Home | History | Annotate | Download | only in VMCore
      1 //===-- Value.cpp - Implement the Value class -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Value, ValueHandle, and User classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLVMContextImpl.h"
     15 #include "llvm/Constant.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/InstrTypes.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Operator.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/ValueSymbolTable.h"
     23 #include "llvm/ADT/SmallString.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/GetElementPtrTypeIterator.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/LeakDetector.h"
     28 #include "llvm/Support/ManagedStatic.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 //===----------------------------------------------------------------------===//
     35 //                                Value Class
     36 //===----------------------------------------------------------------------===//
     37 
     38 static inline Type *checkType(Type *Ty) {
     39   assert(Ty && "Value defined with a null type: Error!");
     40   return const_cast<Type*>(Ty);
     41 }
     42 
     43 Value::Value(Type *ty, unsigned scid)
     44   : SubclassID(scid), HasValueHandle(0),
     45     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
     46     UseList(0), Name(0) {
     47   // FIXME: Why isn't this in the subclass gunk??
     48   if (isa<CallInst>(this) || isa<InvokeInst>(this))
     49     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
     50            "invalid CallInst type!");
     51   else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
     52     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
     53            "Cannot create non-first-class values except for constants!");
     54 }
     55 
     56 Value::~Value() {
     57   // Notify all ValueHandles (if present) that this value is going away.
     58   if (HasValueHandle)
     59     ValueHandleBase::ValueIsDeleted(this);
     60 
     61 #ifndef NDEBUG      // Only in -g mode...
     62   // Check to make sure that there are no uses of this value that are still
     63   // around when the value is destroyed.  If there are, then we have a dangling
     64   // reference and something is wrong.  This code is here to print out what is
     65   // still being referenced.  The value in question should be printed as
     66   // a <badref>
     67   //
     68   if (!use_empty()) {
     69     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
     70     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
     71       dbgs() << "Use still stuck around after Def is destroyed:"
     72            << **I << "\n";
     73   }
     74 #endif
     75   assert(use_empty() && "Uses remain when a value is destroyed!");
     76 
     77   // If this value is named, destroy the name.  This should not be in a symtab
     78   // at this point.
     79   if (Name && SubclassID != MDStringVal)
     80     Name->Destroy();
     81 
     82   // There should be no uses of this object anymore, remove it.
     83   LeakDetector::removeGarbageObject(this);
     84 }
     85 
     86 /// hasNUses - Return true if this Value has exactly N users.
     87 ///
     88 bool Value::hasNUses(unsigned N) const {
     89   const_use_iterator UI = use_begin(), E = use_end();
     90 
     91   for (; N; --N, ++UI)
     92     if (UI == E) return false;  // Too few.
     93   return UI == E;
     94 }
     95 
     96 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
     97 /// logically equivalent to getNumUses() >= N.
     98 ///
     99 bool Value::hasNUsesOrMore(unsigned N) const {
    100   const_use_iterator UI = use_begin(), E = use_end();
    101 
    102   for (; N; --N, ++UI)
    103     if (UI == E) return false;  // Too few.
    104 
    105   return true;
    106 }
    107 
    108 /// isUsedInBasicBlock - Return true if this value is used in the specified
    109 /// basic block.
    110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
    111   // Start by scanning over the instructions looking for a use before we start
    112   // the expensive use iteration.
    113   unsigned MaxBlockSize = 3;
    114   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    115     if (std::find(I->op_begin(), I->op_end(), this) != I->op_end())
    116       return true;
    117     if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator
    118       break;
    119   }
    120 
    121   if (MaxBlockSize != 0) // We scanned the entire block and found no use.
    122     return false;
    123 
    124   for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
    125     const Instruction *User = dyn_cast<Instruction>(*I);
    126     if (User && User->getParent() == BB)
    127       return true;
    128   }
    129   return false;
    130 }
    131 
    132 
    133 /// getNumUses - This method computes the number of uses of this Value.  This
    134 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
    135 /// values.
    136 unsigned Value::getNumUses() const {
    137   return (unsigned)std::distance(use_begin(), use_end());
    138 }
    139 
    140 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
    141   ST = 0;
    142   if (Instruction *I = dyn_cast<Instruction>(V)) {
    143     if (BasicBlock *P = I->getParent())
    144       if (Function *PP = P->getParent())
    145         ST = &PP->getValueSymbolTable();
    146   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    147     if (Function *P = BB->getParent())
    148       ST = &P->getValueSymbolTable();
    149   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    150     if (Module *P = GV->getParent())
    151       ST = &P->getValueSymbolTable();
    152   } else if (Argument *A = dyn_cast<Argument>(V)) {
    153     if (Function *P = A->getParent())
    154       ST = &P->getValueSymbolTable();
    155   } else if (isa<MDString>(V))
    156     return true;
    157   else {
    158     assert(isa<Constant>(V) && "Unknown value type!");
    159     return true;  // no name is setable for this.
