Home | History | Annotate | Download | only in BitReader_3_0
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitcodeReader class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "BitcodeReader.h"
     16 #include "BitReader_3_0.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/InlineAsm.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/Operator.h"
     23 #include "llvm/AutoUpgrade.h"
     24 #include "llvm/ADT/SmallPtrSet.h"
     25 #include "llvm/ADT/SmallString.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/CFG.h"
     28 #include "llvm/Support/IRBuilder.h"
     29 #include "llvm/Support/MathExtras.h"
     30 #include "llvm/Support/MemoryBuffer.h"
     31 #include "llvm/OperandTraits.h"
     32 using namespace llvm;
     33 using namespace llvm_3_0;
     34 
     35 #define FUNC_CODE_INST_UNWIND_2_7     14
     36 #define eh_exception_2_7             145
     37 #define eh_selector_2_7              149
     38 
     39 #define TYPE_BLOCK_ID_OLD_3_0         10
     40 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
     41 #define TYPE_CODE_STRUCT_OLD_3_0      10
     42 
     43 namespace {
     44   void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
     45                                       CallInst *&Sel,
     46                                       SmallPtrSet<BasicBlock*, 8> &Visited) {
     47     if (!Visited.insert(BB)) return;
     48 
     49     for (BasicBlock::iterator
     50            I = BB->begin(), E = BB->end(); I != E; ++I) {
     51       if (CallInst *CI = dyn_cast<CallInst>(I)) {
     52         switch (CI->getCalledFunction()->getIntrinsicID()) {
     53         default: break;
     54         case eh_exception_2_7:
     55           assert(!Exn && "Found more than one eh.exception call!");
     56           Exn = CI;
     57           break;
     58         case eh_selector_2_7:
     59           assert(!Sel && "Found more than one eh.selector call!");
     60           Sel = CI;
     61           break;
     62         }
     63 
     64         if (Exn && Sel) return;
     65       }
     66     }
     67 
     68     if (Exn && Sel) return;
     69 
     70     for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
     71       FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
     72       if (Exn && Sel) return;
     73     }
     74   }
     75 
     76 
     77 
     78   /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
     79   /// from the eh_selector call to the new landingpad instruction.
     80   void TransferClausesToLandingPadInst(LandingPadInst *LPI,
     81                                               CallInst *EHSel) {
     82     LLVMContext &Context = LPI->getContext();
     83     unsigned N = EHSel->getNumArgOperands();
     84 
     85     for (unsigned i = N - 1; i > 1; --i) {
     86       if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
     87         unsigned FilterLength = CI->getZExtValue();
     88         unsigned FirstCatch = i + FilterLength + !FilterLength;
     89         assert(FirstCatch <= N && "Invalid filter length");
     90 
     91         if (FirstCatch < N)
     92           for (unsigned j = FirstCatch; j < N; ++j) {
     93             Value *Val = EHSel->getArgOperand(j);
     94             if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
     95               LPI->addClause(EHSel->getArgOperand(j));
     96             } else {
     97               GlobalVariable *GV = cast<GlobalVariable>(Val);
     98               LPI->addClause(GV->getInitializer());
     99             }
    100           }
    101 
    102         if (!FilterLength) {
    103           // Cleanup.
    104           LPI->setCleanup(true);
    105         } else {
    106           // Filter.
    107           SmallVector<Constant *, 4> TyInfo;
    108           TyInfo.reserve(FilterLength - 1);
    109           for (unsigned j = i + 1; j < FirstCatch; ++j)
    110             TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
    111           ArrayType *AType =
    112             ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
    113                            PointerType::getUnqual(Type::getInt8Ty(Context)),
    114                            TyInfo.size());
    115           LPI->addClause(ConstantArray::get(AType, TyInfo));
    116         }
    117 
    118         N = i;
    119       }
    120     }
    121 
    122     if (N > 2)
    123       for (unsigned j = 2; j < N; ++j) {
    124         Value *Val = EHSel->getArgOperand(j);
    125         if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
    126           LPI->addClause(EHSel->getArgOperand(j));
    127         } else {
    128           GlobalVariable *GV = cast<GlobalVariable>(Val);
    129           LPI->addClause(GV->getInitializer());
    130         }
    131       }
    132   }
    133 
    134 
    135   /// This function upgrades the old pre-3.0 exception handling system to the new
    136   /// one. N.B. This will be removed in 3.1.
    137   void UpgradeExceptionHandling(Module *M) {
    138     Function *EHException = M->getFunction("llvm.eh.exception");
    139     Function *EHSelector = M->getFunction("llvm.eh.selector");
    140     if (!EHException || !EHSelector)
    141       return;
    142 
    143     LLVMContext &Context = M->getContext();
    144     Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
    145     Type *SelTy = Type::getInt32Ty(Context);
    146     Type *LPadSlotTy = StructType::get(ExnTy, SelTy, NULL);
    147 
    148     // This map links the invoke instruction with the eh.exception and eh.selector
    149     // calls associated with it.
    150     DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
    151     for (Module::iterator
    152            I = M->begin(), E = M->end(); I != E; ++I) {
    153       Function &F = *I;
    154 
    155       for (Function::iterator
    156              II = F.begin(), IE = F.end(); II != IE; ++II) {
    157         BasicBlock *BB = &*II;
    158         InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
    159         if (!Inst) continue;
    160         BasicBlock *UnwindDest = Inst->getUnwindDest();
    161         if (UnwindDest->isLandingPad()) continue; // Already converted.
    162 
    163         SmallPtrSet<BasicBlock*, 8> Visited;
    164         CallInst *Exn = 0;
    165         CallInst *Sel = 0;
    166         FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
    167         assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
    168         InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
    169       }
    170     }
    171 
    172     // This map stores the slots where the exception object and selector value are
    173     // stored within a function.
    174     DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
    175     SmallPtrSet<Instruction*, 32> DeadInsts;
    176     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    177            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    178          I != E; ++I) {
    179       InvokeInst *Invoke = I->first;
    180       BasicBlock *UnwindDest = Invoke->getUnwindDest();
    181       Function *F = UnwindDest->getParent();
    182       std::pair<Value*, Value*> EHIntrinsics = I->second;
    183       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    184       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    185 
    186       // Store the exception object and selector value in the entry block.
    187       Value *ExnSlot = 0;
    188       Value *SelSlot = 0;
    189       if (!FnToLPadSlotMap[F].first) {
    190         BasicBlock *Entry = &F->front();
    191         ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
    192         SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
    193         FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
    194       } else {
    195         ExnSlot = FnToLPadSlotMap[F].first;
    196         SelSlot = FnToLPadSlotMap[F].second;
    197       }
    198 
    199       if (!UnwindDest->getSinglePredecessor()) {
    200         // The unwind destination doesn't have a single predecessor. Create an
    201         // unwind destination which has only one predecessor.
    202         BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
    203                                                UnwindDest->getParent());
    204         BranchInst::Create(UnwindDest, NewBB);
    205         Invoke->setUnwindDest(NewBB);
    206 
    207         // Fix up any PHIs in the original unwind destination block.
    208         for (BasicBlock::iterator
    209                II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
    210           PHINode *PN = cast<PHINode>(II);
    211           int Idx = PN->getBasicBlockIndex(Invoke->getParent());
    212           if (Idx == -1) continue;
    213           PN->setIncomingBlock(Idx, NewBB);
    214         }
    215 
    216         UnwindDest = NewBB;
    217       }
    218 
    219       IRBuilder<> Builder(Context);
    220       Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
    221 
    222       Value *PersFn = Sel->getArgOperand(1);
    223       LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0);
    224       Value *LPExn = Builder.CreateExtractValue(LPI, 0);
    225       Value *LPSel = Builder.CreateExtractValue(LPI, 1);
    226       Builder.CreateStore(LPExn, ExnSlot);
    227       Builder.CreateStore(LPSel, SelSlot);
    228 
    229       TransferClausesToLandingPadInst(LPI, Sel);
    230 
    231       DeadInsts.insert(Exn);
    232       DeadInsts.insert(Sel);
    233     }
    234 
    235     // Replace the old intrinsic calls with the values from the landingpad
    236     // instruction(s). These values were stored in allocas for us to use here.
    237     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    238            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    239          I != E; ++I) {
    240       std::pair<Value*, Value*> EHIntrinsics = I->second;
    241       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    242       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    243       BasicBlock *Parent = Exn->getParent();
    244 
    245       std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
    246 
    247       IRBuilder<> Builder(Context);
    248       Builder.SetInsertPoint(Parent, Exn);
    249       LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
    250       LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
    251 
    252       Exn->replaceAllUsesWith(LPExn);
    253       Sel->replaceAllUsesWith(LPSel);
    254     }
    255 
    256     // Remove the dead instructions.
    257     for (SmallPtrSet<Instruction*, 32>::iterator
    258            I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
    259       Instruction *Inst = *I;
    260       Inst->eraseFromParent();
    261     }
    262 
    263     // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
    264     // exception and selector values from the stored place.
    265     Function *EHResume = M->getFunction("llvm.eh.resume");
    266     if (!EHResume) return;
    267 
    268     while (!EHResume->use_empty()) {
    269       CallInst *Resume = cast<CallInst>(EHResume->use_back());
    270       BasicBlock *BB = Resume->getParent();
    271 
    272       IRBuilder<> Builder(Context);
    273       Builder.SetInsertPoint(BB, Resume);
    274 
    275       Value *LPadVal =
    276         Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
    277                                   Resume->getArgOperand(0), 0, "lpad.val");
    278       LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
    279                                           1, "lpad.val");
    280       Builder.CreateResume(LPadVal);
    281 
    282       // Remove all instructions after the 'resume.'
    283       BasicBlock::iterator I = Resume;
    284       while (I != BB->end()) {
    285         Instruction *Inst = &*I++;
    286         Inst->eraseFromParent();
    287       }
    288     }
    289   }
    290 
    291 
    292   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
    293   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
    294   /// strips that use.
    295   void CheckDebugInfoIntrinsics(Module *M) {
    296     if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
    297       while (!FuncStart->use_empty())
    298         cast<CallInst>(FuncStart->use_back())->eraseFromParent();
    299       FuncStart->eraseFromParent();
    300     }
    301 
    302     if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
    303       while (!StopPoint->use_empty())
    304         cast<CallInst>(StopPoint->use_back())->eraseFromParent();
    305       StopPoint->eraseFromParent();
    306     }
    307 
    308     if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
    309       while (!RegionStart->use_empty())
    310         cast<CallInst>(RegionStart->use_back())->eraseFromParent();
    311       RegionStart->eraseFromParent();
    312     }
    313 
    314     if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
    315       while (!RegionEnd->use_empty())
    316         cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
    317       RegionEnd->eraseFromParent();
    318     }
    319 
    320     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
    321       if (!Declare->use_empty()) {
    322         DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
    323         if (!isa<MDNode>(DDI->getArgOperand(0)) ||
    324             !isa<MDNode>(DDI->getArgOperand(1))) {
    325           while (!Declare->use_empty()) {
    326             CallInst *CI = cast<CallInst>(Declare->use_back());
    327             CI->eraseFromParent();
    328           }
    329           Declare->eraseFromParent();
    330         }
    331       }
    332     }
    333   }
    334 } // end anonymous namespace
    335 
    336 void BitcodeReader::FreeState() {
    337   if (BufferOwned)
    338     delete Buffer;
    339   Buffer = 0;
    340   std::vector<Type*>().swap(TypeList);
    341   ValueList.clear();
    342   MDValueList.clear();
    343 
    344   std::vector<AttrListPtr>().swap(MAttributes);
    345   std::vector<BasicBlock*>().swap(FunctionBBs);
    346   std::vector<Function*>().swap(FunctionsWithBodies);
    347   DeferredFunctionInfo.clear();
    348   MDKindMap.clear();
    349 }
    350 
    351 //===----------------------------------------------------------------------===//
    352 //  Helper functions to implement forward reference resolution, etc.
    353 //===----------------------------------------------------------------------===//
    354 
    355 /// ConvertToString - Convert a string from a record into an std::string, return
    356 /// true on failure.
    357 template<typename StrTy>
    358 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
    359                             StrTy &Result) {
    360   if (Idx > Record.size())
    361     return true;
    362 
    363   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    364     Result += (char)Record[i];
    365   return false;
    366 }
    367 
    368 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
    369   switch (Val) {
    370   default: // Map unknown/new linkages to external
    371   case 0:  return GlobalValue::ExternalLinkage;
    372   case 1:  return GlobalValue::WeakAnyLinkage;
    373   case 2:  return GlobalValue::AppendingLinkage;
    374   case 3:  return GlobalValue::InternalLinkage;
    375   case 4:  return GlobalValue::LinkOnceAnyLinkage;
    376   case 5:  return GlobalValue::DLLImportLinkage;
    377   case 6:  return GlobalValue::DLLExportLinkage;
    378   case 7:  return GlobalValue::ExternalWeakLinkage;
    379   case 8:  return GlobalValue::CommonLinkage;
    380   case 9:  return GlobalValue::PrivateLinkage;
    381   case 10: return GlobalValue::WeakODRLinkage;
    382   case 11: return GlobalValue::LinkOnceODRLinkage;
    383   case 12: return GlobalValue::AvailableExternallyLinkage;
    384   case 13: return GlobalValue::LinkerPrivateLinkage;
    385   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
    386   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
    387   }
    388 }
    389 
    390 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
    391   switch (Val) {
    392   default: // Map unknown visibilities to default.
