Home | History | Annotate | Download | only in androidfw
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "VelocityTracker"
     18 //#define LOG_NDEBUG 0
     19 
     20 // Log debug messages about velocity tracking.
     21 #define DEBUG_VELOCITY 0
     22 
     23 // Log debug messages about the progress of the algorithm itself.
     24 #define DEBUG_STRATEGY 0
     25 
     26 #include <math.h>
     27 #include <limits.h>
     28 
     29 #include <androidfw/VelocityTracker.h>
     30 #include <utils/BitSet.h>
     31 #include <utils/String8.h>
     32 #include <utils/Timers.h>
     33 
     34 #include <cutils/properties.h>
     35 
     36 namespace android {
     37 
     38 // Nanoseconds per milliseconds.
     39 static const nsecs_t NANOS_PER_MS = 1000000;
     40 
     41 // Threshold for determining that a pointer has stopped moving.
     42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
     43 // stopped.  We need to detect this case so that we can accurately predict the
     44 // velocity after the pointer starts moving again.
     45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
     46 
     47 
     48 static float vectorDot(const float* a, const float* b, uint32_t m) {
     49     float r = 0;
     50     while (m--) {
     51         r += *(a++) * *(b++);
     52     }
     53     return r;
     54 }
     55 
     56 static float vectorNorm(const float* a, uint32_t m) {
     57     float r = 0;
     58     while (m--) {
     59         float t = *(a++);
     60         r += t * t;
     61     }
     62     return sqrtf(r);
     63 }
     64 
     65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
     66 static String8 vectorToString(const float* a, uint32_t m) {
     67     String8 str;
     68     str.append("[");
     69     while (m--) {
     70         str.appendFormat(" %f", *(a++));
     71         if (m) {
     72             str.append(",");
     73         }
     74     }
     75     str.append(" ]");
     76     return str;
     77 }
     78 
     79 static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
     80     String8 str;
     81     str.append("[");
     82     for (size_t i = 0; i < m; i++) {
     83         if (i) {
     84             str.append(",");
     85         }
     86         str.append(" [");
     87         for (size_t j = 0; j < n; j++) {
     88             if (j) {
     89                 str.append(",");
     90             }
     91             str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
     92         }
     93         str.append(" ]");
     94     }
     95     str.append(" ]");
     96     return str;
     97 }
     98 #endif
     99 
    100 
    101 // --- VelocityTracker ---
    102 
    103 // The default velocity tracker strategy.
    104 // Although other strategies are available for testing and comparison purposes,
    105 // this is the strategy that applications will actually use.  Be very careful
    106 // when adjusting the default strategy because it can dramatically affect
    107 // (often in a bad way) the user experience.
    108 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
    109 
    110 VelocityTracker::VelocityTracker(const char* strategy) :
    111         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
    112     char value[PROPERTY_VALUE_MAX];
    113 
    114     // Allow the default strategy to be overridden using a system property for debugging.
    115     if (!strategy) {
    116         int length = property_get("debug.velocitytracker.strategy", value, NULL);
    117         if (length > 0) {
    118             strategy = value;
    119         } else {
    120             strategy = DEFAULT_STRATEGY;
    121         }
    122     }
    123 
    124     // Configure the strategy.
    125     if (!configureStrategy(strategy)) {
    126         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
    127         if (!configureStrategy(DEFAULT_STRATEGY)) {
    128             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
    129                     strategy);
    130         }
    131     }
    132 }
    133 
    134 VelocityTracker::~VelocityTracker() {
    135     delete mStrategy;
    136 }
    137 
    138 bool VelocityTracker::configureStrategy(const char* strategy) {
    139     mStrategy = createStrategy(strategy);
    140     return mStrategy != NULL;
    141 }
    142 
    143 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
    144     if (!strcmp("lsq1", strategy)) {
    145         // 1st order least squares.  Quality: POOR.
