Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific valeus in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "AsmMatcherEmitter.h"
    100 #include "CodeGenTarget.h"
    101 #include "StringMatcher.h"
    102 #include "StringToOffsetTable.h"
    103 #include "llvm/ADT/OwningPtr.h"
    104 #include "llvm/ADT/PointerUnion.h"
    105 #include "llvm/ADT/SmallPtrSet.h"
    106 #include "llvm/ADT/SmallVector.h"
    107 #include "llvm/ADT/STLExtras.h"
    108 #include "llvm/ADT/StringExtras.h"
    109 #include "llvm/Support/CommandLine.h"
    110 #include "llvm/Support/Debug.h"
    111 #include "llvm/Support/ErrorHandling.h"
    112 #include "llvm/TableGen/Error.h"
    113 #include "llvm/TableGen/Record.h"
    114 #include <map>
    115 #include <set>
    116 using namespace llvm;
    117 
    118 static cl::opt<std::string>
    119 MatchPrefix("match-prefix", cl::init(""),
    120             cl::desc("Only match instructions with the given prefix"));
    121 
    122 namespace {
    123 class AsmMatcherInfo;
    124 struct SubtargetFeatureInfo;
    125 
    126 /// ClassInfo - Helper class for storing the information about a particular
    127 /// class of operands which can be matched.
    128 struct ClassInfo {
    129   enum ClassInfoKind {
    130     /// Invalid kind, for use as a sentinel value.
    131     Invalid = 0,
    132 
    133     /// The class for a particular token.
    134     Token,
    135 
    136     /// The (first) register class, subsequent register classes are
    137     /// RegisterClass0+1, and so on.
    138     RegisterClass0,
    139 
    140     /// The (first) user defined class, subsequent user defined classes are
    141     /// UserClass0+1, and so on.
    142     UserClass0 = 1<<16
    143   };
    144 
    145   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    146   /// N) for the Nth user defined class.
    147   unsigned Kind;
    148 
    149   /// SuperClasses - The super classes of this class. Note that for simplicities
    150   /// sake user operands only record their immediate super class, while register
    151   /// operands include all superclasses.
    152   std::vector<ClassInfo*> SuperClasses;
    153 
    154   /// Name - The full class name, suitable for use in an enum.
    155   std::string Name;
    156 
    157   /// ClassName - The unadorned generic name for this class (e.g., Token).
    158   std::string ClassName;
    159 
    160   /// ValueName - The name of the value this class represents; for a token this
    161   /// is the literal token string, for an operand it is the TableGen class (or
    162   /// empty if this is a derived class).
    163   std::string ValueName;
    164 
    165   /// PredicateMethod - The name of the operand method to test whether the
    166   /// operand matches this class; this is not valid for Token or register kinds.
    167   std::string PredicateMethod;
    168 
    169   /// RenderMethod - The name of the operand method to add this operand to an
    170   /// MCInst; this is not valid for Token or register kinds.
    171   std::string RenderMethod;
    172 
    173   /// ParserMethod - The name of the operand method to do a target specific
    174   /// parsing on the operand.
    175   std::string ParserMethod;
    176 
    177   /// For register classes, the records for all the registers in this class.
    178   std::set<Record*> Registers;
    179 
    180 public:
    181   /// isRegisterClass() - Check if this is a register class.
    182   bool isRegisterClass() const {
    183     return Kind >= RegisterClass0 && Kind < UserClass0;
    184   }
    185 
    186   /// isUserClass() - Check if this is a user defined class.
    187   bool isUserClass() const {
    188     return Kind >= UserClass0;
    189   }
    190 
    191   /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes
    192   /// are related if they are in the same class hierarchy.
    193   bool isRelatedTo(const ClassInfo &RHS) const {
    194     // Tokens are only related to tokens.
    195     if (Kind == Token || RHS.Kind == Token)
    196       return Kind == Token && RHS.Kind == Token;
    197 
    198     // Registers classes are only related to registers classes, and only if
    199     // their intersection is non-empty.
    200     if (isRegisterClass() || RHS.isRegisterClass()) {
    201       if (!isRegisterClass() || !RHS.isRegisterClass())
    202         return false;
    203 
    204       std::set<Record*> Tmp;
    205       std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
    206       std::set_intersection(Registers.begin(), Registers.end(),
    207                             RHS.Registers.begin(), RHS.Registers.end(),
    208                             II);
    209 
    210       return !Tmp.empty();
    211     }
    212 
    213     // Otherwise we have two users operands; they are related if they are in the
    214     // same class hierarchy.