    393   case 0: return GlobalValue::DefaultVisibility;
    394   case 1: return GlobalValue::HiddenVisibility;
    395   case 2: return GlobalValue::ProtectedVisibility;
    396   }
    397 }
    398 
    399 static int GetDecodedCastOpcode(unsigned Val) {
    400   switch (Val) {
    401   default: return -1;
    402   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    403   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    404   case bitc::CAST_SEXT    : return Instruction::SExt;
    405   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    406   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    407   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    408   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    409   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    410   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    411   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    412   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    413   case bitc::CAST_BITCAST : return Instruction::BitCast;
    414   }
    415 }
    416 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    417   switch (Val) {
    418   default: return -1;
    419   case bitc::BINOP_ADD:
    420     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    421   case bitc::BINOP_SUB:
    422     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    423   case bitc::BINOP_MUL:
    424     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    425   case bitc::BINOP_UDIV: return Instruction::UDiv;
    426   case bitc::BINOP_SDIV:
    427     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    428   case bitc::BINOP_UREM: return Instruction::URem;
    429   case bitc::BINOP_SREM:
    430     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    431   case bitc::BINOP_SHL:  return Instruction::Shl;
    432   case bitc::BINOP_LSHR: return Instruction::LShr;
    433   case bitc::BINOP_ASHR: return Instruction::AShr;
    434   case bitc::BINOP_AND:  return Instruction::And;
    435   case bitc::BINOP_OR:   return Instruction::Or;
    436   case bitc::BINOP_XOR:  return Instruction::Xor;
    437   }
    438 }
    439 
    440 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
    441   switch (Val) {
    442   default: return AtomicRMWInst::BAD_BINOP;
    443   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    444   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    445   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    446   case bitc::RMW_AND: return AtomicRMWInst::And;
    447   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    448   case bitc::RMW_OR: return AtomicRMWInst::Or;
    449   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    450   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    451   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    452   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    453   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    454   }
    455 }
    456 
    457 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
    458   switch (Val) {
    459   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    460   case bitc::ORDERING_UNORDERED: return Unordered;
    461   case bitc::ORDERING_MONOTONIC: return Monotonic;
    462   case bitc::ORDERING_ACQUIRE: return Acquire;
    463   case bitc::ORDERING_RELEASE: return Release;
    464   case bitc::ORDERING_ACQREL: return AcquireRelease;
    465   default: // Map unknown orderings to sequentially-consistent.
    466   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    467   }
    468 }
    469 
    470 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
    471   switch (Val) {
    472   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    473   default: // Map unknown scopes to cross-thread.
    474   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    475   }
    476 }
    477 
    478 namespace llvm {
    479 namespace {
    480   /// @brief A class for maintaining the slot number definition
    481   /// as a placeholder for the actual definition for forward constants defs.
    482   class ConstantPlaceHolder : public ConstantExpr {
    483     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
    484   public:
    485     // allocate space for exactly one operand
    486     void *operator new(size_t s) {
    487       return User::operator new(s, 1);
    488     }
    489     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    490       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    491       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    492     }
    493 
    494     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    495     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
    496     static bool classof(const Value *V) {
    497       return isa<ConstantExpr>(V) &&
    498              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    499     }
    500 
    501 
    502     /// Provide fast operand accessors
    503     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    504   };
    505 }
    506 
    507 // FIXME: can we inherit this from ConstantExpr?
    508 template <>
    509 struct OperandTraits<ConstantPlaceHolder> :
    510   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    511 };
    512 }
    513 
    514 
    515 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    516   if (Idx == size()) {
    517     push_back(V);
    518     return;
    519   }
    520 
    521   if (Idx >= size())
    522     resize(Idx+1);
    523 
    524   WeakVH &OldV = ValuePtrs[Idx];
    525   if (OldV == 0) {
    526     OldV = V;
    527     return;
    528   }
    529 
    530   // Handle constants and non-constants (e.g. instrs) differently for
    531   // efficiency.
    532   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    533     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    534     OldV = V;
    535   } else {
    536     // If there was a forward reference to this value, replace it.
    537     Value *PrevVal = OldV;
    538     OldV->replaceAllUsesWith(V);
    539     delete PrevVal;
    540   }
    541 }
    542 
    543 
    544 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    545                                                     Type *Ty) {
    546   if (Idx >= size())
    547     resize(Idx + 1);
    548 
    549   if (Value *V = ValuePtrs[Idx]) {
    550     assert(Ty == V->getType() && "Type mismatch in constant table!");
    551     return cast<Constant>(V);
    552   }
    553 
    554   // Create and return a placeholder, which will later be RAUW'd.
    555   Constant *C = new ConstantPlaceHolder(Ty, Context);
    556   ValuePtrs[Idx] = C;
    557   return C;
    558 }
    559 
    560 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    561   if (Idx >= size())
    562     resize(Idx + 1);
    563 
    564   if (Value *V = ValuePtrs[Idx]) {
    565     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
    566     return V;
    567   }
    568 
    569   // No type specified, must be invalid reference.
    570   if (Ty == 0) return 0;
    571 
    572   // Create and return a placeholder, which will later be RAUW'd.
    573   Value *V = new Argument(Ty);
    574   ValuePtrs[Idx] = V;
    575   return V;
    576 }
    577 
    578 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    579 /// resolves any forward references.  The idea behind this is that we sometimes
    580 /// get constants (such as large arrays) which reference *many* forward ref
    581 /// constants.  Replacing each of these causes a lot of thrashing when
    582 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    583 /// uses and rewrite all the place holders at once for any constant that uses
    584 /// a placeholder.
    585 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    586   // Sort the values by-pointer so that they are efficient to look up with a
    587   // binary search.
    588   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    589 
    590   SmallVector<Constant*, 64> NewOps;
    591 
    592   while (!ResolveConstants.empty()) {
    593     Value *RealVal = operator[](ResolveConstants.back().second);
    594     Constant *Placeholder = ResolveConstants.back().first;
    595     ResolveConstants.pop_back();
    596 
    597     // Loop over all users of the placeholder, updating them to reference the
    598     // new value.  If they reference more than one placeholder, update them all
    599     // at once.
    600     while (!Placeholder->use_empty()) {
    601       Value::use_iterator UI = Placeholder->use_begin();
    602       User *U = *UI;
    603 
    604       // If the using object isn't uniqued, just update the operands.  This
    605       // handles instructions and initializers for global variables.
    606       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    607         UI.getUse().set(RealVal);
    608         continue;
    609       }
    610 
    611       // Otherwise, we have a constant that uses the placeholder.  Replace that
    612       // constant with a new constant that has *all* placeholder uses updated.
    613       Constant *UserC = cast<Constant>(U);
    614       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    615            I != E; ++I) {
    616         Value *NewOp;
    617         if (!isa<ConstantPlaceHolder>(*I)) {
    618           // Not a placeholder reference.
    619           NewOp = *I;
    620         } else if (*I == Placeholder) {
    621           // Common case is that it just references this one placeholder.
    622           NewOp = RealVal;
    623         } else {
    624           // Otherwise, look up the placeholder in ResolveConstants.
    625           ResolveConstantsTy::iterator It =
    626             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    627                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    628                                                             0));
    629           assert(It != ResolveConstants.end() && It->first == *I);
    630           NewOp = operator[](It->second);
    631         }
    632 
    633         NewOps.push_back(cast<Constant>(NewOp));
    634       }
    635 
    636       // Make the new constant.
    637       Constant *NewC;
    638       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    639         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    640       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    641         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    642       } else if (isa<ConstantVector>(UserC)) {
    643         NewC = ConstantVector::get(NewOps);
    644       } else {
    645         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    646         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    647       }
    648 
    649       UserC->replaceAllUsesWith(NewC);
    650       UserC->destroyConstant();
    651       NewOps.clear();
    652     }
    653 
    654     // Update all ValueHandles, they should be the only users at this point.
    655     Placeholder->replaceAllUsesWith(RealVal);
    656     delete Placeholder;
    657   }
    658 }
    659 
    660 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
    661   if (Idx == size()) {
    662     push_back(V);
    663     return;
    664   }
    665 
    666   if (Idx >= size())
    667     resize(Idx+1);
    668 
    669   WeakVH &OldV = MDValuePtrs[Idx];
    670   if (OldV == 0) {
    671     OldV = V;
    672     return;
    673   }
    674 
    675   // If there was a forward reference to this value, replace it.
    676   MDNode *PrevVal = cast<MDNode>(OldV);
    677   OldV->replaceAllUsesWith(V);
    678   MDNode::deleteTemporary(PrevVal);
    679   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
    680   // value for Idx.
    681   MDValuePtrs[Idx] = V;
    682 }
    683 
    684 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
    685   if (Idx >= size())
    686     resize(Idx + 1);
    687 
    688   if (Value *V = MDValuePtrs[Idx]) {
    689     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
    690     return V;
    691   }
    692 
    693   // Create and return a placeholder, which will later be RAUW'd.
    694   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
    695   MDValuePtrs[Idx] = V;
    696   return V;
    697 }
    698 
    699 Type *BitcodeReader::getTypeByID(unsigned ID) {
    700   // The type table size is always specified correctly.
    701   if (ID >= TypeList.size())
    702     return 0;
    703 
    704   if (Type *Ty = TypeList[ID])
    705     return Ty;
    706 
    707   // If we have a forward reference, the only possible case is when it is to a
    708   // named struct.  Just create a placeholder for now.
    709   return TypeList[ID] = StructType::create(Context);
    710 }
    711 
    712 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
    713 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
    714   if (ID >= TypeList.size())
    715     TypeList.resize(ID+1);
    716 
    717   return TypeList[ID];
    718 }
    719 
    720 
    721 //===----------------------------------------------------------------------===//
    722 //  Functions for parsing blocks from the bitcode file
    723 //===----------------------------------------------------------------------===//
    724 
    725 bool BitcodeReader::ParseAttributeBlock() {
    726   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
    727     return Error("Malformed block record");
    728 
    729   if (!MAttributes.empty())
    730     return Error("Multiple PARAMATTR blocks found!");
    731 
    732   SmallVector<uint64_t, 64> Record;
    733 
    734   SmallVector<AttributeWithIndex, 8> Attrs;
    735 
    736   // Read all the records.
    737   while (1) {
    738     unsigned Code = Stream.ReadCode();
    739     if (Code == bitc::END_BLOCK) {
    740       if (Stream.ReadBlockEnd())
    741         return Error("Error at end of PARAMATTR block");
    742       return false;
    743     }
    744 
    745     if (Code == bitc::ENTER_SUBBLOCK) {
    746       // No known subblocks, always skip them.
    747       Stream.ReadSubBlockID();
    748       if (Stream.SkipBlock())
    749         return Error("Malformed block record");
    750       continue;
    751     }
    752 
    753     if (Code == bitc::DEFINE_ABBREV) {
    754       Stream.ReadAbbrevRecord();
    755       continue;
    756     }
    757 
    758     // Read a record.
    759     Record.clear();
    760     switch (Stream.ReadRecord(Code, Record)) {
    761     default:  // Default behavior: ignore.
    762       break;
    763     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
    764       if (Record.size() & 1)
    765         return Error("Invalid ENTRY record");
    766 
    767       // FIXME : Remove this autoupgrade code in LLVM 3.0.
    768       // If Function attributes are using index 0 then transfer them
    769       // to index ~0. Index 0 is used for return value attributes but used to be
    770       // used for function attributes.
    771       Attributes RetAttribute = Attribute::None;
    772       Attributes FnAttribute = Attribute::None;
    773       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    774         // FIXME: remove in LLVM 3.0
    775         // The alignment is stored as a 16-bit raw value from bits 31--16.
    776         // We shift the bits above 31 down by 11 bits.
    777 
    778         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
    779         if (Alignment && !isPowerOf2_32(Alignment))
    780           return Error("Alignment is not a power of two.");
    781 
    782         Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
    783         if (Alignment)
    784           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
    785         ReconstitutedAttr |=
    786             Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
    787 
    788         Record[i+1] = ReconstitutedAttr.Raw();
    789         if (Record[i] == 0)
    790           RetAttribute = ReconstitutedAttr;
    791         else if (Record[i] == ~0U)
    792           FnAttribute = ReconstitutedAttr;
    793       }
    794 
    795       Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
    796                                Attribute::ReadOnly|Attribute::ReadNone);
    797 
    798       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
    799           (RetAttribute & OldRetAttrs)) {
    800         if (FnAttribute == Attribute::None) { // add a slot so they get added.
    801           Record.push_back(~0U);
    802           Record.push_back(0);
    803         }
    804 
    805         FnAttribute  |= RetAttribute & OldRetAttrs;
    806         RetAttribute &= ~OldRetAttrs;
    807       }
    808 
    809       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    810         if (Record[i] == 0) {
    811           if (RetAttribute != Attribute::None)
    812             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
    813         } else if (Record[i] == ~0U) {
    814           if (FnAttribute != Attribute::None)
    815             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
    816         } else if (Attributes(Record[i+1]) != Attribute::None)
    817           Attrs.push_back(AttributeWithIndex::get(Record[i],
    818                                                   Attributes(Record[i+1])));
    819       }
    820 
    821       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
    822       Attrs.clear();
    823       break;
    824     }
    825     }
    826   }
    827 }
    828 
    829 bool BitcodeReader::ParseTypeTable() {
    830   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
    831     return Error("Malformed block record");
    832 
    833   return ParseTypeTableBody();
    834 }
    835 
    836 bool BitcodeReader::ParseTypeTableBody() {
    837   if (!TypeList.empty())
    838     return Error("Multiple TYPE_BLOCKs found!");
    839 
    840   SmallVector<uint64_t, 64> Record;
    841   unsigned NumRecords = 0;
    842 
    843   SmallString<64> TypeName;
    844 
    845   // Read all the records for this type table.
    846   while (1) {
    847     unsigned Code = Stream.ReadCode();
    848     if (Code == bitc::END_BLOCK) {
    849       if (NumRecords != TypeList.size())
    850         return Error("Invalid type forward reference in TYPE_BLOCK");
    851       if (Stream.ReadBlockEnd())
    852         return Error("Error at end of type table block");
    853       return false;
    854     }
    855 
    856     if (Code == bitc::ENTER_SUBBLOCK) {
    857       // No known subblocks, always skip them.
    858       Stream.ReadSubBlockID();
    859       if (Stream.SkipBlock())
    860         return Error("Malformed block record");
    861       continue;
    862     }
    863 
    864     if (Code == bitc::DEFINE_ABBREV) {
    865       Stream.ReadAbbrevRecord();
    866       continue;
    867     }
    868 
    869     // Read a record.
    870     Record.clear();
    871     Type *ResultTy = 0;
    872     switch (Stream.ReadRecord(Code, Record)) {
    873     default: return Error("unknown type in type table");
    874     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    875       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    876       // type list.  This allows us to reserve space.
