1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 #include <errno.h> 17 #include <string.h> 18 #include <stdint.h> 19 20 #include <keystore.h> 21 22 #include <hardware/hardware.h> 23 #include <hardware/keymaster.h> 24 25 #include <openssl/evp.h> 26 #include <openssl/bio.h> 27 #include <openssl/rsa.h> 28 #include <openssl/err.h> 29 #include <openssl/x509.h> 30 31 #include <utils/UniquePtr.h> 32 33 // For debugging 34 //#define LOG_NDEBUG 0 35 36 #define LOG_TAG "OpenSSLKeyMaster" 37 #include <cutils/log.h> 38 39 struct BIGNUM_Delete { 40 void operator()(BIGNUM* p) const { 41 BN_free(p); 42 } 43 }; 44 typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; 45 46 struct EVP_PKEY_Delete { 47 void operator()(EVP_PKEY* p) const { 48 EVP_PKEY_free(p); 49 } 50 }; 51 typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; 52 53 struct PKCS8_PRIV_KEY_INFO_Delete { 54 void operator()(PKCS8_PRIV_KEY_INFO* p) const { 55 PKCS8_PRIV_KEY_INFO_free(p); 56 } 57 }; 58 typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; 59 60 struct RSA_Delete { 61 void operator()(RSA* p) const { 62 RSA_free(p); 63 } 64 }; 65 typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; 66 67 typedef UniquePtr<keymaster_device_t> Unique_keymaster_device_t; 68 69 /** 70 * Many OpenSSL APIs take ownership of an argument on success but don't free the argument 71 * on failure. This means we need to tell our scoped pointers when we've transferred ownership, 72 * without triggering a warning by not using the result of release(). 73 */ 74 #define OWNERSHIP_TRANSFERRED(obj) \ 75 typeof (obj.release()) _dummy __attribute__((unused)) = obj.release() 76 77 78 /* 79 * Checks this thread's OpenSSL error queue and logs if 80 * necessary. 81 */ 82 static void logOpenSSLError(const char* location) { 83 int error = ERR_get_error(); 84 85 if (error != 0) { 86 char message[256]; 87 ERR_error_string_n(error, message, sizeof(message)); 88 ALOGE("OpenSSL error in %s %d: %s", location, error, message); 89 } 90 91 ERR_clear_error(); 92 ERR_remove_state(0); 93 } 94 95 static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { 96 /* Find the length of each size */ 97 int publicLen = i2d_PublicKey(pkey, NULL); 98 int privateLen = i2d_PrivateKey(pkey, NULL); 99 100 if (privateLen <= 0 || publicLen <= 0) { 101 ALOGE("private or public key size was too big"); 102 return -1; 103 } 104 105 /* int type + int size + private key data + int size + public key data */ 106 *keyBlobLength = get_softkey_header_size() + sizeof(int) + sizeof(int) + privateLen 107 + sizeof(int) + publicLen; 108 109 UniquePtr<unsigned char[]> derData(new unsigned char[*keyBlobLength]); 110 if (derData.get() == NULL) { 111 ALOGE("could not allocate memory for key blob"); 112 return -1; 113 } 114 unsigned char* p = derData.get(); 115 116 /* Write the magic value for software keys. */ 117 p = add_softkey_header(p, *keyBlobLength); 118 119 /* Write key type to allocated buffer */ 120 for (int i = sizeof(int) - 1; i >= 0; i--) { 121 *p++ = (type >> (8*i)) & 0xFF; 122 } 123 124 /* Write public key to allocated buffer */ 125 for (int i = sizeof(int) - 1; i >= 0; i--) { 126 *p++ = (publicLen >> (8*i)) & 0xFF; 127 } 128 if (i2d_PublicKey(pkey, &p) != publicLen) { 129 logOpenSSLError("wrap_key"); 130 return -1; 131 } 132 133 /* Write private key to allocated buffer */ 134 for (int i = sizeof(int) - 1; i >= 0; i--) { 135 *p++ = (privateLen >> (8*i)) & 0xFF; 136 } 137 if (i2d_PrivateKey(pkey, &p) != privateLen) { 138 logOpenSSLError("wrap_key"); 139 