    146         // Frequently underfits the touch data especially when the finger accelerates
    147         // or changes direction.  Often underestimates velocity.  The direction
    148         // is overly influenced by historical touch points.
    149         return new LeastSquaresVelocityTrackerStrategy(1);
    150     }
    151     if (!strcmp("lsq2", strategy)) {
    152         // 2nd order least squares.  Quality: VERY GOOD.
    153         // Pretty much ideal, but can be confused by certain kinds of touch data,
    154         // particularly if the panel has a tendency to generate delayed,
    155         // duplicate or jittery touch coordinates when the finger is released.
    156         return new LeastSquaresVelocityTrackerStrategy(2);
    157     }
    158     if (!strcmp("lsq3", strategy)) {
    159         // 3rd order least squares.  Quality: UNUSABLE.
    160         // Frequently overfits the touch data yielding wildly divergent estimates
    161         // of the velocity when the finger is released.
    162         return new LeastSquaresVelocityTrackerStrategy(3);
    163     }
    164     if (!strcmp("wlsq2-delta", strategy)) {
    165         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
    166         return new LeastSquaresVelocityTrackerStrategy(2,
    167                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
    168     }
    169     if (!strcmp("wlsq2-central", strategy)) {
    170         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
    171         return new LeastSquaresVelocityTrackerStrategy(2,
    172                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
    173     }
    174     if (!strcmp("wlsq2-recent", strategy)) {
    175         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
    176         return new LeastSquaresVelocityTrackerStrategy(2,
    177                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
    178     }
    179     if (!strcmp("int1", strategy)) {
    180         // 1st order integrating filter.  Quality: GOOD.
    181         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
    182         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
    183         // the velocity of a fling but this strategy tends to respond to changes in
    184         // direction more quickly and accurately.
    185         return new IntegratingVelocityTrackerStrategy(1);
    186     }
    187     if (!strcmp("int2", strategy)) {
    188         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
    189         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
    190         // for acceleration but it typically overestimates the effect.
    191         return new IntegratingVelocityTrackerStrategy(2);
    192     }
    193     if (!strcmp("legacy", strategy)) {
    194         // Legacy velocity tracker algorithm.  Quality: POOR.
    195         // For comparison purposes only.  This algorithm is strongly influenced by
    196         // old data points, consistently underestimates velocity and takes a very long
    197         // time to adjust to changes in direction.
    198         return new LegacyVelocityTrackerStrategy();
    199     }
    200     return NULL;
    201 }
    202 
    203 void VelocityTracker::clear() {
    204     mCurrentPointerIdBits.clear();
    205     mActivePointerId = -1;
    206 
    207     mStrategy->clear();
    208 }
    209 
    210 void VelocityTracker::clearPointers(BitSet32 idBits) {
    211     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
    212     mCurrentPointerIdBits = remainingIdBits;
    213 
    214     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
    215         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
    216     }
    217 
    218     mStrategy->clearPointers(idBits);
    219 }
    220 
    221 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
    222     while (idBits.count() > MAX_POINTERS) {
    223         idBits.clearLastMarkedBit();
    224     }
    225 
    226     if ((mCurrentPointerIdBits.value & idBits.value)
    227             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
    228 #if DEBUG_VELOCITY
    229         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
    230                 (eventTime - mLastEventTime) * 0.000001f);
    231 #endif
    232         // We have not received any movements for too long.  Assume that all pointers
    233         // have stopped.