    877       if (Record.size() < 1)
    878         return Error("Invalid TYPE_CODE_NUMENTRY record");
    879       TypeList.resize(Record[0]);
    880       continue;
    881     case bitc::TYPE_CODE_VOID:      // VOID
    882       ResultTy = Type::getVoidTy(Context);
    883       break;
    884     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    885       ResultTy = Type::getFloatTy(Context);
    886       break;
    887     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    888       ResultTy = Type::getDoubleTy(Context);
    889       break;
    890     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    891       ResultTy = Type::getX86_FP80Ty(Context);
    892       break;
    893     case bitc::TYPE_CODE_FP128:     // FP128
    894       ResultTy = Type::getFP128Ty(Context);
    895       break;
    896     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    897       ResultTy = Type::getPPC_FP128Ty(Context);
    898       break;
    899     case bitc::TYPE_CODE_LABEL:     // LABEL
    900       ResultTy = Type::getLabelTy(Context);
    901       break;
    902     case bitc::TYPE_CODE_METADATA:  // METADATA
    903       ResultTy = Type::getMetadataTy(Context);
    904       break;
    905     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    906       ResultTy = Type::getX86_MMXTy(Context);
    907       break;
    908     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    909       if (Record.size() < 1)
    910         return Error("Invalid Integer type record");
    911 
    912       ResultTy = IntegerType::get(Context, Record[0]);
    913       break;
    914     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    915                                     //          [pointee type, address space]
    916       if (Record.size() < 1)
    917         return Error("Invalid POINTER type record");
    918       unsigned AddressSpace = 0;
    919       if (Record.size() == 2)
    920         AddressSpace = Record[1];
    921       ResultTy = getTypeByID(Record[0]);
    922       if (ResultTy == 0) return Error("invalid element type in pointer type");
    923       ResultTy = PointerType::get(ResultTy, AddressSpace);
    924       break;
    925     }
    926     case bitc::TYPE_CODE_FUNCTION_OLD: {
    927       // FIXME: attrid is dead, remove it in LLVM 3.0
    928       // FUNCTION: [vararg, attrid, retty, paramty x N]
    929       if (Record.size() < 3)
    930         return Error("Invalid FUNCTION type record");
    931       std::vector<Type*> ArgTys;
    932       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    933         if (Type *T = getTypeByID(Record[i]))
    934           ArgTys.push_back(T);
    935         else
    936           break;
    937       }
    938 
    939       ResultTy = getTypeByID(Record[2]);
    940       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
    941         return Error("invalid type in function type");
    942 
    943       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    944       break;
    945     }
    946     case bitc::TYPE_CODE_FUNCTION: {
    947       // FUNCTION: [vararg, retty, paramty x N]
    948       if (Record.size() < 2)
    949         return Error("Invalid FUNCTION type record");
    950       std::vector<Type*> ArgTys;
    951       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    952         if (Type *T = getTypeByID(Record[i]))
    953           ArgTys.push_back(T);
    954         else
    955           break;
    956       }
    957 
    958       ResultTy = getTypeByID(Record[1]);
    959       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
    960         return Error("invalid type in function type");
    961 
    962       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    963       break;
    964     }
    965     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
    966       if (Record.size() < 1)
    967         return Error("Invalid STRUCT type record");
    968       std::vector<Type*> EltTys;
    969       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    970         if (Type *T = getTypeByID(Record[i]))
    971           EltTys.push_back(T);
    972         else
    973           break;
    974       }
    975       if (EltTys.size() != Record.size()-1)
    976         return Error("invalid type in struct type");
    977       ResultTy = StructType::get(Context, EltTys, Record[0]);
    978       break;
    979     }
    980     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
    981       if (ConvertToString(Record, 0, TypeName))
    982         return Error("Invalid STRUCT_NAME record");
    983       continue;
    984 
    985     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
    986       if (Record.size() < 1)
    987         return Error("Invalid STRUCT type record");
    988 
    989       if (NumRecords >= TypeList.size())
    990         return Error("invalid TYPE table");
    991 
    992       // Check to see if this was forward referenced, if so fill in the temp.
    993       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    994       if (Res) {
    995         Res->setName(TypeName);
    996         TypeList[NumRecords] = 0;
    997       } else  // Otherwise, create a new struct.
    998         Res = StructType::create(Context, TypeName);
    999       TypeName.clear();
   1000 
   1001       SmallVector<Type*, 8> EltTys;
   1002       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1003         if (Type *T = getTypeByID(Record[i]))
   1004           EltTys.push_back(T);
   1005         else
   1006           break;
   1007       }
   1008       if (EltTys.size() != Record.size()-1)
   1009         return Error("invalid STRUCT type record");
   1010       Res->setBody(EltTys, Record[0]);
   1011       ResultTy = Res;
   1012       break;
   1013     }
   1014     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
   1015       if (Record.size() != 1)
   1016         return Error("Invalid OPAQUE type record");
   1017 
   1018       if (NumRecords >= TypeList.size())
   1019         return Error("invalid TYPE table");
   1020 
   1021       // Check to see if this was forward referenced, if so fill in the temp.
   1022       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1023       if (Res) {
   1024         Res->setName(TypeName);
   1025         TypeList[NumRecords] = 0;
   1026       } else  // Otherwise, create a new struct with no body.
   1027         Res = StructType::create(Context, TypeName);
   1028       TypeName.clear();
   1029       ResultTy = Res;
   1030       break;
   1031     }
   1032     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1033       if (Record.size() < 2)
   1034         return Error("Invalid ARRAY type record");
   1035       if ((ResultTy = getTypeByID(Record[1])))
   1036         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1037       else
   1038         return Error("Invalid ARRAY type element");
   1039       break;
   1040     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1041       if (Record.size() < 2)
   1042         return Error("Invalid VECTOR type record");
   1043       if ((ResultTy = getTypeByID(Record[1])))
   1044         ResultTy = VectorType::get(ResultTy, Record[0]);
   1045       else
   1046         return Error("Invalid ARRAY type element");
   1047       break;
   1048     }
   1049 
   1050     if (NumRecords >= TypeList.size())
   1051       return Error("invalid TYPE table");
   1052     assert(ResultTy && "Didn't read a type?");
   1053     assert(TypeList[NumRecords] == 0 && "Already read type?");
   1054     TypeList[NumRecords++] = ResultTy;
   1055   }
   1056 }
   1057 
   1058 // FIXME: Remove in LLVM 3.1
   1059 bool BitcodeReader::ParseOldTypeTable() {
   1060   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
   1061     return Error("Malformed block record");
   1062 
   1063   if (!TypeList.empty())
   1064     return Error("Multiple TYPE_BLOCKs found!");
   1065 
   1066 
   1067   // While horrible, we have no good ordering of types in the bc file.  Just
   1068   // iteratively parse types out of the bc file in multiple passes until we get
   1069   // them all.  Do this by saving a cursor for the start of the type block.
   1070   BitstreamCursor StartOfTypeBlockCursor(Stream);
   1071 
   1072   unsigned NumTypesRead = 0;
   1073 
   1074   SmallVector<uint64_t, 64> Record;
   1075 RestartScan:
   1076   unsigned NextTypeID = 0;
   1077   bool ReadAnyTypes = false;
   1078 
   1079   // Read all the records for this type table.
   1080   while (1) {
   1081     unsigned Code = Stream.ReadCode();
   1082     if (Code == bitc::END_BLOCK) {
   1083       if (NextTypeID != TypeList.size())
   1084         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
   1085 
   1086       // If we haven't read all of the types yet, iterate again.
   1087       if (NumTypesRead != TypeList.size()) {
   1088         // If we didn't successfully read any types in this pass, then we must
   1089         // have an unhandled forward reference.
   1090         if (!ReadAnyTypes)
   1091           return Error("Obsolete bitcode contains unhandled recursive type");
   1092 
   1093         Stream = StartOfTypeBlockCursor;
   1094         goto RestartScan;
   1095       }
   1096 
   1097       if (Stream.ReadBlockEnd())
   1098         return Error("Error at end of type table block");
   1099       return false;
   1100     }
   1101 
   1102     if (Code == bitc::ENTER_SUBBLOCK) {
   1103       // No known subblocks, always skip them.
   1104       Stream.ReadSubBlockID();
   1105       if (Stream.SkipBlock())
   1106         return Error("Malformed block record");
   1107       continue;
   1108     }
   1109 
   1110     if (Code == bitc::DEFINE_ABBREV) {
   1111       Stream.ReadAbbrevRecord();
   1112       continue;
   1113     }
   1114 
   1115     // Read a record.
   1116     Record.clear();
   1117     Type *ResultTy = 0;
   1118     switch (Stream.ReadRecord(Code, Record)) {
   1119     default: return Error("unknown type in type table");
   1120     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1121       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1122       // type list.  This allows us to reserve space.
   1123       if (Record.size() < 1)
   1124         return Error("Invalid TYPE_CODE_NUMENTRY record");
   1125       TypeList.resize(Record[0]);
   1126       continue;
   1127     case bitc::TYPE_CODE_VOID:      // VOID
   1128       ResultTy = Type::getVoidTy(Context);
   1129       break;
   1130     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1131       ResultTy = Type::getFloatTy(Context);
   1132       break;
   1133     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1134       ResultTy = Type::getDoubleTy(Context);
   1135       break;
   1136     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1137       ResultTy = Type::getX86_FP80Ty(Context);
   1138       break;
   1139     case bitc::TYPE_CODE_FP128:     // FP128
   1140       ResultTy = Type::getFP128Ty(Context);
   1141       break;
   1142     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1143       ResultTy = Type::getPPC_FP128Ty(Context);
   1144       break;
   1145     case bitc::TYPE_CODE_LABEL:     // LABEL
   1146       ResultTy = Type::getLabelTy(Context);
   1147       break;
   1148     case bitc::TYPE_CODE_METADATA:  // METADATA
   1149       ResultTy = Type::getMetadataTy(Context);
   1150       break;
   1151     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1152       ResultTy = Type::getX86_MMXTy(Context);
   1153       break;
   1154     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
   1155       if (Record.size() < 1)
   1156         return Error("Invalid Integer type record");
   1157       ResultTy = IntegerType::get(Context, Record[0]);
   1158       break;
   1159     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
   1160       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
   1161         ResultTy = StructType::create(Context);
   1162       break;
   1163     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
   1164       if (NextTypeID >= TypeList.size()) break;
   1165       // If we already read it, don't reprocess.
   1166       if (TypeList[NextTypeID] &&
   1167           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
   1168         break;
   1169 
   1170       // Set a type.
   1171       if (TypeList[NextTypeID] == 0)
   1172         TypeList[NextTypeID] = StructType::create(Context);
   1173 
   1174       std::vector<Type*> EltTys;
   1175       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1176         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1177           EltTys.push_back(Elt);
   1178         else
   1179           break;
   1180       }
   1181 
   1182       if (EltTys.size() != Record.size()-1)
   1183         break;      // Not all elements are ready.
   1184 
   1185       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
   1186       ResultTy = TypeList[NextTypeID];
   1187       TypeList[NextTypeID] = 0;
   1188       break;
   1189     }
   1190     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1191       //          [pointee type, address space]
   1192       if (Record.size() < 1)
   1193         return Error("Invalid POINTER type record");
   1194       unsigned AddressSpace = 0;
   1195       if (Record.size() == 2)
   1196         AddressSpace = Record[1];
   1197       if ((ResultTy = getTypeByIDOrNull(Record[0])))
   1198         ResultTy = PointerType::get(ResultTy, AddressSpace);
   1199       break;
   1200     }
   1201     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1202       // FIXME: attrid is dead, remove it in LLVM 3.0
   1203       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1204       if (Record.size() < 3)
   1205         return Error("Invalid FUNCTION type record");
   1206       std::vector<Type*> ArgTys;
   1207       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1208         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1209           ArgTys.push_back(Elt);
   1210         else
   1211           break;
   1212       }
   1213       if (ArgTys.size()+3 != Record.size())
   1214         break;  // Something was null.
   1215       if ((ResultTy = getTypeByIDOrNull(Record[2])))
   1216         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1217       break;
   1218     }
   1219     case bitc::TYPE_CODE_FUNCTION: {
   1220       // FUNCTION: [vararg, retty, paramty x N]
   1221       if (Record.size() < 2)
   1222         return Error("Invalid FUNCTION type record");
   1223       std::vector<Type*> ArgTys;
   1224       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1225         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1226           ArgTys.push_back(Elt);
   1227         else
   1228           break;
   1229       }
   1230       if (ArgTys.size()+2 != Record.size())
   1231         break;  // Something was null.
   1232       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1233         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1234       break;
   1235     }
   1236     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1237       if (Record.size() < 2)
   1238         return Error("Invalid ARRAY type record");
   1239       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1240         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1241       break;
   1242     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1243       if (Record.size() < 2)
   1244         return Error("Invalid VECTOR type record");
   1245       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1246         ResultTy = VectorType::get(ResultTy, Record[0]);
   1247       break;
   1248     }
   1249 
   1250     if (NextTypeID >= TypeList.size())
   1251       return Error("invalid TYPE table");
   1252 
   1253     if (ResultTy && TypeList[NextTypeID] == 0) {
   1254       ++NumTypesRead;
   1255       ReadAnyTypes = true;
   1256 
   1257       TypeList[NextTypeID] = ResultTy;
   1258     }
   1259 
   1260     ++NextTypeID;
   1261   }
   1262 }
   1263 
   1264 
   1265 bool BitcodeReader::ParseOldTypeSymbolTable() {
   1266   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
   1267     return Error("Malformed block record");
   1268 
   1269   SmallVector<uint64_t, 64> Record;
   1270 
   1271   // Read all the records for this type table.
   1272   std::string TypeName;
   1273   while (1) {
   1274     unsigned Code = Stream.ReadCode();
   1275     if (Code == bitc::END_BLOCK) {
   1276       if (Stream.ReadBlockEnd())
   1277         return Error("Error at end of type symbol table block");
   1278       return false;
   1279     }
   1280 
   1281     if (Code == bitc::ENTER_SUBBLOCK) {
   1282       // No known subblocks, always skip them.
   1283       Stream.ReadSubBlockID();
   1284       if (Stream.SkipBlock())
   1285         return Error("Malformed block record");
   1286       continue;
   1287     }
   1288 
   1289     if (Code == bitc::DEFINE_ABBREV) {
   1290       Stream.ReadAbbrevRecord();
   1291       continue;
   1292     }
   1293 
   1294     // Read a record.
   1295     Record.clear();
   1296     switch (Stream.ReadRecord(Code, Record)) {
   1297     default:  // Default behavior: unknown type.
   1298       break;
   1299     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
   1300       if (ConvertToString(Record, 1, TypeName))
   1301         return Error("Invalid TST_ENTRY record");
   1302       unsigned TypeID = Record[0];
   1303       if (TypeID >= TypeList.size())
   1304         return Error("Invalid Type ID in TST_ENTRY record");
   1305 
   1306       // Only apply the type name to a struct type with no name.