return -1; 140 } 141 142 *keyBlob = derData.release(); 143 144 return 0; 145 } 146 147 static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { 148 long publicLen = 0; 149 long privateLen = 0; 150 const uint8_t* p = keyBlob; 151 const uint8_t *const end = keyBlob + keyBlobLength; 152 153 if (keyBlob == NULL) { 154 ALOGE("supplied key blob was NULL"); 155 return NULL; 156 } 157 158 // Should be large enough for: 159 // int32 magic, int32 type, int32 pubLen, char* pub, int32 privLen, char* priv 160 if (keyBlobLength < (get_softkey_header_size() + sizeof(int) + sizeof(int) + 1 161 + sizeof(int) + 1)) { 162 ALOGE("key blob appears to be truncated"); 163 return NULL; 164 } 165 166 if (!is_softkey(p, keyBlobLength)) { 167 ALOGE("cannot read key; it was not made by this keymaster"); 168 return NULL; 169 } 170 p += get_softkey_header_size(); 171 172 int type = 0; 173 for (size_t i = 0; i < sizeof(int); i++) { 174 type = (type << 8) | *p++; 175 } 176 177 Unique_EVP_PKEY pkey(EVP_PKEY_new()); 178 if (pkey.get() == NULL) { 179 logOpenSSLError("unwrap_key"); 180 return NULL; 181 } 182 183 for (size_t i = 0; i < sizeof(int); i++) { 184 publicLen = (publicLen << 8) | *p++; 185 } 186 if (p + publicLen > end) { 187 ALOGE("public key length encoding error: size=%ld, end=%d", publicLen, end - p); 188 return NULL; 189 } 190 EVP_PKEY* tmp = pkey.get(); 191 d2i_PublicKey(type, &tmp, &p, publicLen); 192 193 if (end - p < 2) { 194 ALOGE("private key truncated"); 195 return NULL; 196 } 197 for (size_t i = 0; i < sizeof(int); i++) { 198 privateLen = (privateLen << 8) | *p++; 199 } 200 if (p + privateLen > end) { 201 ALOGE("private key length encoding error: size=%ld, end=%d", privateLen, end - p); 202 return NULL; 203 } 204 d2i_PrivateKey(type, &tmp, &p, privateLen); 205 206 return pkey.release(); 207 } 208 209 static int openssl_generate_keypair(const keymaster_device_t* dev, 210 const keymaster_keypair_t key_type, const void* key_params, 211 uint8_t** keyBlob, size_t* keyBlobLength) { 212 ssize_t privateLen, publicLen; 213 214 if (key_type != TYPE_RSA) { 215 ALOGW("Unsupported key type %d", key_type); 216 return -1; 217 } else if (key_params == NULL) { 218 ALOGW("key_params == null"); 219 return -1; 220 } 221 222 keymaster_rsa_keygen_params_t* rsa_params = (keymaster_rsa_keygen_params_t*) key_params; 223 224 Unique_BIGNUM bn(BN_new()); 225 if (bn.get() == NULL) { 226 logOpenSSLError("openssl_generate_keypair"); 227 return -1; 228 } 229 230 if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { 231 logOpenSSLError("openssl_generate_keypair"); 232 return -1; 233 } 234 235 /* initialize RSA */ 236 Unique_RSA rsa(RSA_new()); 237 if (rsa.get() == NULL) { 238 logOpenSSLError("openssl_generate_keypair"); 239 return -1; 240 } 241 242 if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) 243 || RSA_check_key(rsa.get()) < 0) { 244 logOpenSSLError("openssl_generate_keypair"); 245 return -1; 246 } 247 248 /* assign to EVP */ 249 Unique_EVP_PKEY pkey(EVP_PKEY_new()); 250 if (pkey.get() == NULL) { 251 logOpenSSLError("openssl_generate_keypair"); 252 return -1; 253 } 254 255 if (EVP_PKEY_assign_RSA(pkey.get(), rsa.get()) == 0) { 256 logOpenSSLError("openssl_generate_keypair"); 257 return -1; 258 } 259 OWNERSHIP_TRANSFERRED(rsa); 260 261 if (wrap_key(pkey.get(), EVP_PKEY_RSA, keyBlob, keyBlobLength)) { 262 return -1; 263 } 264 265 return 0; 266 } 267 268 static int openssl_import_keypair(const keymaster_device_t* dev, 269 const uint8_t* key, const size_t key_length, 270 