Home | History | Annotate | Download | only in BitReader_2_7
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitcodeReader class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "BitcodeReader.h"
     15 #include "BitReader_2_7.h"
     16 
     17 #include "llvm/Bitcode/ReaderWriter.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/InlineAsm.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/AutoUpgrade.h"
     25 #include "llvm/ADT/SmallString.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/MemoryBuffer.h"
     29 #include "llvm/OperandTraits.h"
     30 
     31 using namespace llvm;
     32 using namespace llvm_2_7;
     33 
     34 #define METADATA_NODE_2_7             2
     35 #define METADATA_FN_NODE_2_7          3
     36 #define METADATA_NAMED_NODE_2_7       5
     37 #define METADATA_ATTACHMENT_2_7       7
     38 #define FUNC_CODE_INST_UNWIND_2_7     14
     39 #define FUNC_CODE_INST_MALLOC_2_7     17
     40 #define FUNC_CODE_INST_FREE_2_7       18
     41 #define FUNC_CODE_INST_STORE_2_7      21
     42 #define FUNC_CODE_INST_CALL_2_7       22
     43 #define FUNC_CODE_INST_GETRESULT_2_7  25
     44 #define FUNC_CODE_DEBUG_LOC_2_7       32
     45 
     46 #define TYPE_BLOCK_ID_OLD_3_0         10
     47 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
     48 #define TYPE_CODE_STRUCT_OLD_3_0      10
     49 
     50 namespace {
     51   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
     52   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
     53   /// strips that use.
     54   void CheckDebugInfoIntrinsics(Module *M) {
     55     if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
     56       while (!FuncStart->use_empty())
     57         cast<CallInst>(FuncStart->use_back())->eraseFromParent();
     58       FuncStart->eraseFromParent();
     59     }
     60 
     61     if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
     62       while (!StopPoint->use_empty())
     63         cast<CallInst>(StopPoint->use_back())->eraseFromParent();
     64       StopPoint->eraseFromParent();
     65     }
     66 
     67     if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
     68       while (!RegionStart->use_empty())
     69         cast<CallInst>(RegionStart->use_back())->eraseFromParent();
     70       RegionStart->eraseFromParent();
     71     }
     72 
     73     if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
     74       while (!RegionEnd->use_empty())
     75         cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
     76       RegionEnd->eraseFromParent();
     77     }
     78 
     79     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
     80       if (!Declare->use_empty()) {
     81         DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
     82         if (!isa<MDNode>(DDI->getArgOperand(0)) ||
     83             !isa<MDNode>(DDI->getArgOperand(1))) {
     84           while (!Declare->use_empty()) {
     85             CallInst *CI = cast<CallInst>(Declare->use_back());
     86             CI->eraseFromParent();
     87           }
     88           Declare->eraseFromParent();
     89         }
     90       }
     91     }
     92   }
     93 } // end anonymous namespace
     94 
     95 void BitcodeReader::FreeState() {
     96   if (BufferOwned)
     97     delete Buffer;
     98   Buffer = 0;
     99   std::vector<Type*>().swap(TypeList);
    100   ValueList.clear();
    101   MDValueList.clear();
    102 
    103   std::vector<AttrListPtr>().swap(MAttributes);
    104   std::vector<BasicBlock*>().swap(FunctionBBs);
    105   std::vector<Function*>().swap(FunctionsWithBodies);
    106   DeferredFunctionInfo.clear();
    107   MDKindMap.clear();
    108 }
    109 
    110 //===----------------------------------------------------------------------===//
    111 //  Helper functions to implement forward reference resolution, etc.
    112 //===----------------------------------------------------------------------===//
    113 
    114 /// ConvertToString - Convert a string from a record into an std::string, return
    115 /// true on failure.
    116 template<typename StrTy>
    117 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
    118                             StrTy &Result) {
    119   if (Idx > Record.size())
    120     return true;
    121 
    122   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    123     Result += (char)Record[i];
    124   return false;
    125 }
    126 
    127 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
    128   switch (Val) {
    129   default: // Map unknown/new linkages to external
    130   case 0:  return GlobalValue::ExternalLinkage;
    131   case 1:  return GlobalValue::WeakAnyLinkage;
    132   case 2:  return GlobalValue::AppendingLinkage;
    133   case 3:  return GlobalValue::InternalLinkage;
    134   case 4:  return GlobalValue::LinkOnceAnyLinkage;
    135   case 5:  return GlobalValue::DLLImportLinkage;
    136   case 6:  return GlobalValue::DLLExportLinkage;
    137   case 7:  return GlobalValue::ExternalWeakLinkage;
    138   case 8:  return GlobalValue::CommonLinkage;
    139   case 9:  return GlobalValue::PrivateLinkage;
    140   case 10: return GlobalValue::WeakODRLinkage;
    141   case 11: return GlobalValue::LinkOnceODRLinkage;
    142   case 12: return GlobalValue::AvailableExternallyLinkage;
    143   case 13: return GlobalValue::LinkerPrivateLinkage;
    144   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
    145   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
    146   }
    147 }
    148 
    149 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
    150   switch (Val) {
    151   default: // Map unknown visibilities to default.
    152   case 0: return GlobalValue::DefaultVisibility;
    153   case 1: return GlobalValue::HiddenVisibility;
    154   case 2: return GlobalValue::ProtectedVisibility;
    155   }
    156 }
    157 
    158 static int GetDecodedCastOpcode(unsigned Val) {
    159   switch (Val) {
    160   default: return -1;
    161   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    162   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    163   case bitc::CAST_SEXT    : return Instruction::SExt;
    164   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    165   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    166   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    167   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    168   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    169   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    170   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    171   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    172   case bitc::CAST_BITCAST : return Instruction::BitCast;
    173   }
    174 }
    175 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    176   switch (Val) {
    177   default: return -1;
    178   case bitc::BINOP_ADD:
    179     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    180   case bitc::BINOP_SUB:
    181     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    182   case bitc::BINOP_MUL:
    183     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    184   case bitc::BINOP_UDIV: return Instruction::UDiv;
    185   case bitc::BINOP_SDIV:
    186     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    187   case bitc::BINOP_UREM: return Instruction::URem;
    188   case bitc::BINOP_SREM:
    189     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    190   case bitc::BINOP_SHL:  return Instruction::Shl;
    191   case bitc::BINOP_LSHR: return Instruction::LShr;
    192   case bitc::BINOP_ASHR: return Instruction::AShr;
    193   case bitc::BINOP_AND:  return Instruction::And;
    194   case bitc::BINOP_OR:   return Instruction::Or;
    195   case bitc::BINOP_XOR:  return Instruction::Xor;
    196   }
    197 }
    198 
    199 namespace llvm {
    200 namespace {
    201   /// @brief A class for maintaining the slot number definition
    202   /// as a placeholder for the actual definition for forward constants defs.
    203   class ConstantPlaceHolder : public ConstantExpr {
    204     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
    205   public:
    206     // allocate space for exactly one operand
    207     void *operator new(size_t s) {
    208       return User::operator new(s, 1);
    209     }
    210     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    211       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    212       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    213     }
    214 
    215     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    216     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
    217     static bool classof(const Value *V) {
    218       return isa<ConstantExpr>(V) &&
    219              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    220     }
    221 
    222 
    223     /// Provide fast operand accessors
    224     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    225   };
    226 }
    227 
    228 // FIXME: can we inherit this from ConstantExpr?
    229 template <>
    230 struct OperandTraits<ConstantPlaceHolder> :
    231   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    232 };
    233 }
    234 
    235 
    236 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    237   if (Idx == size()) {
    238     push_back(V);
    239     return;
    240   }
    241 
    242   if (Idx >= size())
    243     resize(Idx+1);
    244 
    245   WeakVH &OldV = ValuePtrs[Idx];
    246   if (OldV == 0) {
    247     OldV = V;
    248     return;
    249   }
    250 
    251   // Handle constants and non-constants (e.g. instrs) differently for
    252   // efficiency.
    253   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    254     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    255     OldV = V;
    256   } else {
    257     // If there was a forward reference to this value, replace it.
    258     Value *PrevVal = OldV;
    259     OldV->replaceAllUsesWith(V);
    260     delete PrevVal;
    261   }
    262 }
    263 
    264 
    265 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    266                                                     Type *Ty) {
    267   if (Idx >= size())
    268     resize(Idx + 1);
    269 
    270   if (Value *V = ValuePtrs[Idx]) {
    271     assert(Ty == V->getType() && "Type mismatch in constant table!");
    272     return cast<Constant>(V);
    273   }
    274 
    275   // Create and return a placeholder, which will later be RAUW'd.
    276   Constant *C = new ConstantPlaceHolder(Ty, Context);
    277   ValuePtrs[Idx] = C;
    278   return C;
    279 }
    280 
    281 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    282   if (Idx >= size())
    283     resize(Idx + 1);
    284 
    285   if (Value *V = ValuePtrs[Idx]) {
    286     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
    287     return V;
    288   }
    289 
    290   // No type specified, must be invalid reference.
    291   if (Ty == 0) return 0;
    292 
    293   // Create and return a placeholder, which will later be RAUW'd.
    294   Value *V = new Argument(Ty);
    295   ValuePtrs[Idx] = V;
    296   return V;
    297 }
    298 
    299 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    300 /// resolves any forward references.  The idea behind this is that we sometimes
    301 /// get constants (such as large arrays) which reference *many* forward ref
    302 /// constants.  Replacing each of these causes a lot of thrashing when
    303 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    304 /// uses and rewrite all the place holders at once for any constant that uses
    305 /// a placeholder.
    306 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    307   // Sort the values by-pointer so that they are efficient to look up with a
    308   // binary search.
    309   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    310 
    311   SmallVector<Constant*, 64> NewOps;
    312 
    313   while (!ResolveConstants.empty()) {
    314     Value *RealVal = operator[](ResolveConstants.back().second);
    315     Constant *Placeholder = ResolveConstants.back().first;
    316     ResolveConstants.pop_back();
    317 
    318     // Loop over all users of the placeholder, updating them to reference the
    319     // new value.  If they reference more than one placeholder, update them all
    320     // at once.
    321     while (!Placeholder->use_empty()) {
    322       Value::use_iterator UI = Placeholder->use_begin();
    323       User *U = *UI;
    324 
    325       // If the using object isn't uniqued, just update the operands.  This
    326       // handles instructions and initializers for global variables.
    327       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    328         UI.getUse().set(RealVal);
    329         continue;
    330       }
    331 
    332       // Otherwise, we have a constant that uses the placeholder.  Replace that
    333       // constant with a new constant that has *all* placeholder uses updated.
    334       Constant *UserC = cast<Constant>(U);
    335       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    336            I != E; ++I) {
    337         Value *NewOp;
    338         if (!isa<ConstantPlaceHolder>(*I)) {
    339           // Not a placeholder reference.
    340           NewOp = *I;
    341         } else if (*I == Placeholder) {
    342           // Common case is that it just references this one placeholder.
    343           NewOp = RealVal;
    344         } else {
    345           // Otherwise, look up the placeholder in ResolveConstants.
    346           ResolveConstantsTy::iterator It =
    347             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    348                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    349                                                             0));
    350           assert(It != ResolveConstants.end() && It->first == *I);
    351           NewOp = operator[](It->second);
    352         }
    353 
    354         NewOps.push_back(cast<Constant>(NewOp));
    355       }
    356 
    357       // Make the new constant.
    358       Constant *NewC;
    359       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    360         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    361       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    362         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    363       } else if (isa<ConstantVector>(UserC)) {
    364         NewC = ConstantVector::get(NewOps);
    365       } else {
    366         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    367         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    368       }
    369 
    370       UserC->replaceAllUsesWith(NewC);
    371       UserC->destroyConstant();
    372       NewOps.clear();
    373     }
    374 
    375     // Update all ValueHandles, they should be the only users at this point.
    376     Placeholder->replaceAllUsesWith(RealVal);
    377     delete Placeholder;
    378   }
    379 }
    380 
    381 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
    382   if (Idx == size()) {
    383     push_back(V);
    384     return;
    385   }
    386 
    387   if (Idx >= size())
    388     resize(Idx+1);
    389 
    390   WeakVH &OldV = MDValuePtrs[Idx];
    391   if (OldV == 0) {
    392     OldV = V;
    393     return;
    394   }
    395 
    396   // If there was a forward reference to this value, replace it.
    397   MDNode *PrevVal = cast<MDNode>(OldV);
    398   OldV->replaceAllUsesWith(V);
    399   MDNode::deleteTemporary(PrevVal);
    400   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
    401   // value for Idx.
    402   MDValuePtrs[Idx] = V;
    403 }
    404 
    405 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
    406   if (Idx >= size())
    407     resize(Idx + 1);
    408 
    409   if (Value *V = MDValuePtrs[Idx]) {
    410     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
    411     return V;
    412   }
    413 
    414   // Create and return a placeholder, which will later be RAUW'd.