    160   }
    161   return false;
    162 }
    163 
    164 StringRef Value::getName() const {
    165   // Make sure the empty string is still a C string. For historical reasons,
    166   // some clients want to call .data() on the result and expect it to be null
    167   // terminated.
    168   if (!Name) return StringRef("", 0);
    169   return Name->getKey();
    170 }
    171 
    172 void Value::setName(const Twine &NewName) {
    173   assert(SubclassID != MDStringVal &&
    174          "Cannot set the name of MDString with this method!");
    175 
    176   // Fast path for common IRBuilder case of setName("") when there is no name.
    177   if (NewName.isTriviallyEmpty() && !hasName())
    178     return;
    179 
    180   SmallString<256> NameData;
    181   StringRef NameRef = NewName.toStringRef(NameData);
    182 
    183   // Name isn't changing?
    184   if (getName() == NameRef)
    185     return;
    186 
    187   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
    188 
    189   // Get the symbol table to update for this object.
    190   ValueSymbolTable *ST;
    191   if (getSymTab(this, ST))
    192     return;  // Cannot set a name on this value (e.g. constant).
    193 
    194   if (!ST) { // No symbol table to update?  Just do the change.
    195     if (NameRef.empty()) {
    196       // Free the name for this value.
    197       Name->Destroy();
    198       Name = 0;
    199       return;
    200     }
    201 
    202     if (Name)
    203       Name->Destroy();
    204 
    205     // NOTE: Could optimize for the case the name is shrinking to not deallocate
    206     // then reallocated.
    207 
    208     // Create the new name.
    209     Name = ValueName::Create(NameRef.begin(), NameRef.end());
    210     Name->setValue(this);
    211     return;
    212   }
    213 
    214   // NOTE: Could optimize for the case the name is shrinking to not deallocate
    215   // then reallocated.
    216   if (hasName()) {
    217     // Remove old name.
    218     ST->removeValueName(Name);
    219     Name->Destroy();
    220     Name = 0;
    221 
    222     if (NameRef.empty())
    223       return;
    224   }
    225 
    226   // Name is changing to something new.
    227   Name = ST->createValueName(NameRef, this);
    228 }
    229 
    230 
    231 /// takeName - transfer the name from V to this value, setting V's name to
    232 /// empty.  It is an error to call V->takeName(V).
    233 void Value::takeName(Value *V) {
    234   assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
    235 
    236   ValueSymbolTable *ST = 0;
    237   // If this value has a name, drop it.
    238   if (hasName()) {
    239     // Get the symtab this is in.
    240     if (getSymTab(this, ST)) {
    241       // We can't set a name on this value, but we need to clear V's name if
    242       // it has one.
    243       if (V->hasName()) V->setName("");
    244       return;  // Cannot set a name on this value (e.g. constant).
    245     }
    246 
    247     // Remove old name.
    248     if (ST)
    249       ST->removeValueName(Name);
    250     Name->Destroy();
    251     Name = 0;
    252   }
    253 
    254   // Now we know that this has no name.
    255 
    256   // If V has no name either, we're done.
    257   if (!V->hasName()) return;
    258 
    259   // Get this's symtab if we didn't before.
    260   if (!ST) {
    261     if (getSymTab(this, ST)) {
    262       // Clear V's name.
    263       V->setName("");
    264       return;  // Cannot set a name on this value (e.g. constant).
    265     }
    266   }
    267 
    268   // Get V's ST, this should always succed, because V has a name.
    269   ValueSymbolTable *VST;
    270   bool Failure = getSymTab(V, VST);
    271   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
    272 
    273   // If these values are both in the same symtab, we can do this very fast.
    274   // This works even if both values have no symtab yet.
    275   if (ST == VST) {
    276     // Take the name!
    277     Name = V->Name;
    278     V->Name = 0;
    279     Name->setValue(this);
    280     return;
    281   }
    282 
    283   // Otherwise, things are slightly more complex.  Remove V's name from VST and
    284   // then reinsert it into ST.