    234         mStrategy->clear();
    235     }
    236     mLastEventTime = eventTime;
    237 
    238     mCurrentPointerIdBits = idBits;
    239     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
    240         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
    241     }
    242 
    243     mStrategy->addMovement(eventTime, idBits, positions);
    244 
    245 #if DEBUG_VELOCITY
    246     ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
    247             eventTime, idBits.value, mActivePointerId);
    248     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
    249         uint32_t id = iterBits.firstMarkedBit();
    250         uint32_t index = idBits.getIndexOfBit(id);
    251         iterBits.clearBit(id);
    252         Estimator estimator;
    253         getEstimator(id, &estimator);
    254         ALOGD("  %d: position (%0.3f, %0.3f), "
    255                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
    256                 id, positions[index].x, positions[index].y,
    257                 int(estimator.degree),
    258                 vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
    259                 vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
    260                 estimator.confidence);
    261     }
    262 #endif
    263 }
    264 
    265 void VelocityTracker::addMovement(const MotionEvent* event) {
    266     int32_t actionMasked = event->getActionMasked();
    267 
    268     switch (actionMasked) {
    269     case AMOTION_EVENT_ACTION_DOWN:
    270     case AMOTION_EVENT_ACTION_HOVER_ENTER:
    271         // Clear all pointers on down before adding the new movement.
    272         clear();
    273         break;
    274     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
    275         // Start a new movement trace for a pointer that just went down.
    276         // We do this on down instead of on up because the client may want to query the
    277         // final velocity for a pointer that just went up.
    278         BitSet32 downIdBits;
    279         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
    280         clearPointers(downIdBits);
    281         break;
    282     }
    283     case AMOTION_EVENT_ACTION_MOVE:
    284     case AMOTION_EVENT_ACTION_HOVER_MOVE:
    285         break;
    286     default:
    287         // Ignore all other actions because they do not convey any new information about
    288         // pointer movement.  We also want to preserve the last known velocity of the pointers.
    289         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
    290         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
    291         // pointers that remained down but we will also receive an ACTION_MOVE with this
    292         // information if any of them actually moved.  Since we don't know how many pointers
    293         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
    294         // before adding the movement.
    295         return;
    296     }
    297 
    298     size_t pointerCount = event->getPointerCount();
    299     if (pointerCount > MAX_POINTERS) {
    300         pointerCount = MAX_POINTERS;
    301     }
    302 
    303     BitSet32 idBits;
    304     for (size_t i = 0; i < pointerCount; i++) {
    305         idBits.markBit(event->getPointerId(i));
    306     }
    307 
    308     uint32_t pointerIndex[MAX_POINTERS];
    309     for (size_t i = 0; i < pointerCount; i++) {
    310         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
    311     }
    312 
    313     nsecs_t eventTime;
    314     Position positions[pointerCount];
    315 
    316     size_t historySize = event->getHistorySize();
    317     for (size_t h = 0; h < historySize; h++) {
    318         eventTime = event->getHistoricalEventTime(h);
    319         for (size_t i = 0; i < pointerCount; i++) {
    320             uint32_t index = pointerIndex[i];
    321             positions[index].x = event->getHistoricalX(i, h);
    322             positions[index].y = event->getHistoricalY(i, h);
    323         }
    324         addMovement(eventTime, idBits, positions);
    325     }
    326 
    327     eventTime = event->getEventTime();
    328     for (size_t i = 0; i < pointerCount; i++) {
    329         uint32_t index = pointerIndex[i];
    330         positions[index].x = event->getX(i);
    331         positions[index].y = event->getY(i);
    332     }
    333     addMovement(eventTime, idBits, positions);
    334 }
    335 
    336 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
    337     Estimator estimator;
    338     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
    339         *outVx = estimator.xCoeff[1];
    340         *outVy = estimator.yCoeff[1];
    341         return true;
    342     }
    343     *outVx = 0;
    344     *outVy = 0;
    345     return false;
    346 }
    347 
    348 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
    349     return mStrategy->getEstimator(id, outEstimator);
    350 }
    351 
    352 
    353 // --- LeastSquaresVelocityTrackerStrategy ---
    354 
    355 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
    356 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
    357 
    358 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
    359         uint32_t degree, Weighting weighting) :
    360         mDegree(degree), mWeighting(weighting) {
    361     clear();
    362 }
    363 
    364 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
    365 }
    366 
    367 void LeastSquaresVelocityTrackerStrategy::clear() {
    368     mIndex = 0;
    369     mMovements[0].idBits.clear();
    370 }
    371 
    372 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    373     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    374     mMovements[mIndex].idBits = remainingIdBits;
    375 }
    376 
    377 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    378         const VelocityTracker::Position* positions) {
    379     if (++mIndex == HISTORY_SIZE) {
    380         mIndex = 0;
    381     }
    382 
    383     Movement& movement = mMovements[mIndex];
    384     movement.eventTime = eventTime;
    385     movement.idBits = idBits;
    386     uint32_t count = idBits.count();
    387     for (uint32_t i = 0; i < count; i++) {
    388         movement.positions[i] = positions[i];
    389     }
    390 }
    391 
    392 /**
    393  * Solves a linear least squares problem to obtain a N degree polynomial that fits
    394  * the specified input data as nearly as possible.