    215     //
    216     // FIXME: This is an oversimplification, they should only be related if they
    217     // intersect, however we don't have that information.
    218     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    219     const ClassInfo *Root = this;
    220     while (!Root->SuperClasses.empty())
    221       Root = Root->SuperClasses.front();
    222 
    223     const ClassInfo *RHSRoot = &RHS;
    224     while (!RHSRoot->SuperClasses.empty())
    225       RHSRoot = RHSRoot->SuperClasses.front();
    226 
    227     return Root == RHSRoot;
    228   }
    229 
    230   /// isSubsetOf - Test whether this class is a subset of \arg RHS;
    231   bool isSubsetOf(const ClassInfo &RHS) const {
    232     // This is a subset of RHS if it is the same class...
    233     if (this == &RHS)
    234       return true;
    235 
    236     // ... or if any of its super classes are a subset of RHS.
    237     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
    238            ie = SuperClasses.end(); it != ie; ++it)
    239       if ((*it)->isSubsetOf(RHS))
    240         return true;
    241 
    242     return false;
    243   }
    244 
    245   /// operator< - Compare two classes.
    246   bool operator<(const ClassInfo &RHS) const {
    247     if (this == &RHS)
    248       return false;
    249 
    250     // Unrelated classes can be ordered by kind.
    251     if (!isRelatedTo(RHS))
    252       return Kind < RHS.Kind;
    253 
    254     switch (Kind) {
    255     case Invalid:
    256       llvm_unreachable("Invalid kind!");
    257 
    258     default:
    259       // This class precedes the RHS if it is a proper subset of the RHS.
    260       if (isSubsetOf(RHS))
    261         return true;
    262       if (RHS.isSubsetOf(*this))
    263         return false;
    264 
    265       // Otherwise, order by name to ensure we have a total ordering.
    266       return ValueName < RHS.ValueName;
    267     }
    268   }
    269 };
    270 
    271 /// MatchableInfo - Helper class for storing the necessary information for an
    272 /// instruction or alias which is capable of being matched.
    273 struct MatchableInfo {
    274   struct AsmOperand {
    275     /// Token - This is the token that the operand came from.
    276     StringRef Token;
    277 
    278     /// The unique class instance this operand should match.
    279     ClassInfo *Class;
    280 
    281     /// The operand name this is, if anything.
    282     StringRef SrcOpName;
    283 
    284     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    285     int SubOpIdx;
    286 
    287     /// Register record if this token is singleton register.
    288     Record *SingletonReg;
    289 
    290     explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
    291                                        SingletonReg(0) {}
    292   };
    293 
    294   /// ResOperand - This represents a single operand in the result instruction
    295   /// generated by the match.  In cases (like addressing modes) where a single
    296   /// assembler operand expands to multiple MCOperands, this represents the
    297   /// single assembler operand, not the MCOperand.
    298   struct ResOperand {
    299     enum {
    300       /// RenderAsmOperand - This represents an operand result that is
    301       /// generated by calling the render method on the assembly operand.  The
    302       /// corresponding AsmOperand is specified by AsmOperandNum.
    303       RenderAsmOperand,
    304 
    305       /// TiedOperand - This represents a result operand that is a duplicate of
    306       /// a previous result operand.
    307       TiedOperand,
    308 
    309       /// ImmOperand - This represents an immediate value that is dumped into
    310       /// the operand.
    311       ImmOperand,
    312 
    313       /// RegOperand - This represents a fixed register that is dumped in.
    314       RegOperand
    315     } Kind;
    316 
    317     union {
    318       /// This is the operand # in the AsmOperands list that this should be
    319       /// copied from.
    320       unsigned AsmOperandNum;
    321 
    322       /// TiedOperandNum - This is the (earlier) result operand that should be
    323       /// copied from.
    324       unsigned TiedOperandNum;
    325 
    326       /// ImmVal - This is the immediate value added to the instruction.
    327       int64_t ImmVal;
    328 
    329       /// Register - This is the register record.
    330       Record *Register;
    331     };
    332 
    333     /// MINumOperands - The number of MCInst operands populated by this
    334     /// operand.