    415   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
    416   MDValuePtrs[Idx] = V;
    417   return V;
    418 }
    419 
    420 Type *BitcodeReader::getTypeByID(unsigned ID) {
    421   // The type table size is always specified correctly.
    422   if (ID >= TypeList.size())
    423     return 0;
    424 
    425   if (Type *Ty = TypeList[ID])
    426     return Ty;
    427 
    428   // If we have a forward reference, the only possible case is when it is to a
    429   // named struct.  Just create a placeholder for now.
    430   return TypeList[ID] = StructType::create(Context, "");
    431 }
    432 
    433 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
    434 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
    435   if (ID >= TypeList.size())
    436     TypeList.resize(ID+1);
    437 
    438   return TypeList[ID];
    439 }
    440 
    441 
    442 //===----------------------------------------------------------------------===//
    443 //  Functions for parsing blocks from the bitcode file
    444 //===----------------------------------------------------------------------===//
    445 
    446 bool BitcodeReader::ParseAttributeBlock() {
    447   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
    448     return Error("Malformed block record");
    449 
    450   if (!MAttributes.empty())
    451     return Error("Multiple PARAMATTR blocks found!");
    452 
    453   SmallVector<uint64_t, 64> Record;
    454 
    455   SmallVector<AttributeWithIndex, 8> Attrs;
    456 
    457   // Read all the records.
    458   while (1) {
    459     unsigned Code = Stream.ReadCode();
    460     if (Code == bitc::END_BLOCK) {
    461       if (Stream.ReadBlockEnd())
    462         return Error("Error at end of PARAMATTR block");
    463       return false;
    464     }
    465 
    466     if (Code == bitc::ENTER_SUBBLOCK) {
    467       // No known subblocks, always skip them.
    468       Stream.ReadSubBlockID();
    469       if (Stream.SkipBlock())
    470         return Error("Malformed block record");
    471       continue;
    472     }
    473 
    474     if (Code == bitc::DEFINE_ABBREV) {
    475       Stream.ReadAbbrevRecord();
    476       continue;
    477     }
    478 
    479     // Read a record.
    480     Record.clear();
    481     switch (Stream.ReadRecord(Code, Record)) {
    482     default:  // Default behavior: ignore.
    483       break;
    484     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
    485       if (Record.size() & 1)
    486         return Error("Invalid ENTRY record");
    487 
    488       // FIXME : Remove this autoupgrade code in LLVM 3.0.
    489       // If Function attributes are using index 0 then transfer them
    490       // to index ~0. Index 0 is used for return value attributes but used to be
    491       // used for function attributes.
    492       Attributes RetAttribute = Attribute::None;
    493       Attributes FnAttribute = Attribute::None;
    494       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    495         // FIXME: remove in LLVM 3.0
    496         // The alignment is stored as a 16-bit raw value from bits 31--16.
    497         // We shift the bits above 31 down by 11 bits.
    498 
    499         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
    500         if (Alignment && !isPowerOf2_32(Alignment))
    501           return Error("Alignment is not a power of two.");
    502 
    503         Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
    504         if (Alignment)
    505           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
    506         ReconstitutedAttr |=
    507             Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
    508 
    509         Record[i+1] = ReconstitutedAttr.Raw();
    510         if (Record[i] == 0)
    511           RetAttribute = ReconstitutedAttr;
    512         else if (Record[i] == ~0U)
    513           FnAttribute = ReconstitutedAttr;
    514       }
    515 
    516       Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn |
    517                              Attribute::ReadOnly|Attribute::ReadNone);
    518 
    519       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
    520           (RetAttribute & OldRetAttrs)) {
    521         if (FnAttribute == Attribute::None) { // add a slot so they get added.
    522           Record.push_back(~0U);
    523           Record.push_back(0);
    524         }
    525 
    526         FnAttribute  |= RetAttribute & OldRetAttrs;
    527         RetAttribute &= ~OldRetAttrs;
    528       }
    529 
    530       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    531         if (Record[i] == 0) {
    532           if (RetAttribute != Attribute::None)
    533             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
    534         } else if (Record[i] == ~0U) {
    535           if (FnAttribute != Attribute::None)
    536             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
    537         } else if (Attributes(Record[i+1]) != Attribute::None)
    538           Attrs.push_back(AttributeWithIndex::get(Record[i],
    539                                                   Attributes(Record[i+1])));
    540       }
    541 
    542       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
    543       Attrs.clear();
    544       break;
    545     }
    546     }
    547   }
    548 }
    549 
    550 bool BitcodeReader::ParseTypeTable() {
    551   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
    552     return Error("Malformed block record");
    553 
    554   return ParseTypeTableBody();
    555 }
    556 
    557 bool BitcodeReader::ParseTypeTableBody() {
    558   if (!TypeList.empty())
    559     return Error("Multiple TYPE_BLOCKs found!");
    560 
    561   SmallVector<uint64_t, 64> Record;
    562   unsigned NumRecords = 0;
    563 
    564   SmallString<64> TypeName;
    565 
    566   // Read all the records for this type table.
    567   while (1) {
    568     unsigned Code = Stream.ReadCode();
    569     if (Code == bitc::END_BLOCK) {
    570       if (NumRecords != TypeList.size())
    571         return Error("Invalid type forward reference in TYPE_BLOCK");
    572       if (Stream.ReadBlockEnd())
    573         return Error("Error at end of type table block");
    574       return false;
    575     }
    576 
    577     if (Code == bitc::ENTER_SUBBLOCK) {
    578       // No known subblocks, always skip them.
    579       Stream.ReadSubBlockID();
    580       if (Stream.SkipBlock())
    581         return Error("Malformed block record");
    582       continue;
    583     }
    584 
    585     if (Code == bitc::DEFINE_ABBREV) {
    586       Stream.ReadAbbrevRecord();
    587       continue;
    588     }
    589 
    590     // Read a record.
    591     Record.clear();
    592     Type *ResultTy = 0;
    593     switch (Stream.ReadRecord(Code, Record)) {
    594     default: return Error("unknown type in type table");
    595     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    596       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    597       // type list.  This allows us to reserve space.
    598       if (Record.size() < 1)
    599         return Error("Invalid TYPE_CODE_NUMENTRY record");
    600       TypeList.resize(Record[0]);
    601       continue;
    602     case bitc::TYPE_CODE_VOID:      // VOID
    603       ResultTy = Type::getVoidTy(Context);
    604       break;
    605     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    606       ResultTy = Type::getFloatTy(Context);
    607       break;
    608     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    609       ResultTy = Type::getDoubleTy(Context);
    610       break;
    611     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    612       ResultTy = Type::getX86_FP80Ty(Context);
    613       break;
    614     case bitc::TYPE_CODE_FP128:     // FP128
    615       ResultTy = Type::getFP128Ty(Context);
    616       break;
    617     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    618       ResultTy = Type::getPPC_FP128Ty(Context);
    619       break;
    620     case bitc::TYPE_CODE_LABEL:     // LABEL
    621       ResultTy = Type::getLabelTy(Context);
    622       break;
    623     case bitc::TYPE_CODE_METADATA:  // METADATA
    624       ResultTy = Type::getMetadataTy(Context);
    625       break;
    626     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    627       ResultTy = Type::getX86_MMXTy(Context);
    628       break;
    629     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    630       if (Record.size() < 1)
    631         return Error("Invalid Integer type record");
    632 
    633       ResultTy = IntegerType::get(Context, Record[0]);
    634       break;
    635     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    636                                     //          [pointee type, address space]
    637       if (Record.size() < 1)
    638         return Error("Invalid POINTER type record");
    639       unsigned AddressSpace = 0;
    640       if (Record.size() == 2)
    641         AddressSpace = Record[1];
    642       ResultTy = getTypeByID(Record[0]);
    643       if (ResultTy == 0) return Error("invalid element type in pointer type");
    644       ResultTy = PointerType::get(ResultTy, AddressSpace);
    645       break;
    646     }
    647     case bitc::TYPE_CODE_FUNCTION_OLD: {
    648       // FIXME: attrid is dead, remove it in LLVM 3.0
    649       // FUNCTION: [vararg, attrid, retty, paramty x N]
    650       if (Record.size() < 3)
    651         return Error("Invalid FUNCTION type record");
    652       std::vector<Type*> ArgTys;
    653       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    654         if (Type *T = getTypeByID(Record[i]))
    655           ArgTys.push_back(T);
    656         else
    657           break;
    658       }
    659 
    660       ResultTy = getTypeByID(Record[2]);
    661       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
    662         return Error("invalid type in function type");
    663 
    664       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    665       break;
    666     }
    667     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
    668       if (Record.size() < 1)
    669         return Error("Invalid STRUCT type record");
    670       std::vector<Type*> EltTys;
    671       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    672         if (Type *T = getTypeByID(Record[i]))
    673           EltTys.push_back(T);
    674         else
    675           break;
    676       }
    677       if (EltTys.size() != Record.size()-1)
    678         return Error("invalid type in struct type");
    679       ResultTy = StructType::get(Context, EltTys, Record[0]);
    680       break;
    681     }
    682     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
    683       if (ConvertToString(Record, 0, TypeName))
    684         return Error("Invalid STRUCT_NAME record");
    685       continue;
    686 
    687     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
    688       if (Record.size() < 1)
    689         return Error("Invalid STRUCT type record");
    690 
    691       if (NumRecords >= TypeList.size())
    692         return Error("invalid TYPE table");
    693 
    694       // Check to see if this was forward referenced, if so fill in the temp.
    695       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    696       if (Res) {
    697         Res->setName(TypeName);
    698         TypeList[NumRecords] = 0;
    699       } else  // Otherwise, create a new struct.
    700         Res = StructType::create(Context, TypeName);
    701       TypeName.clear();
    702 
    703       SmallVector<Type*, 8> EltTys;
    704       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    705         if (Type *T = getTypeByID(Record[i]))
    706           EltTys.push_back(T);
    707         else
    708           break;
    709       }
    710       if (EltTys.size() != Record.size()-1)
    711         return Error("invalid STRUCT type record");
    712       Res->setBody(EltTys, Record[0]);
    713       ResultTy = Res;
    714       break;
    715     }
    716     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
    717       if (Record.size() != 1)
    718         return Error("Invalid OPAQUE type record");
    719 
    720       if (NumRecords >= TypeList.size())
    721         return Error("invalid TYPE table");
    722 
    723       // Check to see if this was forward referenced, if so fill in the temp.
    724       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    725       if (Res) {
    726         Res->setName(TypeName);
    727         TypeList[NumRecords] = 0;
    728       } else  // Otherwise, create a new struct with no body.
    729         Res = StructType::create(Context, TypeName);
    730       TypeName.clear();
    731       ResultTy = Res;
    732       break;
    733     }
    734     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
    735       if (Record.size() < 2)
    736         return Error("Invalid ARRAY type record");
    737       if ((ResultTy = getTypeByID(Record[1])))
    738         ResultTy = ArrayType::get(ResultTy, Record[0]);
    739       else
    740         return Error("Invalid ARRAY type element");
    741       break;
    742     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
    743       if (Record.size() < 2)
    744         return Error("Invalid VECTOR type record");
    745       if ((ResultTy = getTypeByID(Record[1])))
    746         ResultTy = VectorType::get(ResultTy, Record[0]);
    747       else
    748         return Error("Invalid ARRAY type element");
    749       break;
    750     }
    751 
    752     if (NumRecords >= TypeList.size())
    753       return Error("invalid TYPE table");
    754     assert(ResultTy && "Didn't read a type?");
    755     assert(TypeList[NumRecords] == 0 && "Already read type?");
    756     TypeList[NumRecords++] = ResultTy;
    757   }
    758 }
    759 
    760 // FIXME: Remove in LLVM 3.1
    761 bool BitcodeReader::ParseOldTypeTable() {
    762   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
    763     return Error("Malformed block record");
    764 
    765   if (!TypeList.empty())
    766     return Error("Multiple TYPE_BLOCKs found!");
    767 
    768 
    769   // While horrible, we have no good ordering of types in the bc file.  Just
    770   // iteratively parse types out of the bc file in multiple passes until we get
    771   // them all.  Do this by saving a cursor for the start of the type block.
    772   BitstreamCursor StartOfTypeBlockCursor(Stream);
    773 
    774   unsigned NumTypesRead = 0;
    775 
    776   SmallVector<uint64_t, 64> Record;
    777 RestartScan:
    778   unsigned NextTypeID = 0;
    779   bool ReadAnyTypes = false;
    780 
    781   // Read all the records for this type table.
    782   while (1) {
    783     unsigned Code = Stream.ReadCode();
    784     if (Code == bitc::END_BLOCK) {
    785       if (NextTypeID != TypeList.size())
    786         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
    787 
    788       // If we haven't read all of the types yet, iterate again.
    789       if (NumTypesRead != TypeList.size()) {
    790         // If we didn't successfully read any types in this pass, then we must
    791         // have an unhandled forward reference.