    395  *
    396  * Returns true if a solution is found, false otherwise.
    397  *
    398  * The input consists of two vectors of data points X and Y with indices 0..m-1
    399  * along with a weight vector W of the same size.
    400  *
    401  * The output is a vector B with indices 0..n that describes a polynomial
    402  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
    403  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
    404  *
    405  * Accordingly, the weight vector W should be initialized by the caller with the
    406  * reciprocal square root of the variance of the error in each input data point.
    407  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
    408  * The weights express the relative importance of each data point.  If the weights are
    409  * all 1, then the data points are considered to be of equal importance when fitting
    410  * the polynomial.  It is a good idea to choose weights that diminish the importance
    411  * of data points that may have higher than usual error margins.
    412  *
    413  * Errors among data points are assumed to be independent.  W is represented here
    414  * as a vector although in the literature it is typically taken to be a diagonal matrix.
    415  *
    416  * That is to say, the function that generated the input data can be approximated
    417  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
    418  *
    419  * The coefficient of determination (R^2) is also returned to describe the goodness
    420  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
    421  * indicates perfect correspondence.
    422  *
    423  * This function first expands the X vector to a m by n matrix A such that
    424  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
    425  * multiplies it by w[i]./
    426  *
    427  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
    428  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
    429  * part is all zeroes), we can simplify the decomposition into an m by n matrix
    430  * Q1 and a n by n matrix R1 such that A = Q1 R1.
    431  *
    432  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
    433  * to find B.
    434  *
    435  * For efficiency, we lay out A and Q column-wise in memory because we frequently
    436  * operate on the column vectors.  Conversely, we lay out R row-wise.
    437  *
    438  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
    439  * http://en.wikipedia.org/wiki/Gram-Schmidt
    440  */
    441 static bool solveLeastSquares(const float* x, const float* y,
    442         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
    443 #if DEBUG_STRATEGY
    444     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
    445             vectorToString(x, m).string(), vectorToString(y, m).string(),
    446             vectorToString(w, m).string());
    447 #endif
    448 
    449     // Expand the X vector to a matrix A, pre-multiplied by the weights.
