Home | History | Annotate | Download | only in ARM
      1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ARM-specific support for the FastISel class. Some
     11 // of the target-specific code is generated by tablegen in the file
     12 // ARMGenFastISel.inc, which is #included here.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "ARM.h"
     17 #include "ARMBaseInstrInfo.h"
     18 #include "ARMCallingConv.h"
     19 #include "ARMTargetMachine.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMConstantPoolValue.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "llvm/CallingConv.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/GlobalVariable.h"
     26 #include "llvm/Instructions.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/Module.h"
     29 #include "llvm/Operator.h"
     30 #include "llvm/CodeGen/Analysis.h"
     31 #include "llvm/CodeGen/FastISel.h"
     32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineModuleInfo.h"
     35 #include "llvm/CodeGen/MachineConstantPool.h"
     36 #include "llvm/CodeGen/MachineFrameInfo.h"
     37 #include "llvm/CodeGen/MachineMemOperand.h"
     38 #include "llvm/CodeGen/MachineRegisterInfo.h"
     39 #include "llvm/Support/CallSite.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/GetElementPtrTypeIterator.h"
     43 #include "llvm/Target/TargetData.h"
     44 #include "llvm/Target/TargetInstrInfo.h"
     45 #include "llvm/Target/TargetLowering.h"
     46 #include "llvm/Target/TargetMachine.h"
     47 #include "llvm/Target/TargetOptions.h"
     48 using namespace llvm;
     49 
     50 static cl::opt<bool>
     51 DisableARMFastISel("disable-arm-fast-isel",
     52                     cl::desc("Turn off experimental ARM fast-isel support"),
     53                     cl::init(false), cl::Hidden);
     54 
     55 extern cl::opt<bool> EnableARMLongCalls;
     56 
     57 namespace {
     58 
     59   // All possible address modes, plus some.
     60   typedef struct Address {
     61     enum {
     62       RegBase,
     63       FrameIndexBase
     64     } BaseType;
     65 
     66     union {
     67       unsigned Reg;
     68       int FI;
     69     } Base;
     70 
     71     int Offset;
     72 
     73     // Innocuous defaults for our address.
     74     Address()
     75      : BaseType(RegBase), Offset(0) {
     76        Base.Reg = 0;
     77      }
     78   } Address;
     79 
     80 class ARMFastISel : public FastISel {
     81 
     82   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
     83   /// make the right decision when generating code for different targets.
     84   const ARMSubtarget *Subtarget;
     85   const TargetMachine &TM;
     86   const TargetInstrInfo &TII;
     87   const TargetLowering &TLI;
     88   ARMFunctionInfo *AFI;
     89 
     90   // Convenience variables to avoid some queries.
     91   bool isThumb2;
     92   LLVMContext *Context;
     93 
     94   public:
     95     explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
     96     : FastISel(funcInfo),
     97       TM(funcInfo.MF->getTarget()),
     98       TII(*TM.getInstrInfo()),
     99       TLI(*TM.getTargetLowering()) {
    100       Subtarget = &TM.getSubtarget<ARMSubtarget>();
    101       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
    102       isThumb2 = AFI->isThumbFunction();
    103       Context = &funcInfo.Fn->getContext();
    104     }
    105 
    106     // Code from FastISel.cpp.
    107     virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
    108                                    const TargetRegisterClass *RC);
    109     virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
    110                                     const TargetRegisterClass *RC,
    111                                     unsigned Op0, bool Op0IsKill);
    112     virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
    113                                      const TargetRegisterClass *RC,
    114                                      unsigned Op0, bool Op0IsKill,
    115                                      unsigned Op1, bool Op1IsKill);
    116     virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
    117                                       const TargetRegisterClass *RC,
    118                                       unsigned Op0, bool Op0IsKill,
    119                                       unsigned Op1, bool Op1IsKill,
    120                                       unsigned Op2, bool Op2IsKill);
    121     virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
    122                                      const TargetRegisterClass *RC,
    123                                      unsigned Op0, bool Op0IsKill,
    124                                      uint64_t Imm);
    125     virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
    126                                      const TargetRegisterClass *RC,
    127                                      unsigned Op0, bool Op0IsKill,
    128                                      const ConstantFP *FPImm);
    129     virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
    130                                       const TargetRegisterClass *RC,
    131                                       unsigned Op0, bool Op0IsKill,
    132                                       unsigned Op1, bool Op1IsKill,
    133                                       uint64_t Imm);
    134     virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
    135                                     const TargetRegisterClass *RC,
    136                                     uint64_t Imm);
    137     virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
    138                                      const TargetRegisterClass *RC,
    139                                      uint64_t Imm1, uint64_t Imm2);
    140 
    141     virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
    142                                                 unsigned Op0, bool Op0IsKill,
    143                                                 uint32_t Idx);
    144 
    145     // Backend specific FastISel code.
    146     virtual bool TargetSelectInstruction(const Instruction *I);
    147     virtual unsigned TargetMaterializeConstant(const Constant *C);
    148     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
    149     virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
    150                                const LoadInst *LI);
    151 
    152   #include "ARMGenFastISel.inc"
    153 
    154     // Instruction selection routines.
    155   private:
    156     bool SelectLoad(const Instruction *I);
    157     bool SelectStore(const Instruction *I);
    158     bool SelectBranch(const Instruction *I);
    159     bool SelectIndirectBr(const Instruction *I);
    160     bool SelectCmp(const Instruction *I);
    161     bool SelectFPExt(const Instruction *I);
    162     bool SelectFPTrunc(const Instruction *I);
    163     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
    164     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
    165     bool SelectIToFP(const Instruction *I, bool isSigned);
    166     bool SelectFPToI(const Instruction *I, bool isSigned);
    167     bool SelectDiv(const Instruction *I, bool isSigned);
    168     bool SelectRem(const Instruction *I, bool isSigned);
    169     bool SelectCall(const Instruction *I, const char *IntrMemName);
    170     bool SelectIntrinsicCall(const IntrinsicInst &I);
    171     bool SelectSelect(const Instruction *I);
    172     bool SelectRet(const Instruction *I);
    173     bool SelectTrunc(const Instruction *I);
    174     bool SelectIntExt(const Instruction *I);
    175 
    176     // Utility routines.
    177   private:
    178     bool isTypeLegal(Type *Ty, MVT &VT);
    179     bool isLoadTypeLegal(Type *Ty, MVT &VT);
    180     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
    181                     bool isZExt);
    182     bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
    183                      unsigned Alignment = 0, bool isZExt = true,
    184                      bool allocReg = true);
    185 
    186     bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
    187                       unsigned Alignment = 0);
    188     bool ARMComputeAddress(const Value *Obj, Address &Addr);
    189     void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
    190     bool ARMIsMemCpySmall(uint64_t Len);
    191     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
    192     unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
    193     unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
    194     unsigned ARMMaterializeInt(const Constant *C, EVT VT);
    195     unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
    196     unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
    197     unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
    198     unsigned ARMSelectCallOp(const GlobalValue *GV);
    199 
    200     // Call handling routines.
    201   private:
    202     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
    203     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
    204                          SmallVectorImpl<unsigned> &ArgRegs,
    205                          SmallVectorImpl<MVT> &ArgVTs,
    206                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
    207                          SmallVectorImpl<unsigned> &RegArgs,
    208                          CallingConv::ID CC,
    209                          unsigned &NumBytes);
    210     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
    211                     const Instruction *I, CallingConv::ID CC,
    212                     unsigned &NumBytes);
    213     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
    214 
    215     // OptionalDef handling routines.
    216   private:
    217     bool isARMNEONPred(const MachineInstr *MI);
    218     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
    219     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
    220     void AddLoadStoreOperands(EVT VT, Address &Addr,
    221                               const MachineInstrBuilder &MIB,
    222                               unsigned Flags, bool useAM3);
    223 };
    224 
    225 } // end anonymous namespace
    226 
    227 #include "ARMGenCallingConv.inc"
    228 
    229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
    230 // we don't care about implicit defs here, just places we'll need to add a
    231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
    232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
    233   if (!MI->hasOptionalDef())
    234     return false;
    235 
    236   // Look to see if our OptionalDef is defining CPSR or CCR.
    237   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    238     const MachineOperand &MO = MI->getOperand(i);
    239     if (!MO.isReg() || !MO.isDef()) continue;
    240     if (MO.getReg() == ARM::CPSR)
    241       *CPSR = true;
    242   }
    243   return true;
    244 }
    245 
    246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
    247   const MCInstrDesc &MCID = MI->getDesc();
    248 
    249   // If we're a thumb2 or not NEON function we were handled via isPredicable.
    250   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
    251        AFI->isThumb2Function())
    252     return false;
    253 
    254   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
    255     if (MCID.OpInfo[i].isPredicate())
    256       return true;
    257 
    258   return false;
    259 }
    260 
    261 // If the machine is predicable go ahead and add the predicate operands, if
    262 // it needs default CC operands add those.
    263 // TODO: If we want to support thumb1 then we'll need to deal with optional
    264 // CPSR defs that need to be added before the remaining operands. See s_cc_out
    265 // for descriptions why.
    266 const MachineInstrBuilder &
    267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
    268   MachineInstr *MI = &*MIB;
    269 
    270   // Do we use a predicate? or...
    271   // Are we NEON in ARM mode and have a predicate operand? If so, I know
    272   // we're not predicable but add it anyways.