    285 
    286   if (VST)
    287     VST->removeValueName(V->Name);
    288   Name = V->Name;
    289   V->Name = 0;
    290   Name->setValue(this);
    291 
    292   if (ST)
    293     ST->reinsertValue(this);
    294 }
    295 
    296 
    297 void Value::replaceAllUsesWith(Value *New) {
    298   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
    299   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
    300   assert(New->getType() == getType() &&
    301          "replaceAllUses of value with new value of different type!");
    302 
    303   // Notify all ValueHandles (if present) that this value is going away.
    304   if (HasValueHandle)
    305     ValueHandleBase::ValueIsRAUWd(this, New);
    306 
    307   while (!use_empty()) {
    308     Use &U = *UseList;
    309     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    310     // constant because they are uniqued.
    311     if (Constant *C = dyn_cast<Constant>(U.getUser())) {
    312       if (!isa<GlobalValue>(C)) {
    313         C->replaceUsesOfWithOnConstant(this, New, &U);
    314         continue;
    315       }
    316     }
    317 
    318     U.set(New);
    319   }
    320 
    321   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    322     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
    323 }
    324 
    325 namespace {
    326 // Various metrics for how much to strip off of pointers.
    327 enum PointerStripKind {
    328   PSK_ZeroIndices,
    329   PSK_InBoundsConstantIndices,
    330   PSK_InBounds
    331 };
    332 
    333 template <PointerStripKind StripKind>
    334 static Value *stripPointerCastsAndOffsets(Value *V) {
    335   if (!V->getType()->isPointerTy())
    336     return V;
    337 
    338   // Even though we don't look through PHI nodes, we could be called on an
    339   // instruction in an unreachable block, which may be on a cycle.
    340   SmallPtrSet<Value *, 4> Visited;
    341 
    342   Visited.insert(V);
    343   do {
    344     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    345       switch (StripKind) {
    346       case PSK_ZeroIndices:
    347         if (!GEP->hasAllZeroIndices())
    348           return V;
    349         break;
    350       case PSK_InBoundsConstantIndices:
    351         if (!GEP->hasAllConstantIndices())
    352           return V;
    353         // fallthrough
    354       case PSK_InBounds:
    355         if (!GEP->isInBounds())
    356           return V;
    357         break;
    358       }
    359       V = GEP->getPointerOperand();
    360     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    361       V = cast<Operator>(V)->getOperand(0);
    362     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    363       if (GA->mayBeOverridden())
    364         return V;
    365       V = GA->getAliasee();
    366     } else {
    367       return V;
    368     }
    369     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    370   } while (Visited.insert(V));
    371 
    372   return V;
    373 }
    374 } // namespace
    375 
    376 Value *Value::stripPointerCasts() {
    377   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
    378 }
    379 
    380 Value *Value::stripInBoundsConstantOffsets() {
    381   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
    382 }
    383 
    384 Value *Value::stripInBoundsOffsets() {
    385   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
    386 }
    387 
    388 /// isDereferenceablePointer - Test if this value is always a pointer to
    389 /// allocated and suitably aligned memory for a simple load or store.
    390 static bool isDereferenceablePointer(const Value *V,
    391                                      SmallPtrSet<const Value *, 32> &Visited) {
    392   // Note that it is not safe to speculate into a malloc'd region because
    393   // malloc may return null.
    394   // It's also not always safe to follow a bitcast, for example:
    395   //   bitcast i8* (alloca i8) to i32*
    396   // would result in a 4-byte load from a 1-byte alloca. Some cases could
    397   // be handled using TargetData to check sizes and alignments though.
    398 
    399   // These are obviously ok.
    400   if (isa<AllocaInst>(V)) return true;
    401 
    402   // Global variables which can't collapse to null are ok.
    403   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    404     return !GV->hasExternalWeakLinkage();
    405 
    406   // byval arguments are ok.
    407   if (const Argument *A = dyn_cast<Argument>(V))
    408     return A->hasByValAttr();
    409 
    410   // For GEPs, determine if the indexing lands within the allocated object.
    411   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    412     // Conservatively require that the base pointer be fully dereferenceable.
    413     if (!Visited.insert(GEP->getOperand(0)))
    414       return false;
    415     if (!isDereferenceablePointer(GEP->getOperand(0), Visited))
    416       return false;
    417     // Check the indices.
    418     gep_type_iterator GTI = gep_type_begin(GEP);
    419     for (User::const_op_iterator I = GEP->op_begin()+1,
    420          E = GEP->op_end(); I != E; ++I) {
    421       Value *Index = *I;
    422       Type *Ty = *GTI++;
    423       // Struct indices can't be out of bounds.
    424       if (isa<StructType>(Ty))
    425         continue;
    426       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
    427       if (!CI)
    428         return false;
    429       // Zero is always ok.