    450     float a[n][m]; // column-major order
    451     for (uint32_t h = 0; h < m; h++) {
    452         a[0][h] = w[h];
    453         for (uint32_t i = 1; i < n; i++) {
    454             a[i][h] = a[i - 1][h] * x[h];
    455         }
    456     }
    457 #if DEBUG_STRATEGY
    458     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
    459 #endif
    460 
    461     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
    462     float q[n][m]; // orthonormal basis, column-major order
    463     float r[n][n]; // upper triangular matrix, row-major order
    464     for (uint32_t j = 0; j < n; j++) {
    465         for (uint32_t h = 0; h < m; h++) {
    466             q[j][h] = a[j][h];
    467         }
    468         for (uint32_t i = 0; i < j; i++) {
    469             float dot = vectorDot(&q[j][0], &q[i][0], m);
    470             for (uint32_t h = 0; h < m; h++) {
    471                 q[j][h] -= dot * q[i][h];
    472             }
    473         }
    474 
    475         float norm = vectorNorm(&q[j][0], m);
    476         if (norm < 0.000001f) {
    477             // vectors are linearly dependent or zero so no solution
    478 #if DEBUG_STRATEGY
    479             ALOGD("  - no solution, norm=%f", norm);
    480 #endif
    481             return false;
    482         }
    483 
    484         float invNorm = 1.0f / norm;
    485         for (uint32_t h = 0; h < m; h++) {
    486             q[j][h] *= invNorm;
    487         }
    488         for (uint32_t i = 0; i < n; i++) {
    489             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
    490         }
    491     }
    492 #if DEBUG_STRATEGY
    493     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
    494     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
    495 
    496     // calculate QR, if we factored A correctly then QR should equal A
    497     float qr[n][m];
    498     for (uint32_t h = 0; h < m; h++) {
    499         for (uint32_t i = 0; i < n; i++) {
    500             qr[i][h] = 0;
    501             for (uint32_t j = 0; j < n; j++) {
    502                 qr[i][h] += q[j][h] * r[j][i];
    503             }
    504         }
    505     }
    506     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
    507 #endif
    508 
    509     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
    510     // We just work from bottom-right to top-left calculating B's coefficients.
    511     float wy[m];
    512     for (uint32_t h = 0; h < m; h++) {
    513         wy[h] = y[h] * w[h];
    514     }
    515     for (uint32_t i = n; i-- != 0; ) {
    516         outB[i] = vectorDot(&q[i][0], wy, m);
    517         for (uint32_t j = n - 1; j > i; j--) {
    518             outB[i] -= r[i][j] * outB[j];
    519         }
    520         outB[i] /= r[i][i];
    521     }
    522 #if DEBUG_STRATEGY
    523     ALOGD("  - b=%s", vectorToString(outB, n).string());
    524 #endif
    525 
    526     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    527     // SSerr is the residual sum of squares (variance of the error),
    528     // and SStot is the total sum of squares (variance of the data) where each
    529     // has been weighted.
    530     float ymean = 0;
    531     for (uint32_t h = 0; h < m; h++) {
    532         ymean += y[h];
    533     }
    534     ymean /= m;
    535 
    536     float sserr = 0;
    537     float sstot = 0;
    538     for (uint32_t h = 0; h < m; h++) {
    539         float err = y[h] - outB[0];
    540         float term = 1;
    541         for (uint32_t i = 1; i < n; i++) {
    542             term *= x[h];
    543             err -= term * outB[i];
    544         }
    545         sserr += w[h] * w[h] * err * err;
    546         float var = y[h] - ymean;
    547         sstot += w[h] * w[h] * var * var;
    548     }
    549     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
    550 #if DEBUG_STRATEGY
    551     ALOGD("  - sserr=%f", sserr);
    552     ALOGD("  - sstot=%f", sstot);
    553     ALOGD("  - det=%f", *outDet);
    554 #endif
    555     return true;
    556 }
    557 
    558 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    559         VelocityTracker::Estimator* outEstimator) const {
    560     outEstimator->clear();
    561 
    562     // Iterate over movement samples in reverse time order and collect samples.
    563     float x[HISTORY_SIZE];
    564     float y[HISTORY_SIZE];
    565     float w[HISTORY_SIZE];
    566     float time[HISTORY_SIZE];
    567     uint32_t m = 0;
    568     uint32_t index = mIndex;
    569     const Movement& newestMovement = mMovements[mIndex];
    570     do {
    571         const Movement& movement = mMovements[index];
    572         if (!movement.idBits.hasBit(id)) {
    573             break;
    574         }
    575 
    576         nsecs_t age = newestMovement.eventTime - movement.eventTime;
    577         if (age > HORIZON) {
    578             break;
    579         }
    580 
    581         const VelocityTracker::Position& position = movement.getPosition(id);
    582         x[m] = position.x;
    583         y[m] = position.y;
    584         w[m] = chooseWeight(index);
    585         time[m] = -age * 0.000000001f;
    586         index = (index == 0 ? HISTORY_SIZE : index) - 1;
    587     } while (++m < HISTORY_SIZE);
    588 
    589     if (m == 0) {
    590         return false; // no data
    591     }
    592 
    593     // Calculate a least squares polynomial fit.