    273   if (TII.isPredicable(MI) || isARMNEONPred(MI))
    274     AddDefaultPred(MIB);
    275 
    276   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
    277   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
    278   bool CPSR = false;
    279   if (DefinesOptionalPredicate(MI, &CPSR)) {
    280     if (CPSR)
    281       AddDefaultT1CC(MIB);
    282     else
    283       AddDefaultCC(MIB);
    284   }
    285   return MIB;
    286 }
    287 
    288 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
    289                                     const TargetRegisterClass* RC) {
    290   unsigned ResultReg = createResultReg(RC);
    291   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    292 
    293   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
    294   return ResultReg;
    295 }
    296 
    297 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
    298                                      const TargetRegisterClass *RC,
    299                                      unsigned Op0, bool Op0IsKill) {
    300   unsigned ResultReg = createResultReg(RC);
    301   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    302 
    303   if (II.getNumDefs() >= 1) {
    304     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    305                    .addReg(Op0, Op0IsKill * RegState::Kill));
    306   } else {
    307     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    308                    .addReg(Op0, Op0IsKill * RegState::Kill));
    309     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    310                    TII.get(TargetOpcode::COPY), ResultReg)
    311                    .addReg(II.ImplicitDefs[0]));
    312   }
    313   return ResultReg;
    314 }
    315 
    316 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
    317                                       const TargetRegisterClass *RC,
    318                                       unsigned Op0, bool Op0IsKill,
    319                                       unsigned Op1, bool Op1IsKill) {
    320   unsigned ResultReg = createResultReg(RC);
    321   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    322 
    323   if (II.getNumDefs() >= 1) {
    324     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    325                    .addReg(Op0, Op0IsKill * RegState::Kill)
    326                    .addReg(Op1, Op1IsKill * RegState::Kill));
    327   } else {
    328     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    329                    .addReg(Op0, Op0IsKill * RegState::Kill)
    330                    .addReg(Op1, Op1IsKill * RegState::Kill));
    331     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    332                            TII.get(TargetOpcode::COPY), ResultReg)
    333                    .addReg(II.ImplicitDefs[0]));
    334   }
    335   return ResultReg;
    336 }
    337 
    338 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
    339                                        const TargetRegisterClass *RC,
    340                                        unsigned Op0, bool Op0IsKill,
    341                                        unsigned Op1, bool Op1IsKill,
    342                                        unsigned Op2, bool Op2IsKill) {
    343   unsigned ResultReg = createResultReg(RC);
    344   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    345 
    346   if (II.getNumDefs() >= 1) {
    347     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    348                    .addReg(Op0, Op0IsKill * RegState::Kill)
    349                    .addReg(Op1, Op1IsKill * RegState::Kill)
    350                    .addReg(Op2, Op2IsKill * RegState::Kill));
    351   } else {
    352     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    353                    .addReg(Op0, Op0IsKill * RegState::Kill)
    354                    .addReg(Op1, Op1IsKill * RegState::Kill)
    355                    .addReg(Op2, Op2IsKill * RegState::Kill));
    356     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    357                            TII.get(TargetOpcode::COPY), ResultReg)
    358                    .addReg(II.ImplicitDefs[0]));
    359   }
    360   return ResultReg;
    361 }
    362 
    363 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
    364                                       const TargetRegisterClass *RC,
    365                                       unsigned Op0, bool Op0IsKill,
    366                                       uint64_t Imm) {
    367   unsigned ResultReg = createResultReg(RC);
    368   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    369 
    370   if (II.getNumDefs() >= 1) {
    371     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    372                    .addReg(Op0, Op0IsKill * RegState::Kill)
    373                    .addImm(Imm));
    374   } else {
    375     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    376                    .addReg(Op0, Op0IsKill * RegState::Kill)
    377                    .addImm(Imm));
    378     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    379                            TII.get(TargetOpcode::COPY), ResultReg)
    380                    .addReg(II.ImplicitDefs[0]));
    381   }
    382   return ResultReg;
    383 }
    384 
    385 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
    386                                       const TargetRegisterClass *RC,
    387                                       unsigned Op0, bool Op0IsKill,
    388                                       const ConstantFP *FPImm) {
    389   unsigned ResultReg = createResultReg(RC);
    390   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    391 
    392   if (II.getNumDefs() >= 1) {
    393     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    394                    .addReg(Op0, Op0IsKill * RegState::Kill)
    395                    .addFPImm(FPImm));
    396   } else {
    397     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    398                    .addReg(Op0, Op0IsKill * RegState::Kill)
    399                    .addFPImm(FPImm));
    400     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    401                            TII.get(TargetOpcode::COPY), ResultReg)
    402                    .addReg(II.ImplicitDefs[0]));
    403   }
    404   return ResultReg;
    405 }
    406 
    407 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
    408                                        const TargetRegisterClass *RC,
    409                                        unsigned Op0, bool Op0IsKill,
    410                                        unsigned Op1, bool Op1IsKill,
    411                                        uint64_t Imm) {
    412   unsigned ResultReg = createResultReg(RC);
    413   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    414 
    415   if (II.getNumDefs() >= 1) {
    416     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    417                    .addReg(Op0, Op0IsKill * RegState::Kill)
    418                    .addReg(Op1, Op1IsKill * RegState::Kill)
    419                    .addImm(Imm));
    420   } else {
    421     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    422                    .addReg(Op0, Op0IsKill * RegState::Kill)
    423                    .addReg(Op1, Op1IsKill * RegState::Kill)
    424                    .addImm(Imm));
    425     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    426                            TII.get(TargetOpcode::COPY), ResultReg)
    427                    .addReg(II.ImplicitDefs[0]));
    428   }
    429   return ResultReg;
    430 }
    431 
    432 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
    433                                      const TargetRegisterClass *RC,
    434                                      uint64_t Imm) {
    435   unsigned ResultReg = createResultReg(RC);
    436   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    437 
    438   if (II.getNumDefs() >= 1) {
    439     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    440                    .addImm(Imm));
    441   } else {
    442     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    443                    .addImm(Imm));
    444     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    445                            TII.get(TargetOpcode::COPY), ResultReg)
    446                    .addReg(II.ImplicitDefs[0]));
    447   }
    448   return ResultReg;
    449 }
    450 
    451 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
    452                                       const TargetRegisterClass *RC,
    453                                       uint64_t Imm1, uint64_t Imm2) {
    454   unsigned ResultReg = createResultReg(RC);
    455   const MCInstrDesc &II = TII.get(MachineInstOpcode);
    456 
    457   if (II.getNumDefs() >= 1) {
    458     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
    459                     .addImm(Imm1).addImm(Imm2));
    460   } else {
    461     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
    462                     .addImm(Imm1).addImm(Imm2));
    463     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    464                             TII.get(TargetOpcode::COPY),
    465                             ResultReg)
    466                     .addReg(II.ImplicitDefs[0]));
    467   }
    468   return ResultReg;
    469 }
    470 
    471 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
    472                                                  unsigned Op0, bool Op0IsKill,
    473                                                  uint32_t Idx) {
    474   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
    475   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
    476          "Cannot yet extract from physregs");
    477 
    478   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
    479                           DL, TII.get(TargetOpcode::COPY), ResultReg)
    480                   .addReg(Op0, getKillRegState(Op0IsKill), Idx));
    481   return ResultReg;
    482 }
    483 
    484 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
    485 // checks from the various callers.
    486 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
    487   if (VT == MVT::f64) return 0;
    488 
    489   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    490   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    491                           TII.get(ARM::VMOVSR), MoveReg)
    492                   .addReg(SrcReg));
    493   return MoveReg;
    494 }
    495 
    496 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
    497   if (VT == MVT::i64) return 0;
    498 
    499   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
    500   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    501                           TII.get(ARM::VMOVRS), MoveReg)
    502                   .addReg(SrcReg));
    503   return MoveReg;
    504 }
    505 
    506 // For double width floating point we need to materialize two constants
    507 // (the high and the low) into integer registers then use a move to get
    508 // the combined constant into an FP reg.
    509 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
    510   const APFloat Val = CFP->getValueAPF();
    511   bool is64bit = VT == MVT::f64;
    512 
    513   // This checks to see if we can use VFP3 instructions to materialize
    514   // a constant, otherwise we have to go through the constant pool.
    515   if (TLI.isFPImmLegal(Val, VT)) {
    516     int Imm;
    517     unsigned Opc;
    518     if (is64bit) {
    519       Imm = ARM_AM::getFP64Imm(Val);
    520       Opc = ARM::FCONSTD;
    521     } else {
    522       Imm = ARM_AM::getFP32Imm(Val);
    523       Opc = ARM::FCONSTS;
    524     }
    525     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    526     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    527                             DestReg)
    528                     .addImm(Imm));
    529     return DestReg;
    530   }
    531 
    532   // Require VFP2 for loading fp constants.
    533   if (!Subtarget->hasVFP2()) return false;
    534 
    535   // MachineConstantPool wants an explicit alignment.
    536   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
    537   if (Align == 0) {
    538     // TODO: Figure out if this is correct.
    539     Align = TD.getTypeAllocSize(CFP->getType());
    540   }
    541   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
    542   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    543   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
    544 
    545   // The extra reg is for addrmode5.
    546   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    547                           DestReg)
    548                   .addConstantPoolIndex(Idx)
    549                   .addReg(0));
    550   return DestReg;
    551 }
    552 
    553 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
    554 
    555   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
    556     return false;
    557 
    558   // If we can do this in a single instruction without a constant pool entry
    559   // do so now.
    560   const ConstantInt *CI = cast<ConstantInt>(C);
    561   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
    562     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
    563     unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
    564     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    565                             TII.get(Opc), ImmReg)
    566                     .addImm(CI->getZExtValue()));
    567     return ImmReg;
    568   }
    569 
    570   // Use MVN to emit negative constants.
    571   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
    572     unsigned Imm = (unsigned)~(CI->getSExtValue());
    573     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
    574       (ARM_AM::getSOImmVal(Imm) != -1);
    575     if (UseImm) {
    576       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
    577       unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
    578       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    579                               TII.get(Opc), ImmReg)
    580                       .addImm(Imm));
    581       return ImmReg;
    582     }
    583   }
    584 
    585   // Load from constant pool.  For now 32-bit only.
    586   if (VT != MVT::i32)
    587     return false;
    588 
    589   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    590 
    591   // MachineConstantPool wants an explicit alignment.
    592   unsigned Align = TD.getPrefTypeAlignment(C->getType());
    593   if (Align == 0) {
    594     // TODO: Figure out if this is correct.
    595     Align = TD.getTypeAllocSize(C->getType());
    596   }
    597   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
    598 
    599   if (isThumb2)
    600     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    601                             TII.get(ARM::t2LDRpci), DestReg)
    602                     .addConstantPoolIndex(Idx));
    603   else
    604     // The extra immediate is for addrmode2.
    605     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    606                             TII.get(ARM::LDRcp), DestReg)
    607                     .addConstantPoolIndex(Idx)
    608                     .addImm(0));
    609 
    610   return DestReg;
    611 }
    612 
    613 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
    614   // For now 32-bit only.
    615   if (VT != MVT::i32) return 0;
    616 
    617   Reloc::Model RelocM = TM.getRelocationModel();
    618 
    619   // TODO: Need more magic for ARM PIC.
    620   if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
    621 
    622   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
    623 
    624   // Use movw+movt when possible, it avoids constant pool entries.
    625   // Darwin targets don't support movt with Reloc::Static, see
    626   // ARMTargetLowering::LowerGlobalAddressDarwin.  Other targets only support
    627   // static movt relocations.
    628   if (Subtarget->useMovt() &&
    629       Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) {
    630     unsigned Opc;
    631     switch (RelocM) {
    632     case Reloc::PIC_:
    633       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
    634       break;
    635     case Reloc::DynamicNoPIC:
    636       Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn;
    637       break;
    638     default:
    639       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
    640       break;
    641     }
    642     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
    643                             DestReg).addGlobalAddress(GV));
    644   } else {
    645     // MachineConstantPool wants an explicit alignment.
    646     unsigned Align = TD.getPrefTypeAlignment(GV->getType());
    647     if (Align == 0) {
    648       // TODO: Figure out if this is correct.
    649       Align = TD.getTypeAllocSize(GV->getType());
    650     }
    651 
    652     // Grab index.
    653     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
    654       (Subtarget->isThumb() ? 4 : 8);
    655     unsigned Id = AFI->createPICLabelUId();
    656     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
    657                                                                 ARMCP::CPValue,
    658                                                                 PCAdj);
    659     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
    660 
    661     // Load value.
    662     MachineInstrBuilder MIB;
    663     if (isThumb2) {
    664       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
    665       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
    666         .addConstantPoolIndex(Idx);
    667       if (RelocM == Reloc::PIC_)
    668         MIB.addImm(Id);
    669     } else {
    670       // The extra immediate is for addrmode2.
