FAST_C 2932 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 2933 * 2934 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. 2935 * The value of k changes based on the size of the exponent. 2936 * 2937 * Uses Montgomery or Diminished Radix reduction [whichever appropriate] 2938 */ 2939 2940 static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) 2941 { 2942 mp_int M[TAB_SIZE], res; 2943 mp_digit buf, mp; 2944 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; 2945 2946 /* use a pointer to the reduction algorithm. This allows us to use 2947 * one of many reduction algorithms without modding the guts of 2948 * the code with if statements everywhere. 2949 */ 2950 int (*redux)(mp_int*,mp_int*,mp_digit); 2951 2952 /* find window size */ 2953 x = mp_count_bits (X); 2954 if (x <= 7) { 2955 winsize = 2; 2956 } else if (x <= 36) { 2957 winsize = 3; 2958 } else if (x <= 140) { 2959 winsize = 4; 2960 } else if (x <= 450) { 2961 winsize = 5; 2962 } else if (x <= 1303) { 2963 winsize = 6; 2964 } else if (x <= 3529) { 2965 winsize = 7; 2966 } else { 2967 winsize = 8; 2968 } 2969 2970 #ifdef MP_LOW_MEM 2971 if (winsize > 5) { 2972 winsize = 5; 2973 } 2974 #endif 2975 2976 /* init M array */ 2977 /* init first cell */ 2978 if ((err = mp_init(&M[1])) != MP_OKAY) { 2979 return err; 2980 } 2981 2982 /* now init the second half of the array */ 2983 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 2984 if ((err = mp_init(&M[x])) != MP_OKAY) { 2985 for (y = 1<<(winsize-1); y < x; y++) { 2986 mp_clear (&M[y]); 2987 } 2988 mp_clear(&M[1]); 2989 return err; 2990 } 2991 } 2992 2993 /* determine and setup reduction code */ 2994 if (redmode == 0) { 2995 #ifdef BN_MP_MONTGOMERY_SETUP_C 2996 /* now setup montgomery */ 2997 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { 2998 goto LBL_M; 2999 } 3000 #else 3001 err = MP_VAL; 3002 goto LBL_M; 3003 #endif 3004 3005 /* automatically pick the comba one if available (saves quite a few calls/ifs) */ 3006 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C 3007 if (((P->used * 2 + 1) < MP_WARRAY) && 3008 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { 3009 redux = fast_mp_montgomery_reduce; 3010 } else 3011 #endif 3012 { 3013 #ifdef BN_MP_MONTGOMERY_REDUCE_C 3014 /* use slower baseline Montgomery method */ 3015 redux = mp_montgomery_reduce; 3016 #else 3017 err = MP_VAL; 3018 goto LBL_M; 3019 #endif 3020 } 3021 } else if (redmode == 1) { 3022 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) 3023 /* setup DR reduction for moduli of the form B**k - b */ 3024 mp_dr_setup(P, &mp); 3025 redux = mp_dr_reduce; 3026 #else 3027 err = MP_VAL; 3028 goto LBL_M; 3029 #endif 3030 } else { 3031 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) 3032 /* setup DR reduction for moduli of the form 2**k - b */ 3033 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { 3034 goto LBL_M; 3035 } 3036 redux = mp_reduce_2k; 3037 #else 3038 err = MP_VAL; 3039 goto LBL_M; 3040 #endif 3041 } 3042 3043 /* setup result */ 3044 if ((err = mp_init (&res)) != MP_OKAY) { 3045 goto LBL_M; 3046 } 3047 3048 /* create M table 3049 * 3050 3051 * 3052 * The first half of the table is not computed though accept for M[0] and M[1] 3053 */ 3054 3055 if (redmode == 0) { 3056 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C 3057 /* now we need R mod m */ 3058 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { 3059 goto LBL_RES; 3060 } 3061 #else 3062 err = MP_VAL; 3063 goto LBL_RES; 3064 #endif 3065 3066 /* now set M[1] to G * R mod m */ 3067 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { 3068 goto LBL_RES; 3069 } 3070 } else { 3071 mp_set(&res, 1); 3072 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { 3073 goto LBL_RES; 3074 } 3075 } 3076 3077 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ 3078 