    594     uint32_t degree = mDegree;
    595     if (degree > m - 1) {
    596         degree = m - 1;
    597     }
    598     if (degree >= 1) {
    599         float xdet, ydet;
    600         uint32_t n = degree + 1;
    601         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
    602                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
    603             outEstimator->time = newestMovement.eventTime;
    604             outEstimator->degree = degree;
    605             outEstimator->confidence = xdet * ydet;
    606 #if DEBUG_STRATEGY
    607             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
    608                     int(outEstimator->degree),
    609                     vectorToString(outEstimator->xCoeff, n).string(),
    610                     vectorToString(outEstimator->yCoeff, n).string(),
    611                     outEstimator->confidence);
    612 #endif
    613             return true;
    614         }
    615     }
    616 
    617     // No velocity data available for this pointer, but we do have its current position.
    618     outEstimator->xCoeff[0] = x[0];
    619     outEstimator->yCoeff[0] = y[0];
    620     outEstimator->time = newestMovement.eventTime;
    621     outEstimator->degree = 0;
    622     outEstimator->confidence = 1;
    623     return true;
    624 }
    625 
    626 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
    627     switch (mWeighting) {
    628     case WEIGHTING_DELTA: {
    629         // Weight points based on how much time elapsed between them and the next
    630         // point so that points that "cover" a shorter time span are weighed less.
    631         //   delta  0ms: 0.5
    632         //   delta 10ms: 1.0
    633         if (index == mIndex) {
    634             return 1.0f;
    635         }
    636         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
    637         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
    638                 * 0.000001f;
    639         if (deltaMillis < 0) {
    640             return 0.5f;
    641         }
    642         if (deltaMillis < 10) {
    643             return 0.5f + deltaMillis * 0.05;
    644         }
    645         return 1.0f;
    646     }
    647 
    648     case WEIGHTING_CENTRAL: {
    649         // Weight points based on their age, weighing very recent and very old points less.
    650         //   age  0ms: 0.5
    651         //   age 10ms: 1.0
    652         //   age 50ms: 1.0
    653         //   age 60ms: 0.5
    654         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    655                 * 0.000001f;
    656         if (ageMillis < 0) {
    657             return 0.5f;
    658         }
    659         if (ageMillis < 10) {
    660             return 0.5f + ageMillis * 0.05;
    661         }
    662         if (ageMillis < 50) {
    663             return 1.0f;
    664         }
    665         if (ageMillis < 60) {
    666             return 0.5f + (60 - ageMillis) * 0.05;
    667         }
    668         return 0.5f;
    669     }
    670 
    671     case WEIGHTING_RECENT: {
    672         // Weight points based on their age, weighing older points less.