    671       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
    672                     DestReg)
    673         .addConstantPoolIndex(Idx)
    674         .addImm(0);
    675     }
    676     AddOptionalDefs(MIB);
    677   }
    678 
    679   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
    680     MachineInstrBuilder MIB;
    681     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
    682     if (isThumb2)
    683       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    684                     TII.get(ARM::t2LDRi12), NewDestReg)
    685             .addReg(DestReg)
    686             .addImm(0);
    687     else
    688       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
    689                     NewDestReg)
    690             .addReg(DestReg)
    691             .addImm(0);
    692     DestReg = NewDestReg;
    693     AddOptionalDefs(MIB);
    694   }
    695 
    696   return DestReg;
    697 }
    698 
    699 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
    700   EVT VT = TLI.getValueType(C->getType(), true);
    701 
    702   // Only handle simple types.
    703   if (!VT.isSimple()) return 0;
    704 
    705   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
    706     return ARMMaterializeFP(CFP, VT);
    707   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
    708     return ARMMaterializeGV(GV, VT);
    709   else if (isa<ConstantInt>(C))
    710     return ARMMaterializeInt(C, VT);
    711 
    712   return 0;
    713 }
    714 
    715 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
    716 
    717 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
    718   // Don't handle dynamic allocas.
    719   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
    720 
    721   MVT VT;
    722   if (!isLoadTypeLegal(AI->getType(), VT)) return false;
    723 
    724   DenseMap<const AllocaInst*, int>::iterator SI =
    725     FuncInfo.StaticAllocaMap.find(AI);
    726 
    727   // This will get lowered later into the correct offsets and registers
    728   // via rewriteXFrameIndex.
    729   if (SI != FuncInfo.StaticAllocaMap.end()) {
    730     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
    731     unsigned ResultReg = createResultReg(RC);
    732     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    733     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    734                             TII.get(Opc), ResultReg)
    735                             .addFrameIndex(SI->second)
    736                             .addImm(0));
    737     return ResultReg;
    738   }
    739 
    740   return 0;
    741 }
    742 
    743 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
    744   EVT evt = TLI.getValueType(Ty, true);
    745 
    746   // Only handle simple types.
    747   if (evt == MVT::Other || !evt.isSimple()) return false;
    748   VT = evt.getSimpleVT();
    749 
    750   // Handle all legal types, i.e. a register that will directly hold this
    751   // value.
    752   return TLI.isTypeLegal(VT);
    753 }
    754 
    755 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
    756   if (isTypeLegal(Ty, VT)) return true;
    757 
    758   // If this is a type than can be sign or zero-extended to a basic operation
    759   // go ahead and accept it now.
    760   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
    761     return true;
    762 
    763   return false;
    764 }
    765 
    766 // Computes the address to get to an object.
    767 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
    768   // Some boilerplate from the X86 FastISel.
    769   const User *U = NULL;
    770   unsigned Opcode = Instruction::UserOp1;
    771   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
    772     // Don't walk into other basic blocks unless the object is an alloca from
    773     // another block, otherwise it may not have a virtual register assigned.
    774     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
    775         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
    776       Opcode = I->getOpcode();
    777       U = I;
    778     }
    779   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
    780     Opcode = C->getOpcode();
    781     U = C;
    782   }
    783 
    784   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
    785     if (Ty->getAddressSpace() > 255)
    786       // Fast instruction selection doesn't support the special
    787       // address spaces.
    788       return false;
    789 
    790   switch (Opcode) {
    791     default:
    792     break;
    793     case Instruction::BitCast: {
    794       // Look through bitcasts.
    795       return ARMComputeAddress(U->getOperand(0), Addr);
    796     }
    797     case Instruction::IntToPtr: {
    798       // Look past no-op inttoptrs.
    799       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
    800         return ARMComputeAddress(U->getOperand(0), Addr);
    801       break;
    802     }
    803     case Instruction::PtrToInt: {
    804       // Look past no-op ptrtoints.
    805       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
    806         return ARMComputeAddress(U->getOperand(0), Addr);
    807       break;
    808     }
    809     case Instruction::GetElementPtr: {
    810       Address SavedAddr = Addr;
    811       int TmpOffset = Addr.Offset;
    812 
    813       // Iterate through the GEP folding the constants into offsets where
    814       // we can.
    815       gep_type_iterator GTI = gep_type_begin(U);
    816       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
    817            i != e; ++i, ++GTI) {
    818         const Value *Op = *i;
    819         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    820           const StructLayout *SL = TD.getStructLayout(STy);
    821           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
    822           TmpOffset += SL->getElementOffset(Idx);
    823         } else {
    824           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
    825           for (;;) {
    826             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    827               // Constant-offset addressing.
    828               TmpOffset += CI->getSExtValue() * S;
    829               break;
    830             }
    831             if (isa<AddOperator>(Op) &&
    832                 (!isa<Instruction>(Op) ||
    833                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
    834                  == FuncInfo.MBB) &&
    835                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
    836               // An add (in the same block) with a constant operand. Fold the
    837               // constant.
    838               ConstantInt *CI =
    839               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
    840               TmpOffset += CI->getSExtValue() * S;
    841               // Iterate on the other operand.
    842               Op = cast<AddOperator>(Op)->getOperand(0);
    843               continue;
    844             }
    845             // Unsupported
    846             goto unsupported_gep;
    847           }
    848         }
    849       }
    850 
    851       // Try to grab the base operand now.
    852       Addr.Offset = TmpOffset;
    853       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
    854 
    855       // We failed, restore everything and try the other options.
    856       Addr = SavedAddr;
    857 
    858       unsupported_gep:
    859       break;
    860     }
    861     case Instruction::Alloca: {
    862       const AllocaInst *AI = cast<AllocaInst>(Obj);
    863       DenseMap<const AllocaInst*, int>::iterator SI =
    864         FuncInfo.StaticAllocaMap.find(AI);
    865       if (SI != FuncInfo.StaticAllocaMap.end()) {
    866         Addr.BaseType = Address::FrameIndexBase;
    867         Addr.Base.FI = SI->second;
    868         return true;
    869       }
    870       break;
    871     }
    872   }
    873 
    874   // Try to get this in a register if nothing else has worked.
    875   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
    876   return Addr.Base.Reg != 0;
    877 }
    878 
    879 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
    880 
    881   assert(VT.isSimple() && "Non-simple types are invalid here!");
    882 
    883   bool needsLowering = false;
    884   switch (VT.getSimpleVT().SimpleTy) {
    885     default: llvm_unreachable("Unhandled load/store type!");
    886     case MVT::i1:
    887     case MVT::i8:
    888     case MVT::i16:
    889     case MVT::i32:
    890       if (!useAM3) {
    891         // Integer loads/stores handle 12-bit offsets.
    892         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
    893         // Handle negative offsets.
    894         if (needsLowering && isThumb2)
    895           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
    896                             Addr.Offset > -256);
    897       } else {
    898         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
    899         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
    900       }
    901       break;
    902     case MVT::f32:
    903     case MVT::f64:
    904       // Floating point operands handle 8-bit offsets.
    905       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
    906       break;
    907   }
    908 
    909   // If this is a stack pointer and the offset needs to be simplified then
    910   // put the alloca address into a register, set the base type back to
    911   // register and continue. This should almost never happen.
    912   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
    913     const TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass
    914                                              : ARM::GPRRegisterClass;
    915     unsigned ResultReg = createResultReg(RC);
    916     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
    917     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
    918                             TII.get(Opc), ResultReg)
    919                             .addFrameIndex(Addr.Base.FI)
    920                             .addImm(0));
    921     Addr.Base.Reg = ResultReg;
    922     Addr.BaseType = Address::RegBase;
    923   }
    924 
    925   // Since the offset is too large for the load/store instruction
    926   // get the reg+offset into a register.
    927   if (needsLowering) {
    928     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
    929                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
    930     Addr.Offset = 0;
    931   }
    932 }
    933 
    934 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
    935                                        const MachineInstrBuilder &MIB,
    936                                        unsigned Flags, bool useAM3) {
    937   // addrmode5 output depends on the selection dag addressing dividing the
    938   // offset by 4 that it then later multiplies. Do this here as well.
    939   if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
    940       VT.getSimpleVT().SimpleTy == MVT::f64)
    941     Addr.Offset /= 4;
    942 
    943   // Frame base works a bit differently. Handle it separately.
    944   if (Addr.BaseType == Address::FrameIndexBase) {
    945     int FI = Addr.Base.FI;
    946     int Offset = Addr.Offset;
    947     MachineMemOperand *MMO =
    948           FuncInfo.MF->getMachineMemOperand(
    949                                   MachinePointerInfo::getFixedStack(FI, Offset),
    950                                   Flags,
    951                                   MFI.getObjectSize(FI),
    952                                   MFI.getObjectAlignment(FI));
    953     // Now add the rest of the operands.
    954     MIB.addFrameIndex(FI);
    955 
    956     // ARM halfword load/stores and signed byte loads need an additional
    957     // operand.
    958     if (useAM3) {
    959       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    960       MIB.addReg(0);
    961       MIB.addImm(Imm);
    962     } else {
    963       MIB.addImm(Addr.Offset);
    964     }
    965     MIB.addMemOperand(MMO);
    966   } else {
    967     // Now add the rest of the operands.
    968     MIB.addReg(Addr.Base.Reg);
    969 
    970     // ARM halfword load/stores and signed byte loads need an additional
    971     // operand.
    972     if (useAM3) {
    973       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
    974       MIB.addReg(0);
    975       MIB.addImm(Imm);
    976     } else {
    977       MIB.addImm(Addr.Offset);
    978     }
    979   }
    980   AddOptionalDefs(MIB);
    981 }
    982 
    983 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
    984                               unsigned Alignment, bool isZExt, bool allocReg) {
    985   assert(VT.isSimple() && "Non-simple types are invalid here!");
    986   unsigned Opc;
    987   bool useAM3 = false;
    988   bool needVMOV = false;
    989   const TargetRegisterClass *RC;
    990   switch (VT.getSimpleVT().SimpleTy) {
    991     // This is mostly going to be Neon/vector support.
    992     default: return false;
    993     case MVT::i1:
    994     case MVT::i8:
    995       if (isThumb2) {
    996         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
    997           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
    998         else
    999           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
   1000       } else {
   1001         if (isZExt) {
   1002           Opc = ARM::LDRBi12;
   1003         } else {
   1004           Opc = ARM::LDRSB;
   1005           useAM3 = true;
   1006         }
   1007       }
   1008       RC = ARM::GPRRegisterClass;
   1009       break;
   1010     case MVT::i16:
   1011       if (isThumb2) {
   1012         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1013           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
   1014         else
   1015           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
   1016       } else {
   1017         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
   1018         useAM3 = true;
   1019       }
   1020       RC = ARM::GPRRegisterClass;
   1021       break;
   1022     case MVT::i32:
   1023       if (isThumb2) {
   1024         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1025           Opc = ARM::t2LDRi8;
   1026         else
   1027           Opc = ARM::t2LDRi12;
   1028       } else {
   1029         Opc = ARM::LDRi12;
   1030       }
   1031       RC = ARM::GPRRegisterClass;
   1032       break;
   1033     case MVT::f32:
   1034       if (!Subtarget->hasVFP2()) return false;
   1035       // Unaligned loads need special handling. Floats require word-alignment.