   1307       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
   1308         if (!STy->isLiteral() && !STy->hasName())
   1309           STy->setName(TypeName);
   1310       TypeName.clear();
   1311       break;
   1312     }
   1313   }
   1314 }
   1315 
   1316 bool BitcodeReader::ParseValueSymbolTable() {
   1317   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1318     return Error("Malformed block record");
   1319 
   1320   SmallVector<uint64_t, 64> Record;
   1321 
   1322   // Read all the records for this value table.
   1323   SmallString<128> ValueName;
   1324   while (1) {
   1325     unsigned Code = Stream.ReadCode();
   1326     if (Code == bitc::END_BLOCK) {
   1327       if (Stream.ReadBlockEnd())
   1328         return Error("Error at end of value symbol table block");
   1329       return false;
   1330     }
   1331     if (Code == bitc::ENTER_SUBBLOCK) {
   1332       // No known subblocks, always skip them.
   1333       Stream.ReadSubBlockID();
   1334       if (Stream.SkipBlock())
   1335         return Error("Malformed block record");
   1336       continue;
   1337     }
   1338 
   1339     if (Code == bitc::DEFINE_ABBREV) {
   1340       Stream.ReadAbbrevRecord();
   1341       continue;
   1342     }
   1343 
   1344     // Read a record.
   1345     Record.clear();
   1346     switch (Stream.ReadRecord(Code, Record)) {
   1347     default:  // Default behavior: unknown type.
   1348       break;
   1349     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
   1350       if (ConvertToString(Record, 1, ValueName))
   1351         return Error("Invalid VST_ENTRY record");
   1352       unsigned ValueID = Record[0];
   1353       if (ValueID >= ValueList.size())
   1354         return Error("Invalid Value ID in VST_ENTRY record");
   1355       Value *V = ValueList[ValueID];
   1356 
   1357       V->setName(StringRef(ValueName.data(), ValueName.size()));
   1358       ValueName.clear();
   1359       break;
   1360     }
   1361     case bitc::VST_CODE_BBENTRY: {
   1362       if (ConvertToString(Record, 1, ValueName))
   1363         return Error("Invalid VST_BBENTRY record");
   1364       BasicBlock *BB = getBasicBlock(Record[0]);
   1365       if (BB == 0)
   1366         return Error("Invalid BB ID in VST_BBENTRY record");
   1367 
   1368       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   1369       ValueName.clear();
   1370       break;
   1371     }
   1372     }
   1373   }
   1374 }
   1375 
   1376 bool BitcodeReader::ParseMetadata() {
   1377   unsigned NextMDValueNo = MDValueList.size();
   1378 
   1379   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1380     return Error("Malformed block record");
   1381 
   1382   SmallVector<uint64_t, 64> Record;
   1383 
   1384   // Read all the records.
   1385   while (1) {
   1386     unsigned Code = Stream.ReadCode();
   1387     if (Code == bitc::END_BLOCK) {
   1388       if (Stream.ReadBlockEnd())
   1389         return Error("Error at end of PARAMATTR block");
   1390       return false;
   1391     }
   1392 
   1393     if (Code == bitc::ENTER_SUBBLOCK) {
   1394       // No known subblocks, always skip them.
   1395       Stream.ReadSubBlockID();
   1396       if (Stream.SkipBlock())
   1397         return Error("Malformed block record");
   1398       continue;
   1399     }
   1400 
   1401     if (Code == bitc::DEFINE_ABBREV) {
   1402       Stream.ReadAbbrevRecord();
   1403       continue;
   1404     }
   1405 
   1406     bool IsFunctionLocal = false;
   1407     // Read a record.
   1408     Record.clear();
   1409     Code = Stream.ReadRecord(Code, Record);
   1410     switch (Code) {
   1411     default:  // Default behavior: ignore.
   1412       break;
   1413     case bitc::METADATA_NAME: {
   1414       // Read named of the named metadata.
   1415       unsigned NameLength = Record.size();
   1416       SmallString<8> Name;
   1417       Name.resize(NameLength);
   1418       for (unsigned i = 0; i != NameLength; ++i)
   1419         Name[i] = Record[i];
   1420       Record.clear();
   1421       Code = Stream.ReadCode();
   1422 
   1423       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
   1424       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
   1425       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
   1426 
   1427       // Read named metadata elements.
   1428       unsigned Size = Record.size();
   1429       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1430       for (unsigned i = 0; i != Size; ++i) {
   1431         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1432         if (MD == 0)
   1433           return Error("Malformed metadata record");
   1434         NMD->addOperand(MD);
   1435       }
   1436       break;
   1437     }
   1438     case bitc::METADATA_FN_NODE:
   1439       IsFunctionLocal = true;
   1440       // fall-through
   1441     case bitc::METADATA_NODE: {
   1442       if (Record.size() % 2 == 1)
   1443         return Error("Invalid METADATA_NODE record");
   1444 
   1445       unsigned Size = Record.size();
   1446       SmallVector<Value*, 8> Elts;
   1447       for (unsigned i = 0; i != Size; i += 2) {
   1448         Type *Ty = getTypeByID(Record[i]);
   1449         if (!Ty) return Error("Invalid METADATA_NODE record");
   1450         if (Ty->isMetadataTy())
   1451           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1452         else if (!Ty->isVoidTy())
   1453           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
   1454         else
   1455           Elts.push_back(NULL);
   1456       }
   1457       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
   1458       IsFunctionLocal = false;
   1459       MDValueList.AssignValue(V, NextMDValueNo++);
   1460       break;
   1461     }
   1462     case bitc::METADATA_STRING: {
   1463       unsigned MDStringLength = Record.size();
   1464       SmallString<8> String;
   1465       String.resize(MDStringLength);
   1466       for (unsigned i = 0; i != MDStringLength; ++i)
   1467         String[i] = Record[i];
   1468       Value *V = MDString::get(Context,
   1469                                StringRef(String.data(), String.size()));
   1470       MDValueList.AssignValue(V, NextMDValueNo++);
   1471       break;
   1472     }
   1473     case bitc::METADATA_KIND: {
   1474       unsigned RecordLength = Record.size();
   1475       if (Record.empty() || RecordLength < 2)
   1476         return Error("Invalid METADATA_KIND record");
   1477       SmallString<8> Name;
   1478       Name.resize(RecordLength-1);
   1479       unsigned Kind = Record[0];
   1480       for (unsigned i = 1; i != RecordLength; ++i)
   1481         Name[i-1] = Record[i];
   1482 
   1483       unsigned NewKind = TheModule->getMDKindID(Name.str());
   1484       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1485         return Error("Conflicting METADATA_KIND records");
   1486       break;
   1487     }
   1488     }
   1489   }
   1490 }
   1491 
   1492 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
   1493 /// the LSB for dense VBR encoding.
   1494 static uint64_t DecodeSignRotatedValue(uint64_t V) {
   1495   if ((V & 1) == 0)
   1496     return V >> 1;
   1497   if (V != 1)
   1498     return -(V >> 1);
   1499   // There is no such thing as -0 with integers.  "-0" really means MININT.
   1500   return 1ULL << 63;
   1501 }
   1502 
   1503 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
   1504 /// values and aliases that we can.
   1505 bool BitcodeReader::ResolveGlobalAndAliasInits() {
   1506   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   1507   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   1508 
   1509   GlobalInitWorklist.swap(GlobalInits);
   1510   AliasInitWorklist.swap(AliasInits);
   1511 
   1512   while (!GlobalInitWorklist.empty()) {
   1513     unsigned ValID = GlobalInitWorklist.back().second;
   1514     if (ValID >= ValueList.size()) {
   1515       // Not ready to resolve this yet, it requires something later in the file.
   1516       GlobalInits.push_back(GlobalInitWorklist.back());
   1517     } else {
   1518       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1519         GlobalInitWorklist.back().first->setInitializer(C);
   1520       else
   1521         return Error("Global variable initializer is not a constant!");
   1522     }
   1523     GlobalInitWorklist.pop_back();
   1524   }
   1525 
   1526   while (!AliasInitWorklist.empty()) {
   1527     unsigned ValID = AliasInitWorklist.back().second;
   1528     if (ValID >= ValueList.size()) {
   1529       AliasInits.push_back(AliasInitWorklist.back());
   1530     } else {
   1531       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1532         AliasInitWorklist.back().first->setAliasee(C);
   1533       else
   1534         return Error("Alias initializer is not a constant!");
   1535     }
   1536     AliasInitWorklist.pop_back();
   1537   }
   1538   return false;
   1539 }
   1540 
   1541 bool BitcodeReader::ParseConstants() {
   1542   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1543     return Error("Malformed block record");
   1544 
   1545   SmallVector<uint64_t, 64> Record;
   1546 
   1547   // Read all the records for this value table.
   1548   Type *CurTy = Type::getInt32Ty(Context);
   1549   unsigned NextCstNo = ValueList.size();
   1550   while (1) {
   1551     unsigned Code = Stream.ReadCode();
   1552     if (Code == bitc::END_BLOCK)
   1553       break;
   1554 
   1555     if (Code == bitc::ENTER_SUBBLOCK) {
   1556       // No known subblocks, always skip them.
   1557       Stream.ReadSubBlockID();
   1558       if (Stream.SkipBlock())
   1559         return Error("Malformed block record");
   1560       continue;
   1561     }
   1562 
   1563     if (Code == bitc::DEFINE_ABBREV) {
   1564       Stream.ReadAbbrevRecord();
   1565       continue;
   1566     }
   1567 
   1568     // Read a record.
   1569     Record.clear();
   1570     Value *V = 0;
   1571     unsigned BitCode = Stream.ReadRecord(Code, Record);
   1572     switch (BitCode) {
   1573     default:  // Default behavior: unknown constant
   1574     case bitc::CST_CODE_UNDEF:     // UNDEF
   1575       V = UndefValue::get(CurTy);
   1576       break;
   1577     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1578       if (Record.empty())
   1579         return Error("Malformed CST_SETTYPE record");
   1580       if (Record[0] >= TypeList.size())
   1581         return Error("Invalid Type ID in CST_SETTYPE record");
   1582       CurTy = TypeList[Record[0]];
   1583       continue;  // Skip the ValueList manipulation.
   1584     case bitc::CST_CODE_NULL:      // NULL
   1585       V = Constant::getNullValue(CurTy);
   1586       break;
   1587     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1588       if (!CurTy->isIntegerTy() || Record.empty())
   1589         return Error("Invalid CST_INTEGER record");
   1590       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
   1591       break;
   1592     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1593       if (!CurTy->isIntegerTy() || Record.empty())
   1594         return Error("Invalid WIDE_INTEGER record");
   1595 
   1596       unsigned NumWords = Record.size();
   1597       SmallVector<uint64_t, 8> Words;
   1598       Words.resize(NumWords);
   1599       for (unsigned i = 0; i != NumWords; ++i)
   1600         Words[i] = DecodeSignRotatedValue(Record[i]);
   1601       V = ConstantInt::get(Context,
   1602                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
   1603                                  Words));
   1604       break;
   1605     }
   1606     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1607       if (Record.empty())
   1608         return Error("Invalid FLOAT record");
   1609       if (CurTy->isFloatTy())
   1610         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
   1611       else if (CurTy->isDoubleTy())
   1612         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
   1613       else if (CurTy->isX86_FP80Ty()) {
   1614         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1615         uint64_t Rearrange[2];
   1616         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1617         Rearrange[1] = Record[0] >> 48;
   1618         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
   1619       } else if (CurTy->isFP128Ty())
   1620         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
   1621       else if (CurTy->isPPC_FP128Ty())
   1622         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
   1623       else
   1624         V = UndefValue::get(CurTy);
   1625       break;
   1626     }
   1627 
   1628     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   1629       if (Record.empty())
   1630         return Error("Invalid CST_AGGREGATE record");
   1631 
   1632       unsigned Size = Record.size();
   1633       std::vector<Constant*> Elts;
   1634 
   1635       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   1636         for (unsigned i = 0; i != Size; ++i)
   1637           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   1638                                                      STy->getElementType(i)));
   1639         V = ConstantStruct::get(STy, Elts);
   1640       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   1641         Type *EltTy = ATy->getElementType();
   1642         for (unsigned i = 0; i != Size; ++i)
   1643           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1644         V = ConstantArray::get(ATy, Elts);
   1645       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   1646         Type *EltTy = VTy->getElementType();
   1647         for (unsigned i = 0; i != Size; ++i)
   1648           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1649         V = ConstantVector::get(Elts);
   1650       } else {
   1651         V = UndefValue::get(CurTy);
   1652       }
   1653       break;
   1654     }
   1655     case bitc::CST_CODE_STRING: { // STRING: [values]
   1656       if (Record.empty())
   1657         return Error("Invalid CST_AGGREGATE record");
   1658 
   1659       ArrayType *ATy = cast<ArrayType>(CurTy);
   1660       Type *EltTy = ATy->getElementType();
   1661 
   1662       unsigned Size = Record.size();
   1663       std::vector<Constant*> Elts;
   1664       for (unsigned i = 0; i != Size; ++i)
   1665         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1666       V = ConstantArray::get(ATy, Elts);
   1667       break;
   1668     }
   1669     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   1670       if (Record.empty())
   1671         return Error("Invalid CST_AGGREGATE record");
   1672 
   1673       ArrayType *ATy = cast<ArrayType>(CurTy);
   1674       Type *EltTy = ATy->getElementType();
   1675 
   1676       unsigned Size = Record.size();
   1677       std::vector<Constant*> Elts;
   1678       for (unsigned i = 0; i != Size; ++i)
   1679         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1680       Elts.push_back(Constant::getNullValue(EltTy));
   1681       V = ConstantArray::get(ATy, Elts);
   1682       break;
   1683     }
   1684     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   1685       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
   1686       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   1687       if (Opc < 0) {