    673         //   age   0ms: 1.0
    674         //   age  50ms: 1.0
    675         //   age 100ms: 0.5
    676         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    677                 * 0.000001f;
    678         if (ageMillis < 50) {
    679             return 1.0f;
    680         }
    681         if (ageMillis < 100) {
    682             return 0.5f + (100 - ageMillis) * 0.01f;
    683         }
    684         return 0.5f;
    685     }
    686 
    687     case WEIGHTING_NONE:
    688     default:
    689         return 1.0f;
    690     }
    691 }
    692 
    693 
    694 // --- IntegratingVelocityTrackerStrategy ---
    695 
    696 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
    697         mDegree(degree) {
    698 }
    699 
    700 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
    701 }
    702 
    703 void IntegratingVelocityTrackerStrategy::clear() {
    704     mPointerIdBits.clear();
    705 }
    706 
    707 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    708     mPointerIdBits.value &= ~idBits.value;
    709 }
    710 
    711 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    712         const VelocityTracker::Position* positions) {
    713     uint32_t index = 0;
    714     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
    715         uint32_t id = iterIdBits.clearFirstMarkedBit();
    716         State& state = mPointerState[id];
    717         const VelocityTracker::Position& position = positions[index++];
    718         if (mPointerIdBits.hasBit(id)) {
    719             updateState(state, eventTime, position.x, position.y);
    720         } else {
    721             initState(state, eventTime, position.x, position.y);
    722         }
    723     }
    724 
    725     mPointerIdBits = idBits;
    726 }
    727 
    728 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
    729         VelocityTracker::Estimator* outEstimator) const {
    730     outEstimator->clear();
    731 
    732     if (mPointerIdBits.hasBit(id)) {
    733         const State& state = mPointerState[id];
    734         populateEstimator(state, outEstimator);
    735         return true;
    736     }
    737 
    738     return false;
    739 }
    740 
    741 void IntegratingVelocityTrackerStrategy::initState(State& state,
    742         nsecs_t eventTime, float xpos, float ypos) const {
    743     state.updateTime = eventTime;
    744     state.degree = 0;
    745 
    746     state.xpos = xpos;
    747     state.xvel = 0;
    748     state.xaccel = 0;
    749     state.ypos = ypos;
    750     state.yvel = 0;
    751     state.yaccel = 0;
    752 }
    753 
    754 void IntegratingVelocityTrackerStrategy::updateState(State& state,
    755         nsecs_t eventTime, float xpos, float ypos) const {
    756     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
    757     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
    758 
    759     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
    760         return;
    761     }
    762 
    763     float dt = (eventTime - state.updateTime) * 0.000000001f;
    764     state.updateTime = eventTime;
    765 
    766     float xvel = (xpos - state.xpos) / dt;
    767     float yvel = (ypos - state.ypos) / dt;
    768     if (state.degree == 0) {
    769         state.xvel = xvel;
    770         state.yvel = yvel;
    771         state.degree = 1;
    772     } else {
    773         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
    774         if (mDegree == 1) {
    775             state.xvel += (xvel - state.xvel) * alpha;
    776             state.yvel += (yvel - state.yvel) * alpha;
    777         } else {
    778             float xaccel = (xvel - state.xvel) / dt;
    779             float yaccel = (yvel - state.yvel) / dt;
    780             if (state.degree == 1) {
    781                 state.xaccel = xaccel;
    782                 state.yaccel = yaccel;
    783                 state.degree = 2;
    784             } else {
    785                 state.xaccel += (xaccel - state.xaccel) * alpha;
    786                 state.yaccel += (yaccel - state.yaccel) * alpha;
    787             }
    788             state.xvel += (state.xaccel * dt) * alpha;
    789             state.yvel += (state.yaccel * dt) * alpha;
    790         }
    791     }
    792     state.xpos = xpos;
    793     state.ypos = ypos;
    794 }
    795 
    796 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
    797         VelocityTracker::Estimator* outEstimator) const {
    798     outEstimator->time = state.updateTime;
    799     outEstimator->confidence = 1.0f;
    800     outEstimator->degree = state.degree;
    801     outEstimator->xCoeff[0] = state.xpos;
    802     outEstimator->xCoeff[1] = state.xvel;
    803     outEstimator->xCoeff[2] = state.xaccel / 2;
    804     outEstimator->yCoeff[0] = state.ypos;
    805     outEstimator->yCoeff[1] = state.yvel;
    806     outEstimator->yCoeff[2] = state.yaccel / 2;
    807 }
    808 
    809 
    810 // --- LegacyVelocityTrackerStrategy ---
    811 
    812 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