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { 3079 goto LBL_RES; 3080 } 3081 3082 for (x = 0; x < (winsize - 1); x++) { 3083 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { 3084 goto LBL_RES; 3085 } 3086 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { 3087 goto LBL_RES; 3088 } 3089 } 3090 3091 /* create upper table */ 3092 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { 3093 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { 3094 goto LBL_RES; 3095 } 3096 if ((err = redux (&M[x], P, mp)) != MP_OKAY) { 3097 goto LBL_RES; 3098 } 3099 } 3100 3101 /* set initial mode and bit cnt */ 3102 mode = 0; 3103 bitcnt = 1; 3104 buf = 0; 3105 digidx = X->used - 1; 3106 bitcpy = 0; 3107 bitbuf = 0; 3108 3109 for (;;) { 3110 /* grab next digit as required */ 3111 if (--bitcnt == 0) { 3112 /* if digidx == -1 we are out of digits so break */ 3113 if (digidx == -1) { 3114 break; 3115 } 3116 /* read next digit and reset bitcnt */ 3117 buf = X->dp[digidx--]; 3118 bitcnt = (int)DIGIT_BIT; 3119 } 3120 3121 /* grab the next msb from the exponent */ 3122 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; 3123 buf <<= (mp_digit)1; 3124 3125 /* if the bit is zero and mode == 0 then we ignore it 3126 * These represent the leading zero bits before the first 1 bit 3127 * in the exponent. Technically this opt is not required but it 3128 * does lower the # of trivial squaring/reductions used 3129 */ 3130 if (mode == 0 && y == 0) { 3131 continue; 3132 } 3133 3134 /* if the bit is zero and mode == 1 then we square */ 3135 if (mode == 1 && y == 0) { 3136 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3137 goto LBL_RES; 3138 } 3139 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3140 goto LBL_RES; 3141 } 3142 continue; 3143 } 3144 3145 /* else we add it to the window */ 3146 bitbuf |= (y << (winsize - ++bitcpy)); 3147 mode = 2; 3148 3149 if (bitcpy == winsize) { 3150 /* ok window is filled so square as required and multiply */ 3151 /* square first */ 3152 for (x = 0; x < winsize; x++) { 3153 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3154 goto LBL_RES; 3155 } 3156 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3157 goto LBL_RES; 3158 } 3159 } 3160 3161 /* then multiply */ 3162 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { 3163 goto LBL_RES; 3164 } 3165 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3166 goto LBL_RES; 3167 } 3168 3169 /* empty window and reset */ 3170 bitcpy = 0; 3171 bitbuf = 0; 3172 mode = 1; 3173 } 3174 } 3175 3176 /* if bits remain then square/multiply */ 3177 if (mode == 2 && bitcpy > 0) { 3178 /* square then multiply if the bit is set */ 3179 for (x = 0; x < bitcpy; x++) { 3180 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { 3181 goto LBL_RES; 3182 } 3183 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3184 goto LBL_RES; 3185 } 3186 3187 /* get next bit of the window */ 3188 bitbuf <<= 1; 3189 if ((bitbuf & (1 << winsize)) != 0) { 3190 /* then multiply */ 3191 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { 3192 goto LBL_RES; 3193 } 3194 if ((err = redux (&res, P, mp)) != MP_OKAY) { 3195 goto LBL_RES; 3196 } 3197 } 3198 } 3199 } 3200 3201 if (redmode == 0) { 3202 /* fixup result if Montgomery reduction is used 3203 * recall that any value in a Montgomery system is 3204 * actually multiplied by R mod n. So we have 3205 * to reduce one more time to cancel out the factor 3206 * of R. 3207 */ 3208 if ((err = redux(&res, P, mp)) != MP_OKAY) { 3209 goto LBL_RES; 3210 } 3211 } 3212 3213 /* swap res with Y */ 3214 mp_exch (&res, Y); 3215 err = MP_OKAY; 3216 LBL_RES:mp_clear (&res); 3217 LBL_M: 3218 mp_clear(&M[1]); 3219 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { 3220 mp_clear (&M[x]); 3221 } 3222 return err; 3223 } 3224 #endif 3225 3226 3227 #ifdef BN_FAST_S_MP_SQR_C 3228 /* the jist of squaring... 