    792         if (!ReadAnyTypes)
    793           return Error("Obsolete bitcode contains unhandled recursive type");
    794 
    795         Stream = StartOfTypeBlockCursor;
    796         goto RestartScan;
    797       }
    798 
    799       if (Stream.ReadBlockEnd())
    800         return Error("Error at end of type table block");
    801       return false;
    802     }
    803 
    804     if (Code == bitc::ENTER_SUBBLOCK) {
    805       // No known subblocks, always skip them.
    806       Stream.ReadSubBlockID();
    807       if (Stream.SkipBlock())
    808         return Error("Malformed block record");
    809       continue;
    810     }
    811 
    812     if (Code == bitc::DEFINE_ABBREV) {
    813       Stream.ReadAbbrevRecord();
    814       continue;
    815     }
    816 
    817     // Read a record.
    818     Record.clear();
    819     Type *ResultTy = 0;
    820     switch (Stream.ReadRecord(Code, Record)) {
    821     default: return Error("unknown type in type table");
    822     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    823       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    824       // type list.  This allows us to reserve space.
    825       if (Record.size() < 1)
    826         return Error("Invalid TYPE_CODE_NUMENTRY record");
    827       TypeList.resize(Record[0]);
    828       continue;
    829     case bitc::TYPE_CODE_VOID:      // VOID
    830       ResultTy = Type::getVoidTy(Context);
    831       break;
    832     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    833       ResultTy = Type::getFloatTy(Context);
    834       break;
    835     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    836       ResultTy = Type::getDoubleTy(Context);
    837       break;
    838     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    839       ResultTy = Type::getX86_FP80Ty(Context);
    840       break;
    841     case bitc::TYPE_CODE_FP128:     // FP128
    842       ResultTy = Type::getFP128Ty(Context);
    843       break;
    844     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    845       ResultTy = Type::getPPC_FP128Ty(Context);
    846       break;
    847     case bitc::TYPE_CODE_LABEL:     // LABEL
    848       ResultTy = Type::getLabelTy(Context);
    849       break;
    850     case bitc::TYPE_CODE_METADATA:  // METADATA
    851       ResultTy = Type::getMetadataTy(Context);
    852       break;
    853     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    854       ResultTy = Type::getX86_MMXTy(Context);
    855       break;
    856     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    857       if (Record.size() < 1)
    858         return Error("Invalid Integer type record");
    859       ResultTy = IntegerType::get(Context, Record[0]);
    860       break;
    861     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
    862       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
    863         ResultTy = StructType::create(Context, "");
    864       break;
    865     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
    866       if (NextTypeID >= TypeList.size()) break;
    867       // If we already read it, don't reprocess.
    868       if (TypeList[NextTypeID] &&
    869           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
    870         break;
    871 
    872       // Set a type.
    873       if (TypeList[NextTypeID] == 0)
    874         TypeList[NextTypeID] = StructType::create(Context, "");
    875 
    876       std::vector<Type*> EltTys;
    877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    878         if (Type *Elt = getTypeByIDOrNull(Record[i]))
    879           EltTys.push_back(Elt);
    880         else
    881           break;
    882       }
    883 
    884       if (EltTys.size() != Record.size()-1)
    885         break;      // Not all elements are ready.
    886 
    887       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
    888       ResultTy = TypeList[NextTypeID];
    889       TypeList[NextTypeID] = 0;
    890       break;
    891     }
    892     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    893       //          [pointee type, address space]
    894       if (Record.size() < 1)
    895         return Error("Invalid POINTER type record");
    896       unsigned AddressSpace = 0;
    897       if (Record.size() == 2)
    898         AddressSpace = Record[1];
    899       if ((ResultTy = getTypeByIDOrNull(Record[0])))
    900         ResultTy = PointerType::get(ResultTy, AddressSpace);
    901       break;
    902     }
    903     case bitc::TYPE_CODE_FUNCTION_OLD: {
    904       // FIXME: attrid is dead, remove it in LLVM 3.0
    905       // FUNCTION: [vararg, attrid, retty, paramty x N]
    906       if (Record.size() < 3)
    907         return Error("Invalid FUNCTION type record");
    908       std::vector<Type*> ArgTys;
    909       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    910         if (Type *Elt = getTypeByIDOrNull(Record[i]))
    911           ArgTys.push_back(Elt);
    912         else
    913           break;
    914       }
    915       if (ArgTys.size()+3 != Record.size())
    916         break;  // Something was null.
    917       if ((ResultTy = getTypeByIDOrNull(Record[2])))
    918         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    919       break;
    920     }
    921     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
    922       if (Record.size() < 2)
    923         return Error("Invalid ARRAY type record");
    924       if ((ResultTy = getTypeByIDOrNull(Record[1])))
    925         ResultTy = ArrayType::get(ResultTy, Record[0]);
    926       break;
    927     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
    928       if (Record.size() < 2)
    929         return Error("Invalid VECTOR type record");
    930       if ((ResultTy = getTypeByIDOrNull(Record[1])))
    931         ResultTy = VectorType::get(ResultTy, Record[0]);
    932       break;
    933     }
    934 
    935     if (NextTypeID >= TypeList.size())
    936       return Error("invalid TYPE table");
    937 
    938     if (ResultTy && TypeList[NextTypeID] == 0) {
    939       ++NumTypesRead;
    940       ReadAnyTypes = true;
    941 
    942       TypeList[NextTypeID] = ResultTy;
    943     }
    944 
    945     ++NextTypeID;
    946   }
    947 }
    948 
    949 
    950 bool BitcodeReader::ParseOldTypeSymbolTable() {
    951   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
    952     return Error("Malformed block record");
    953 
    954   SmallVector<uint64_t, 64> Record;
    955 
    956   // Read all the records for this type table.
    957   std::string TypeName;
    958   while (1) {
    959     unsigned Code = Stream.ReadCode();
    960     if (Code == bitc::END_BLOCK) {
    961       if (Stream.ReadBlockEnd())
    962         return Error("Error at end of type symbol table block");
    963       return false;
    964     }
    965 
    966     if (Code == bitc::ENTER_SUBBLOCK) {
    967       // No known subblocks, always skip them.
    968       Stream.ReadSubBlockID();
    969       if (Stream.SkipBlock())
    970         return Error("Malformed block record");
    971       continue;
    972     }
    973 
    974     if (Code == bitc::DEFINE_ABBREV) {
    975       Stream.ReadAbbrevRecord();
    976       continue;
    977     }
    978 
    979     // Read a record.
    980     Record.clear();
    981     switch (Stream.ReadRecord(Code, Record)) {
    982     default:  // Default behavior: unknown type.
    983       break;
    984     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
    985       if (ConvertToString(Record, 1, TypeName))
    986         return Error("Invalid TST_ENTRY record");
    987       unsigned TypeID = Record[0];
    988       if (TypeID >= TypeList.size())
    989         return Error("Invalid Type ID in TST_ENTRY record");
    990 
    991       // Only apply the type name to a struct type with no name.
    992       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
    993         if (!STy->isLiteral() && !STy->hasName())
    994           STy->setName(TypeName);
    995       TypeName.clear();
    996       break;
    997     }
    998   }
    999 }
   1000 
   1001 bool BitcodeReader::ParseValueSymbolTable() {
   1002   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1003     return Error("Malformed block record");
   1004 
   1005   SmallVector<uint64_t, 64> Record;
   1006 
   1007   // Read all the records for this value table.
   1008   SmallString<128> ValueName;
   1009   while (1) {
   1010     unsigned Code = Stream.ReadCode();
   1011     if (Code == bitc::END_BLOCK) {
   1012       if (Stream.ReadBlockEnd())
   1013         return Error("Error at end of value symbol table block");
   1014       return false;
   1015     }
   1016     if (Code == bitc::ENTER_SUBBLOCK) {
   1017       // No known subblocks, always skip them.
   1018       Stream.ReadSubBlockID();
   1019       if (Stream.SkipBlock())
   1020         return Error("Malformed block record");
   1021       continue;
   1022     }
   1023 
   1024     if (Code == bitc::DEFINE_ABBREV) {
   1025       Stream.ReadAbbrevRecord();
   1026       continue;
   1027     }
   1028 
   1029     // Read a record.
   1030     Record.clear();
   1031     switch (Stream.ReadRecord(Code, Record)) {
   1032     default:  // Default behavior: unknown type.
   1033       break;
   1034     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
   1035       if (ConvertToString(Record, 1, ValueName))
   1036         return Error("Invalid VST_ENTRY record");
   1037       unsigned ValueID = Record[0];
   1038       if (ValueID >= ValueList.size())
   1039         return Error("Invalid Value ID in VST_ENTRY record");
   1040       Value *V = ValueList[ValueID];
   1041 
   1042       V->setName(StringRef(ValueName.data(), ValueName.size()));
   1043       ValueName.clear();
   1044       break;
   1045     }
   1046     case bitc::VST_CODE_BBENTRY: {
   1047       if (ConvertToString(Record, 1, ValueName))
   1048         return Error("Invalid VST_BBENTRY record");
   1049       BasicBlock *BB = getBasicBlock(Record[0]);
   1050       if (BB == 0)
   1051         return Error("Invalid BB ID in VST_BBENTRY record");
   1052 
   1053       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   1054       ValueName.clear();
   1055       break;
   1056     }
   1057     }
   1058   }
   1059 }
   1060 
   1061 bool BitcodeReader::ParseMetadata() {
   1062   unsigned NextMDValueNo = MDValueList.size();
   1063 
   1064   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1065     return Error("Malformed block record");
   1066 
   1067   SmallVector<uint64_t, 64> Record;
   1068 
   1069   // Read all the records.
   1070   while (1) {
   1071     unsigned Code = Stream.ReadCode();
   1072     if (Code == bitc::END_BLOCK) {
   1073       if (Stream.ReadBlockEnd())
   1074         return Error("Error at end of PARAMATTR block");
   1075       return false;
   1076     }
   1077 
   1078     if (Code == bitc::ENTER_SUBBLOCK) {
   1079       // No known subblocks, always skip them.
   1080       Stream.ReadSubBlockID();
   1081       if (Stream.SkipBlock())
   1082         return Error("Malformed block record");
   1083       continue;
   1084     }
   1085 
   1086     if (Code == bitc::DEFINE_ABBREV) {
   1087       Stream.ReadAbbrevRecord();
   1088       continue;
   1089     }
   1090 
   1091     bool IsFunctionLocal = false;
   1092     // Read a record.
   1093     Record.clear();
   1094     Code = Stream.ReadRecord(Code, Record);
   1095     switch (Code) {
   1096     default:  // Default behavior: ignore.
   1097       break;
   1098     case bitc::METADATA_NAME: {
   1099       // Read named of the named metadata.
   1100       unsigned NameLength = Record.size();
   1101       SmallString<8> Name;
   1102       Name.resize(NameLength);
   1103       for (unsigned i = 0; i != NameLength; ++i)
   1104         Name[i] = Record[i];
   1105       Record.clear();
   1106       Code = Stream.ReadCode();
   1107 
   1108       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
   1109       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
   1110       if (NextBitCode == METADATA_NAMED_NODE_2_7) {
   1111         LLVM2_7MetadataDetected = true;
   1112       } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
   1113         assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
   1114       }
   1115 
   1116       // Read named metadata elements.
   1117       unsigned Size = Record.size();
   1118       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1119       for (unsigned i = 0; i != Size; ++i) {
   1120         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1121         if (MD == 0)
   1122           return Error("Malformed metadata record");
   1123         NMD->addOperand(MD);
   1124       }
   1125 
   1126       if (LLVM2_7MetadataDetected) {
   1127         MDValueList.AssignValue(0, NextMDValueNo++);
   1128       }
   1129       break;
   1130     }
   1131     case METADATA_FN_NODE_2_7:
   1132     case bitc::METADATA_FN_NODE:
   1133       IsFunctionLocal = true;
   1134       // fall-through
   1135     case METADATA_NODE_2_7:
   1136     case bitc::METADATA_NODE: {
   1137       if (Code == METADATA_FN_NODE_2_7 ||
   1138           Code == METADATA_NODE_2_7) {
   1139         LLVM2_7MetadataDetected = true;
   1140       }
   1141 
   1142       if (Record.size() % 2 == 1)
   1143         return Error("Invalid METADATA_NODE record");
   1144 
   1145       unsigned Size = Record.size();
   1146       SmallVector<Value*, 8> Elts;
   1147       for (unsigned i = 0; i != Size; i += 2) {
   1148         Type *Ty = getTypeByID(Record[i]);
   1149         if (!Ty) return Error("Invalid METADATA_NODE record");
   1150         if (Ty->isMetadataTy())
   1151           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1152         else if (!Ty->isVoidTy())
   1153           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
   1154         else
   1155           Elts.push_back(NULL);
   1156       }
   1157       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
   1158       IsFunctionLocal = false;
   1159       MDValueList.AssignValue(V, NextMDValueNo++);
   1160       break;
   1161     }
   1162     case bitc::METADATA_STRING: {
   1163       unsigned MDStringLength = Record.size();
   1164       SmallString<8> String;
   1165       String.resize(MDStringLength);
   1166       for (unsigned i = 0; i != MDStringLength; ++i)
   1167         String[i] = Record[i];
   1168       Value *V = MDString::get(Context,
   1169                                StringRef(String.data(), String.size()));
   1170       MDValueList.AssignValue(V, NextMDValueNo++);
   1171       break;
   1172     }
   1173     case bitc::METADATA_KIND: {
   1174       unsigned RecordLength = Record.size();
   1175       if (Record.empty() || RecordLength < 2)
   1176         return Error("Invalid METADATA_KIND record");
   1177       SmallString<8> Name;
   1178       Name.resize(RecordLength-1);
   1179       unsigned Kind = Record[0];
   1180       for (unsigned i = 1; i != RecordLength; ++i)
   1181         Name[i-1] = Record[i];
   1182 
   1183       unsigned NewKind = TheModule->getMDKindID(Name.str());
   1184       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1185         return Error("Conflicting METADATA_KIND records");
   1186       break;
   1187     }
   1188     }
   1189   }
   1190 }
   1191 
   1192 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
   1193 /// the LSB for dense VBR encoding.