    813 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
    814 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
    815 
    816 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
    817     clear();
    818 }
    819 
    820 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
    821 }
    822 
    823 void LegacyVelocityTrackerStrategy::clear() {
    824     mIndex = 0;
    825     mMovements[0].idBits.clear();
    826 }
    827 
    828 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    829     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    830     mMovements[mIndex].idBits = remainingIdBits;
    831 }
    832 
    833 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    834         const VelocityTracker::Position* positions) {
    835     if (++mIndex == HISTORY_SIZE) {
    836         mIndex = 0;
    837     }
    838 
    839     Movement& movement = mMovements[mIndex];
    840     movement.eventTime = eventTime;
    841     movement.idBits = idBits;
    842     uint32_t count = idBits.count();
    843     for (uint32_t i = 0; i < count; i++) {
    844         movement.positions[i] = positions[i];
    845     }
    846 }
    847 
    848 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
    849         VelocityTracker::Estimator* outEstimator) const {
    850     outEstimator->clear();
    851 
    852     const Movement& newestMovement = mMovements[mIndex];
    853     if (!newestMovement.idBits.hasBit(id)) {
    854         return false; // no data
    855     }
    856 
    857     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
    858     nsecs_t minTime = newestMovement.eventTime - HORIZON;
    859     uint32_t oldestIndex = mIndex;
    860     uint32_t numTouches = 1;
    861     do {
    862         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
    863         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
    864         if (!nextOldestMovement.idBits.hasBit(id)
    865                 || nextOldestMovement.eventTime < minTime) {
    866             break;
    867         }
    868         oldestIndex = nextOldestIndex;
    869     } while (++numTouches < HISTORY_SIZE);
    870 
    871     // Calculate an exponentially weighted moving average of the velocity estimate
    872     // at different points in time measured relative to the oldest sample.
    873     // This is essentially an IIR filter.  Newer samples are weighted more heavily
    874     // than older samples.  Samples at equal time points are weighted more or less
    875     // equally.
    876     //
    877     // One tricky problem is that the sample data may be poorly conditioned.
    878     // Sometimes samples arrive very close together in time which can cause us to
    879     // overestimate the velocity at that time point.  Most samples might be measured
    880     // 16ms apart but some consecutive samples could be only 0.5sm apart because
    881     // the hardware or driver reports them irregularly or in bursts.
    882     float accumVx = 0;
    883     float accumVy = 0;
    884     uint32_t index = oldestIndex;
    885     uint32_t samplesUsed = 0;
    886     const Movement& oldestMovement = mMovements[oldestIndex];
    887     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
    888     nsecs_t lastDuration = 0;
    889 
    890     while (numTouches-- > 1) {
    891         if (++index == HISTORY_SIZE) {
    892             index = 0;
    893         }
    894         const Movement& movement = mMovements[index];
    895         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
    896 
    897         // If the duration between samples is small, we may significantly overestimate
    898         // the velocity.  Consequently, we impose a minimum duration constraint on the
    899         // samples that we include in the calculation.
    900         if (duration >= MIN_DURATION) {
    901             const VelocityTracker::Position& position = movement.getPosition(id);
    902             float scale = 1000000000.0f / duration; // one over time delta in seconds
    903             float vx = (position.x - oldestPosition.x) * scale;
    904             float vy = (position.y - oldestPosition.y) * scale;
    905             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
    906             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
    907             lastDuration = duration;
    908             samplesUsed += 1;
    909         }
    910     }
    911 
    912     // Report velocity.
    913     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
    914     outEstimator->time = newestMovement.eventTime;
    915     outEstimator->confidence = 1;
    916     outEstimator->xCoeff[0] = newestPosition.x;
    917     outEstimator->yCoeff[0] = newestPosition.y;
    918     if (samplesUsed) {
    919         outEstimator->xCoeff[1] = accumVx;
    920         outEstimator->yCoeff[1] = accumVy;
    921         outEstimator->degree = 1;
    922     } else {
    923         outEstimator->degree = 0;
    924     }
    925     return true;
    926 }
    927 
    928 } // namespace android
    929