   1036       if (Alignment && Alignment < 4) {
   1037         needVMOV = true;
   1038         VT = MVT::i32;
   1039         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
   1040         RC = ARM::GPRRegisterClass;
   1041       } else {
   1042         Opc = ARM::VLDRS;
   1043         RC = TLI.getRegClassFor(VT);
   1044       }
   1045       break;
   1046     case MVT::f64:
   1047       if (!Subtarget->hasVFP2()) return false;
   1048       // FIXME: Unaligned loads need special handling.  Doublewords require
   1049       // word-alignment.
   1050       if (Alignment && Alignment < 4)
   1051         return false;
   1052 
   1053       Opc = ARM::VLDRD;
   1054       RC = TLI.getRegClassFor(VT);
   1055       break;
   1056   }
   1057   // Simplify this down to something we can handle.
   1058   ARMSimplifyAddress(Addr, VT, useAM3);
   1059 
   1060   // Create the base instruction, then add the operands.
   1061   if (allocReg)
   1062     ResultReg = createResultReg(RC);
   1063   assert (ResultReg > 255 && "Expected an allocated virtual register.");
   1064   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1065                                     TII.get(Opc), ResultReg);
   1066   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
   1067 
   1068   // If we had an unaligned load of a float we've converted it to an regular
   1069   // load.  Now we must move from the GRP to the FP register.
   1070   if (needVMOV) {
   1071     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1072     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1073                             TII.get(ARM::VMOVSR), MoveReg)
   1074                     .addReg(ResultReg));
   1075     ResultReg = MoveReg;
   1076   }
   1077   return true;
   1078 }
   1079 
   1080 bool ARMFastISel::SelectLoad(const Instruction *I) {
   1081   // Atomic loads need special handling.
   1082   if (cast<LoadInst>(I)->isAtomic())
   1083     return false;
   1084 
   1085   // Verify we have a legal type before going any further.
   1086   MVT VT;
   1087   if (!isLoadTypeLegal(I->getType(), VT))
   1088     return false;
   1089 
   1090   // See if we can handle this address.
   1091   Address Addr;
   1092   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
   1093 
   1094   unsigned ResultReg;
   1095   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
   1096     return false;
   1097   UpdateValueMap(I, ResultReg);
   1098   return true;
   1099 }
   1100 
   1101 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
   1102                                unsigned Alignment) {
   1103   unsigned StrOpc;
   1104   bool useAM3 = false;
   1105   switch (VT.getSimpleVT().SimpleTy) {
   1106     // This is mostly going to be Neon/vector support.
   1107     default: return false;
   1108     case MVT::i1: {
   1109       unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
   1110                                                ARM::GPRRegisterClass);
   1111       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
   1112       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1113                               TII.get(Opc), Res)
   1114                       .addReg(SrcReg).addImm(1));
   1115       SrcReg = Res;
   1116     } // Fallthrough here.
   1117     case MVT::i8:
   1118       if (isThumb2) {
   1119         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1120           StrOpc = ARM::t2STRBi8;
   1121         else
   1122           StrOpc = ARM::t2STRBi12;
   1123       } else {
   1124         StrOpc = ARM::STRBi12;
   1125       }
   1126       break;
   1127     case MVT::i16:
   1128       if (isThumb2) {
   1129         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1130           StrOpc = ARM::t2STRHi8;
   1131         else
   1132           StrOpc = ARM::t2STRHi12;
   1133       } else {
   1134         StrOpc = ARM::STRH;
   1135         useAM3 = true;
   1136       }
   1137       break;
   1138     case MVT::i32:
   1139       if (isThumb2) {
   1140         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
   1141           StrOpc = ARM::t2STRi8;
   1142         else
   1143           StrOpc = ARM::t2STRi12;
   1144       } else {
   1145         StrOpc = ARM::STRi12;
   1146       }
   1147       break;
   1148     case MVT::f32:
   1149       if (!Subtarget->hasVFP2()) return false;
   1150       // Unaligned stores need special handling. Floats require word-alignment.
   1151       if (Alignment && Alignment < 4) {
   1152         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   1153         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1154                                 TII.get(ARM::VMOVRS), MoveReg)
   1155                         .addReg(SrcReg));
   1156         SrcReg = MoveReg;
   1157         VT = MVT::i32;
   1158         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
   1159       } else {
   1160         StrOpc = ARM::VSTRS;
   1161       }
   1162       break;
   1163     case MVT::f64:
   1164       if (!Subtarget->hasVFP2()) return false;
   1165       // FIXME: Unaligned stores need special handling.  Doublewords require
   1166       // word-alignment.
   1167       if (Alignment && Alignment < 4)
   1168           return false;
   1169 
   1170       StrOpc = ARM::VSTRD;
   1171       break;
   1172   }
   1173   // Simplify this down to something we can handle.
   1174   ARMSimplifyAddress(Addr, VT, useAM3);
   1175 
   1176   // Create the base instruction, then add the operands.
   1177   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1178                                     TII.get(StrOpc))
   1179                             .addReg(SrcReg);
   1180   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
   1181   return true;
   1182 }
   1183 
   1184 bool ARMFastISel::SelectStore(const Instruction *I) {
   1185   Value *Op0 = I->getOperand(0);
   1186   unsigned SrcReg = 0;
   1187 
   1188   // Atomic stores need special handling.
   1189   if (cast<StoreInst>(I)->isAtomic())
   1190     return false;
   1191 
   1192   // Verify we have a legal type before going any further.
   1193   MVT VT;
   1194   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
   1195     return false;
   1196 
   1197   // Get the value to be stored into a register.
   1198   SrcReg = getRegForValue(Op0);
   1199   if (SrcReg == 0) return false;
   1200 
   1201   // See if we can handle this address.
   1202   Address Addr;
   1203   if (!ARMComputeAddress(I->getOperand(1), Addr))
   1204     return false;
   1205 
   1206   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
   1207     return false;
   1208   return true;
   1209 }
   1210 
   1211 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
   1212   switch (Pred) {
   1213     // Needs two compares...
   1214     case CmpInst::FCMP_ONE:
   1215     case CmpInst::FCMP_UEQ:
   1216     default:
   1217       // AL is our "false" for now. The other two need more compares.
   1218       return ARMCC::AL;
   1219     case CmpInst::ICMP_EQ:
   1220     case CmpInst::FCMP_OEQ:
   1221       return ARMCC::EQ;
   1222     case CmpInst::ICMP_SGT:
   1223     case CmpInst::FCMP_OGT:
   1224       return ARMCC::GT;
   1225     case CmpInst::ICMP_SGE:
   1226     case CmpInst::FCMP_OGE:
   1227       return ARMCC::GE;
   1228     case CmpInst::ICMP_UGT:
   1229     case CmpInst::FCMP_UGT:
   1230       return ARMCC::HI;
   1231     case CmpInst::FCMP_OLT:
   1232       return ARMCC::MI;
   1233     case CmpInst::ICMP_ULE:
   1234     case CmpInst::FCMP_OLE:
   1235       return ARMCC::LS;
   1236     case CmpInst::FCMP_ORD:
   1237       return ARMCC::VC;
   1238     case CmpInst::FCMP_UNO:
   1239       return ARMCC::VS;
   1240     case CmpInst::FCMP_UGE:
   1241       return ARMCC::PL;
   1242     case CmpInst::ICMP_SLT:
   1243     case CmpInst::FCMP_ULT:
   1244       return ARMCC::LT;
   1245     case CmpInst::ICMP_SLE:
   1246     case CmpInst::FCMP_ULE:
   1247       return ARMCC::LE;
   1248     case CmpInst::FCMP_UNE:
   1249     case CmpInst::ICMP_NE:
   1250       return ARMCC::NE;
   1251     case CmpInst::ICMP_UGE:
   1252       return ARMCC::HS;
   1253     case CmpInst::ICMP_ULT:
   1254       return ARMCC::LO;
   1255   }
   1256 }
   1257 
   1258 bool ARMFastISel::SelectBranch(const Instruction *I) {
   1259   const BranchInst *BI = cast<BranchInst>(I);
   1260   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
   1261   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
   1262 
   1263   // Simple branch support.
   1264 
   1265   // If we can, avoid recomputing the compare - redoing it could lead to wonky
   1266   // behavior.
   1267   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
   1268     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
   1269 
   1270       // Get the compare predicate.
   1271       // Try to take advantage of fallthrough opportunities.
   1272       CmpInst::Predicate Predicate = CI->getPredicate();
   1273       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1274         std::swap(TBB, FBB);
   1275         Predicate = CmpInst::getInversePredicate(Predicate);
   1276       }
   1277 
   1278       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
   1279 
   1280       // We may not handle every CC for now.
   1281       if (ARMPred == ARMCC::AL) return false;
   1282 
   1283       // Emit the compare.
   1284       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1285         return false;
   1286 
   1287       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1288       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1289       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
   1290       FastEmitBranch(FBB, DL);
   1291       FuncInfo.MBB->addSuccessor(TBB);
   1292       return true;
   1293     }
   1294   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
   1295     MVT SourceVT;
   1296     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
   1297         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
   1298       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1299       unsigned OpReg = getRegForValue(TI->getOperand(0));
   1300       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1301                               TII.get(TstOpc))
   1302                       .addReg(OpReg).addImm(1));
   1303 
   1304       unsigned CCMode = ARMCC::NE;
   1305       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1306         std::swap(TBB, FBB);
   1307         CCMode = ARMCC::EQ;
   1308       }
   1309 
   1310       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1311       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1312       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1313 
   1314       FastEmitBranch(FBB, DL);
   1315       FuncInfo.MBB->addSuccessor(TBB);
   1316       return true;
   1317     }
   1318   } else if (const ConstantInt *CI =
   1319              dyn_cast<ConstantInt>(BI->getCondition())) {
   1320     uint64_t Imm = CI->getZExtValue();
   1321     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
   1322     FastEmitBranch(Target, DL);
   1323     return true;
   1324   }
   1325 
   1326   unsigned CmpReg = getRegForValue(BI->getCondition());
   1327   if (CmpReg == 0) return false;
   1328 
   1329   // We've been divorced from our compare!  Our block was split, and
   1330   // now our compare lives in a predecessor block.  We musn't
   1331   // re-compare here, as the children of the compare aren't guaranteed
   1332   // live across the block boundary (we *could* check for this).
   1333   // Regardless, the compare has been done in the predecessor block,
   1334   // and it left a value for us in a virtual register.  Ergo, we test
   1335   // the one-bit value left in the virtual register.