   1194 static uint64_t DecodeSignRotatedValue(uint64_t V) {
   1195   if ((V & 1) == 0)
   1196     return V >> 1;
   1197   if (V != 1)
   1198     return -(V >> 1);
   1199   // There is no such thing as -0 with integers.  "-0" really means MININT.
   1200   return 1ULL << 63;
   1201 }
   1202 
   1203 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
   1204 /// values and aliases that we can.
   1205 bool BitcodeReader::ResolveGlobalAndAliasInits() {
   1206   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   1207   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   1208 
   1209   GlobalInitWorklist.swap(GlobalInits);
   1210   AliasInitWorklist.swap(AliasInits);
   1211 
   1212   while (!GlobalInitWorklist.empty()) {
   1213     unsigned ValID = GlobalInitWorklist.back().second;
   1214     if (ValID >= ValueList.size()) {
   1215       // Not ready to resolve this yet, it requires something later in the file.
   1216       GlobalInits.push_back(GlobalInitWorklist.back());
   1217     } else {
   1218       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1219         GlobalInitWorklist.back().first->setInitializer(C);
   1220       else
   1221         return Error("Global variable initializer is not a constant!");
   1222     }
   1223     GlobalInitWorklist.pop_back();
   1224   }
   1225 
   1226   while (!AliasInitWorklist.empty()) {
   1227     unsigned ValID = AliasInitWorklist.back().second;
   1228     if (ValID >= ValueList.size()) {
   1229       AliasInits.push_back(AliasInitWorklist.back());
   1230     } else {
   1231       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1232         AliasInitWorklist.back().first->setAliasee(C);
   1233       else
   1234         return Error("Alias initializer is not a constant!");
   1235     }
   1236     AliasInitWorklist.pop_back();
   1237   }
   1238   return false;
   1239 }
   1240 
   1241 bool BitcodeReader::ParseConstants() {
   1242   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1243     return Error("Malformed block record");
   1244 
   1245   SmallVector<uint64_t, 64> Record;
   1246 
   1247   // Read all the records for this value table.
   1248   Type *CurTy = Type::getInt32Ty(Context);
   1249   unsigned NextCstNo = ValueList.size();
   1250   while (1) {
   1251     unsigned Code = Stream.ReadCode();
   1252     if (Code == bitc::END_BLOCK)
   1253       break;
   1254 
   1255     if (Code == bitc::ENTER_SUBBLOCK) {
   1256       // No known subblocks, always skip them.
   1257       Stream.ReadSubBlockID();
   1258       if (Stream.SkipBlock())
   1259         return Error("Malformed block record");
   1260       continue;
   1261     }
   1262 
   1263     if (Code == bitc::DEFINE_ABBREV) {
   1264       Stream.ReadAbbrevRecord();
   1265       continue;
   1266     }
   1267 
   1268     // Read a record.
   1269     Record.clear();
   1270     Value *V = 0;
   1271     unsigned BitCode = Stream.ReadRecord(Code, Record);
   1272     switch (BitCode) {
   1273     default:  // Default behavior: unknown constant
   1274     case bitc::CST_CODE_UNDEF:     // UNDEF
   1275       V = UndefValue::get(CurTy);
   1276       break;
   1277     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1278       if (Record.empty())
   1279         return Error("Malformed CST_SETTYPE record");
   1280       if (Record[0] >= TypeList.size())
   1281         return Error("Invalid Type ID in CST_SETTYPE record");
   1282       CurTy = TypeList[Record[0]];
   1283       continue;  // Skip the ValueList manipulation.
   1284     case bitc::CST_CODE_NULL:      // NULL
   1285       V = Constant::getNullValue(CurTy);
   1286       break;
   1287     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1288       if (!CurTy->isIntegerTy() || Record.empty())
   1289         return Error("Invalid CST_INTEGER record");
   1290       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
   1291       break;
   1292     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1293       if (!CurTy->isIntegerTy() || Record.empty())
   1294         return Error("Invalid WIDE_INTEGER record");
   1295 
   1296       unsigned NumWords = Record.size();
   1297       SmallVector<uint64_t, 8> Words;
   1298       Words.resize(NumWords);
   1299       for (unsigned i = 0; i != NumWords; ++i)
   1300         Words[i] = DecodeSignRotatedValue(Record[i]);
   1301       V = ConstantInt::get(Context,
   1302                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
   1303                                  Words));
   1304       break;
   1305     }
   1306     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1307       if (Record.empty())
   1308         return Error("Invalid FLOAT record");
   1309       if (CurTy->isFloatTy())
   1310         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
   1311       else if (CurTy->isDoubleTy())
   1312         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
   1313       else if (CurTy->isX86_FP80Ty()) {
   1314         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1315         uint64_t Rearrange[2];
   1316         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1317         Rearrange[1] = Record[0] >> 48;
   1318         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
   1319       } else if (CurTy->isFP128Ty())
   1320         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
   1321       else if (CurTy->isPPC_FP128Ty())
   1322         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
   1323       else
   1324         V = UndefValue::get(CurTy);
   1325       break;
   1326     }
   1327 
   1328     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   1329       if (Record.empty())
   1330         return Error("Invalid CST_AGGREGATE record");
   1331 
   1332       unsigned Size = Record.size();
   1333       std::vector<Constant*> Elts;
   1334 
   1335       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   1336         for (unsigned i = 0; i != Size; ++i)
   1337           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   1338                                                      STy->getElementType(i)));
   1339         V = ConstantStruct::get(STy, Elts);
   1340       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   1341         Type *EltTy = ATy->getElementType();
   1342         for (unsigned i = 0; i != Size; ++i)
   1343           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1344         V = ConstantArray::get(ATy, Elts);
   1345       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   1346         Type *EltTy = VTy->getElementType();
   1347         for (unsigned i = 0; i != Size; ++i)
   1348           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1349         V = ConstantVector::get(Elts);
   1350       } else {
   1351         V = UndefValue::get(CurTy);
   1352       }
   1353       break;
   1354     }
   1355     case bitc::CST_CODE_STRING: { // STRING: [values]
   1356       if (Record.empty())
   1357         return Error("Invalid CST_AGGREGATE record");
   1358 
   1359       ArrayType *ATy = cast<ArrayType>(CurTy);
   1360       Type *EltTy = ATy->getElementType();
   1361 
   1362       unsigned Size = Record.size();
   1363       std::vector<Constant*> Elts;
   1364       for (unsigned i = 0; i != Size; ++i)
   1365         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1366       V = ConstantArray::get(ATy, Elts);
   1367       break;
   1368     }
   1369     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   1370       if (Record.empty())
   1371         return Error("Invalid CST_AGGREGATE record");
   1372 
   1373       ArrayType *ATy = cast<ArrayType>(CurTy);
   1374       Type *EltTy = ATy->getElementType();
   1375 
   1376       unsigned Size = Record.size();
   1377       std::vector<Constant*> Elts;
   1378       for (unsigned i = 0; i != Size; ++i)
   1379         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1380       Elts.push_back(Constant::getNullValue(EltTy));
   1381       V = ConstantArray::get(ATy, Elts);
   1382       break;
   1383     }
   1384     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   1385       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
   1386       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   1387       if (Opc < 0) {
   1388         V = UndefValue::get(CurTy);  // Unknown binop.
   1389       } else {
   1390         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   1391         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   1392         unsigned Flags = 0;
   1393         if (Record.size() >= 4) {
   1394           if (Opc == Instruction::Add ||
   1395               Opc == Instruction::Sub ||
   1396               Opc == Instruction::Mul ||
   1397               Opc == Instruction::Shl) {
   1398             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   1399               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   1400             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   1401               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   1402           } else if (Opc == Instruction::SDiv ||
   1403                      Opc == Instruction::UDiv ||
   1404                      Opc == Instruction::LShr ||
   1405                      Opc == Instruction::AShr) {
   1406             if (Record[3] & (1 << bitc::PEO_EXACT))
   1407               Flags |= SDivOperator::IsExact;
   1408           }
   1409         }
   1410         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   1411       }
   1412       break;
   1413     }
   1414     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   1415       if (Record.size() < 3) return Error("Invalid CE_CAST record");
   1416       int Opc = GetDecodedCastOpcode(Record[0]);
   1417       if (Opc < 0) {
   1418         V = UndefValue::get(CurTy);  // Unknown cast.
   1419       } else {
   1420         Type *OpTy = getTypeByID(Record[1]);
   1421         if (!OpTy) return Error("Invalid CE_CAST record");
   1422         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   1423         V = ConstantExpr::getCast(Opc, Op, CurTy);
   1424       }
   1425       break;
   1426     }
   1427     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   1428     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   1429       if (Record.size() & 1) return Error("Invalid CE_GEP record");
   1430       SmallVector<Constant*, 16> Elts;
   1431       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1432         Type *ElTy = getTypeByID(Record[i]);
   1433         if (!ElTy) return Error("Invalid CE_GEP record");
   1434         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   1435       }
   1436       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
   1437         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0],
   1438           llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
   1439       else
   1440         V = ConstantExpr::getGetElementPtr(Elts[0],
   1441           llvm::ArrayRef<llvm::Constant*>(&Elts[1], Elts.size() - 1));
   1442       break;
   1443     }
   1444     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
   1445       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
   1446       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   1447                                                               Type::getInt1Ty(Context)),
   1448                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   1449                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   1450       break;
   1451     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
   1452       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
   1453       VectorType *OpTy =
   1454         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1455       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
   1456       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1457       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1458       V = ConstantExpr::getExtractElement(Op0, Op1);
   1459       break;
   1460     }
   1461     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
   1462       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1463       if (Record.size() < 3 || OpTy == 0)
   1464         return Error("Invalid CE_INSERTELT record");
   1465       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1466       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   1467                                                   OpTy->getElementType());
   1468       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1469       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   1470       break;
   1471     }
   1472     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   1473       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1474       if (Record.size() < 3 || OpTy == 0)
   1475         return Error("Invalid CE_SHUFFLEVEC record");
   1476       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1477       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1478       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1479                                                  OpTy->getNumElements());
   1480       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   1481       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1482       break;
   1483     }
   1484     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   1485       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   1486       VectorType *OpTy =
   1487         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1488       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
   1489         return Error("Invalid CE_SHUFVEC_EX record");
   1490       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1491       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1492       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1493                                                  RTy->getNumElements());
   1494       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   1495       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1496       break;
   1497     }
   1498     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   1499       if (Record.size() < 4) return Error("Invalid CE_CMP record");
   1500       Type *OpTy = getTypeByID(Record[0]);
   1501       if (OpTy == 0) return Error("Invalid CE_CMP record");
   1502       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1503       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1504 
   1505       if (OpTy->isFPOrFPVectorTy())
   1506         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   1507       else
   1508         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   1509       break;
   1510     }
   1511     case bitc::CST_CODE_INLINEASM: {
   1512       if (Record.size() < 2) return Error("Invalid INLINEASM record");
   1513       std::string AsmStr, ConstrStr;
   1514       bool HasSideEffects = Record[0] & 1;
   1515       bool IsAlignStack = Record[0] >> 1;
   1516       unsigned AsmStrSize = Record[1];
   1517       if (2+AsmStrSize >= Record.size())
   1518         return Error("Invalid INLINEASM record");
   1519       unsigned ConstStrSize = Record[2+AsmStrSize];
   1520       if (3+AsmStrSize+ConstStrSize > Record.size())
   1521         return Error("Invalid INLINEASM record");
   1522 
   1523       for (unsigned i = 0; i != AsmStrSize; ++i)
   1524         AsmStr += (char)Record[2+i];
   1525       for (unsigned i = 0; i != ConstStrSize; ++i)
   1526         ConstrStr += (char)Record[3+AsmStrSize+i];
   1527       PointerType *PTy = cast<PointerType>(CurTy);
   1528       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1529                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   1530       break;
   1531     }
   1532     case bitc::CST_CODE_BLOCKADDRESS:{
   1533       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
   1534       Type *FnTy = getTypeByID(Record[0]);
   1535       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1536       Function *Fn =
   1537         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   1538       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1539 
   1540       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   1541                                                   Type::getInt8Ty(Context),
   1542                                             false, GlobalValue::InternalLinkage,
   1543                                                   0, "");
   1544       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   1545       V = FwdRef;
   1546       break;
   1547     }
   1548     }
   1549 
   1550     ValueList.AssignValue(V, NextCstNo);
   1551     ++NextCstNo;
   1552   }
   1553 
   1554   if (NextCstNo != ValueList.size())
   1555     return Error("Invalid constant reference!");
   1556 
   1557   if (Stream.ReadBlockEnd())
   1558     return Error("Error at end of constants block");
   1559 
   1560   // Once all the constants have been read, go through and resolve forward
   1561   // references.