   1688         V = UndefValue::get(CurTy);  // Unknown binop.
   1689       } else {
   1690         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   1691         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   1692         unsigned Flags = 0;
   1693         if (Record.size() >= 4) {
   1694           if (Opc == Instruction::Add ||
   1695               Opc == Instruction::Sub ||
   1696               Opc == Instruction::Mul ||
   1697               Opc == Instruction::Shl) {
   1698             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   1699               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   1700             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   1701               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   1702           } else if (Opc == Instruction::SDiv ||
   1703                      Opc == Instruction::UDiv ||
   1704                      Opc == Instruction::LShr ||
   1705                      Opc == Instruction::AShr) {
   1706             if (Record[3] & (1 << bitc::PEO_EXACT))
   1707               Flags |= SDivOperator::IsExact;
   1708           }
   1709         }
   1710         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   1711       }
   1712       break;
   1713     }
   1714     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   1715       if (Record.size() < 3) return Error("Invalid CE_CAST record");
   1716       int Opc = GetDecodedCastOpcode(Record[0]);
   1717       if (Opc < 0) {
   1718         V = UndefValue::get(CurTy);  // Unknown cast.
   1719       } else {
   1720         Type *OpTy = getTypeByID(Record[1]);
   1721         if (!OpTy) return Error("Invalid CE_CAST record");
   1722         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   1723         V = ConstantExpr::getCast(Opc, Op, CurTy);
   1724       }
   1725       break;
   1726     }
   1727     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   1728     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   1729       if (Record.size() & 1) return Error("Invalid CE_GEP record");
   1730       SmallVector<Constant*, 16> Elts;
   1731       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1732         Type *ElTy = getTypeByID(Record[i]);
   1733         if (!ElTy) return Error("Invalid CE_GEP record");
   1734         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   1735       }
   1736       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   1737       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   1738                                          BitCode ==
   1739                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
   1740       break;
   1741     }
   1742     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
   1743       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
   1744       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   1745                                                               Type::getInt1Ty(Context)),
   1746                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   1747                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   1748       break;
   1749     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
   1750       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
   1751       VectorType *OpTy =
   1752         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1753       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
   1754       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1755       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1756       V = ConstantExpr::getExtractElement(Op0, Op1);
   1757       break;
   1758     }
   1759     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
   1760       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1761       if (Record.size() < 3 || OpTy == 0)
   1762         return Error("Invalid CE_INSERTELT record");
   1763       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1764       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   1765                                                   OpTy->getElementType());
   1766       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1767       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   1768       break;
   1769     }
   1770     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   1771       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1772       if (Record.size() < 3 || OpTy == 0)
   1773         return Error("Invalid CE_SHUFFLEVEC record");
   1774       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1775       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1776       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1777                                                  OpTy->getNumElements());
   1778       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   1779       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1780       break;
   1781     }
   1782     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   1783       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   1784       VectorType *OpTy =
   1785         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1786       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
   1787         return Error("Invalid CE_SHUFVEC_EX record");
   1788       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1789       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1790       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1791                                                  RTy->getNumElements());
   1792       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   1793       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1794       break;
   1795     }
   1796     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   1797       if (Record.size() < 4) return Error("Invalid CE_CMP record");
   1798       Type *OpTy = getTypeByID(Record[0]);
   1799       if (OpTy == 0) return Error("Invalid CE_CMP record");
   1800       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1801       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1802 
   1803       if (OpTy->isFPOrFPVectorTy())
   1804         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   1805       else
   1806         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   1807       break;
   1808     }
   1809     case bitc::CST_CODE_INLINEASM: {
   1810       if (Record.size() < 2) return Error("Invalid INLINEASM record");
   1811       std::string AsmStr, ConstrStr;
   1812       bool HasSideEffects = Record[0] & 1;
   1813       bool IsAlignStack = Record[0] >> 1;
   1814       unsigned AsmStrSize = Record[1];
   1815       if (2+AsmStrSize >= Record.size())
   1816         return Error("Invalid INLINEASM record");
   1817       unsigned ConstStrSize = Record[2+AsmStrSize];
   1818       if (3+AsmStrSize+ConstStrSize > Record.size())
   1819         return Error("Invalid INLINEASM record");
   1820 
   1821       for (unsigned i = 0; i != AsmStrSize; ++i)
   1822         AsmStr += (char)Record[2+i];
   1823       for (unsigned i = 0; i != ConstStrSize; ++i)
   1824         ConstrStr += (char)Record[3+AsmStrSize+i];
   1825       PointerType *PTy = cast<PointerType>(CurTy);
   1826       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1827                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   1828       break;
   1829     }
   1830     case bitc::CST_CODE_BLOCKADDRESS:{
   1831       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
   1832       Type *FnTy = getTypeByID(Record[0]);
   1833       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1834       Function *Fn =
   1835         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   1836       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1837 
   1838       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   1839                                                   Type::getInt8Ty(Context),
   1840                                             false, GlobalValue::InternalLinkage,
   1841                                                   0, "");
   1842       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   1843       V = FwdRef;
   1844       break;
   1845     }
   1846     }
   1847 
   1848     ValueList.AssignValue(V, NextCstNo);
   1849     ++NextCstNo;
   1850   }
   1851 
   1852   if (NextCstNo != ValueList.size())
   1853     return Error("Invalid constant reference!");
   1854 
   1855   if (Stream.ReadBlockEnd())
   1856     return Error("Error at end of constants block");
   1857 
   1858   // Once all the constants have been read, go through and resolve forward
   1859   // references.
   1860   ValueList.ResolveConstantForwardRefs();
   1861   return false;
   1862 }
   1863 
   1864 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   1865 /// remember where it is and then skip it.  This lets us lazily deserialize the
   1866 /// functions.
   1867 bool BitcodeReader::RememberAndSkipFunctionBody() {
   1868   // Get the function we are talking about.
   1869   if (FunctionsWithBodies.empty())
   1870     return Error("Insufficient function protos");
   1871 
   1872   Function *Fn = FunctionsWithBodies.back();
   1873   FunctionsWithBodies.pop_back();
   1874 
   1875   // Save the current stream state.
   1876   uint64_t CurBit = Stream.GetCurrentBitNo();
   1877   DeferredFunctionInfo[Fn] = CurBit;
   1878 
   1879   // Skip over the function block for now.
   1880   if (Stream.SkipBlock())
   1881     return Error("Malformed block record");
   1882   return false;
   1883 }
   1884 
   1885 bool BitcodeReader::ParseModule() {
   1886   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1887     return Error("Malformed block record");
   1888 
   1889   SmallVector<uint64_t, 64> Record;
   1890   std::vector<std::string> SectionTable;
   1891   std::vector<std::string> GCTable;
   1892 
   1893   // Read all the records for this module.
   1894   while (!Stream.AtEndOfStream()) {
   1895     unsigned Code = Stream.ReadCode();
   1896     if (Code == bitc::END_BLOCK) {
   1897       if (Stream.ReadBlockEnd())
   1898         return Error("Error at end of module block");
   1899 
   1900       // Patch the initializers for globals and aliases up.
   1901       ResolveGlobalAndAliasInits();
   1902       if (!GlobalInits.empty() || !AliasInits.empty())
   1903         return Error("Malformed global initializer set");
   1904       if (!FunctionsWithBodies.empty())
   1905         return Error("Too few function bodies found");
   1906 
   1907       // Look for intrinsic functions which need to be upgraded at some point
   1908       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   1909            FI != FE; ++FI) {
   1910         Function* NewFn;
   1911         if (UpgradeIntrinsicFunction(FI, NewFn))
   1912           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   1913       }
   1914 
   1915       // Look for global variables which need to be renamed.
   1916       for (Module::global_iterator
   1917              GI = TheModule->global_begin(), GE = TheModule->global_end();
   1918            GI != GE; ++GI)
   1919         UpgradeGlobalVariable(GI);
   1920 
   1921       // Force deallocation of memory for these vectors to favor the client that
   1922       // want lazy deserialization.
   1923       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   1924       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   1925       std::vector<Function*>().swap(FunctionsWithBodies);
   1926       return false;
   1927     }
   1928 
   1929     if (Code == bitc::ENTER_SUBBLOCK) {
   1930       switch (Stream.ReadSubBlockID()) {
   1931       default:  // Skip unknown content.
   1932         if (Stream.SkipBlock())
   1933           return Error("Malformed block record");
   1934         break;
   1935       case bitc::BLOCKINFO_BLOCK_ID:
   1936         if (Stream.ReadBlockInfoBlock())
   1937           return Error("Malformed BlockInfoBlock");
   1938         break;
   1939       case bitc::PARAMATTR_BLOCK_ID:
   1940         if (ParseAttributeBlock())
   1941           return true;
   1942         break;
   1943       case bitc::TYPE_BLOCK_ID_NEW:
   1944         if (ParseTypeTable())
   1945           return true;
   1946         break;
   1947       case TYPE_BLOCK_ID_OLD_3_0:
   1948         if (ParseOldTypeTable())
   1949           return true;
   1950         break;
   1951       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
   1952         if (ParseOldTypeSymbolTable())
   1953           return true;
   1954         break;
   1955       case bitc::VALUE_SYMTAB_BLOCK_ID:
   1956         if (ParseValueSymbolTable())
   1957           return true;
   1958         break;
   1959       case bitc::CONSTANTS_BLOCK_ID:
   1960         if (ParseConstants() || ResolveGlobalAndAliasInits())
   1961           return true;
   1962         break;
   1963       case bitc::METADATA_BLOCK_ID:
   1964         if (ParseMetadata())
   1965           return true;
   1966         break;
   1967       case bitc::FUNCTION_BLOCK_ID:
   1968         // If this is the first function body we've seen, reverse the
   1969         // FunctionsWithBodies list.
   1970         if (!HasReversedFunctionsWithBodies) {
   1971           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   1972           HasReversedFunctionsWithBodies = true;
   1973         }
   1974 
   1975         if (RememberAndSkipFunctionBody())
   1976           return true;
   1977         break;
   1978       }
   1979       continue;
   1980     }
   1981 
   1982     if (Code == bitc::DEFINE_ABBREV) {
   1983       Stream.ReadAbbrevRecord();
   1984       continue;
   1985     }
   1986 
   1987     // Read a record.
   1988     switch (Stream.ReadRecord(Code, Record)) {
   1989     default: break;  // Default behavior, ignore unknown content.
   1990     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
   1991       if (Record.size() < 1)
   1992         return Error("Malformed MODULE_CODE_VERSION");
   1993       // Only version #0 is supported so far.
   1994       if (Record[0] != 0)
   1995         return Error("Unknown bitstream version!");
   1996       break;
   1997     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   1998       std::string S;
   1999       if (ConvertToString(Record, 0, S))
   2000         return Error("Invalid MODULE_CODE_TRIPLE record");
   2001       TheModule->setTargetTriple(S);
   2002       break;
   2003     }
   2004     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   2005       std::string S;
   2006       if (ConvertToString(Record, 0, S))
   2007         return Error("Invalid MODULE_CODE_DATALAYOUT record");
   2008       TheModule->setDataLayout(S);
   2009       break;
   2010     }
   2011     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   2012       std::string S;
   2013       if (ConvertToString(Record, 0, S))
   2014         return Error("Invalid MODULE_CODE_ASM record");
   2015       TheModule->setModuleInlineAsm(S);
   2016       break;
   2017     }
   2018     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   2019       std::string S;
   2020       if (ConvertToString(Record, 0, S))
   2021         return Error("Invalid MODULE_CODE_DEPLIB record");
   2022       TheModule->addLibrary(S);
   2023       break;
   2024     }
   2025     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   2026       std::string S;
   2027       if (ConvertToString(Record, 0, S))
   2028         return Error("Invalid MODULE_CODE_SECTIONNAME record");
   2029       SectionTable.push_back(S);
   2030       break;
   2031     }
   2032     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   2033       std::string S;
   2034       if (ConvertToString(Record, 0, S))
   2035         return Error("Invalid MODULE_CODE_GCNAME record");
   2036       GCTable.push_back(S);
   2037       break;
   2038     }
   2039     // GLOBALVAR: [pointer type, isconst, initid,
   2040     //             linkage, alignment, section, visibility, threadlocal,
   2041     //             unnamed_addr]
   2042     case bitc::MODULE_CODE_GLOBALVAR: {
   2043       if (Record.size() < 6)
   2044         return Error("Invalid MODULE_CODE_GLOBALVAR record");
   2045       Type *Ty = getTypeByID(Record[0]);
   2046       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
   2047       if (!Ty->isPointerTy())
   2048         return Error("Global not a pointer type!");
   2049       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   2050       Ty = cast<PointerType>(Ty)->getElementType();
   2051 
   2052       bool isConstant = Record[1];
   2053       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
   2054       unsigned Alignment = (1 << Record[4]) >> 1;
   2055       std::string Section;
   2056       if (Record[5]) {
   2057         if (Record[5]-1 >= SectionTable.size())
   2058           return Error("Invalid section ID");
   2059         Section = SectionTable[Record[5]-1];
   2060       }
   2061       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   2062       if (Record.size() > 6)
   2063         Visibility = GetDecodedVisibility(Record[6]);
   2064       bool isThreadLocal = false;
   2065       if (Record.size() > 7)
   2066         isThreadLocal = Record[7];
   2067 
   2068       bool UnnamedAddr = false;
   2069       if (Record.size() > 8)
   2070         UnnamedAddr = Record[8];
   2071 
   2072       GlobalVariable *NewGV =
   2073         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
   2074                            isThreadLocal, AddressSpace);
   2075       NewGV->setAlignment(Alignment);
   2076       if (!Section.empty())
   2077         NewGV->setSection(Section);
   2078       NewGV->setVisibility(Visibility);
   2079       NewGV->setThreadLocal(isThreadLocal);
   2080       NewGV->setUnnamedAddr(UnnamedAddr);
   2081 
   2082       ValueList.push_back(NewGV);
   2083 
   2084       // Remember which value to use for the global initializer.