   1336   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
   1337   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
   1338                   .addReg(CmpReg).addImm(1));
   1339 
   1340   unsigned CCMode = ARMCC::NE;
   1341   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
   1342     std::swap(TBB, FBB);
   1343     CCMode = ARMCC::EQ;
   1344   }
   1345 
   1346   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
   1347   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
   1348                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
   1349   FastEmitBranch(FBB, DL);
   1350   FuncInfo.MBB->addSuccessor(TBB);
   1351   return true;
   1352 }
   1353 
   1354 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
   1355   unsigned AddrReg = getRegForValue(I->getOperand(0));
   1356   if (AddrReg == 0) return false;
   1357 
   1358   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
   1359   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
   1360                   .addReg(AddrReg));
   1361   return true;
   1362 }
   1363 
   1364 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
   1365                              bool isZExt) {
   1366   Type *Ty = Src1Value->getType();
   1367   EVT SrcVT = TLI.getValueType(Ty, true);
   1368   if (!SrcVT.isSimple()) return false;
   1369 
   1370   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
   1371   if (isFloat && !Subtarget->hasVFP2())
   1372     return false;
   1373 
   1374   // Check to see if the 2nd operand is a constant that we can encode directly
   1375   // in the compare.
   1376   int Imm = 0;
   1377   bool UseImm = false;
   1378   bool isNegativeImm = false;
   1379   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
   1380   // Thus, Src1Value may be a ConstantInt, but we're missing it.
   1381   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
   1382     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
   1383         SrcVT == MVT::i1) {
   1384       const APInt &CIVal = ConstInt->getValue();
   1385       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
   1386       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
   1387       // then a cmn, because there is no way to represent 2147483648 as a
   1388       // signed 32-bit int.
   1389       if (Imm < 0 && Imm != (int)0x80000000) {
   1390         isNegativeImm = true;
   1391         Imm = -Imm;
   1392       }
   1393       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1394         (ARM_AM::getSOImmVal(Imm) != -1);
   1395     }
   1396   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
   1397     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
   1398       if (ConstFP->isZero() && !ConstFP->isNegative())
   1399         UseImm = true;
   1400   }
   1401 
   1402   unsigned CmpOpc;
   1403   bool isICmp = true;
   1404   bool needsExt = false;
   1405   switch (SrcVT.getSimpleVT().SimpleTy) {
   1406     default: return false;
   1407     // TODO: Verify compares.
   1408     case MVT::f32:
   1409       isICmp = false;
   1410       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
   1411       break;
   1412     case MVT::f64:
   1413       isICmp = false;
   1414       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
   1415       break;
   1416     case MVT::i1:
   1417     case MVT::i8:
   1418     case MVT::i16:
   1419       needsExt = true;
   1420     // Intentional fall-through.
   1421     case MVT::i32:
   1422       if (isThumb2) {
   1423         if (!UseImm)
   1424           CmpOpc = ARM::t2CMPrr;
   1425         else
   1426           CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
   1427       } else {
   1428         if (!UseImm)
   1429           CmpOpc = ARM::CMPrr;
   1430         else
   1431           CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
   1432       }
   1433       break;
   1434   }
   1435 
   1436   unsigned SrcReg1 = getRegForValue(Src1Value);
   1437   if (SrcReg1 == 0) return false;
   1438 
   1439   unsigned SrcReg2 = 0;
   1440   if (!UseImm) {
   1441     SrcReg2 = getRegForValue(Src2Value);
   1442     if (SrcReg2 == 0) return false;
   1443   }
   1444 
   1445   // We have i1, i8, or i16, we need to either zero extend or sign extend.
   1446   if (needsExt) {
   1447     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
   1448     if (SrcReg1 == 0) return false;
   1449     if (!UseImm) {
   1450       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
   1451       if (SrcReg2 == 0) return false;
   1452     }
   1453   }
   1454 
   1455   if (!UseImm) {
   1456     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1457                             TII.get(CmpOpc))
   1458                     .addReg(SrcReg1).addReg(SrcReg2));
   1459   } else {
   1460     MachineInstrBuilder MIB;
   1461     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1462       .addReg(SrcReg1);
   1463 
   1464     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
   1465     if (isICmp)
   1466       MIB.addImm(Imm);
   1467     AddOptionalDefs(MIB);
   1468   }
   1469 
   1470   // For floating point we need to move the result to a comparison register
   1471   // that we can then use for branches.
   1472   if (Ty->isFloatTy() || Ty->isDoubleTy())
   1473     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1474                             TII.get(ARM::FMSTAT)));
   1475   return true;
   1476 }
   1477 
   1478 bool ARMFastISel::SelectCmp(const Instruction *I) {
   1479   const CmpInst *CI = cast<CmpInst>(I);
   1480 
   1481   // Get the compare predicate.
   1482   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
   1483 
   1484   // We may not handle every CC for now.
   1485   if (ARMPred == ARMCC::AL) return false;
   1486 
   1487   // Emit the compare.
   1488   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
   1489     return false;
   1490 
   1491   // Now set a register based on the comparison. Explicitly set the predicates
   1492   // here.
   1493   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1494   const TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
   1495                                            : ARM::GPRRegisterClass;
   1496   unsigned DestReg = createResultReg(RC);
   1497   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
   1498   unsigned ZeroReg = TargetMaterializeConstant(Zero);
   1499   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
   1500   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
   1501           .addReg(ZeroReg).addImm(1)
   1502           .addImm(ARMPred).addReg(ARM::CPSR);
   1503 
   1504   UpdateValueMap(I, DestReg);
   1505   return true;
   1506 }
   1507 
   1508 bool ARMFastISel::SelectFPExt(const Instruction *I) {
   1509   // Make sure we have VFP and that we're extending float to double.
   1510   if (!Subtarget->hasVFP2()) return false;
   1511 
   1512   Value *V = I->getOperand(0);
   1513   if (!I->getType()->isDoubleTy() ||
   1514       !V->getType()->isFloatTy()) return false;
   1515 
   1516   unsigned Op = getRegForValue(V);
   1517   if (Op == 0) return false;
   1518 
   1519   unsigned Result = createResultReg(ARM::DPRRegisterClass);
   1520   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1521                           TII.get(ARM::VCVTDS), Result)
   1522                   .addReg(Op));
   1523   UpdateValueMap(I, Result);
   1524   return true;
   1525 }
   1526 
   1527 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
   1528   // Make sure we have VFP and that we're truncating double to float.
   1529   if (!Subtarget->hasVFP2()) return false;
   1530 
   1531   Value *V = I->getOperand(0);
   1532   if (!(I->getType()->isFloatTy() &&
   1533         V->getType()->isDoubleTy())) return false;
   1534 
   1535   unsigned Op = getRegForValue(V);
   1536   if (Op == 0) return false;
   1537 
   1538   unsigned Result = createResultReg(ARM::SPRRegisterClass);
   1539   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1540                           TII.get(ARM::VCVTSD), Result)
   1541                   .addReg(Op));
   1542   UpdateValueMap(I, Result);
   1543   return true;
   1544 }
   1545 
   1546 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
   1547   // Make sure we have VFP.
   1548   if (!Subtarget->hasVFP2()) return false;
   1549 
   1550   MVT DstVT;
   1551   Type *Ty = I->getType();
   1552   if (!isTypeLegal(Ty, DstVT))
   1553     return false;
   1554 
   1555   Value *Src = I->getOperand(0);
   1556   EVT SrcVT = TLI.getValueType(Src->getType(), true);
   1557   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   1558     return false;
   1559 
   1560   unsigned SrcReg = getRegForValue(Src);
   1561   if (SrcReg == 0) return false;
   1562 
   1563   // Handle sign-extension.
   1564   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
   1565     EVT DestVT = MVT::i32;
   1566     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT,
   1567                                        /*isZExt*/!isSigned);
   1568     if (SrcReg == 0) return false;
   1569   }
   1570 
   1571   // The conversion routine works on fp-reg to fp-reg and the operand above
   1572   // was an integer, move it to the fp registers if possible.
   1573   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
   1574   if (FP == 0) return false;
   1575 
   1576   unsigned Opc;
   1577   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
   1578   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
   1579   else return false;
   1580 
   1581   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
   1582   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1583                           ResultReg)
   1584                   .addReg(FP));
   1585   UpdateValueMap(I, ResultReg);
   1586   return true;
   1587 }
   1588 
   1589 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
   1590   // Make sure we have VFP.
   1591   if (!Subtarget->hasVFP2()) return false;
   1592 
   1593   MVT DstVT;
   1594   Type *RetTy = I->getType();
   1595   if (!isTypeLegal(RetTy, DstVT))
   1596     return false;
   1597 
   1598   unsigned Op = getRegForValue(I->getOperand(0));
   1599   if (Op == 0) return false;
   1600 
   1601   unsigned Opc;
   1602   Type *OpTy = I->getOperand(0)->getType();
   1603   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
   1604   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
   1605   else return false;
   1606 
   1607   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
   1608   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
   1609   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
   1610                           ResultReg)
   1611                   .addReg(Op));
   1612 
   1613   // This result needs to be in an integer register, but the conversion only
   1614   // takes place in fp-regs.
   1615   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
   1616   if (IntReg == 0) return false;
   1617 
   1618   UpdateValueMap(I, IntReg);
   1619   return true;
   1620 }
   1621 
   1622 bool ARMFastISel::SelectSelect(const Instruction *I) {
   1623   MVT VT;
   1624   if (!isTypeLegal(I->getType(), VT))
   1625     return false;
   1626 
   1627   // Things need to be register sized for register moves.
   1628   if (VT != MVT::i32) return false;
   1629   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
   1630 
   1631   unsigned CondReg = getRegForValue(I->getOperand(0));
   1632   if (CondReg == 0) return false;
   1633   unsigned Op1Reg = getRegForValue(I->getOperand(1));
   1634   if (Op1Reg == 0) return false;
   1635 
   1636   // Check to see if we can use an immediate in the conditional move.
   1637   int Imm = 0;
   1638   bool UseImm = false;
   1639   bool isNegativeImm = false;
   1640   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
   1641     assert (VT == MVT::i32 && "Expecting an i32.");
   1642     Imm = (int)ConstInt->getValue().getZExtValue();
   1643     if (Imm < 0) {
   1644       isNegativeImm = true;
   1645       Imm = ~Imm;
   1646     }
   1647     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
   1648       (ARM_AM::getSOImmVal(Imm) != -1);
   1649   }
   1650 
   1651   unsigned Op2Reg = 0;
   1652   if (!UseImm) {
   1653     Op2Reg = getRegForValue(I->getOperand(2));
   1654     if (Op2Reg == 0) return false;
   1655   }
   1656 
   1657   unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
   1658   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
   1659                   .addReg(CondReg).addImm(0));
   1660 
   1661   unsigned MovCCOpc;
   1662   if (!UseImm) {
   1663     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
   1664   } else {
   1665     if (!isNegativeImm) {
   1666       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
   1667     } else {
   1668       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
   1669     }
   1670   }
   1671   unsigned ResultReg = createResultReg(RC);
   1672   if (!UseImm)
   1673     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
   1674     .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
   1675   else
   1676     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
   1677     .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   1678   UpdateValueMap(I, ResultReg);
   1679   return true;
   1680 }
   1681 
   1682 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
   1683   MVT VT;
   1684   Type *Ty = I->getType();
   1685   if (!isTypeLegal(Ty, VT))
   1686     return false;
   1687 
   1688   // If we have integer div support we should have selected this automagically.