    430       if (CI->isZero())
    431         continue;
    432       // Check to see that it's within the bounds of an array.
    433       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
    434       if (!ATy)
    435         return false;
    436       if (CI->getValue().getActiveBits() > 64)
    437         return false;
    438       if (CI->getZExtValue() >= ATy->getNumElements())
    439         return false;
    440     }
    441     // Indices check out; this is dereferenceable.
    442     return true;
    443   }
    444 
    445   // If we don't know, assume the worst.
    446   return false;
    447 }
    448 
    449 /// isDereferenceablePointer - Test if this value is always a pointer to
    450 /// allocated and suitably aligned memory for a simple load or store.
    451 bool Value::isDereferenceablePointer() const {
    452   SmallPtrSet<const Value *, 32> Visited;
    453   return ::isDereferenceablePointer(this, Visited);
    454 }
    455 
    456 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
    457 /// return the value in the PHI node corresponding to PredBB.  If not, return
    458 /// ourself.  This is useful if you want to know the value something has in a
    459 /// predecessor block.
    460 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
    461                                const BasicBlock *PredBB) {
    462   PHINode *PN = dyn_cast<PHINode>(this);
    463   if (PN && PN->getParent() == CurBB)
    464     return PN->getIncomingValueForBlock(PredBB);
    465   return this;
    466 }
    467 
    468 LLVMContext &Value::getContext() const { return VTy->getContext(); }
    469 
    470 //===----------------------------------------------------------------------===//
    471 //                             ValueHandleBase Class
    472 //===----------------------------------------------------------------------===//
    473 
    474 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
    475 /// List is known to point into the existing use list.
    476 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
    477   assert(List && "Handle list is null?");
    478 
    479   // Splice ourselves into the list.
    480   Next = *List;
    481   *List = this;
    482   setPrevPtr(List);
    483   if (Next) {
    484     Next->setPrevPtr(&Next);
    485     assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
    486   }
    487 }
    488 
    489 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
    490   assert(List && "Must insert after existing node");
    491 
    492   Next = List->Next;
    493   setPrevPtr(&List->Next);
    494   List->Next = this;
    495   if (Next)
    496     Next->setPrevPtr(&Next);
    497 }
    498 
    499 /// AddToUseList - Add this ValueHandle to the use list for VP.
    500 void ValueHandleBase::AddToUseList() {
    501   assert(VP.getPointer() && "Null pointer doesn't have a use list!");
    502 
    503   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
    504 
    505   if (VP.getPointer()->HasValueHandle) {
    506     // If this value already has a ValueHandle, then it must be in the
    507     // ValueHandles map already.
    508     ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
    509     assert(Entry != 0 && "Value doesn't have any handles?");
    510     AddToExistingUseList(&Entry);
    511     return;
    512   }
    513 
    514   // Ok, it doesn't have any handles yet, so we must insert it into the
    515   // DenseMap.  However, doing this insertion could cause the DenseMap to
    516   // reallocate itself, which would invalidate all of the PrevP pointers that
    517   // point into the old table.  Handle this by checking for reallocation and
    518   // updating the stale pointers only if needed.
    519   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    520   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
    521 
    522   ValueHandleBase *&Entry = Handles[VP.getPointer()];
    523   assert(Entry == 0 && "Value really did already have handles?");
    524   AddToExistingUseList(&Entry);
    525   VP.getPointer()->HasValueHandle = true;
    526 
    527   // If reallocation didn't happen or if this was the first insertion, don't
    528   // walk the table.
    529   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
    530       Handles.size() == 1) {
    531     return;
    532   }
    533 
    534   // Okay, reallocation did happen.  Fix the Prev Pointers.
    535   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
    536        E = Handles.end(); I != E; ++I) {
    537     assert(I->second && I->first == I->second->VP.getPointer() &&
    538            "List invariant broken!");
    539     I->second->setPrevPtr(&I->second);
    540   }
    541 }
    542 
    543 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
    544 void ValueHandleBase::RemoveFromUseList() {
    545   assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
    546          "Pointer doesn't have a use list!");
    547 
    548   // Unlink this from its use list.
    549   ValueHandleBase **PrevPtr = getPrevPtr();
    550   assert(*PrevPtr == this && "List invariant broken");
    551 
    552   *PrevPtr = Next;
    553   if (Next) {
    554     assert(Next->getPrevPtr() == &Next && "List invariant broken");
    555     Next->setPrevPtr(PrevPtr);
    556     return;
    557   }
    558 
    559   // If the Next pointer was null, then it is possible that this was the last
    560   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
    561   // map.