   1562   ValueList.ResolveConstantForwardRefs();
   1563   return false;
   1564 }
   1565 
   1566 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   1567 /// remember where it is and then skip it.  This lets us lazily deserialize the
   1568 /// functions.
   1569 bool BitcodeReader::RememberAndSkipFunctionBody() {
   1570   // Get the function we are talking about.
   1571   if (FunctionsWithBodies.empty())
   1572     return Error("Insufficient function protos");
   1573 
   1574   Function *Fn = FunctionsWithBodies.back();
   1575   FunctionsWithBodies.pop_back();
   1576 
   1577   // Save the current stream state.
   1578   uint64_t CurBit = Stream.GetCurrentBitNo();
   1579   DeferredFunctionInfo[Fn] = CurBit;
   1580 
   1581   // Skip over the function block for now.
   1582   if (Stream.SkipBlock())
   1583     return Error("Malformed block record");
   1584   return false;
   1585 }
   1586 
   1587 bool BitcodeReader::ParseModule() {
   1588   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1589     return Error("Malformed block record");
   1590 
   1591   SmallVector<uint64_t, 64> Record;
   1592   std::vector<std::string> SectionTable;
   1593   std::vector<std::string> GCTable;
   1594 
   1595   // Read all the records for this module.
   1596   while (!Stream.AtEndOfStream()) {
   1597     unsigned Code = Stream.ReadCode();
   1598     if (Code == bitc::END_BLOCK) {
   1599       if (Stream.ReadBlockEnd())
   1600         return Error("Error at end of module block");
   1601 
   1602       // Patch the initializers for globals and aliases up.
   1603       ResolveGlobalAndAliasInits();
   1604       if (!GlobalInits.empty() || !AliasInits.empty())
   1605         return Error("Malformed global initializer set");
   1606       if (!FunctionsWithBodies.empty())
   1607         return Error("Too few function bodies found");
   1608 
   1609       // Look for intrinsic functions which need to be upgraded at some point
   1610       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   1611            FI != FE; ++FI) {
   1612         Function* NewFn;
   1613         if (UpgradeIntrinsicFunction(FI, NewFn))
   1614           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   1615       }
   1616 
   1617       // Look for global variables which need to be renamed.
   1618       for (Module::global_iterator
   1619              GI = TheModule->global_begin(), GE = TheModule->global_end();
   1620            GI != GE; ++GI)
   1621         UpgradeGlobalVariable(GI);
   1622 
   1623       // Force deallocation of memory for these vectors to favor the client that
   1624       // want lazy deserialization.
   1625       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   1626       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   1627       std::vector<Function*>().swap(FunctionsWithBodies);
   1628       return false;
   1629     }
   1630 
   1631     if (Code == bitc::ENTER_SUBBLOCK) {
   1632       switch (Stream.ReadSubBlockID()) {
   1633       default:  // Skip unknown content.
   1634         if (Stream.SkipBlock())
   1635           return Error("Malformed block record");
   1636         break;
   1637       case bitc::BLOCKINFO_BLOCK_ID:
   1638         if (Stream.ReadBlockInfoBlock())
   1639           return Error("Malformed BlockInfoBlock");
   1640         break;
   1641       case bitc::PARAMATTR_BLOCK_ID:
   1642         if (ParseAttributeBlock())
   1643           return true;
   1644         break;
   1645       case bitc::TYPE_BLOCK_ID_NEW:
   1646         if (ParseTypeTable())
   1647           return true;
   1648         break;
   1649       case TYPE_BLOCK_ID_OLD_3_0:
   1650         if (ParseOldTypeTable())
   1651           return true;
   1652         break;
   1653       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
   1654         if (ParseOldTypeSymbolTable())
   1655           return true;
   1656         break;
   1657       case bitc::VALUE_SYMTAB_BLOCK_ID:
   1658         if (ParseValueSymbolTable())
   1659           return true;
   1660         break;
   1661       case bitc::CONSTANTS_BLOCK_ID:
   1662         if (ParseConstants() || ResolveGlobalAndAliasInits())
   1663           return true;
   1664         break;
   1665       case bitc::METADATA_BLOCK_ID:
   1666         if (ParseMetadata())
   1667           return true;
   1668         break;
   1669       case bitc::FUNCTION_BLOCK_ID:
   1670         // If this is the first function body we've seen, reverse the
   1671         // FunctionsWithBodies list.
   1672         if (!HasReversedFunctionsWithBodies) {
   1673           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   1674           HasReversedFunctionsWithBodies = true;
   1675         }
   1676 
   1677         if (RememberAndSkipFunctionBody())
   1678           return true;
   1679         break;
   1680       }
   1681       continue;
   1682     }
   1683 
   1684     if (Code == bitc::DEFINE_ABBREV) {
   1685       Stream.ReadAbbrevRecord();
   1686       continue;
   1687     }
   1688 
   1689     // Read a record.
   1690     switch (Stream.ReadRecord(Code, Record)) {
   1691     default: break;  // Default behavior, ignore unknown content.
   1692     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
   1693       if (Record.size() < 1)
   1694         return Error("Malformed MODULE_CODE_VERSION");
   1695       // Only version #0 is supported so far.
   1696       if (Record[0] != 0)
   1697         return Error("Unknown bitstream version!");
   1698       break;
   1699     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1700       std::string S;
   1701       if (ConvertToString(Record, 0, S))
   1702         return Error("Invalid MODULE_CODE_TRIPLE record");
   1703       TheModule->setTargetTriple(S);
   1704       break;
   1705     }
   1706     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   1707       std::string S;
   1708       if (ConvertToString(Record, 0, S))
   1709         return Error("Invalid MODULE_CODE_DATALAYOUT record");
   1710       TheModule->setDataLayout(S);
   1711       break;
   1712     }
   1713     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   1714       std::string S;
   1715       if (ConvertToString(Record, 0, S))
   1716         return Error("Invalid MODULE_CODE_ASM record");
   1717       TheModule->setModuleInlineAsm(S);
   1718       break;
   1719     }
   1720     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   1721       std::string S;
   1722       if (ConvertToString(Record, 0, S))
   1723         return Error("Invalid MODULE_CODE_DEPLIB record");
   1724       TheModule->addLibrary(S);
   1725       break;
   1726     }
   1727     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   1728       std::string S;
   1729       if (ConvertToString(Record, 0, S))
   1730         return Error("Invalid MODULE_CODE_SECTIONNAME record");
   1731       SectionTable.push_back(S);
   1732       break;
   1733     }
   1734     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   1735       std::string S;
   1736       if (ConvertToString(Record, 0, S))
   1737         return Error("Invalid MODULE_CODE_GCNAME record");
   1738       GCTable.push_back(S);
   1739       break;
   1740     }
   1741     // GLOBALVAR: [pointer type, isconst, initid,
   1742     //             linkage, alignment, section, visibility, threadlocal,
   1743     //             unnamed_addr]
   1744     case bitc::MODULE_CODE_GLOBALVAR: {
   1745       if (Record.size() < 6)
   1746         return Error("Invalid MODULE_CODE_GLOBALVAR record");
   1747       Type *Ty = getTypeByID(Record[0]);
   1748       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
   1749       if (!Ty->isPointerTy())
   1750         return Error("Global not a pointer type!");
   1751       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   1752       Ty = cast<PointerType>(Ty)->getElementType();
   1753 
   1754       bool isConstant = Record[1];
   1755       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
   1756       unsigned Alignment = (1 << Record[4]) >> 1;
   1757       std::string Section;
   1758       if (Record[5]) {
   1759         if (Record[5]-1 >= SectionTable.size())
   1760           return Error("Invalid section ID");
   1761         Section = SectionTable[Record[5]-1];
   1762       }
   1763       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   1764       if (Record.size() > 6)
   1765         Visibility = GetDecodedVisibility(Record[6]);
   1766       bool isThreadLocal = false;
   1767       if (Record.size() > 7)
   1768         isThreadLocal = Record[7];
   1769 
   1770       bool UnnamedAddr = false;
   1771       if (Record.size() > 8)
   1772         UnnamedAddr = Record[8];
   1773 
   1774       GlobalVariable *NewGV =
   1775         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
   1776                            isThreadLocal, AddressSpace);
   1777       NewGV->setAlignment(Alignment);
   1778       if (!Section.empty())
   1779         NewGV->setSection(Section);
   1780       NewGV->setVisibility(Visibility);
   1781       NewGV->setThreadLocal(isThreadLocal);
   1782       NewGV->setUnnamedAddr(UnnamedAddr);
   1783 
   1784       ValueList.push_back(NewGV);
   1785 
   1786       // Remember which value to use for the global initializer.
   1787       if (unsigned InitID = Record[2])
   1788         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   1789       break;
   1790     }
   1791     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   1792     //             alignment, section, visibility, gc, unnamed_addr]
   1793     case bitc::MODULE_CODE_FUNCTION: {
   1794       if (Record.size() < 8)
   1795         return Error("Invalid MODULE_CODE_FUNCTION record");
   1796       Type *Ty = getTypeByID(Record[0]);
   1797       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
   1798       if (!Ty->isPointerTy())
   1799         return Error("Function not a pointer type!");
   1800       FunctionType *FTy =
   1801         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   1802       if (!FTy)
   1803         return Error("Function not a pointer to function type!");
   1804 
   1805       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   1806                                         "", TheModule);
   1807 
   1808       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   1809       bool isProto = Record[2];
   1810       Func->setLinkage(GetDecodedLinkage(Record[3]));
   1811       Func->setAttributes(getAttributes(Record[4]));
   1812 
   1813       Func->setAlignment((1 << Record[5]) >> 1);
   1814       if (Record[6]) {
   1815         if (Record[6]-1 >= SectionTable.size())
   1816           return Error("Invalid section ID");
   1817         Func->setSection(SectionTable[Record[6]-1]);
   1818       }
   1819       Func->setVisibility(GetDecodedVisibility(Record[7]));
   1820       if (Record.size() > 8 && Record[8]) {
   1821         if (Record[8]-1 > GCTable.size())
   1822           return Error("Invalid GC ID");
   1823         Func->setGC(GCTable[Record[8]-1].c_str());
   1824       }
   1825       bool UnnamedAddr = false;
   1826       if (Record.size() > 9)
   1827         UnnamedAddr = Record[9];
   1828       Func->setUnnamedAddr(UnnamedAddr);
   1829       ValueList.push_back(Func);
   1830 
   1831       // If this is a function with a body, remember the prototype we are
   1832       // creating now, so that we can match up the body with them later.
   1833       if (!isProto)
   1834         FunctionsWithBodies.push_back(Func);
   1835       break;
   1836     }
   1837     // ALIAS: [alias type, aliasee val#, linkage]
   1838     // ALIAS: [alias type, aliasee val#, linkage, visibility]
   1839     case bitc::MODULE_CODE_ALIAS: {
   1840       if (Record.size() < 3)
   1841         return Error("Invalid MODULE_ALIAS record");
   1842       Type *Ty = getTypeByID(Record[0]);
   1843       if (!Ty) return Error("Invalid MODULE_ALIAS record");
   1844       if (!Ty->isPointerTy())
   1845         return Error("Function not a pointer type!");
   1846 
   1847       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
   1848                                            "", 0, TheModule);
   1849       // Old bitcode files didn't have visibility field.
   1850       if (Record.size() > 3)
   1851         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   1852       ValueList.push_back(NewGA);
   1853       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   1854       break;
   1855     }
   1856     /// MODULE_CODE_PURGEVALS: [numvals]
   1857     case bitc::MODULE_CODE_PURGEVALS:
   1858       // Trim down the value list to the specified size.