   1689   // In case we have a real miss go ahead and return false and we'll pick
   1690   // it up later.
   1691   if (Subtarget->hasDivide()) return false;
   1692 
   1693   // Otherwise emit a libcall.
   1694   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1695   if (VT == MVT::i8)
   1696     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
   1697   else if (VT == MVT::i16)
   1698     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
   1699   else if (VT == MVT::i32)
   1700     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
   1701   else if (VT == MVT::i64)
   1702     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
   1703   else if (VT == MVT::i128)
   1704     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
   1705   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
   1706 
   1707   return ARMEmitLibcall(I, LC);
   1708 }
   1709 
   1710 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
   1711   MVT VT;
   1712   Type *Ty = I->getType();
   1713   if (!isTypeLegal(Ty, VT))
   1714     return false;
   1715 
   1716   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
   1717   if (VT == MVT::i8)
   1718     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
   1719   else if (VT == MVT::i16)
   1720     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
   1721   else if (VT == MVT::i32)
   1722     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
   1723   else if (VT == MVT::i64)
   1724     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
   1725   else if (VT == MVT::i128)
   1726     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
   1727   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
   1728 
   1729   return ARMEmitLibcall(I, LC);
   1730 }
   1731 
   1732 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
   1733   EVT DestVT  = TLI.getValueType(I->getType(), true);
   1734 
   1735   // We can get here in the case when we have a binary operation on a non-legal
   1736   // type and the target independent selector doesn't know how to handle it.
   1737   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   1738     return false;
   1739 
   1740   unsigned Opc;
   1741   switch (ISDOpcode) {
   1742     default: return false;
   1743     case ISD::ADD:
   1744       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
   1745       break;
   1746     case ISD::OR:
   1747       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
   1748       break;
   1749     case ISD::SUB:
   1750       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
   1751       break;
   1752   }
   1753 
   1754   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
   1755   if (SrcReg1 == 0) return false;
   1756 
   1757   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
   1758   // in the instruction, rather then materializing the value in a register.
   1759   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
   1760   if (SrcReg2 == 0) return false;
   1761 
   1762   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   1763   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1764                           TII.get(Opc), ResultReg)
   1765                   .addReg(SrcReg1).addReg(SrcReg2));
   1766   UpdateValueMap(I, ResultReg);
   1767   return true;
   1768 }
   1769 
   1770 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
   1771   EVT VT  = TLI.getValueType(I->getType(), true);
   1772 
   1773   // We can get here in the case when we want to use NEON for our fp
   1774   // operations, but can't figure out how to. Just use the vfp instructions
   1775   // if we have them.
   1776   // FIXME: It'd be nice to use NEON instructions.
   1777   Type *Ty = I->getType();
   1778   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
   1779   if (isFloat && !Subtarget->hasVFP2())
   1780     return false;
   1781 
   1782   unsigned Opc;
   1783   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
   1784   switch (ISDOpcode) {
   1785     default: return false;
   1786     case ISD::FADD:
   1787       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
   1788       break;
   1789     case ISD::FSUB:
   1790       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
   1791       break;
   1792     case ISD::FMUL:
   1793       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
   1794       break;
   1795   }
   1796   unsigned Op1 = getRegForValue(I->getOperand(0));
   1797   if (Op1 == 0) return false;
   1798 
   1799   unsigned Op2 = getRegForValue(I->getOperand(1));
   1800   if (Op2 == 0) return false;
   1801 
   1802   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
   1803   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1804                           TII.get(Opc), ResultReg)
   1805                   .addReg(Op1).addReg(Op2));
   1806   UpdateValueMap(I, ResultReg);
   1807   return true;
   1808 }
   1809 
   1810 // Call Handling Code
   1811 
   1812 // This is largely taken directly from CCAssignFnForNode - we don't support
   1813 // varargs in FastISel so that part has been removed.
   1814 // TODO: We may not support all of this.
   1815 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
   1816   switch (CC) {
   1817   default:
   1818     llvm_unreachable("Unsupported calling convention");
   1819   case CallingConv::Fast:
   1820     // Ignore fastcc. Silence compiler warnings.
   1821     (void)RetFastCC_ARM_APCS;
   1822     (void)FastCC_ARM_APCS;
   1823     // Fallthrough
   1824   case CallingConv::C:
   1825     // Use target triple & subtarget features to do actual dispatch.
   1826     if (Subtarget->isAAPCS_ABI()) {
   1827       if (Subtarget->hasVFP2() &&
   1828           TM.Options.FloatABIType == FloatABI::Hard)
   1829         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1830       else
   1831         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1832     } else
   1833         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1834   case CallingConv::ARM_AAPCS_VFP:
   1835     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
   1836   case CallingConv::ARM_AAPCS:
   1837     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
   1838   case CallingConv::ARM_APCS:
   1839     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
   1840   }
   1841 }
   1842 
   1843 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
   1844                                   SmallVectorImpl<unsigned> &ArgRegs,
   1845                                   SmallVectorImpl<MVT> &ArgVTs,
   1846                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
   1847                                   SmallVectorImpl<unsigned> &RegArgs,
   1848                                   CallingConv::ID CC,
   1849                                   unsigned &NumBytes) {
   1850   SmallVector<CCValAssign, 16> ArgLocs;
   1851   CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
   1852   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
   1853 
   1854   // Check that we can handle all of the arguments. If we can't, then bail out
   1855   // now before we add code to the MBB.
   1856   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1857     CCValAssign &VA = ArgLocs[i];
   1858     MVT ArgVT = ArgVTs[VA.getValNo()];
   1859 
   1860     // We don't handle NEON/vector parameters yet.
   1861     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
   1862       return false;
   1863 
   1864     // Now copy/store arg to correct locations.
   1865     if (VA.isRegLoc() && !VA.needsCustom()) {
   1866       continue;
   1867     } else if (VA.needsCustom()) {
   1868       // TODO: We need custom lowering for vector (v2f64) args.
   1869       if (VA.getLocVT() != MVT::f64 ||
   1870           // TODO: Only handle register args for now.
   1871           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
   1872         return false;
   1873     } else {
   1874       switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) {
   1875       default:
   1876         return false;
   1877       case MVT::i1:
   1878       case MVT::i8:
   1879       case MVT::i16:
   1880       case MVT::i32:
   1881         break;
   1882       case MVT::f32:
   1883         if (!Subtarget->hasVFP2())
   1884           return false;
   1885         break;
   1886       case MVT::f64:
   1887         if (!Subtarget->hasVFP2())
   1888           return false;
   1889         break;
   1890       }
   1891     }
   1892   }
   1893 
   1894   // At the point, we are able to handle the call's arguments in fast isel.
   1895 
   1896   // Get a count of how many bytes are to be pushed on the stack.
   1897   NumBytes = CCInfo.getNextStackOffset();
   1898 
   1899   // Issue CALLSEQ_START
   1900   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
   1901   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1902                           TII.get(AdjStackDown))
   1903                   .addImm(NumBytes));
   1904 
   1905   // Process the args.
   1906   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   1907     CCValAssign &VA = ArgLocs[i];
   1908     unsigned Arg = ArgRegs[VA.getValNo()];
   1909     MVT ArgVT = ArgVTs[VA.getValNo()];
   1910 
   1911     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
   1912            "We don't handle NEON/vector parameters yet.");
   1913 
   1914     // Handle arg promotion, etc.
   1915     switch (VA.getLocInfo()) {
   1916       case CCValAssign::Full: break;
   1917       case CCValAssign::SExt: {
   1918         MVT DestVT = VA.getLocVT();
   1919         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
   1920         assert (Arg != 0 && "Failed to emit a sext");
   1921         ArgVT = DestVT;
   1922         break;
   1923       }
   1924       case CCValAssign::AExt:
   1925         // Intentional fall-through.  Handle AExt and ZExt.
   1926       case CCValAssign::ZExt: {
   1927         MVT DestVT = VA.getLocVT();
   1928         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
   1929         assert (Arg != 0 && "Failed to emit a sext");
   1930         ArgVT = DestVT;
   1931         break;
   1932       }
   1933       case CCValAssign::BCvt: {
   1934         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
   1935                                  /*TODO: Kill=*/false);
   1936         assert(BC != 0 && "Failed to emit a bitcast!");
   1937         Arg = BC;
   1938         ArgVT = VA.getLocVT();
   1939         break;
   1940       }
   1941       default: llvm_unreachable("Unknown arg promotion!");
   1942     }
   1943 
   1944     // Now copy/store arg to correct locations.
   1945     if (VA.isRegLoc() && !VA.needsCustom()) {
   1946       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   1947               VA.getLocReg())
   1948         .addReg(Arg);
   1949       RegArgs.push_back(VA.getLocReg());
   1950     } else if (VA.needsCustom()) {
   1951       // TODO: We need custom lowering for vector (v2f64) args.
   1952       assert(VA.getLocVT() == MVT::f64 &&
   1953              "Custom lowering for v2f64 args not available");
   1954 
   1955       CCValAssign &NextVA = ArgLocs[++i];
   1956 
   1957       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
   1958              "We only handle register args!");
   1959 
   1960       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1961                               TII.get(ARM::VMOVRRD), VA.getLocReg())
   1962                       .addReg(NextVA.getLocReg(), RegState::Define)
   1963                       .addReg(Arg));
   1964       RegArgs.push_back(VA.getLocReg());
   1965       RegArgs.push_back(NextVA.getLocReg());
   1966     } else {
   1967       assert(VA.isMemLoc());
   1968       // Need to store on the stack.
   1969       Address Addr;
   1970       Addr.BaseType = Address::RegBase;
   1971       Addr.Base.Reg = ARM::SP;
   1972       Addr.Offset = VA.getLocMemOffset();
   1973 
   1974       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
   1975       assert(EmitRet && "Could not emit a store for argument!");
   1976     }
   1977   }
   1978 
   1979   return true;
   1980 }
   1981 
   1982 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
   1983                              const Instruction *I, CallingConv::ID CC,
   1984                              unsigned &NumBytes) {
   1985   // Issue CALLSEQ_END
   1986   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
   1987   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   1988                           TII.get(AdjStackUp))
   1989                   .addImm(NumBytes).addImm(0));
   1990 
   1991   // Now the return value.
   1992   if (RetVT != MVT::isVoid) {
   1993     SmallVector<CCValAssign, 16> RVLocs;
   1994     CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
   1995     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
   1996 
   1997     // Copy all of the result registers out of their specified physreg.
   1998     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
   1999       // For this move we copy into two registers and then move into the
   2000       // double fp reg we want.
   2001       EVT DestVT = RVLocs[0].getValVT();
   2002       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
   2003       unsigned ResultReg = createResultReg(DstRC);
   2004       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2005                               TII.get(ARM::VMOVDRR), ResultReg)
   2006                       .addReg(RVLocs[0].getLocReg())
   2007                       .addReg(RVLocs[1].getLocReg()));
   2008 
   2009       UsedRegs.push_back(RVLocs[0].getLocReg());
   2010       UsedRegs.push_back(RVLocs[1].getLocReg());
   2011 
   2012       // Finally update the result.