   2085       if (unsigned InitID = Record[2])
   2086         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   2087       break;
   2088     }
   2089     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   2090     //             alignment, section, visibility, gc, unnamed_addr]
   2091     case bitc::MODULE_CODE_FUNCTION: {
   2092       if (Record.size() < 8)
   2093         return Error("Invalid MODULE_CODE_FUNCTION record");
   2094       Type *Ty = getTypeByID(Record[0]);
   2095       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
   2096       if (!Ty->isPointerTy())
   2097         return Error("Function not a pointer type!");
   2098       FunctionType *FTy =
   2099         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   2100       if (!FTy)
   2101         return Error("Function not a pointer to function type!");
   2102 
   2103       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   2104                                         "", TheModule);
   2105 
   2106       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   2107       bool isProto = Record[2];
   2108       Func->setLinkage(GetDecodedLinkage(Record[3]));
   2109       Func->setAttributes(getAttributes(Record[4]));
   2110 
   2111       Func->setAlignment((1 << Record[5]) >> 1);
   2112       if (Record[6]) {
   2113         if (Record[6]-1 >= SectionTable.size())
   2114           return Error("Invalid section ID");
   2115         Func->setSection(SectionTable[Record[6]-1]);
   2116       }
   2117       Func->setVisibility(GetDecodedVisibility(Record[7]));
   2118       if (Record.size() > 8 && Record[8]) {
   2119         if (Record[8]-1 > GCTable.size())
   2120           return Error("Invalid GC ID");
   2121         Func->setGC(GCTable[Record[8]-1].c_str());
   2122       }
   2123       bool UnnamedAddr = false;
   2124       if (Record.size() > 9)
   2125         UnnamedAddr = Record[9];
   2126       Func->setUnnamedAddr(UnnamedAddr);
   2127       ValueList.push_back(Func);
   2128 
   2129       // If this is a function with a body, remember the prototype we are
   2130       // creating now, so that we can match up the body with them later.
   2131       if (!isProto)
   2132         FunctionsWithBodies.push_back(Func);
   2133       break;
   2134     }
   2135     // ALIAS: [alias type, aliasee val#, linkage]
   2136     // ALIAS: [alias type, aliasee val#, linkage, visibility]
   2137     case bitc::MODULE_CODE_ALIAS: {
   2138       if (Record.size() < 3)
   2139         return Error("Invalid MODULE_ALIAS record");
   2140       Type *Ty = getTypeByID(Record[0]);
   2141       if (!Ty) return Error("Invalid MODULE_ALIAS record");
   2142       if (!Ty->isPointerTy())
   2143         return Error("Function not a pointer type!");
   2144 
   2145       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
   2146                                            "", 0, TheModule);
   2147       // Old bitcode files didn't have visibility field.
   2148       if (Record.size() > 3)
   2149         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   2150       ValueList.push_back(NewGA);
   2151       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   2152       break;
   2153     }
   2154     /// MODULE_CODE_PURGEVALS: [numvals]
   2155     case bitc::MODULE_CODE_PURGEVALS:
   2156       // Trim down the value list to the specified size.
   2157       if (Record.size() < 1 || Record[0] > ValueList.size())
   2158         return Error("Invalid MODULE_PURGEVALS record");
   2159       ValueList.shrinkTo(Record[0]);
   2160       break;
   2161     }
   2162     Record.clear();
   2163   }
   2164 
   2165   return Error("Premature end of bitstream");
   2166 }
   2167 
   2168 bool BitcodeReader::ParseBitcodeInto(Module *M) {
   2169   TheModule = 0;
   2170 
   2171   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
   2172   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   2173 
   2174   if (Buffer->getBufferSize() & 3) {
   2175     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
   2176       return Error("Invalid bitcode signature");
   2177     else
   2178       return Error("Bitcode stream should be a multiple of 4 bytes in length");
   2179   }
   2180 
   2181   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   2182   // The magic number is 0x0B17C0DE stored in little endian.
   2183   if (isBitcodeWrapper(BufPtr, BufEnd))
   2184     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   2185       return Error("Invalid bitcode wrapper header");
   2186 
   2187   StreamFile.init(BufPtr, BufEnd);
   2188   Stream.init(StreamFile);
   2189 
   2190   // Sniff for the signature.
   2191   if (Stream.Read(8) != 'B' ||
   2192       Stream.Read(8) != 'C' ||
   2193       Stream.Read(4) != 0x0 ||
   2194       Stream.Read(4) != 0xC ||
   2195       Stream.Read(4) != 0xE ||
   2196       Stream.Read(4) != 0xD)
   2197     return Error("Invalid bitcode signature");
   2198 
   2199   // We expect a number of well-defined blocks, though we don't necessarily
   2200   // need to understand them all.
   2201   while (!Stream.AtEndOfStream()) {
   2202     unsigned Code = Stream.ReadCode();
   2203 
   2204     if (Code != bitc::ENTER_SUBBLOCK) {
   2205 
   2206       // The ranlib in xcode 4 will align archive members by appending newlines
   2207       // to the end of them. If this file size is a multiple of 4 but not 8, we
   2208       // have to read and ignore these final 4 bytes :-(
   2209       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
   2210           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   2211 	  Stream.AtEndOfStream())
   2212         return false;
   2213 
   2214       return Error("Invalid record at top-level");
   2215     }
   2216 
   2217     unsigned BlockID = Stream.ReadSubBlockID();
   2218 
   2219     // We only know the MODULE subblock ID.
   2220     switch (BlockID) {
   2221     case bitc::BLOCKINFO_BLOCK_ID:
   2222       if (Stream.ReadBlockInfoBlock())
   2223         return Error("Malformed BlockInfoBlock");
   2224       break;
   2225     case bitc::MODULE_BLOCK_ID:
   2226       // Reject multiple MODULE_BLOCK's in a single bitstream.
   2227       if (TheModule)
   2228         return Error("Multiple MODULE_BLOCKs in same stream");
   2229       TheModule = M;
   2230       if (ParseModule())
   2231         return true;
   2232       break;
   2233     default:
   2234       if (Stream.SkipBlock())
   2235         return Error("Malformed block record");
   2236       break;
   2237     }
   2238   }
   2239 
   2240   return false;
   2241 }
   2242 
   2243 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
   2244   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   2245     return Error("Malformed block record");
   2246 
   2247   SmallVector<uint64_t, 64> Record;
   2248 
   2249   // Read all the records for this module.
   2250   while (!Stream.AtEndOfStream()) {
   2251     unsigned Code = Stream.ReadCode();
   2252     if (Code == bitc::END_BLOCK) {
   2253       if (Stream.ReadBlockEnd())
   2254         return Error("Error at end of module block");
   2255 
   2256       return false;
   2257     }
   2258 
   2259     if (Code == bitc::ENTER_SUBBLOCK) {
   2260       switch (Stream.ReadSubBlockID()) {
   2261       default:  // Skip unknown content.
   2262         if (Stream.SkipBlock())
   2263           return Error("Malformed block record");
   2264         break;
   2265       }
   2266       continue;
   2267     }
   2268 
   2269     if (Code == bitc::DEFINE_ABBREV) {
   2270       Stream.ReadAbbrevRecord();
   2271       continue;
   2272     }
   2273 
   2274     // Read a record.
   2275     switch (Stream.ReadRecord(Code, Record)) {
   2276     default: break;  // Default behavior, ignore unknown content.
   2277     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
   2278       if (Record.size() < 1)
   2279         return Error("Malformed MODULE_CODE_VERSION");
   2280       // Only version #0 is supported so far.
   2281       if (Record[0] != 0)
   2282         return Error("Unknown bitstream version!");
   2283       break;
   2284     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2285       std::string S;
   2286       if (ConvertToString(Record, 0, S))
   2287         return Error("Invalid MODULE_CODE_TRIPLE record");
   2288       Triple = S;
   2289       break;
   2290     }
   2291     }
   2292     Record.clear();
   2293   }
   2294 
   2295   return Error("Premature end of bitstream");
   2296 }
   2297 
   2298 bool BitcodeReader::ParseTriple(std::string &Triple) {
   2299   if (Buffer->getBufferSize() & 3)
   2300     return Error("Bitcode stream should be a multiple of 4 bytes in length");
   2301 
   2302   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
   2303   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   2304 
   2305   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   2306   // The magic number is 0x0B17C0DE stored in little endian.
   2307   if (isBitcodeWrapper(BufPtr, BufEnd))
   2308     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   2309       return Error("Invalid bitcode wrapper header");
   2310 
   2311   StreamFile.init(BufPtr, BufEnd);
   2312   Stream.init(StreamFile);
   2313 
   2314   // Sniff for the signature.
   2315   if (Stream.Read(8) != 'B' ||
   2316       Stream.Read(8) != 'C' ||
   2317       Stream.Read(4) != 0x0 ||
   2318       Stream.Read(4) != 0xC ||
   2319       Stream.Read(4) != 0xE ||
   2320       Stream.Read(4) != 0xD)
   2321     return Error("Invalid bitcode signature");
   2322 
   2323   // We expect a number of well-defined blocks, though we don't necessarily
   2324   // need to understand them all.
   2325   while (!Stream.AtEndOfStream()) {
   2326     unsigned Code = Stream.ReadCode();
   2327 
   2328     if (Code != bitc::ENTER_SUBBLOCK)
   2329       return Error("Invalid record at top-level");
   2330 
   2331     unsigned BlockID = Stream.ReadSubBlockID();
   2332 
   2333     // We only know the MODULE subblock ID.
   2334     switch (BlockID) {
   2335     case bitc::MODULE_BLOCK_ID:
   2336       if (ParseModuleTriple(Triple))
   2337         return true;
   2338       break;
   2339     default:
   2340       if (Stream.SkipBlock())
   2341         return Error("Malformed block record");
   2342       break;
   2343     }
   2344   }
   2345 
   2346   return false;
   2347 }
   2348 
   2349 /// ParseMetadataAttachment - Parse metadata attachments.
   2350 bool BitcodeReader::ParseMetadataAttachment() {
   2351   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   2352     return Error("Malformed block record");
   2353 
   2354   SmallVector<uint64_t, 64> Record;
   2355   while(1) {
   2356     unsigned Code = Stream.ReadCode();
   2357     if (Code == bitc::END_BLOCK) {
   2358       if (Stream.ReadBlockEnd())
   2359         return Error("Error at end of PARAMATTR block");
   2360       break;
   2361     }
   2362     if (Code == bitc::DEFINE_ABBREV) {
   2363       Stream.ReadAbbrevRecord();
   2364       continue;
   2365     }
   2366     // Read a metadata attachment record.
   2367     Record.clear();
   2368     switch (Stream.ReadRecord(Code, Record)) {
   2369     default:  // Default behavior: ignore.
   2370       break;
   2371     case bitc::METADATA_ATTACHMENT: {
   2372       unsigned RecordLength = Record.size();
   2373       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   2374         return Error ("Invalid METADATA_ATTACHMENT reader!");
   2375       Instruction *Inst = InstructionList[Record[0]];
   2376       for (unsigned i = 1; i != RecordLength; i = i+2) {
   2377         unsigned Kind = Record[i];
   2378         DenseMap<unsigned, unsigned>::iterator I =
   2379           MDKindMap.find(Kind);
   2380         if (I == MDKindMap.end())
   2381           return Error("Invalid metadata kind ID");
   2382         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
   2383         Inst->setMetadata(I->second, cast<MDNode>(Node));
   2384       }
   2385       break;
   2386     }
   2387     }
   2388   }
   2389   return false;
   2390 }
   2391 
   2392 /// ParseFunctionBody - Lazily parse the specified function body block.
   2393 bool BitcodeReader::ParseFunctionBody(Function *F) {
   2394   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   2395     return Error("Malformed block record");
   2396 
   2397   InstructionList.clear();
   2398   unsigned ModuleValueListSize = ValueList.size();
   2399   unsigned ModuleMDValueListSize = MDValueList.size();
   2400 
   2401   // Add all the function arguments to the value table.
   2402   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   2403     ValueList.push_back(I);
   2404 
   2405   unsigned NextValueNo = ValueList.size();
   2406   BasicBlock *CurBB = 0;
   2407   unsigned CurBBNo = 0;
   2408 
   2409   DebugLoc LastLoc;
   2410 
   2411   // Read all the records.
   2412   SmallVector<uint64_t, 64> Record;
   2413   while (1) {
   2414     unsigned Code = Stream.ReadCode();
   2415     if (Code == bitc::END_BLOCK) {
   2416       if (Stream.ReadBlockEnd())
   2417         return Error("Error at end of function block");
   2418       break;
   2419     }
   2420 
   2421     if (Code == bitc::ENTER_SUBBLOCK) {
   2422       switch (Stream.ReadSubBlockID()) {
   2423       default:  // Skip unknown content.
   2424         if (Stream.SkipBlock())
   2425           return Error("Malformed block record");
   2426         break;
   2427       case bitc::CONSTANTS_BLOCK_ID:
   2428         if (ParseConstants()) return true;
   2429         NextValueNo = ValueList.size();
   2430         break;
   2431       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2432         if (ParseValueSymbolTable()) return true;
   2433         break;
   2434       case bitc::METADATA_ATTACHMENT_ID:
   2435         if (ParseMetadataAttachment()) return true;
   2436         break;
   2437       case bitc::METADATA_BLOCK_ID:
   2438         if (ParseMetadata()) return true;
   2439         break;
   2440       }
   2441       continue;
   2442     }
   2443 
   2444     if (Code == bitc::DEFINE_ABBREV) {
   2445       Stream.ReadAbbrevRecord();
   2446       continue;
   2447     }
   2448 
   2449     // Read a record.
   2450     Record.clear();
   2451     Instruction *I = 0;
   2452     unsigned BitCode = Stream.ReadRecord(Code, Record);
   2453     switch (BitCode) {
   2454     default: // Default behavior: reject
   2455       return Error("Unknown instruction");
   2456     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2457       if (Record.size() < 1 || Record[0] == 0)
   2458         return Error("Invalid DECLAREBLOCKS record");
   2459       // Create all the basic blocks for the function.
   2460       FunctionBBs.resize(Record[0]);
   2461       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2462         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2463       CurBB = FunctionBBs[0];
   2464       continue;
   2465 
   2466     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2467       // This record indicates that the last instruction is at the same
   2468       // location as the previous instruction with a location.
   2469       I = 0;
   2470 
   2471       // Get the last instruction emitted.
   2472       if (CurBB && !CurBB->empty())
   2473         I = &CurBB->back();
   2474       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2475                !FunctionBBs[CurBBNo-1]->empty())
   2476         I = &FunctionBBs[CurBBNo-1]->back();
   2477 
   2478       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
   2479       I->setDebugLoc(LastLoc);
   2480       I = 0;
   2481       continue;
   2482 
   2483     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2484       I = 0;     // Get the last instruction emitted.