   1859       if (Record.size() < 1 || Record[0] > ValueList.size())
   1860         return Error("Invalid MODULE_PURGEVALS record");
   1861       ValueList.shrinkTo(Record[0]);
   1862       break;
   1863     }
   1864     Record.clear();
   1865   }
   1866 
   1867   return Error("Premature end of bitstream");
   1868 }
   1869 
   1870 bool BitcodeReader::ParseBitcodeInto(Module *M) {
   1871   TheModule = 0;
   1872 
   1873   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
   1874   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   1875 
   1876   if (Buffer->getBufferSize() & 3) {
   1877     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
   1878       return Error("Invalid bitcode signature");
   1879     else
   1880       return Error("Bitcode stream should be a multiple of 4 bytes in length");
   1881   }
   1882 
   1883   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   1884   // The magic number is 0x0B17C0DE stored in little endian.
   1885   if (isBitcodeWrapper(BufPtr, BufEnd))
   1886     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   1887       return Error("Invalid bitcode wrapper header");
   1888 
   1889   StreamFile.init(BufPtr, BufEnd);
   1890   Stream.init(StreamFile);
   1891 
   1892   // Sniff for the signature.
   1893   if (Stream.Read(8) != 'B' ||
   1894       Stream.Read(8) != 'C' ||
   1895       Stream.Read(4) != 0x0 ||
   1896       Stream.Read(4) != 0xC ||
   1897       Stream.Read(4) != 0xE ||
   1898       Stream.Read(4) != 0xD)
   1899     return Error("Invalid bitcode signature");
   1900 
   1901   // We expect a number of well-defined blocks, though we don't necessarily
   1902   // need to understand them all.
   1903   while (!Stream.AtEndOfStream()) {
   1904     unsigned Code = Stream.ReadCode();
   1905 
   1906     if (Code != bitc::ENTER_SUBBLOCK) {
   1907 
   1908       // The ranlib in xcode 4 will align archive members by appending newlines to the
   1909       // end of them. If this file size is a multiple of 4 but not 8, we have to read and
   1910       // ignore these final 4 bytes :-(
   1911       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
   1912           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   1913 	  Stream.AtEndOfStream())
   1914         return false;
   1915 
   1916       return Error("Invalid record at top-level");
   1917     }
   1918 
   1919     unsigned BlockID = Stream.ReadSubBlockID();
   1920 
   1921     // We only know the MODULE subblock ID.
   1922     switch (BlockID) {
   1923     case bitc::BLOCKINFO_BLOCK_ID:
   1924       if (Stream.ReadBlockInfoBlock())
   1925         return Error("Malformed BlockInfoBlock");
   1926       break;
   1927     case bitc::MODULE_BLOCK_ID:
   1928       // Reject multiple MODULE_BLOCK's in a single bitstream.
   1929       if (TheModule)
   1930         return Error("Multiple MODULE_BLOCKs in same stream");
   1931       TheModule = M;
   1932       if (ParseModule())
   1933         return true;
   1934       break;
   1935     default:
   1936       if (Stream.SkipBlock())
   1937         return Error("Malformed block record");
   1938       break;
   1939     }
   1940   }
   1941 
   1942   return false;
   1943 }
   1944 
   1945 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
   1946   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1947     return Error("Malformed block record");
   1948 
   1949   SmallVector<uint64_t, 64> Record;
   1950 
   1951   // Read all the records for this module.
   1952   while (!Stream.AtEndOfStream()) {
   1953     unsigned Code = Stream.ReadCode();
   1954     if (Code == bitc::END_BLOCK) {
   1955       if (Stream.ReadBlockEnd())
   1956         return Error("Error at end of module block");
   1957 
   1958       return false;
   1959     }
   1960 
   1961     if (Code == bitc::ENTER_SUBBLOCK) {
   1962       switch (Stream.ReadSubBlockID()) {
   1963       default:  // Skip unknown content.
   1964         if (Stream.SkipBlock())
   1965           return Error("Malformed block record");
   1966         break;
   1967       }
   1968       continue;
   1969     }
   1970 
   1971     if (Code == bitc::DEFINE_ABBREV) {
   1972       Stream.ReadAbbrevRecord();
   1973       continue;
   1974     }
   1975 
   1976     // Read a record.
   1977     switch (Stream.ReadRecord(Code, Record)) {
   1978     default: break;  // Default behavior, ignore unknown content.
   1979     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
   1980       if (Record.size() < 1)
   1981         return Error("Malformed MODULE_CODE_VERSION");
   1982       // Only version #0 is supported so far.
   1983       if (Record[0] != 0)
   1984         return Error("Unknown bitstream version!");
   1985       break;
   1986     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1987       std::string S;
   1988       if (ConvertToString(Record, 0, S))
   1989         return Error("Invalid MODULE_CODE_TRIPLE record");
   1990       Triple = S;
   1991       break;
   1992     }
   1993     }
   1994     Record.clear();
   1995   }
   1996 
   1997   return Error("Premature end of bitstream");
   1998 }
   1999 
   2000 bool BitcodeReader::ParseTriple(std::string &Triple) {
   2001   if (Buffer->getBufferSize() & 3)
   2002     return Error("Bitcode stream should be a multiple of 4 bytes in length");
   2003 
   2004   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
   2005   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   2006 
   2007   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   2008   // The magic number is 0x0B17C0DE stored in little endian.
   2009   if (isBitcodeWrapper(BufPtr, BufEnd))
   2010     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   2011       return Error("Invalid bitcode wrapper header");
   2012 
   2013   StreamFile.init(BufPtr, BufEnd);
   2014   Stream.init(StreamFile);
   2015 
   2016   // Sniff for the signature.
   2017   if (Stream.Read(8) != 'B' ||
   2018       Stream.Read(8) != 'C' ||
   2019       Stream.Read(4) != 0x0 ||
   2020       Stream.Read(4) != 0xC ||
   2021       Stream.Read(4) != 0xE ||
   2022       Stream.Read(4) != 0xD)
   2023     return Error("Invalid bitcode signature");
   2024 
   2025   // We expect a number of well-defined blocks, though we don't necessarily
   2026   // need to understand them all.
   2027   while (!Stream.AtEndOfStream()) {
   2028     unsigned Code = Stream.ReadCode();
   2029 
   2030     if (Code != bitc::ENTER_SUBBLOCK)
   2031       return Error("Invalid record at top-level");
   2032 
   2033     unsigned BlockID = Stream.ReadSubBlockID();
   2034 
   2035     // We only know the MODULE subblock ID.
   2036     switch (BlockID) {
   2037     case bitc::MODULE_BLOCK_ID:
   2038       if (ParseModuleTriple(Triple))
   2039         return true;
   2040       break;
   2041     default:
   2042       if (Stream.SkipBlock())
   2043         return Error("Malformed block record");
   2044       break;
   2045     }
   2046   }
   2047 
   2048   return false;
   2049 }
   2050 
   2051 /// ParseMetadataAttachment - Parse metadata attachments.
   2052 bool BitcodeReader::ParseMetadataAttachment() {
   2053   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   2054     return Error("Malformed block record");
   2055 
   2056   SmallVector<uint64_t, 64> Record;
   2057   while(1) {
   2058     unsigned Code = Stream.ReadCode();
   2059     if (Code == bitc::END_BLOCK) {
   2060       if (Stream.ReadBlockEnd())
   2061         return Error("Error at end of PARAMATTR block");
   2062       break;
   2063     }
   2064     if (Code == bitc::DEFINE_ABBREV) {
   2065       Stream.ReadAbbrevRecord();
   2066       continue;
   2067     }
   2068     // Read a metadata attachment record.
   2069     Record.clear();
   2070     switch (Stream.ReadRecord(Code, Record)) {
   2071     default:  // Default behavior: ignore.
   2072       break;
   2073     case METADATA_ATTACHMENT_2_7:
   2074       LLVM2_7MetadataDetected = true;
   2075     case bitc::METADATA_ATTACHMENT: {
   2076       unsigned RecordLength = Record.size();
   2077       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   2078         return Error ("Invalid METADATA_ATTACHMENT reader!");
   2079       Instruction *Inst = InstructionList[Record[0]];
   2080       for (unsigned i = 1; i != RecordLength; i = i+2) {
   2081         unsigned Kind = Record[i];
   2082         DenseMap<unsigned, unsigned>::iterator I =
   2083           MDKindMap.find(Kind);
   2084         if (I == MDKindMap.end())
   2085           return Error("Invalid metadata kind ID");
   2086         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
   2087         Inst->setMetadata(I->second, cast<MDNode>(Node));
   2088       }
   2089       break;
   2090     }
   2091     }
   2092   }
   2093   return false;
   2094 }
   2095 
   2096 /// ParseFunctionBody - Lazily parse the specified function body block.
   2097 bool BitcodeReader::ParseFunctionBody(Function *F) {
   2098   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   2099     return Error("Malformed block record");
   2100 
   2101   InstructionList.clear();
   2102   unsigned ModuleValueListSize = ValueList.size();
   2103   unsigned ModuleMDValueListSize = MDValueList.size();
   2104 
   2105   // Add all the function arguments to the value table.
   2106   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   2107     ValueList.push_back(I);
   2108 
   2109   unsigned NextValueNo = ValueList.size();
   2110   BasicBlock *CurBB = 0;
   2111   unsigned CurBBNo = 0;
   2112 
   2113   DebugLoc LastLoc;
   2114 
   2115   // Read all the records.
   2116   SmallVector<uint64_t, 64> Record;
   2117   while (1) {
   2118     unsigned Code = Stream.ReadCode();
   2119     if (Code == bitc::END_BLOCK) {
   2120       if (Stream.ReadBlockEnd())
   2121         return Error("Error at end of function block");
   2122       break;
   2123     }
   2124 
   2125     if (Code == bitc::ENTER_SUBBLOCK) {
   2126       switch (Stream.ReadSubBlockID()) {
   2127       default:  // Skip unknown content.
   2128         if (Stream.SkipBlock())
   2129           return Error("Malformed block record");
   2130         break;
   2131       case bitc::CONSTANTS_BLOCK_ID:
   2132         if (ParseConstants()) return true;
   2133         NextValueNo = ValueList.size();
   2134         break;
   2135       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2136         if (ParseValueSymbolTable()) return true;
   2137         break;
   2138       case bitc::METADATA_ATTACHMENT_ID:
   2139         if (ParseMetadataAttachment()) return true;
   2140         break;
   2141       case bitc::METADATA_BLOCK_ID:
   2142         if (ParseMetadata()) return true;
   2143         break;
   2144       }
   2145       continue;
   2146     }
   2147 
   2148     if (Code == bitc::DEFINE_ABBREV) {
   2149       Stream.ReadAbbrevRecord();
   2150       continue;
   2151     }
   2152 
   2153     // Read a record.
   2154     Record.clear();
   2155     Instruction *I = 0;
   2156     unsigned BitCode = Stream.ReadRecord(Code, Record);
   2157     switch (BitCode) {
   2158     default: // Default behavior: reject
   2159       return Error("Unknown instruction");
   2160     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2161       if (Record.size() < 1 || Record[0] == 0)
   2162         return Error("Invalid DECLAREBLOCKS record");
   2163       // Create all the basic blocks for the function.
   2164       FunctionBBs.resize(Record[0]);
   2165       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2166         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2167       CurBB = FunctionBBs[0];
   2168       continue;
   2169 
   2170     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2171       // This record indicates that the last instruction is at the same
   2172       // location as the previous instruction with a location.
   2173       I = 0;
   2174 
   2175       // Get the last instruction emitted.
   2176       if (CurBB && !CurBB->empty())
   2177         I = &CurBB->back();
   2178       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2179                !FunctionBBs[CurBBNo-1]->empty())
   2180         I = &FunctionBBs[CurBBNo-1]->back();
   2181 
   2182       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
   2183       I->setDebugLoc(LastLoc);
   2184       I = 0;
   2185       continue;
   2186 
   2187     case FUNC_CODE_DEBUG_LOC_2_7:
   2188       LLVM2_7MetadataDetected = true;
   2189     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2190       I = 0;     // Get the last instruction emitted.