uint8_t** key_blob, size_t* key_blob_length) { 271 int response = -1; 272 273 if (key == NULL) { 274 ALOGW("input key == NULL"); 275 return -1; 276 } else if (key_blob == NULL || key_blob_length == NULL) { 277 ALOGW("output key blob or length == NULL"); 278 return -1; 279 } 280 281 Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); 282 if (pkcs8.get() == NULL) { 283 logOpenSSLError("openssl_import_keypair"); 284 return -1; 285 } 286 287 /* assign to EVP */ 288 Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); 289 if (pkey.get() == NULL) { 290 logOpenSSLError("openssl_import_keypair"); 291 return -1; 292 } 293 OWNERSHIP_TRANSFERRED(pkcs8); 294 295 if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { 296 return -1; 297 } 298 299 return 0; 300 } 301 302 static int openssl_get_keypair_public(const struct keymaster_device* dev, 303 const uint8_t* key_blob, const size_t key_blob_length, 304 uint8_t** x509_data, size_t* x509_data_length) { 305 306 if (x509_data == NULL || x509_data_length == NULL) { 307 ALOGW("output public key buffer == NULL"); 308 return -1; 309 } 310 311 Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); 312 if (pkey.get() == NULL) { 313 return -1; 314 } 315 316 int len = i2d_PUBKEY(pkey.get(), NULL); 317 if (len <= 0) { 318 logOpenSSLError("openssl_get_keypair_public"); 319 return -1; 320 } 321 322 UniquePtr<uint8_t> key(static_cast<uint8_t*>(malloc(len))); 323 if (key.get() == NULL) { 324 ALOGE("Could not allocate memory for public key data"); 325 return -1; 326 } 327 328 unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); 329 if (i2d_PUBKEY(pkey.get(), &tmp) != len) { 330 logOpenSSLError("openssl_get_keypair_public"); 331 return -1; 332 } 333 334 ALOGV("Length of x509 data is %d", len); 335 *x509_data_length = len; 336 *x509_data = key.release(); 337 338 return 0; 339 } 340 341 static int openssl_sign_data(const keymaster_device_t* dev, 342 const void* params, 343 const uint8_t* keyBlob, const size_t keyBlobLength, 344 const uint8_t* data, const size_t dataLength, 345 uint8_t** signedData, size_t* signedDataLength) { 346 347 int result = -1; 348 EVP_MD_CTX ctx; 349 size_t maxSize; 350 351 if (data == NULL) { 352 ALOGW("input data to sign == NULL"); 353 return -1; 354 } else if (signedData == NULL || signedDataLength == NULL) { 355 ALOGW("output signature buffer == NULL"); 356 return -1; 357 } 358 359 Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); 360 if (pkey.get() == NULL) { 361 return -1; 362 } 363 364 if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { 365 ALOGW("Cannot handle non-RSA keys yet"); 366 return -1; 367 } 368 369 keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; 370 if (sign_params->digest_type != DIGEST_NONE) { 371 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 372 return -1; 373 } else if (sign_params->padding_type != PADDING_NONE) { 374 ALOGW("Cannot handle padding type %d", sign_params->padding_type); 375 return -1; 376 } 377 378 Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); 379 if (rsa.get() == NULL) { 380 logOpenSSLError("openssl_sign_data"); 381 return -1; 382 } 383 384 UniquePtr<uint8_t> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); 385 if (signedDataPtr.get() == NULL) { 386 logOpenSSLError("openssl_sign_data"); 387 return -1; 388 } 389 390 unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); 391 if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { 392 logOpenSSLError("openssl_sign_data"); 393 return -1; 394 } 395 396 *signedDataLength = dataLength; 