   2485       if (CurBB && !CurBB->empty())
   2486         I = &CurBB->back();
   2487       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2488                !FunctionBBs[CurBBNo-1]->empty())
   2489         I = &FunctionBBs[CurBBNo-1]->back();
   2490       if (I == 0 || Record.size() < 4)
   2491         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
   2492 
   2493       unsigned Line = Record[0], Col = Record[1];
   2494       unsigned ScopeID = Record[2], IAID = Record[3];
   2495 
   2496       MDNode *Scope = 0, *IA = 0;
   2497       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2498       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2499       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2500       I->setDebugLoc(LastLoc);
   2501       I = 0;
   2502       continue;
   2503     }
   2504 
   2505     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2506       unsigned OpNum = 0;
   2507       Value *LHS, *RHS;
   2508       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2509           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2510           OpNum+1 > Record.size())
   2511         return Error("Invalid BINOP record");
   2512 
   2513       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2514       if (Opc == -1) return Error("Invalid BINOP record");
   2515       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2516       InstructionList.push_back(I);
   2517       if (OpNum < Record.size()) {
   2518         if (Opc == Instruction::Add ||
   2519             Opc == Instruction::Sub ||
   2520             Opc == Instruction::Mul ||
   2521             Opc == Instruction::Shl) {
   2522           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2523             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2524           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2525             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2526         } else if (Opc == Instruction::SDiv ||
   2527                    Opc == Instruction::UDiv ||
   2528                    Opc == Instruction::LShr ||
   2529                    Opc == Instruction::AShr) {
   2530           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2531             cast<BinaryOperator>(I)->setIsExact(true);
   2532         }
   2533       }
   2534       break;
   2535     }
   2536     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2537       unsigned OpNum = 0;
   2538       Value *Op;
   2539       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2540           OpNum+2 != Record.size())
   2541         return Error("Invalid CAST record");
   2542 
   2543       Type *ResTy = getTypeByID(Record[OpNum]);
   2544       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2545       if (Opc == -1 || ResTy == 0)
   2546         return Error("Invalid CAST record");
   2547       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2548       InstructionList.push_back(I);
   2549       break;
   2550     }
   2551     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
   2552     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2553       unsigned OpNum = 0;
   2554       Value *BasePtr;
   2555       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2556         return Error("Invalid GEP record");
   2557 
   2558       SmallVector<Value*, 16> GEPIdx;
   2559       while (OpNum != Record.size()) {
   2560         Value *Op;
   2561         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2562           return Error("Invalid GEP record");
   2563         GEPIdx.push_back(Op);
   2564       }
   2565 
   2566       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
   2567       InstructionList.push_back(I);
   2568       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
   2569         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2570       break;
   2571     }
   2572 
   2573     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   2574                                        // EXTRACTVAL: [opty, opval, n x indices]
   2575       unsigned OpNum = 0;
   2576       Value *Agg;
   2577       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2578         return Error("Invalid EXTRACTVAL record");
   2579 
   2580       SmallVector<unsigned, 4> EXTRACTVALIdx;
   2581       for (unsigned RecSize = Record.size();
   2582            OpNum != RecSize; ++OpNum) {
   2583         uint64_t Index = Record[OpNum];
   2584         if ((unsigned)Index != Index)
   2585           return Error("Invalid EXTRACTVAL index");
   2586         EXTRACTVALIdx.push_back((unsigned)Index);
   2587       }
   2588 
   2589       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   2590       InstructionList.push_back(I);
   2591       break;
   2592     }
   2593 
   2594     case bitc::FUNC_CODE_INST_INSERTVAL: {
   2595                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   2596       unsigned OpNum = 0;
   2597       Value *Agg;
   2598       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2599         return Error("Invalid INSERTVAL record");
   2600       Value *Val;
   2601       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   2602         return Error("Invalid INSERTVAL record");
   2603 
   2604       SmallVector<unsigned, 4> INSERTVALIdx;
   2605       for (unsigned RecSize = Record.size();
   2606            OpNum != RecSize; ++OpNum) {
   2607         uint64_t Index = Record[OpNum];
   2608         if ((unsigned)Index != Index)
   2609           return Error("Invalid INSERTVAL index");
   2610         INSERTVALIdx.push_back((unsigned)Index);
   2611       }
   2612 
   2613       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   2614       InstructionList.push_back(I);
   2615       break;
   2616     }
   2617 
   2618     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   2619       // obsolete form of select
   2620       // handles select i1 ... in old bitcode
   2621       unsigned OpNum = 0;
   2622       Value *TrueVal, *FalseVal, *Cond;
   2623       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2624           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2625           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
   2626         return Error("Invalid SELECT record");
   2627 
   2628       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2629       InstructionList.push_back(I);
   2630       break;
   2631     }
   2632 
   2633     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   2634       // new form of select
   2635       // handles select i1 or select [N x i1]
   2636       unsigned OpNum = 0;
   2637       Value *TrueVal, *FalseVal, *Cond;
   2638       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2639           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2640           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   2641         return Error("Invalid SELECT record");
   2642 
   2643       // select condition can be either i1 or [N x i1]
   2644       if (VectorType* vector_type =
   2645           dyn_cast<VectorType>(Cond->getType())) {
   2646         // expect <n x i1>
   2647         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   2648           return Error("Invalid SELECT condition type");
   2649       } else {
   2650         // expect i1
   2651         if (Cond->getType() != Type::getInt1Ty(Context))
   2652           return Error("Invalid SELECT condition type");
   2653       }
   2654 
   2655       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2656       InstructionList.push_back(I);
   2657       break;
   2658     }
   2659 
   2660     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   2661       unsigned OpNum = 0;
   2662       Value *Vec, *Idx;
   2663       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2664           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2665         return Error("Invalid EXTRACTELT record");
   2666       I = ExtractElementInst::Create(Vec, Idx);
   2667       InstructionList.push_back(I);
   2668       break;
   2669     }
   2670 
   2671     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   2672       unsigned OpNum = 0;
   2673       Value *Vec, *Elt, *Idx;
   2674       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2675           getValue(Record, OpNum,
   2676                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   2677           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2678         return Error("Invalid INSERTELT record");
   2679       I = InsertElementInst::Create(Vec, Elt, Idx);
   2680       InstructionList.push_back(I);
   2681       break;
   2682     }
   2683 
   2684     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   2685       unsigned OpNum = 0;
   2686       Value *Vec1, *Vec2, *Mask;
   2687       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   2688           getValue(Record, OpNum, Vec1->getType(), Vec2))
   2689         return Error("Invalid SHUFFLEVEC record");
   2690 
   2691       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   2692         return Error("Invalid SHUFFLEVEC record");
   2693       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   2694       InstructionList.push_back(I);
   2695       break;
   2696     }
   2697 
   2698     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   2699       // Old form of ICmp/FCmp returning bool
   2700       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   2701       // both legal on vectors but had different behaviour.
   2702     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   2703       // FCmp/ICmp returning bool or vector of bool
   2704 
   2705       unsigned OpNum = 0;
   2706       Value *LHS, *RHS;
   2707       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2708           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2709           OpNum+1 != Record.size())
   2710         return Error("Invalid CMP record");
   2711 
   2712       if (LHS->getType()->isFPOrFPVectorTy())
   2713         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   2714       else
   2715         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   2716       InstructionList.push_back(I);
   2717       break;
   2718     }
   2719 
   2720     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   2721       {
   2722         unsigned Size = Record.size();
   2723         if (Size == 0) {
   2724           I = ReturnInst::Create(Context);
   2725           InstructionList.push_back(I);
   2726           break;
   2727         }
   2728 
   2729         unsigned OpNum = 0;
   2730         Value *Op = NULL;
   2731         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2732           return Error("Invalid RET record");
   2733         if (OpNum != Record.size())
   2734           return Error("Invalid RET record");
   2735 
   2736         I = ReturnInst::Create(Context, Op);
   2737         InstructionList.push_back(I);
   2738         break;
   2739       }
   2740     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   2741       if (Record.size() != 1 && Record.size() != 3)
   2742         return Error("Invalid BR record");
   2743       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   2744       if (TrueDest == 0)
   2745         return Error("Invalid BR record");
   2746 
   2747       if (Record.size() == 1) {
   2748         I = BranchInst::Create(TrueDest);
   2749         InstructionList.push_back(I);
   2750       }
   2751       else {
   2752         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   2753         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
   2754         if (FalseDest == 0 || Cond == 0)
   2755           return Error("Invalid BR record");
   2756         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   2757         InstructionList.push_back(I);
   2758       }
   2759       break;
   2760     }
   2761     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   2762       if (Record.size() < 3 || (Record.size() & 1) == 0)
   2763         return Error("Invalid SWITCH record");
   2764       Type *OpTy = getTypeByID(Record[0]);
   2765       Value *Cond = getFnValueByID(Record[1], OpTy);
   2766       BasicBlock *Default = getBasicBlock(Record[2]);
   2767       if (OpTy == 0 || Cond == 0 || Default == 0)
   2768         return Error("Invalid SWITCH record");
   2769       unsigned NumCases = (Record.size()-3)/2;
   2770       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2771       InstructionList.push_back(SI);
   2772       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   2773         ConstantInt *CaseVal =
   2774           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   2775         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   2776         if (CaseVal == 0 || DestBB == 0) {
   2777           delete SI;
   2778           return Error("Invalid SWITCH record!");
   2779         }
   2780         SI->addCase(CaseVal, DestBB);
   2781       }
   2782       I = SI;
   2783       break;
   2784     }
   2785     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   2786       if (Record.size() < 2)
   2787         return Error("Invalid INDIRECTBR record");
   2788       Type *OpTy = getTypeByID(Record[0]);
   2789       Value *Address = getFnValueByID(Record[1], OpTy);
   2790       if (OpTy == 0 || Address == 0)
   2791         return Error("Invalid INDIRECTBR record");
   2792       unsigned NumDests = Record.size()-2;
   2793       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   2794       InstructionList.push_back(IBI);
   2795       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   2796         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   2797           IBI->addDestination(DestBB);
   2798         } else {
   2799           delete IBI;
   2800           return Error("Invalid INDIRECTBR record!");
   2801         }
   2802       }
   2803       I = IBI;
   2804       break;
   2805     }
   2806 
   2807     case bitc::FUNC_CODE_INST_INVOKE: {
   2808       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   2809       if (Record.size() < 4) return Error("Invalid INVOKE record");
   2810       AttrListPtr PAL = getAttributes(Record[0]);
   2811       unsigned CCInfo = Record[1];
   2812       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   2813       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   2814 
   2815       unsigned OpNum = 4;
   2816       Value *Callee;
   2817       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2818         return Error("Invalid INVOKE record");
   2819 
   2820       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   2821       FunctionType *FTy = !CalleeTy ? 0 :
   2822         dyn_cast<FunctionType>(CalleeTy->getElementType());
   2823 
   2824       // Check that the right number of fixed parameters are here.
   2825       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
   2826           Record.size() < OpNum+FTy->getNumParams())
   2827         return Error("Invalid INVOKE record");
   2828 
   2829       SmallVector<Value*, 16> Ops;
   2830       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2831         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   2832         if (Ops.back() == 0) return Error("Invalid INVOKE record");
   2833       }
   2834 
   2835       if (!FTy->isVarArg()) {
   2836         if (Record.size() != OpNum)
   2837           return Error("Invalid INVOKE record");
   2838       } else {
   2839         // Read type/value pairs for varargs params.
   2840         while (OpNum != Record.size()) {
   2841           Value *Op;
   2842           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2843             return Error("Invalid INVOKE record");
   2844           Ops.push_back(Op);
   2845         }
   2846       }
   2847 
   2848       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   2849       InstructionList.push_back(I);
   2850       cast<InvokeInst>(I)->setCallingConv(
   2851         static_cast<CallingConv::ID>(CCInfo));
   2852       cast<InvokeInst>(I)->setAttributes(PAL);
   2853       break;
   2854     }
   2855     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   2856       unsigned Idx = 0;
   2857       Value *Val = 0;
   2858       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   2859         return Error("Invalid RESUME record");
   2860       I = ResumeInst::Create(Val);
   2861       InstructionList.push_back(I);
   2862       break;
   2863     }
   2864     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
   2865       // 'unwind' instruction has been removed in LLVM 3.1
   2866       // Replace 'unwind' with 'landingpad' and 'resume'.