   2191       if (CurBB && !CurBB->empty())
   2192         I = &CurBB->back();
   2193       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2194                !FunctionBBs[CurBBNo-1]->empty())
   2195         I = &FunctionBBs[CurBBNo-1]->back();
   2196       if (I == 0 || Record.size() < 4)
   2197         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
   2198 
   2199       unsigned Line = Record[0], Col = Record[1];
   2200       unsigned ScopeID = Record[2], IAID = Record[3];
   2201 
   2202       MDNode *Scope = 0, *IA = 0;
   2203       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2204       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2205       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2206       I->setDebugLoc(LastLoc);
   2207       I = 0;
   2208       continue;
   2209     }
   2210 
   2211     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2212       unsigned OpNum = 0;
   2213       Value *LHS, *RHS;
   2214       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2215           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2216           OpNum+1 > Record.size())
   2217         return Error("Invalid BINOP record");
   2218 
   2219       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2220       if (Opc == -1) return Error("Invalid BINOP record");
   2221       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2222       InstructionList.push_back(I);
   2223       if (OpNum < Record.size()) {
   2224         if (Opc == Instruction::Add ||
   2225             Opc == Instruction::Sub ||
   2226             Opc == Instruction::Mul ||
   2227             Opc == Instruction::Shl) {
   2228           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2229             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2230           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2231             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2232         } else if (Opc == Instruction::SDiv ||
   2233                    Opc == Instruction::UDiv ||
   2234                    Opc == Instruction::LShr ||
   2235                    Opc == Instruction::AShr) {
   2236           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2237             cast<BinaryOperator>(I)->setIsExact(true);
   2238         }
   2239       }
   2240       break;
   2241     }
   2242     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2243       unsigned OpNum = 0;
   2244       Value *Op;
   2245       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2246           OpNum+2 != Record.size())
   2247         return Error("Invalid CAST record");
   2248 
   2249       Type *ResTy = getTypeByID(Record[OpNum]);
   2250       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2251       if (Opc == -1 || ResTy == 0)
   2252         return Error("Invalid CAST record");
   2253       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2254       InstructionList.push_back(I);
   2255       break;
   2256     }
   2257     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
   2258     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2259       unsigned OpNum = 0;
   2260       Value *BasePtr;
   2261       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2262         return Error("Invalid GEP record");
   2263 
   2264       SmallVector<Value*, 16> GEPIdx;
   2265       while (OpNum != Record.size()) {
   2266         Value *Op;
   2267         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2268           return Error("Invalid GEP record");
   2269         GEPIdx.push_back(Op);
   2270       }
   2271 
   2272       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
   2273       InstructionList.push_back(I);
   2274       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
   2275         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2276       break;
   2277     }
   2278 
   2279     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   2280                                        // EXTRACTVAL: [opty, opval, n x indices]
   2281       unsigned OpNum = 0;
   2282       Value *Agg;
   2283       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2284         return Error("Invalid EXTRACTVAL record");
   2285 
   2286       SmallVector<unsigned, 4> EXTRACTVALIdx;
   2287       for (unsigned RecSize = Record.size();
   2288            OpNum != RecSize; ++OpNum) {
   2289         uint64_t Index = Record[OpNum];
   2290         if ((unsigned)Index != Index)
   2291           return Error("Invalid EXTRACTVAL index");
   2292         EXTRACTVALIdx.push_back((unsigned)Index);
   2293       }
   2294 
   2295       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   2296       InstructionList.push_back(I);
   2297       break;
   2298     }
   2299 
   2300     case bitc::FUNC_CODE_INST_INSERTVAL: {
   2301                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   2302       unsigned OpNum = 0;
   2303       Value *Agg;
   2304       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2305         return Error("Invalid INSERTVAL record");
   2306       Value *Val;
   2307       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   2308         return Error("Invalid INSERTVAL record");
   2309 
   2310       SmallVector<unsigned, 4> INSERTVALIdx;
   2311       for (unsigned RecSize = Record.size();
   2312            OpNum != RecSize; ++OpNum) {
   2313         uint64_t Index = Record[OpNum];
   2314         if ((unsigned)Index != Index)
   2315           return Error("Invalid INSERTVAL index");
   2316         INSERTVALIdx.push_back((unsigned)Index);
   2317       }
   2318 
   2319       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   2320       InstructionList.push_back(I);
   2321       break;
   2322     }
   2323 
   2324     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   2325       // obsolete form of select
   2326       // handles select i1 ... in old bitcode
   2327       unsigned OpNum = 0;
   2328       Value *TrueVal, *FalseVal, *Cond;
   2329       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2330           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2331           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
   2332         return Error("Invalid SELECT record");
   2333 
   2334       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2335       InstructionList.push_back(I);
   2336       break;
   2337     }
   2338 
   2339     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   2340       // new form of select
   2341       // handles select i1 or select [N x i1]
   2342       unsigned OpNum = 0;
   2343       Value *TrueVal, *FalseVal, *Cond;
   2344       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2345           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2346           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   2347         return Error("Invalid SELECT record");
   2348 
   2349       // select condition can be either i1 or [N x i1]
   2350       if (VectorType* vector_type =
   2351           dyn_cast<VectorType>(Cond->getType())) {
   2352         // expect <n x i1>
   2353         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   2354           return Error("Invalid SELECT condition type");
   2355       } else {
   2356         // expect i1
   2357         if (Cond->getType() != Type::getInt1Ty(Context))
   2358           return Error("Invalid SELECT condition type");
   2359       }
   2360 
   2361       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2362       InstructionList.push_back(I);
   2363       break;
   2364     }
   2365 
   2366     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   2367       unsigned OpNum = 0;
   2368       Value *Vec, *Idx;
   2369       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2370           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2371         return Error("Invalid EXTRACTELT record");
   2372       I = ExtractElementInst::Create(Vec, Idx);
   2373       InstructionList.push_back(I);
   2374       break;
   2375     }
   2376 
   2377     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   2378       unsigned OpNum = 0;
   2379       Value *Vec, *Elt, *Idx;
   2380       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2381           getValue(Record, OpNum,
   2382                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   2383           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2384         return Error("Invalid INSERTELT record");
   2385       I = InsertElementInst::Create(Vec, Elt, Idx);
   2386       InstructionList.push_back(I);
   2387       break;
   2388     }
   2389 
   2390     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   2391       unsigned OpNum = 0;
   2392       Value *Vec1, *Vec2, *Mask;
   2393       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   2394           getValue(Record, OpNum, Vec1->getType(), Vec2))
   2395         return Error("Invalid SHUFFLEVEC record");
   2396 
   2397       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   2398         return Error("Invalid SHUFFLEVEC record");
   2399       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   2400       InstructionList.push_back(I);
   2401       break;
   2402     }
   2403 
   2404     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   2405       // Old form of ICmp/FCmp returning bool
   2406       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   2407       // both legal on vectors but had different behaviour.
   2408     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   2409       // FCmp/ICmp returning bool or vector of bool
   2410 
   2411       unsigned OpNum = 0;
   2412       Value *LHS, *RHS;
   2413       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2414           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2415           OpNum+1 != Record.size())
   2416         return Error("Invalid CMP record");
   2417 
   2418       if (LHS->getType()->isFPOrFPVectorTy())
   2419         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   2420       else
   2421         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   2422       InstructionList.push_back(I);
   2423       break;
   2424     }
   2425 
   2426     case FUNC_CODE_INST_GETRESULT_2_7: {
   2427       if (Record.size() != 2) {
   2428         return Error("Invalid GETRESULT record");
   2429       }
   2430       unsigned OpNum = 0;
   2431       Value *Op;
   2432       getValueTypePair(Record, OpNum, NextValueNo, Op);
   2433       unsigned Index = Record[1];
   2434       I = ExtractValueInst::Create(Op, Index);
   2435       InstructionList.push_back(I);
   2436       break;
   2437     }
   2438 
   2439     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   2440       {
   2441         unsigned Size = Record.size();
   2442         if (Size == 0) {
   2443           I = ReturnInst::Create(Context);
   2444           InstructionList.push_back(I);
   2445           break;
   2446         }
   2447 
   2448         unsigned OpNum = 0;
   2449         Value *Op = NULL;
   2450         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2451           return Error("Invalid RET record");
   2452         if (OpNum != Record.size())
   2453           return Error("Invalid RET record");
   2454 
   2455         I = ReturnInst::Create(Context, Op);
   2456         InstructionList.push_back(I);
   2457         break;
   2458       }
   2459     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   2460       if (Record.size() != 1 && Record.size() != 3)
   2461         return Error("Invalid BR record");
   2462       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   2463       if (TrueDest == 0)
   2464         return Error("Invalid BR record");
   2465 
   2466       if (Record.size() == 1) {
   2467         I = BranchInst::Create(TrueDest);
   2468         InstructionList.push_back(I);
   2469       }
   2470       else {
   2471         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   2472         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
   2473         if (FalseDest == 0 || Cond == 0)
   2474           return Error("Invalid BR record");
   2475         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   2476         InstructionList.push_back(I);
   2477       }
   2478       break;
   2479     }
   2480     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   2481       if (Record.size() < 3 || (Record.size() & 1) == 0)
   2482         return Error("Invalid SWITCH record");
   2483       Type *OpTy = getTypeByID(Record[0]);
   2484       Value *Cond = getFnValueByID(Record[1], OpTy);
   2485       BasicBlock *Default = getBasicBlock(Record[2]);
   2486       if (OpTy == 0 || Cond == 0 || Default == 0)
   2487         return Error("Invalid SWITCH record");
   2488       unsigned NumCases = (Record.size()-3)/2;
   2489       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2490       InstructionList.push_back(SI);
   2491       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   2492         ConstantInt *CaseVal =
   2493           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   2494         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   2495         if (CaseVal == 0 || DestBB == 0) {
   2496           delete SI;
   2497           return Error("Invalid SWITCH record!");
   2498         }
   2499         SI->addCase(CaseVal, DestBB);
   2500       }
   2501       I = SI;
   2502       break;
   2503     }
   2504     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   2505       if (Record.size() < 2)
   2506         return Error("Invalid INDIRECTBR record");
   2507       Type *OpTy = getTypeByID(Record[0]);
   2508       Value *Address = getFnValueByID(Record[1], OpTy);
   2509       if (OpTy == 0 || Address == 0)
   2510         return Error("Invalid INDIRECTBR record");
   2511       unsigned NumDests = Record.size()-2;
   2512       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   2513       InstructionList.push_back(IBI);
   2514       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   2515         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   2516           IBI->addDestination(DestBB);
   2517         } else {
   2518           delete IBI;
   2519           return Error("Invalid INDIRECTBR record!");
   2520         }
   2521       }
   2522       I = IBI;
   2523       break;
   2524     }
   2525 
   2526     case bitc::FUNC_CODE_INST_INVOKE: {
   2527       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   2528       if (Record.size() < 4) return Error("Invalid INVOKE record");
   2529       AttrListPtr PAL = getAttributes(Record[0]);
   2530       unsigned CCInfo = Record[1];
   2531       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   2532       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   2533 
   2534       unsigned OpNum = 4;
   2535       Value *Callee;
   2536       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2537         return Error("Invalid INVOKE record");
   2538 
   2539       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   2540       FunctionType *FTy = !CalleeTy ? 0 :
   2541         dyn_cast<FunctionType>(CalleeTy->getElementType());
   2542 
   2543       // Check that the right number of fixed parameters are here.
   2544       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
   2545           Record.size() < OpNum+FTy->getNumParams())
   2546         return Error("Invalid INVOKE record");
   2547 
   2548       SmallVector<Value*, 16> Ops;
   2549       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2550         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   2551         if (Ops.back() == 0) return Error("Invalid INVOKE record");
   2552       }
   2553 
   2554       if (!FTy->isVarArg()) {
   2555         if (Record.size() != OpNum)
   2556           return Error("Invalid INVOKE record");
   2557       } else {
   2558         // Read type/value pairs for varargs params.
   2559         while (OpNum != Record.size()) {
   2560           Value *Op;
   2561           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2562             return Error("Invalid INVOKE record");
   2563           Ops.push_back(Op);
   2564         }
   2565       }
   2566 
   2567       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   2568       InstructionList.push_back(I);
   2569       cast<InvokeInst>(I)->setCallingConv(
   2570         static_cast<CallingConv::ID>(CCInfo));
   2571       cast<InvokeInst>(I)->setAttributes(PAL);
   2572       break;
   2573     }
   2574     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
   2575       // 'unwind' instruction has been removed in LLVM 3.1
   2576       // Replace 'unwind' with 'landingpad' and 'resume'.
   2577       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
   2578                                     Type::getInt32Ty(Context), NULL);
   2579       Constant *PersFn =
   2580         F->getParent()->
   2581         getOrInsertFunction("__gcc_personality_v0",
   2582                           FunctionType::get(Type::getInt32Ty(Context), true));
   2583 
   2584       LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
   2585       LP->setCleanup(true);
   2586 
   2587       CurBB->getInstList().push_back(LP);
   2588       I = ResumeInst::Create(LP);
   2589       InstructionList.push_back(I);
   2590       break;
   2591     }
   2592     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   2593       I = new UnreachableInst(Context);
   2594       InstructionList.push_back(I);
   2595       break;
   2596     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   2597       if (Record.size() < 1 || ((Record.size()-1)&1))
   2598         return Error("Invalid PHI record");
   2599       Type *Ty = getTypeByID(Record[0]);
   2600       if (!Ty) return Error("Invalid PHI record");
   2601 
   2602       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   2603       InstructionList.push_back(PN);
   2604 
   2605       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   2606         Value *V = getFnValueByID(Record[1+i], Ty);
   2607         BasicBlock *BB = getBasicBlock(Record[2+i]);
   2608         if (!V || !BB) return Error("Invalid PHI record");
   2609         PN->addIncoming(V, BB);
   2610       }
   2611       I = PN;
   2612       break;
   2613     }
   2614 
   2615     case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
   2616       // Autoupgrade malloc instruction to malloc call.