    562   LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
    563   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    564   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    565     Handles.erase(VP.getPointer());
    566     VP.getPointer()->HasValueHandle = false;
    567   }
    568 }
    569 
    570 
    571 void ValueHandleBase::ValueIsDeleted(Value *V) {
    572   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
    573 
    574   // Get the linked list base, which is guaranteed to exist since the
    575   // HasValueHandle flag is set.
    576   LLVMContextImpl *pImpl = V->getContext().pImpl;
    577   ValueHandleBase *Entry = pImpl->ValueHandles[V];
    578   assert(Entry && "Value bit set but no entries exist");
    579 
    580   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
    581   // and remove themselves from the list without breaking our iteration.  This
    582   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
    583   // Note that we deliberately do not the support the case when dropping a value
    584   // handle results in a new value handle being permanently added to the list
    585   // (as might occur in theory for CallbackVH's): the new value handle will not
    586   // be processed and the checking code will mete out righteous punishment if
    587   // the handle is still present once we have finished processing all the other
    588   // value handles (it is fine to momentarily add then remove a value handle).
    589   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    590     Iterator.RemoveFromUseList();
    591     Iterator.AddToExistingUseListAfter(Entry);
    592     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    593 
    594     switch (Entry->getKind()) {
    595     case Assert:
    596       break;
    597     case Tracking:
    598       // Mark that this value has been deleted by setting it to an invalid Value
    599       // pointer.
    600       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
    601       break;
    602     case Weak:
    603       // Weak just goes to null, which will unlink it from the list.
    604       Entry->operator=(0);
    605       break;
    606     case Callback:
    607       // Forward to the subclass's implementation.
    608       static_cast<CallbackVH*>(Entry)->deleted();
    609       break;
    610     }
    611   }
    612 
    613   // All callbacks, weak references, and assertingVHs should be dropped by now.
    614   if (V->HasValueHandle) {
    615 #ifndef NDEBUG      // Only in +Asserts mode...
    616     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
    617            << "\n";
    618     if (pImpl->ValueHandles[V]->getKind() == Assert)
    619       llvm_unreachable("An asserting value handle still pointed to this"
    620                        " value!");
    621 
    622 #endif
    623     llvm_unreachable("All references to V were not removed?");
    624   }
    625 }
    626 
    627 
    628 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
    629   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
    630   assert(Old != New && "Changing value into itself!");
    631 
    632   // Get the linked list base, which is guaranteed to exist since the
    633   // HasValueHandle flag is set.
    634   LLVMContextImpl *pImpl = Old->getContext().pImpl;
    635   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
    636 
    637   assert(Entry && "Value bit set but no entries exist");
    638 
    639   // We use a local ValueHandleBase as an iterator so that
    640   // ValueHandles can add and remove themselves from the list without
    641   // breaking our iteration.  This is not really an AssertingVH; we
    642   // just have to give ValueHandleBase some kind.
    643   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    644     Iterator.RemoveFromUseList();
    645     Iterator.AddToExistingUseListAfter(Entry);
    646     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    647 
    648     switch (Entry->getKind()) {
    649     case Assert:
    650       // Asserting handle does not follow RAUW implicitly.
    651       break;
    652     case Tracking:
    653       // Tracking goes to new value like a WeakVH. Note that this may make it
    654       // something incompatible with its templated type. We don't want to have a
    655       // virtual (or inline) interface to handle this though, so instead we make
    656       // the TrackingVH accessors guarantee that a client never sees this value.
    657 
    658       // FALLTHROUGH
    659     case Weak:
    660       // Weak goes to the new value, which will unlink it from Old's list.
    661       Entry->operator=(New);
    662       break;
    663     case Callback:
    664       // Forward to the subclass's implementation.
    665       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
    666       break;
    667     }
    668   }
    669 
    670 #ifndef NDEBUG
    671   // If any new tracking or weak value handles were added while processing the
    672   // list, then complain about it now.
    673   if (Old->HasValueHandle)
    674     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
    675       switch (Entry->getKind()) {
    676       case Tracking:
    677       case Weak:
    678         dbgs() << "After RAUW from " << *Old->getType() << " %"
    679                << Old->getName() << " to " << *New->getType() << " %"
    680                << New->getName() << "\n";
    681         llvm_unreachable("A tracking or weak value handle still pointed to the"
    682                          " old value!\n");
    683       default:
    684         break;
    685       }
    686 #endif
    687 }
    688 
    689 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
    690 /// more than once.
    691 CallbackVH::~CallbackVH() {}
    692