   2867       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
   2868                                     Type::getInt32Ty(Context), NULL);
   2869       Constant *PersFn =
   2870         F->getParent()->
   2871         getOrInsertFunction("__gcc_personality_v0",
   2872                           FunctionType::get(Type::getInt32Ty(Context), true));
   2873 
   2874       LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
   2875       LP->setCleanup(true);
   2876 
   2877       CurBB->getInstList().push_back(LP);
   2878       I = ResumeInst::Create(LP);
   2879       InstructionList.push_back(I);
   2880       break;
   2881     }
   2882     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   2883       I = new UnreachableInst(Context);
   2884       InstructionList.push_back(I);
   2885       break;
   2886     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   2887       if (Record.size() < 1 || ((Record.size()-1)&1))
   2888         return Error("Invalid PHI record");
   2889       Type *Ty = getTypeByID(Record[0]);
   2890       if (!Ty) return Error("Invalid PHI record");
   2891 
   2892       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   2893       InstructionList.push_back(PN);
   2894 
   2895       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   2896         Value *V = getFnValueByID(Record[1+i], Ty);
   2897         BasicBlock *BB = getBasicBlock(Record[2+i]);
   2898         if (!V || !BB) return Error("Invalid PHI record");
   2899         PN->addIncoming(V, BB);
   2900       }
   2901       I = PN;
   2902       break;
   2903     }
   2904 
   2905     case bitc::FUNC_CODE_INST_LANDINGPAD: {
   2906       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   2907       unsigned Idx = 0;
   2908       if (Record.size() < 4)
   2909         return Error("Invalid LANDINGPAD record");
   2910       Type *Ty = getTypeByID(Record[Idx++]);
   2911       if (!Ty) return Error("Invalid LANDINGPAD record");
   2912       Value *PersFn = 0;
   2913       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   2914         return Error("Invalid LANDINGPAD record");
   2915 
   2916       bool IsCleanup = !!Record[Idx++];
   2917       unsigned NumClauses = Record[Idx++];
   2918       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
   2919       LP->setCleanup(IsCleanup);
   2920       for (unsigned J = 0; J != NumClauses; ++J) {
   2921         LandingPadInst::ClauseType CT =
   2922           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   2923         Value *Val;
   2924 
   2925         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   2926           delete LP;
   2927           return Error("Invalid LANDINGPAD record");
   2928         }
   2929 
   2930         assert((CT != LandingPadInst::Catch ||
   2931                 !isa<ArrayType>(Val->getType())) &&
   2932                "Catch clause has a invalid type!");
   2933         assert((CT != LandingPadInst::Filter ||
   2934                 isa<ArrayType>(Val->getType())) &&
   2935                "Filter clause has invalid type!");
   2936         LP->addClause(Val);
   2937       }
   2938 
   2939       I = LP;
   2940       InstructionList.push_back(I);
   2941       break;
   2942     }
   2943 
   2944     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   2945       if (Record.size() != 4)
   2946         return Error("Invalid ALLOCA record");
   2947       PointerType *Ty =
   2948         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   2949       Type *OpTy = getTypeByID(Record[1]);
   2950       Value *Size = getFnValueByID(Record[2], OpTy);
   2951       unsigned Align = Record[3];
   2952       if (!Ty || !Size) return Error("Invalid ALLOCA record");
   2953       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   2954       InstructionList.push_back(I);
   2955       break;
   2956     }
   2957     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   2958       unsigned OpNum = 0;
   2959       Value *Op;
   2960       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2961           OpNum+2 != Record.size())
   2962         return Error("Invalid LOAD record");
   2963 
   2964       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2965       InstructionList.push_back(I);
   2966       break;
   2967     }
   2968     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   2969        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   2970       unsigned OpNum = 0;
   2971       Value *Op;
   2972       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2973           OpNum+4 != Record.size())
   2974         return Error("Invalid LOADATOMIC record");
   2975 
   2976 
   2977       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2978       if (Ordering == NotAtomic || Ordering == Release ||
   2979           Ordering == AcquireRelease)
   2980         return Error("Invalid LOADATOMIC record");
   2981       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2982         return Error("Invalid LOADATOMIC record");
   2983       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2984 
   2985       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2986                        Ordering, SynchScope);
   2987       InstructionList.push_back(I);
   2988       break;
   2989     }
   2990     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   2991       unsigned OpNum = 0;
   2992       Value *Val, *Ptr;
   2993       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2994           getValue(Record, OpNum,
   2995                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2996           OpNum+2 != Record.size())
   2997         return Error("Invalid STORE record");
   2998 
   2999       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   3000       InstructionList.push_back(I);
   3001       break;
   3002     }
   3003     case bitc::FUNC_CODE_INST_STOREATOMIC: {
   3004       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   3005       unsigned OpNum = 0;
   3006       Value *Val, *Ptr;
   3007       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3008           getValue(Record, OpNum,
   3009                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3010           OpNum+4 != Record.size())
   3011         return Error("Invalid STOREATOMIC record");
   3012 
   3013       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3014       if (Ordering == NotAtomic || Ordering == Acquire ||
   3015           Ordering == AcquireRelease)
   3016         return Error("Invalid STOREATOMIC record");
   3017       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3018       if (Ordering != NotAtomic && Record[OpNum] == 0)
   3019         return Error("Invalid STOREATOMIC record");
   3020 
   3021       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   3022                         Ordering, SynchScope);
   3023       InstructionList.push_back(I);
   3024       break;
   3025     }
   3026     case bitc::FUNC_CODE_INST_CMPXCHG: {
   3027       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
   3028       unsigned OpNum = 0;
   3029       Value *Ptr, *Cmp, *New;
   3030       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3031           getValue(Record, OpNum,
   3032                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
   3033           getValue(Record, OpNum,
   3034                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
   3035           OpNum+3 != Record.size())
   3036         return Error("Invalid CMPXCHG record");
   3037       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
   3038       if (Ordering == NotAtomic || Ordering == Unordered)
   3039         return Error("Invalid CMPXCHG record");
   3040       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
   3041       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
   3042       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   3043       InstructionList.push_back(I);
   3044       break;
   3045     }
   3046     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   3047       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   3048       unsigned OpNum = 0;
   3049       Value *Ptr, *Val;
   3050       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3051           getValue(Record, OpNum,
   3052                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3053           OpNum+4 != Record.size())
   3054         return Error("Invalid ATOMICRMW record");
   3055       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
   3056       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   3057           Operation > AtomicRMWInst::LAST_BINOP)
   3058         return Error("Invalid ATOMICRMW record");
   3059       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3060       if (Ordering == NotAtomic || Ordering == Unordered)
   3061         return Error("Invalid ATOMICRMW record");
   3062       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3063       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   3064       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   3065       InstructionList.push_back(I);
   3066       break;
   3067     }
   3068     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   3069       if (2 != Record.size())
   3070         return Error("Invalid FENCE record");
   3071       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
   3072       if (Ordering == NotAtomic || Ordering == Unordered ||
   3073           Ordering == Monotonic)
   3074         return Error("Invalid FENCE record");
   3075       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
   3076       I = new FenceInst(Context, Ordering, SynchScope);
   3077       InstructionList.push_back(I);
   3078       break;
   3079     }
   3080     case bitc::FUNC_CODE_INST_CALL: {
   3081       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   3082       if (Record.size() < 3)
   3083         return Error("Invalid CALL record");
   3084 
   3085       AttrListPtr PAL = getAttributes(Record[0]);
   3086       unsigned CCInfo = Record[1];
   3087 
   3088       unsigned OpNum = 2;
   3089       Value *Callee;
   3090       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   3091         return Error("Invalid CALL record");
   3092 
   3093       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   3094       FunctionType *FTy = 0;
   3095       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   3096       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   3097         return Error("Invalid CALL record");
   3098 
   3099       SmallVector<Value*, 16> Args;
   3100       // Read the fixed params.
   3101       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   3102         if (FTy->getParamType(i)->isLabelTy())
   3103           Args.push_back(getBasicBlock(Record[OpNum]));
   3104         else
   3105           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   3106         if (Args.back() == 0) return Error("Invalid CALL record");
   3107       }
   3108 
   3109       // Read type/value pairs for varargs params.
   3110       if (!FTy->isVarArg()) {
   3111         if (OpNum != Record.size())
   3112           return Error("Invalid CALL record");
   3113       } else {
   3114         while (OpNum != Record.size()) {
   3115           Value *Op;
   3116           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3117             return Error("Invalid CALL record");
   3118           Args.push_back(Op);
   3119         }
   3120       }
   3121 
   3122       I = CallInst::Create(Callee, Args);
   3123       InstructionList.push_back(I);
   3124       cast<CallInst>(I)->setCallingConv(
   3125         static_cast<CallingConv::ID>(CCInfo>>1));
   3126       cast<CallInst>(I)->setTailCall(CCInfo & 1);
   3127       cast<CallInst>(I)->setAttributes(PAL);
   3128       break;
   3129     }
   3130     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   3131       if (Record.size() < 3)
   3132         return Error("Invalid VAARG record");
   3133       Type *OpTy = getTypeByID(Record[0]);
   3134       Value *Op = getFnValueByID(Record[1], OpTy);
   3135       Type *ResTy = getTypeByID(Record[2]);
   3136       if (!OpTy || !Op || !ResTy)
   3137         return Error("Invalid VAARG record");
   3138       I = new VAArgInst(Op, ResTy);
   3139       InstructionList.push_back(I);
   3140       break;
   3141     }
   3142     }
   3143 
   3144     // Add instruction to end of current BB.  If there is no current BB, reject
   3145     // this file.
   3146     if (CurBB == 0) {
   3147       delete I;
   3148       return Error("Invalid instruction with no BB");
   3149     }
   3150     CurBB->getInstList().push_back(I);
   3151 
   3152     // If this was a terminator instruction, move to the next block.
   3153     if (isa<TerminatorInst>(I)) {
   3154       ++CurBBNo;
   3155       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
   3156     }
   3157 
   3158     // Non-void values get registered in the value table for future use.
   3159     if (I && !I->getType()->isVoidTy())
   3160       ValueList.AssignValue(I, NextValueNo++);
   3161   }
   3162 
   3163   // Check the function list for unresolved values.
   3164   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   3165     if (A->getParent() == 0) {
   3166       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   3167       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   3168         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
   3169           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   3170           delete A;
   3171         }
   3172       }
   3173       return Error("Never resolved value found in function!");
   3174     }
   3175   }
   3176 
   3177   // FIXME: Check for unresolved forward-declared metadata references
   3178   // and clean up leaks.
   3179 
   3180   // See if anything took the address of blocks in this function.  If so,
   3181   // resolve them now.
   3182   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   3183     BlockAddrFwdRefs.find(F);
   3184   if (BAFRI != BlockAddrFwdRefs.end()) {
   3185     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   3186     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   3187       unsigned BlockIdx = RefList[i].first;
   3188       if (BlockIdx >= FunctionBBs.size())
   3189         return Error("Invalid blockaddress block #");
   3190 
   3191       GlobalVariable *FwdRef = RefList[i].second;
   3192       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   3193       FwdRef->eraseFromParent();
   3194     }
   3195 
   3196     BlockAddrFwdRefs.erase(BAFRI);
   3197   }
   3198 
   3199   // Trim the value list down to the size it was before we parsed this function.
   3200   ValueList.shrinkTo(ModuleValueListSize);
   3201   MDValueList.shrinkTo(ModuleMDValueListSize);
   3202   std::vector<BasicBlock*>().swap(FunctionBBs);
   3203   return false;
   3204 }
   3205 
   3206 //===----------------------------------------------------------------------===//
   3207 // GVMaterializer implementation
   3208 //===----------------------------------------------------------------------===//
   3209 
   3210 
   3211 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
   3212   if (const Function *F = dyn_cast<Function>(GV)) {
   3213     return F->isDeclaration() &&
   3214       DeferredFunctionInfo.count(const_cast<Function*>(F));
   3215   }
   3216   return false;
   3217 }
   3218 
   3219 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
   3220   Function *F = dyn_cast<Function>(GV);
   3221   // If it's not a function or is already material, ignore the request.
   3222   if (!F || !F->isMaterializable()) return false;
   3223 
   3224   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   3225   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   3226 
   3227   // Move the bit stream to the saved position of the deferred function body.
   3228   Stream.JumpToBit(DFII->second);
   3229 
   3230   if (ParseFunctionBody(F)) {
   3231     if (ErrInfo) *ErrInfo = ErrorString;
   3232     return true;
   3233   }
   3234 
   3235   // Upgrade any old intrinsic calls in the function.
   3236   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   3237        E = UpgradedIntrinsics.end(); I != E; ++I) {
   3238     if (I->first != I->second) {
   3239       for (Value::use_iterator UI = I->first->use_begin(),
   3240            UE = I->first->use_end(); UI != UE; ) {
   3241         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3242           UpgradeIntrinsicCall(CI, I->second);
   3243       }
   3244     }
   3245   }
   3246 
   3247   return false;
   3248 }
   3249 
   3250 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   3251   const Function *F = dyn_cast<Function>(GV);
   3252   if (!F || F->isDeclaration())
   3253     return false;
   3254   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   3255 }
   3256 
   3257 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   3258   Function *F = dyn_cast<Function>(GV);
   3259   // If this function isn't dematerializable, this is a noop.
   3260   if (!F || !isDematerializable(F))
   3261     return;
   3262 
   3263   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   3264 
   3265   // Just forget the function body, we can remat it later.
   3266   F->deleteBody();
   3267 }
   3268 
   3269 
   3270 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
   3271   assert(M == TheModule &&
   3272          "Can only Materialize the Module this BitcodeReader is attached to.");
   3273   // Iterate over the module, deserializing any functions that are still on
   3274   // disk.
   3275   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   3276        F != E; ++F)
   3277     if (F->isMaterializable() &&
   3278         Materialize(F, ErrInfo))
   3279       return true;
   3280 
   3281   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   3282   // delete the old functions to clean up. We can't do this unless the entire
   3283   // module is materialized because there could always be another function body
   3284   // with calls to the old function.
   3285   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   3286        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   3287     if (I->first != I->second) {
   3288       for (Value::use_iterator UI = I->first->use_begin(),
   3289            UE = I->first->use_end(); UI != UE; ) {
   3290         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3291           UpgradeIntrinsicCall(CI, I->second);
   3292       }
   3293       if (!I->first->use_empty())
   3294         I->first->replaceAllUsesWith(I->second);
   3295       I->first->eraseFromParent();
   3296     }
   3297   }
   3298   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   3299 
   3300   // Upgrade to new EH scheme. N.B. This will go away in 3.1.
   3301   UpgradeExceptionHandling(M);
   3302 
   3303   // Check debug info intrinsics.
   3304   CheckDebugInfoIntrinsics(TheModule);
   3305 
   3306   return false;
   3307 }
   3308 
   3309 
   3310 //===----------------------------------------------------------------------===//
   3311 // External interface
   3312 //===----------------------------------------------------------------------===//
   3313 
   3314 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   3315 ///
   3316 Module *llvm_3_0::getLazyBitcodeModule(MemoryBuffer *Buffer,
   3317                                        LLVMContext& Context,
   3318                                        std::string *ErrMsg) {
   3319   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   3320   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3321   M->setMaterializer(R);
   3322   if (R->ParseBitcodeInto(M)) {
   3323     if (ErrMsg)
   3324       *ErrMsg = R->getErrorString();
   3325 
   3326     delete M;  // Also deletes R.
   3327     return 0;
   3328   }
   3329   // Have the BitcodeReader dtor delete 'Buffer'.
   3330   R->setBufferOwned(true);
   3331   return M;
   3332 }
   3333 
   3334 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
   3335 /// If an error occurs, return null and fill in *ErrMsg if non-null.
   3336 Module *llvm_3_0::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
   3337                                    std::string *ErrMsg){
   3338   Module *M = llvm_3_0::getLazyBitcodeModule(Buffer, Context, ErrMsg);
   3339   if (!M) return 0;
   3340 
   3341   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
   3342   // there was an error.
   3343   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
   3344 
   3345   // Read in the entire module, and destroy the BitcodeReader.
   3346   if (M->MaterializeAllPermanently(ErrMsg)) {
   3347     delete M;
   3348     return 0;
   3349   }
   3350 
   3351   return M;
   3352 }
   3353 
   3354 std::string llvm_3_0::getBitcodeTargetTriple(MemoryBuffer *Buffer,
   3355                                              LLVMContext& Context,
   3356                                              std::string *ErrMsg) {
   3357   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3358   // Don't let the BitcodeReader dtor delete 'Buffer'.
   3359   R->setBufferOwned(false);
   3360 
   3361   std::string Triple("");
   3362   if (R->ParseTriple(Triple))
   3363     if (ErrMsg)
   3364       *ErrMsg = R->getErrorString();
   3365 
   3366   delete R;
   3367   return Triple;
   3368 }
   3369