   2617       // FIXME: Remove in LLVM 3.0.
   2618       if (Record.size() < 3) {
   2619         return Error("Invalid MALLOC record");
   2620       }
   2621       PointerType *Ty =
   2622           dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   2623       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
   2624       if (!Ty || !Size) return Error("Invalid MALLOC record");
   2625       if (!CurBB) return Error("Invalid malloc instruction with no BB");
   2626       Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
   2627       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
   2628       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
   2629       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
   2630                                  AllocSize, Size, NULL);
   2631       InstructionList.push_back(I);
   2632       break;
   2633     }
   2634     case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
   2635       unsigned OpNum = 0;
   2636       Value *Op;
   2637       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2638           OpNum != Record.size()) {
   2639         return Error("Invalid FREE record");
   2640       }
   2641       if (!CurBB) return Error("Invalid free instruction with no BB");
   2642       I = CallInst::CreateFree(Op, CurBB);
   2643       InstructionList.push_back(I);
   2644       break;
   2645     }
   2646 
   2647     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   2648       // For backward compatibility, tolerate a lack of an opty, and use i32.
   2649       // Remove this in LLVM 3.0.
   2650       if (Record.size() < 3 || Record.size() > 4) {
   2651         return Error("Invalid ALLOCA record");
   2652       }
   2653       unsigned OpNum = 0;
   2654       PointerType *Ty =
   2655         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
   2656       Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
   2657                                               Type::getInt32Ty(Context);
   2658       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
   2659       unsigned Align = Record[OpNum++];
   2660       if (!Ty || !Size) return Error("Invalid ALLOCA record");
   2661       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   2662       InstructionList.push_back(I);
   2663       break;
   2664     }
   2665     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   2666       unsigned OpNum = 0;
   2667       Value *Op;
   2668       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2669           OpNum+2 != Record.size())
   2670         return Error("Invalid LOAD record");
   2671 
   2672       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2673       InstructionList.push_back(I);
   2674       break;
   2675     }
   2676     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   2677       unsigned OpNum = 0;
   2678       Value *Val, *Ptr;
   2679       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2680           getValue(Record, OpNum,
   2681                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2682           OpNum+2 != Record.size())
   2683         return Error("Invalid STORE record");
   2684 
   2685       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2686       InstructionList.push_back(I);
   2687       break;
   2688     }
   2689     case FUNC_CODE_INST_STORE_2_7: {
   2690       unsigned OpNum = 0;
   2691       Value *Val, *Ptr;
   2692       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
   2693           getValue(Record, OpNum,
   2694                    PointerType::getUnqual(Val->getType()), Ptr)||
   2695           OpNum+2 != Record.size()) {
   2696         return Error("Invalid STORE record");
   2697       }
   2698       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2699       InstructionList.push_back(I);
   2700       break;
   2701     }
   2702     case FUNC_CODE_INST_CALL_2_7:
   2703       LLVM2_7MetadataDetected = true;
   2704     case bitc::FUNC_CODE_INST_CALL: {
   2705       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   2706       if (Record.size() < 3)
   2707         return Error("Invalid CALL record");
   2708 
   2709       AttrListPtr PAL = getAttributes(Record[0]);
   2710       unsigned CCInfo = Record[1];
   2711 
   2712       unsigned OpNum = 2;
   2713       Value *Callee;
   2714       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2715         return Error("Invalid CALL record");
   2716 
   2717       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   2718       FunctionType *FTy = 0;
   2719       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   2720       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   2721         return Error("Invalid CALL record");
   2722 
   2723       SmallVector<Value*, 16> Args;
   2724       // Read the fixed params.
   2725       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2726         if (FTy->getParamType(i)->isLabelTy())
   2727           Args.push_back(getBasicBlock(Record[OpNum]));
   2728         else
   2729           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   2730         if (Args.back() == 0) return Error("Invalid CALL record");
   2731       }
   2732 
   2733       // Read type/value pairs for varargs params.
   2734       if (!FTy->isVarArg()) {
   2735         if (OpNum != Record.size())
   2736           return Error("Invalid CALL record");
   2737       } else {
   2738         while (OpNum != Record.size()) {
   2739           Value *Op;
   2740           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2741             return Error("Invalid CALL record");
   2742           Args.push_back(Op);
   2743         }
   2744       }
   2745 
   2746       I = CallInst::Create(Callee, Args);
   2747       InstructionList.push_back(I);
   2748       cast<CallInst>(I)->setCallingConv(
   2749         static_cast<CallingConv::ID>(CCInfo>>1));
   2750       cast<CallInst>(I)->setTailCall(CCInfo & 1);
   2751       cast<CallInst>(I)->setAttributes(PAL);
   2752       break;
   2753     }
   2754     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   2755       if (Record.size() < 3)
   2756         return Error("Invalid VAARG record");
   2757       Type *OpTy = getTypeByID(Record[0]);
   2758       Value *Op = getFnValueByID(Record[1], OpTy);
   2759       Type *ResTy = getTypeByID(Record[2]);
   2760       if (!OpTy || !Op || !ResTy)
   2761         return Error("Invalid VAARG record");
   2762       I = new VAArgInst(Op, ResTy);
   2763       InstructionList.push_back(I);
   2764       break;
   2765     }
   2766     }
   2767 
   2768     // Add instruction to end of current BB.  If there is no current BB, reject
   2769     // this file.
   2770     if (CurBB == 0) {
   2771       delete I;
   2772       return Error("Invalid instruction with no BB");
   2773     }
   2774     CurBB->getInstList().push_back(I);
   2775 
   2776     // If this was a terminator instruction, move to the next block.
   2777     if (isa<TerminatorInst>(I)) {
   2778       ++CurBBNo;
   2779       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
   2780     }
   2781 
   2782     // Non-void values get registered in the value table for future use.
   2783     if (I && !I->getType()->isVoidTy())
   2784       ValueList.AssignValue(I, NextValueNo++);
   2785   }
   2786 
   2787   // Check the function list for unresolved values.
   2788   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   2789     if (A->getParent() == 0) {
   2790       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   2791       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   2792         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
   2793           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   2794           delete A;
   2795         }
   2796       }
   2797       return Error("Never resolved value found in function!");
   2798     }
   2799   }
   2800 
   2801   // FIXME: Check for unresolved forward-declared metadata references
   2802   // and clean up leaks.
   2803 
   2804   // See if anything took the address of blocks in this function.  If so,
   2805   // resolve them now.
   2806   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   2807     BlockAddrFwdRefs.find(F);
   2808   if (BAFRI != BlockAddrFwdRefs.end()) {
   2809     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   2810     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   2811       unsigned BlockIdx = RefList[i].first;
   2812       if (BlockIdx >= FunctionBBs.size())
   2813         return Error("Invalid blockaddress block #");
   2814 
   2815       GlobalVariable *FwdRef = RefList[i].second;
   2816       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   2817       FwdRef->eraseFromParent();
   2818     }
   2819 
   2820     BlockAddrFwdRefs.erase(BAFRI);
   2821   }
   2822 
   2823   unsigned NewMDValueListSize = MDValueList.size();
   2824   // Trim the value list down to the size it was before we parsed this function.
   2825   ValueList.shrinkTo(ModuleValueListSize);
   2826   MDValueList.shrinkTo(ModuleMDValueListSize);
   2827 
   2828   if (LLVM2_7MetadataDetected) {
   2829     MDValueList.resize(NewMDValueListSize);
   2830   }
   2831 
   2832   std::vector<BasicBlock*>().swap(FunctionBBs);
   2833   return false;
   2834 }
   2835 
   2836 //===----------------------------------------------------------------------===//
   2837 // GVMaterializer implementation
   2838 //===----------------------------------------------------------------------===//
   2839 
   2840 
   2841 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
   2842   if (const Function *F = dyn_cast<Function>(GV)) {
   2843     return F->isDeclaration() &&
   2844       DeferredFunctionInfo.count(const_cast<Function*>(F));
   2845   }
   2846   return false;
   2847 }
   2848 
   2849 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
   2850   Function *F = dyn_cast<Function>(GV);
   2851   // If it's not a function or is already material, ignore the request.
   2852   if (!F || !F->isMaterializable()) return false;
   2853 
   2854   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   2855   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   2856 
   2857   // Move the bit stream to the saved position of the deferred function body.
   2858   Stream.JumpToBit(DFII->second);
   2859 
   2860   if (ParseFunctionBody(F)) {
   2861     if (ErrInfo) *ErrInfo = ErrorString;
   2862     return true;
   2863   }
   2864 
   2865   // Upgrade any old intrinsic calls in the function.
   2866   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   2867        E = UpgradedIntrinsics.end(); I != E; ++I) {
   2868     if (I->first != I->second) {
   2869       for (Value::use_iterator UI = I->first->use_begin(),
   2870            UE = I->first->use_end(); UI != UE; ) {
   2871         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   2872           UpgradeIntrinsicCall(CI, I->second);
   2873       }
   2874     }
   2875   }
   2876 
   2877   return false;
   2878 }
   2879 
   2880 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   2881   const Function *F = dyn_cast<Function>(GV);
   2882   if (!F || F->isDeclaration())
   2883     return false;
   2884   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   2885 }
   2886 
   2887 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   2888   Function *F = dyn_cast<Function>(GV);
   2889   // If this function isn't dematerializable, this is a noop.
   2890   if (!F || !isDematerializable(F))
   2891     return;
   2892 
   2893   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   2894 
   2895   // Just forget the function body, we can remat it later.
   2896   F->deleteBody();
   2897 }
   2898 
   2899 
   2900 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
   2901   assert(M == TheModule &&
   2902          "Can only Materialize the Module this BitcodeReader is attached to.");
   2903   // Iterate over the module, deserializing any functions that are still on
   2904   // disk.
   2905   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   2906        F != E; ++F)
   2907     if (F->isMaterializable() &&
   2908         Materialize(F, ErrInfo))
   2909       return true;
   2910 
   2911   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   2912   // delete the old functions to clean up. We can't do this unless the entire
   2913   // module is materialized because there could always be another function body
   2914   // with calls to the old function.
   2915   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   2916        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   2917     if (I->first != I->second) {
   2918       for (Value::use_iterator UI = I->first->use_begin(),
   2919            UE = I->first->use_end(); UI != UE; ) {
   2920         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   2921           UpgradeIntrinsicCall(CI, I->second);
   2922       }
   2923       if (!I->first->use_empty())
   2924         I->first->replaceAllUsesWith(I->second);
   2925       I->first->eraseFromParent();
   2926     }
   2927   }
   2928   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   2929 
   2930   // Check debug info intrinsics.
   2931   CheckDebugInfoIntrinsics(TheModule);
   2932 
   2933   return false;
   2934 }
   2935 
   2936 
   2937 //===----------------------------------------------------------------------===//
   2938 // External interface
   2939 //===----------------------------------------------------------------------===//
   2940 
   2941 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   2942 ///
   2943 Module *llvm_2_7::getLazyBitcodeModule(MemoryBuffer *Buffer,
   2944                                        LLVMContext& Context,
   2945                                        std::string *ErrMsg) {
   2946   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   2947   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   2948   M->setMaterializer(R);
   2949   if (R->ParseBitcodeInto(M)) {
   2950     if (ErrMsg)
   2951       *ErrMsg = R->getErrorString();
   2952 
   2953     delete M;  // Also deletes R.
   2954     return 0;
   2955   }
   2956   // Have the BitcodeReader dtor delete 'Buffer'.
   2957   R->setBufferOwned(true);
   2958   return M;
   2959 }
   2960 
   2961 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
   2962 /// If an error occurs, return null and fill in *ErrMsg if non-null.
   2963 Module *llvm_2_7::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
   2964                                    std::string *ErrMsg){
   2965   Module *M = llvm_2_7::getLazyBitcodeModule(Buffer, Context, ErrMsg);
   2966   if (!M) return 0;
   2967 
   2968   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
   2969   // there was an error.
   2970   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
   2971 
   2972   // Read in the entire module, and destroy the BitcodeReader.
   2973   if (M->MaterializeAllPermanently(ErrMsg)) {
   2974     delete M;
   2975     return 0;
   2976   }
   2977 
   2978   return M;
   2979 }
   2980 
   2981 std::string llvm_2_7::getBitcodeTargetTriple(MemoryBuffer *Buffer,
   2982                                              LLVMContext& Context,
   2983                                              std::string *ErrMsg) {
   2984   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   2985   // Don't let the BitcodeReader dtor delete 'Buffer'.
   2986   R->setBufferOwned(false);
   2987 
   2988   std::string Triple("");
   2989   if (R->ParseTriple(Triple))
   2990     if (ErrMsg)
   2991       *ErrMsg = R->getErrorString();
   2992 
   2993   delete R;
   2994   return Triple;
   2995 }
   2996