   2013       UpdateValueMap(I, ResultReg);
   2014     } else {
   2015       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
   2016       EVT CopyVT = RVLocs[0].getValVT();
   2017 
   2018       // Special handling for extended integers.
   2019       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
   2020         CopyVT = MVT::i32;
   2021 
   2022       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
   2023 
   2024       unsigned ResultReg = createResultReg(DstRC);
   2025       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2026               ResultReg).addReg(RVLocs[0].getLocReg());
   2027       UsedRegs.push_back(RVLocs[0].getLocReg());
   2028 
   2029       // Finally update the result.
   2030       UpdateValueMap(I, ResultReg);
   2031     }
   2032   }
   2033 
   2034   return true;
   2035 }
   2036 
   2037 bool ARMFastISel::SelectRet(const Instruction *I) {
   2038   const ReturnInst *Ret = cast<ReturnInst>(I);
   2039   const Function &F = *I->getParent()->getParent();
   2040 
   2041   if (!FuncInfo.CanLowerReturn)
   2042     return false;
   2043 
   2044   if (F.isVarArg())
   2045     return false;
   2046 
   2047   CallingConv::ID CC = F.getCallingConv();
   2048   if (Ret->getNumOperands() > 0) {
   2049     SmallVector<ISD::OutputArg, 4> Outs;
   2050     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
   2051                   Outs, TLI);
   2052 
   2053     // Analyze operands of the call, assigning locations to each operand.
   2054     SmallVector<CCValAssign, 16> ValLocs;
   2055     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
   2056     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
   2057 
   2058     const Value *RV = Ret->getOperand(0);
   2059     unsigned Reg = getRegForValue(RV);
   2060     if (Reg == 0)
   2061       return false;
   2062 
   2063     // Only handle a single return value for now.
   2064     if (ValLocs.size() != 1)
   2065       return false;
   2066 
   2067     CCValAssign &VA = ValLocs[0];
   2068 
   2069     // Don't bother handling odd stuff for now.
   2070     if (VA.getLocInfo() != CCValAssign::Full)
   2071       return false;
   2072     // Only handle register returns for now.
   2073     if (!VA.isRegLoc())
   2074       return false;
   2075 
   2076     unsigned SrcReg = Reg + VA.getValNo();
   2077     EVT RVVT = TLI.getValueType(RV->getType());
   2078     EVT DestVT = VA.getValVT();
   2079     // Special handling for extended integers.
   2080     if (RVVT != DestVT) {
   2081       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
   2082         return false;
   2083 
   2084       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
   2085 
   2086       // Perform extension if flagged as either zext or sext.  Otherwise, do
   2087       // nothing.
   2088       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
   2089         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
   2090         if (SrcReg == 0) return false;
   2091       }
   2092     }
   2093 
   2094     // Make the copy.
   2095     unsigned DstReg = VA.getLocReg();
   2096     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
   2097     // Avoid a cross-class copy. This is very unlikely.
   2098     if (!SrcRC->contains(DstReg))
   2099       return false;
   2100     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
   2101             DstReg).addReg(SrcReg);
   2102 
   2103     // Mark the register as live out of the function.
   2104     MRI.addLiveOut(VA.getLocReg());
   2105   }
   2106 
   2107   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
   2108   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2109                           TII.get(RetOpc)));
   2110   return true;
   2111 }
   2112 
   2113 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
   2114   if (isThumb2) {
   2115     return ARM::tBL;
   2116   } else  {
   2117     return ARM::BL;
   2118   }
   2119 }
   2120 
   2121 // A quick function that will emit a call for a named libcall in F with the
   2122 // vector of passed arguments for the Instruction in I. We can assume that we
   2123 // can emit a call for any libcall we can produce. This is an abridged version
   2124 // of the full call infrastructure since we won't need to worry about things
   2125 // like computed function pointers or strange arguments at call sites.
   2126 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
   2127 // with X86.
   2128 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
   2129   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
   2130 
   2131   // Handle *simple* calls for now.
   2132   Type *RetTy = I->getType();
   2133   MVT RetVT;
   2134   if (RetTy->isVoidTy())
   2135     RetVT = MVT::isVoid;
   2136   else if (!isTypeLegal(RetTy, RetVT))
   2137     return false;
   2138 
   2139   // TODO: For now if we have long calls specified we don't handle the call.
   2140   if (EnableARMLongCalls) return false;
   2141 
   2142   // Set up the argument vectors.
   2143   SmallVector<Value*, 8> Args;
   2144   SmallVector<unsigned, 8> ArgRegs;
   2145   SmallVector<MVT, 8> ArgVTs;
   2146   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2147   Args.reserve(I->getNumOperands());
   2148   ArgRegs.reserve(I->getNumOperands());
   2149   ArgVTs.reserve(I->getNumOperands());
   2150   ArgFlags.reserve(I->getNumOperands());
   2151   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
   2152     Value *Op = I->getOperand(i);
   2153     unsigned Arg = getRegForValue(Op);
   2154     if (Arg == 0) return false;
   2155 
   2156     Type *ArgTy = Op->getType();
   2157     MVT ArgVT;
   2158     if (!isTypeLegal(ArgTy, ArgVT)) return false;
   2159 
   2160     ISD::ArgFlagsTy Flags;
   2161     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   2162     Flags.setOrigAlign(OriginalAlignment);
   2163 
   2164     Args.push_back(Op);
   2165     ArgRegs.push_back(Arg);
   2166     ArgVTs.push_back(ArgVT);
   2167     ArgFlags.push_back(Flags);
   2168   }
   2169 
   2170   // Handle the arguments now that we've gotten them.
   2171   SmallVector<unsigned, 4> RegArgs;
   2172   unsigned NumBytes;
   2173   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
   2174     return false;
   2175 
   2176   // Issue the call.
   2177   MachineInstrBuilder MIB;
   2178   unsigned CallOpc = ARMSelectCallOp(NULL);
   2179   if (isThumb2)
   2180     // Explicitly adding the predicate here.
   2181     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2182                          TII.get(CallOpc)))
   2183                          .addExternalSymbol(TLI.getLibcallName(Call));
   2184   else
   2185     // Explicitly adding the predicate here.
   2186     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2187                          TII.get(CallOpc))
   2188           .addExternalSymbol(TLI.getLibcallName(Call)));
   2189 
   2190   // Add implicit physical register uses to the call.
   2191   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2192     MIB.addReg(RegArgs[i]);
   2193 
   2194   // Add a register mask with the call-preserved registers.
   2195   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2196   MIB.addRegMask(TRI.getCallPreservedMask(CC));
   2197 
   2198   // Finish off the call including any return values.
   2199   SmallVector<unsigned, 4> UsedRegs;
   2200   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
   2201 
   2202   // Set all unused physreg defs as dead.
   2203   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2204 
   2205   return true;
   2206 }
   2207 
   2208 bool ARMFastISel::SelectCall(const Instruction *I,
   2209                              const char *IntrMemName = 0) {
   2210   const CallInst *CI = cast<CallInst>(I);
   2211   const Value *Callee = CI->getCalledValue();
   2212 
   2213   // Can't handle inline asm.
   2214   if (isa<InlineAsm>(Callee)) return false;
   2215 
   2216   // Only handle global variable Callees.
   2217   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
   2218   if (!GV)
   2219     return false;
   2220 
   2221   // Check the calling convention.
   2222   ImmutableCallSite CS(CI);
   2223   CallingConv::ID CC = CS.getCallingConv();
   2224 
   2225   // TODO: Avoid some calling conventions?
   2226 
   2227   // Let SDISel handle vararg functions.
   2228   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
   2229   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
   2230   if (FTy->isVarArg())
   2231     return false;
   2232 
   2233   // Handle *simple* calls for now.
   2234   Type *RetTy = I->getType();
   2235   MVT RetVT;
   2236   if (RetTy->isVoidTy())
   2237     RetVT = MVT::isVoid;
   2238   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
   2239            RetVT != MVT::i8  && RetVT != MVT::i1)
   2240     return false;
   2241 
   2242   // TODO: For now if we have long calls specified we don't handle the call.
   2243   if (EnableARMLongCalls) return false;
   2244 
   2245   // Set up the argument vectors.
   2246   SmallVector<Value*, 8> Args;
   2247   SmallVector<unsigned, 8> ArgRegs;
   2248   SmallVector<MVT, 8> ArgVTs;
   2249   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
   2250   unsigned arg_size = CS.arg_size();
   2251   Args.reserve(arg_size);
   2252   ArgRegs.reserve(arg_size);
   2253   ArgVTs.reserve(arg_size);
   2254   ArgFlags.reserve(arg_size);
   2255   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
   2256        i != e; ++i) {
   2257     // If we're lowering a memory intrinsic instead of a regular call, skip the
   2258     // last two arguments, which shouldn't be passed to the underlying function.
   2259     if (IntrMemName && e-i <= 2)
   2260       break;
   2261 
   2262     ISD::ArgFlagsTy Flags;
   2263     unsigned AttrInd = i - CS.arg_begin() + 1;
   2264     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
   2265       Flags.setSExt();
   2266     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
   2267       Flags.setZExt();
   2268 
   2269     // FIXME: Only handle *easy* calls for now.
   2270     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
   2271         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
   2272         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
   2273         CS.paramHasAttr(AttrInd, Attribute::ByVal))
   2274       return false;
   2275 
   2276     Type *ArgTy = (*i)->getType();
   2277     MVT ArgVT;
   2278     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
   2279         ArgVT != MVT::i1)
   2280       return false;
   2281 
   2282     unsigned Arg = getRegForValue(*i);
   2283     if (Arg == 0)
   2284       return false;
   2285 
   2286     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
   2287     Flags.setOrigAlign(OriginalAlignment);
   2288 
   2289     Args.push_back(*i);
   2290     ArgRegs.push_back(Arg);
   2291     ArgVTs.push_back(ArgVT);
   2292     ArgFlags.push_back(Flags);
   2293   }
   2294 
   2295   // Handle the arguments now that we've gotten them.
   2296   SmallVector<unsigned, 4> RegArgs;
   2297   unsigned NumBytes;
   2298   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
   2299     return false;
   2300 
   2301   // Issue the call.
   2302   MachineInstrBuilder MIB;
   2303   unsigned CallOpc = ARMSelectCallOp(GV);
   2304   // Explicitly adding the predicate here.
   2305   if(isThumb2) {
   2306     // Explicitly adding the predicate here.
   2307     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2308                                  TII.get(CallOpc)));
   2309     if (!IntrMemName)
   2310       MIB.addGlobalAddress(GV, 0, 0);
   2311     else
   2312       MIB.addExternalSymbol(IntrMemName, 0);
   2313   } else {
   2314     if (!IntrMemName)
   2315       // Explicitly adding the predicate here.
   2316       MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2317                                    TII.get(CallOpc))
   2318             .addGlobalAddress(GV, 0, 0));
   2319     else
   2320       MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
   2321                                    TII.get(CallOpc))
   2322             .addExternalSymbol(IntrMemName, 0));
   2323   }
   2324 
   2325   // Add implicit physical register uses to the call.
   2326   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
   2327     MIB.addReg(RegArgs[i]);
   2328 
   2329   // Add a register mask with the call-preserved registers.