3229 * you do like mult except the offset of the tmpx [one that 3230 * starts closer to zero] can't equal the offset of tmpy. 3231 * So basically you set up iy like before then you min it with 3232 * (ty-tx) so that it never happens. You double all those 3233 * you add in the inner loop 3234 3235 After that loop you do the squares and add them in. 3236 */ 3237 3238 static int fast_s_mp_sqr (mp_int * a, mp_int * b) 3239 { 3240 int olduse, res, pa, ix, iz; 3241 mp_digit W[MP_WARRAY], *tmpx; 3242 mp_word W1; 3243 3244 /* grow the destination as required */ 3245 pa = a->used + a->used; 3246 if (b->alloc < pa) { 3247 if ((res = mp_grow (b, pa)) != MP_OKAY) { 3248 return res; 3249 } 3250 } 3251 3252 /* number of output digits to produce */ 3253 W1 = 0; 3254 for (ix = 0; ix < pa; ix++) { 3255 int tx, ty, iy; 3256 mp_word _W; 3257 mp_digit *tmpy; 3258 3259 /* clear counter */ 3260 _W = 0; 3261 3262 /* get offsets into the two bignums */ 3263 ty = MIN(a->used-1, ix); 3264 tx = ix - ty; 3265 3266 /* setup temp aliases */ 3267 tmpx = a->dp + tx; 3268 tmpy = a->dp + ty; 3269 3270 /* this is the number of times the loop will iterrate, essentially 3271 while (tx++ < a->used && ty-- >= 0) { ... } 3272 */ 3273 iy = MIN(a->used-tx, ty+1); 3274 3275 /* now for squaring tx can never equal ty 3276 * we halve the distance since they approach at a rate of 2x 3277 * and we have to round because odd cases need to be executed 3278 */ 3279 iy = MIN(iy, (ty-tx+1)>>1); 3280 3281 /* execute loop */ 3282 for (iz = 0; iz < iy; iz++) { 3283 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); 3284 } 3285 3286 /* double the inner product and add carry */ 3287 _W = _W + _W + W1; 3288 3289 /* even columns have the square term in them */ 3290 if ((ix&1) == 0) { 3291 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); 3292 } 3293 3294 /* store it */ 3295 W[ix] = (mp_digit)(_W & MP_MASK); 3296 3297 /* make next carry */ 3298 W1 = _W >> ((mp_word)DIGIT_BIT); 3299 } 3300 3301 /* setup dest */ 3302 olduse = b->used; 3303 b->used = a->used+a->used; 3304 3305 { 3306 mp_digit *tmpb; 3307 tmpb = b->dp; 3308 for (ix = 0; ix < pa; ix++) { 3309 *tmpb++ = W[ix] & MP_MASK; 3310 } 3311 3312 /* clear unused digits [that existed in the old copy of c] */ 3313 for (; ix < olduse; ix++) { 3314 *tmpb++ = 0; 3315 } 3316 } 3317 mp_clamp (b); 3318 return MP_OKAY; 3319 } 3320 #endif 3321 3322 3323 #ifdef BN_MP_MUL_D_C 3324 /* multiply by a digit */ 3325 static int 3326 mp_mul_d (mp_int * a, mp_digit b, mp_int * c) 3327 { 3328 mp_digit u, *tmpa, *tmpc; 3329 mp_word r; 3330 int ix, res, olduse; 3331 3332 /* make sure c is big enough to hold a*b */ 3333 if (c->alloc < a->used + 1) { 3334 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { 3335 return res; 3336 } 3337 } 3338 3339 /* get the original destinations used count */ 3340 olduse = c->used; 3341 3342 /* set the sign */ 3343 c->sign = a->sign; 3344 3345 /* alias for a->dp [source] */ 3346 tmpa = a->dp; 3347 3348 /* alias for c->dp [dest] */ 3349 tmpc = c->dp; 3350 3351 /* zero carry */ 3352 u = 0; 3353 3354 /* compute columns */ 3355 for (ix = 0; ix < a->used; ix++) { 3356 /* compute product and carry sum for this term */ 3357 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); 3358 3359 /* mask off higher bits to get a single digit */ 3360 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); 3361 3362 /* send carry into next iteration */ 3363 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); 3364 } 3365 3366 /* store final carry [if any] and increment ix offset */ 3367 *tmpc++ = u; 3368 ++ix; 3369 3370 /* now zero digits above the top */ 3371 while (ix++ < olduse) { 3372 *tmpc++ = 0; 3373 } 3374 3375 /* set used count */ 3376 c->used = a->used + 1; 3377 mp_clamp(c); 3378 3379 return MP_OKAY; 3380 } 3381 #endif 3382