397 *signedData = signedDataPtr.release(); 398 return 0; 399 } 400 401 static int openssl_verify_data(const keymaster_device_t* dev, 402 const void* params, 403 const uint8_t* keyBlob, const size_t keyBlobLength, 404 const uint8_t* signedData, const size_t signedDataLength, 405 const uint8_t* signature, const size_t signatureLength) { 406 407 if (signedData == NULL || signature == NULL) { 408 ALOGW("data or signature buffers == NULL"); 409 return -1; 410 } 411 412 Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); 413 if (pkey.get() == NULL) { 414 return -1; 415 } 416 417 if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { 418 ALOGW("Cannot handle non-RSA keys yet"); 419 return -1; 420 } 421 422 keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; 423 if (sign_params->digest_type != DIGEST_NONE) { 424 ALOGW("Cannot handle digest type %d", sign_params->digest_type); 425 return -1; 426 } else if (sign_params->padding_type != PADDING_NONE) { 427 ALOGW("Cannot handle padding type %d", sign_params->padding_type); 428 return -1; 429 } else if (signatureLength != signedDataLength) { 430 ALOGW("signed data length must be signature length"); 431 return -1; 432 } 433 434 Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); 435 if (rsa.get() == NULL) { 436 logOpenSSLError("openssl_verify_data"); 437 return -1; 438 } 439 440 UniquePtr<uint8_t> dataPtr(reinterpret_cast<uint8_t*>(malloc(signedDataLength))); 441 if (dataPtr.get() == NULL) { 442 logOpenSSLError("openssl_verify_data"); 443 return -1; 444 } 445 446 unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); 447 if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { 448 logOpenSSLError("openssl_verify_data"); 449 return -1; 450 } 451 452 int result = 0; 453 for (size_t i = 0; i < signedDataLength; i++) { 454 result |= tmp[i] ^ signedData[i]; 455 } 456 457 return result == 0 ? 0 : -1; 458 } 459 460 /* Close an opened OpenSSL instance */ 461 static int openssl_close(hw_device_t *dev) { 462 free(dev); 463 return 0; 464 } 465 466 /* 467 * Generic device handling 468 */ 469 static int openssl_open(const hw_module_t* module, const char* name, 470 hw_device_t** device) { 471 if (strcmp(name, KEYSTORE_KEYMASTER) != 0) 472 return -EINVAL; 473 474 Unique_keymaster_device_t dev(new keymaster_device_t); 475 if (dev.get() == NULL) 476 return -ENOMEM; 477 478 dev->common.tag = HARDWARE_DEVICE_TAG; 479 dev->common.version = 1; 480 dev->common.module = (struct hw_module_t*) module; 481 dev->common.close = openssl_close; 482 483 dev->flags = KEYMASTER_SOFTWARE_ONLY; 484 485 dev->generate_keypair = openssl_generate_keypair; 486 dev->import_keypair = openssl_import_keypair; 487 dev->get_keypair_public = openssl_get_keypair_public; 488 dev->delete_keypair = NULL; 489 dev->delete_all = NULL; 490 dev->sign_data = openssl_sign_data; 491 dev->verify_data = openssl_verify_data; 492 493 ERR_load_crypto_strings(); 494 ERR_load_BIO_strings(); 495 496 *device = reinterpret_cast<hw_device_t*>(dev.release()); 497 498 return 0; 499 } 500 501 static struct hw_module_methods_t keystore_module_methods = { 502 open: openssl_open, 503 }; 504 505 struct keystore_module HAL_MODULE_INFO_SYM 506 __attribute__ ((visibility ("default"))) = { 507 common: { 508 tag: HARDWARE_MODULE_TAG, 509 version_major: 1, 510 version_minor: 0, 511 id: KEYSTORE_HARDWARE_MODULE_ID, 512 name: "Keymaster OpenSSL HAL", 513 author: "The Android Open Source Project", 514 methods: &keystore_module_methods, 515 dso: 0, 516 reserved: {}, 517 }, 518 }; 519