   2330   // Proper defs for return values will be added by setPhysRegsDeadExcept().
   2331   MIB.addRegMask(TRI.getCallPreservedMask(CC));
   2332 
   2333   // Finish off the call including any return values.
   2334   SmallVector<unsigned, 4> UsedRegs;
   2335   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
   2336 
   2337   // Set all unused physreg defs as dead.
   2338   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
   2339 
   2340   return true;
   2341 }
   2342 
   2343 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
   2344   return Len <= 16;
   2345 }
   2346 
   2347 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
   2348                                         uint64_t Len) {
   2349   // Make sure we don't bloat code by inlining very large memcpy's.
   2350   if (!ARMIsMemCpySmall(Len))
   2351     return false;
   2352 
   2353   // We don't care about alignment here since we just emit integer accesses.
   2354   while (Len) {
   2355     MVT VT;
   2356     if (Len >= 4)
   2357       VT = MVT::i32;
   2358     else if (Len >= 2)
   2359       VT = MVT::i16;
   2360     else {
   2361       assert(Len == 1);
   2362       VT = MVT::i8;
   2363     }
   2364 
   2365     bool RV;
   2366     unsigned ResultReg;
   2367     RV = ARMEmitLoad(VT, ResultReg, Src);
   2368     assert (RV == true && "Should be able to handle this load.");
   2369     RV = ARMEmitStore(VT, ResultReg, Dest);
   2370     assert (RV == true && "Should be able to handle this store.");
   2371     (void)RV;
   2372 
   2373     unsigned Size = VT.getSizeInBits()/8;
   2374     Len -= Size;
   2375     Dest.Offset += Size;
   2376     Src.Offset += Size;
   2377   }
   2378 
   2379   return true;
   2380 }
   2381 
   2382 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
   2383   // FIXME: Handle more intrinsics.
   2384   switch (I.getIntrinsicID()) {
   2385   default: return false;
   2386   case Intrinsic::memcpy:
   2387   case Intrinsic::memmove: {
   2388     const MemTransferInst &MTI = cast<MemTransferInst>(I);
   2389     // Don't handle volatile.
   2390     if (MTI.isVolatile())
   2391       return false;
   2392 
   2393     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
   2394     // we would emit dead code because we don't currently handle memmoves.
   2395     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
   2396     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
   2397       // Small memcpy's are common enough that we want to do them without a call
   2398       // if possible.
   2399       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
   2400       if (ARMIsMemCpySmall(Len)) {
   2401         Address Dest, Src;
   2402         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
   2403             !ARMComputeAddress(MTI.getRawSource(), Src))
   2404           return false;
   2405         if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
   2406           return true;
   2407       }
   2408     }
   2409 
   2410     if (!MTI.getLength()->getType()->isIntegerTy(32))
   2411       return false;
   2412 
   2413     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
   2414       return false;
   2415 
   2416     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
   2417     return SelectCall(&I, IntrMemName);
   2418   }
   2419   case Intrinsic::memset: {
   2420     const MemSetInst &MSI = cast<MemSetInst>(I);
   2421     // Don't handle volatile.
   2422     if (MSI.isVolatile())
   2423       return false;
   2424 
   2425     if (!MSI.getLength()->getType()->isIntegerTy(32))
   2426       return false;
   2427 
   2428     if (MSI.getDestAddressSpace() > 255)
   2429       return false;
   2430 
   2431     return SelectCall(&I, "memset");
   2432   }
   2433   }
   2434 }
   2435 
   2436 bool ARMFastISel::SelectTrunc(const Instruction *I) {
   2437   // The high bits for a type smaller than the register size are assumed to be
   2438   // undefined.
   2439   Value *Op = I->getOperand(0);
   2440 
   2441   EVT SrcVT, DestVT;
   2442   SrcVT = TLI.getValueType(Op->getType(), true);
   2443   DestVT = TLI.getValueType(I->getType(), true);
   2444 
   2445   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
   2446     return false;
   2447   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
   2448     return false;
   2449 
   2450   unsigned SrcReg = getRegForValue(Op);
   2451   if (!SrcReg) return false;
   2452 
   2453   // Because the high bits are undefined, a truncate doesn't generate
   2454   // any code.
   2455   UpdateValueMap(I, SrcReg);
   2456   return true;
   2457 }
   2458 
   2459 unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
   2460                                     bool isZExt) {
   2461   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
   2462     return 0;
   2463 
   2464   unsigned Opc;
   2465   bool isBoolZext = false;
   2466   if (!SrcVT.isSimple()) return 0;
   2467   switch (SrcVT.getSimpleVT().SimpleTy) {
   2468   default: return 0;
   2469   case MVT::i16:
   2470     if (!Subtarget->hasV6Ops()) return 0;
   2471     if (isZExt)
   2472       Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
   2473     else
   2474       Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
   2475     break;
   2476   case MVT::i8:
   2477     if (!Subtarget->hasV6Ops()) return 0;
   2478     if (isZExt)
   2479       Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
   2480     else
   2481       Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
   2482     break;
   2483   case MVT::i1:
   2484     if (isZExt) {
   2485       Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
   2486       isBoolZext = true;
   2487       break;
   2488     }
   2489     return 0;
   2490   }
   2491 
   2492   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
   2493   MachineInstrBuilder MIB;
   2494   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
   2495         .addReg(SrcReg);
   2496   if (isBoolZext)
   2497     MIB.addImm(1);
   2498   else
   2499     MIB.addImm(0);
   2500   AddOptionalDefs(MIB);
   2501   return ResultReg;
   2502 }
   2503 
   2504 bool ARMFastISel::SelectIntExt(const Instruction *I) {
   2505   // On ARM, in general, integer casts don't involve legal types; this code
   2506   // handles promotable integers.
   2507   Type *DestTy = I->getType();
   2508   Value *Src = I->getOperand(0);
   2509   Type *SrcTy = Src->getType();
   2510 
   2511   EVT SrcVT, DestVT;
   2512   SrcVT = TLI.getValueType(SrcTy, true);
   2513   DestVT = TLI.getValueType(DestTy, true);
   2514 
   2515   bool isZExt = isa<ZExtInst>(I);
   2516   unsigned SrcReg = getRegForValue(Src);
   2517   if (!SrcReg) return false;
   2518 
   2519   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
   2520   if (ResultReg == 0) return false;
   2521   UpdateValueMap(I, ResultReg);
   2522   return true;
   2523 }
   2524 
   2525 // TODO: SoftFP support.
   2526 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
   2527 
   2528   switch (I->getOpcode()) {
   2529     case Instruction::Load:
   2530       return SelectLoad(I);
   2531     case Instruction::Store:
   2532       return SelectStore(I);
   2533     case Instruction::Br:
   2534       return SelectBranch(I);
   2535     case Instruction::IndirectBr:
   2536       return SelectIndirectBr(I);
   2537     case Instruction::ICmp:
   2538     case Instruction::FCmp:
   2539       return SelectCmp(I);
   2540     case Instruction::FPExt:
   2541       return SelectFPExt(I);
   2542     case Instruction::FPTrunc:
   2543       return SelectFPTrunc(I);
   2544     case Instruction::SIToFP:
   2545       return SelectIToFP(I, /*isSigned*/ true);
   2546     case Instruction::UIToFP:
   2547       return SelectIToFP(I, /*isSigned*/ false);
   2548     case Instruction::FPToSI:
   2549       return SelectFPToI(I, /*isSigned*/ true);
   2550     case Instruction::FPToUI:
   2551       return SelectFPToI(I, /*isSigned*/ false);
   2552     case Instruction::Add:
   2553       return SelectBinaryIntOp(I, ISD::ADD);
   2554     case Instruction::Or:
   2555       return SelectBinaryIntOp(I, ISD::OR);
   2556     case Instruction::Sub:
   2557       return SelectBinaryIntOp(I, ISD::SUB);
   2558     case Instruction::FAdd:
   2559       return SelectBinaryFPOp(I, ISD::FADD);
   2560     case Instruction::FSub:
   2561       return SelectBinaryFPOp(I, ISD::FSUB);
   2562     case Instruction::FMul:
   2563       return SelectBinaryFPOp(I, ISD::FMUL);
   2564     case Instruction::SDiv:
   2565       return SelectDiv(I, /*isSigned*/ true);
   2566     case Instruction::UDiv:
   2567       return SelectDiv(I, /*isSigned*/ false);
   2568     case Instruction::SRem:
   2569       return SelectRem(I, /*isSigned*/ true);
   2570     case Instruction::URem:
   2571       return SelectRem(I, /*isSigned*/ false);
   2572     case Instruction::Call:
   2573       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   2574         return SelectIntrinsicCall(*II);
   2575       return SelectCall(I);
   2576     case Instruction::Select:
   2577       return SelectSelect(I);
   2578     case Instruction::Ret:
   2579       return SelectRet(I);
   2580     case Instruction::Trunc:
   2581       return SelectTrunc(I);
   2582     case Instruction::ZExt:
   2583     case Instruction::SExt:
   2584       return SelectIntExt(I);
   2585     default: break;
   2586   }
   2587   return false;
   2588 }
   2589 
   2590 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
   2591 /// vreg is being provided by the specified load instruction.  If possible,
   2592 /// try to fold the load as an operand to the instruction, returning true if
   2593 /// successful.
   2594 bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
   2595                                 const LoadInst *LI) {
   2596   // Verify we have a legal type before going any further.
   2597   MVT VT;
   2598   if (!isLoadTypeLegal(LI->getType(), VT))
   2599     return false;
   2600 
   2601   // Combine load followed by zero- or sign-extend.
   2602   // ldrb r1, [r0]       ldrb r1, [r0]
   2603   // uxtb r2, r1     =>
   2604   // mov  r3, r2         mov  r3, r1
   2605   bool isZExt = true;
   2606   switch(MI->getOpcode()) {
   2607     default: return false;
   2608     case ARM::SXTH:
   2609     case ARM::t2SXTH:
   2610       isZExt = false;
   2611     case ARM::UXTH:
   2612     case ARM::t2UXTH:
   2613       if (VT != MVT::i16)
   2614         return false;
   2615     break;
   2616     case ARM::SXTB:
   2617     case ARM::t2SXTB:
   2618       isZExt = false;
   2619     case ARM::UXTB:
   2620     case ARM::t2UXTB:
   2621       if (VT != MVT::i8)
   2622         return false;
   2623     break;
   2624   }
   2625   // See if we can handle this address.
   2626   Address Addr;
   2627   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
   2628 
   2629   unsigned ResultReg = MI->getOperand(0).getReg();
   2630   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
   2631     return false;
   2632   MI->eraseFromParent();
   2633   return true;
   2634 }
   2635 
   2636 namespace llvm {
   2637   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
   2638     // Completely untested on non-iOS.
   2639     const TargetMachine &TM = funcInfo.MF->getTarget();
   2640 
   2641     // Darwin and thumb1 only for now.
   2642     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
   2643     if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only() &&
   2644         !DisableARMFastISel)
   2645       return new ARMFastISel(funcInfo);
   2646     return 0;
   2647   }
   2648 }
   2649