    335     unsigned MINumOperands;
    336 
    337     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    338       ResOperand X;
    339       X.Kind = RenderAsmOperand;
    340       X.AsmOperandNum = AsmOpNum;
    341       X.MINumOperands = NumOperands;
    342       return X;
    343     }
    344 
    345     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    346       ResOperand X;
    347       X.Kind = TiedOperand;
    348       X.TiedOperandNum = TiedOperandNum;
    349       X.MINumOperands = 1;
    350       return X;
    351     }
    352 
    353     static ResOperand getImmOp(int64_t Val) {
    354       ResOperand X;
    355       X.Kind = ImmOperand;
    356       X.ImmVal = Val;
    357       X.MINumOperands = 1;
    358       return X;
    359     }
    360 
    361     static ResOperand getRegOp(Record *Reg) {
    362       ResOperand X;
    363       X.Kind = RegOperand;
    364       X.Register = Reg;
    365       X.MINumOperands = 1;
    366       return X;
    367     }
    368   };
    369 
    370   /// AsmVariantID - Target's assembly syntax variant no.
    371   int AsmVariantID;
    372 
    373   /// TheDef - This is the definition of the instruction or InstAlias that this
    374   /// matchable came from.
    375   Record *const TheDef;
    376 
    377   /// DefRec - This is the definition that it came from.
    378   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    379 
    380   const CodeGenInstruction *getResultInst() const {
    381     if (DefRec.is<const CodeGenInstruction*>())
    382       return DefRec.get<const CodeGenInstruction*>();
    383     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    384   }
    385 
    386   /// ResOperands - This is the operand list that should be built for the result
    387   /// MCInst.
    388   std::vector<ResOperand> ResOperands;
    389 
    390   /// AsmString - The assembly string for this instruction (with variants
    391   /// removed), e.g. "movsx $src, $dst".
    392   std::string AsmString;
    393 
    394   /// Mnemonic - This is the first token of the matched instruction, its
    395   /// mnemonic.
    396   StringRef Mnemonic;
    397 
    398   /// AsmOperands - The textual operands that this instruction matches,
    399   /// annotated with a class and where in the OperandList they were defined.
    400   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    401   /// removed.
    402   SmallVector<AsmOperand, 4> AsmOperands;
    403 
    404   /// Predicates - The required subtarget features to match this instruction.
    405   SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
    406 
    407   /// ConversionFnKind - The enum value which is passed to the generated
    408   /// ConvertToMCInst to convert parsed operands into an MCInst for this
    409   /// function.
    410   std::string ConversionFnKind;
    411 
    412   MatchableInfo(const CodeGenInstruction &CGI)
    413     : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
    414       AsmString(CGI.AsmString) {
    415   }
    416 
    417   MatchableInfo(const CodeGenInstAlias *Alias)
    418     : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
    419       AsmString(Alias->AsmString) {
    420   }
    421 
    422   void Initialize(const AsmMatcherInfo &Info,
    423                   SmallPtrSet<Record*, 16> &SingletonRegisters,
    424                   int AsmVariantNo, std::string &RegisterPrefix);
    425 
    426   /// Validate - Return true if this matchable is a valid thing to match against
    427   /// and perform a bunch of validity checking.
    428   bool Validate(StringRef CommentDelimiter, bool Hack) const;
    429 
    430   /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    431   /// if present, from specified token.
    432   void
    433   extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
    434                                         std::string &RegisterPrefix);
    435 
    436   /// FindAsmOperand - Find the AsmOperand with the specified name and
    437   /// suboperand index.
    438   int FindAsmOperand(StringRef N, int SubOpIdx) const {
    439     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    440       if (N == AsmOperands[i].SrcOpName &&
    441           SubOpIdx == AsmOperands[i].SubOpIdx)
    442         return i;
    443     return -1;
    444   }
    445 
    446   /// FindAsmOperandNamed - Find the first AsmOperand with the specified name.
    447   /// This does not check the suboperand index.
    448   int FindAsmOperandNamed(StringRef N) const {
    449     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    450       if (N == AsmOperands[i].SrcOpName)
    451         return i;
    452     return -1;
    453   }
    454 
    455   void BuildInstructionResultOperands();
    456   void BuildAliasResultOperands();
    457 
    458   /// operator< - Compare two matchables.
    459   bool operator<(const MatchableInfo &RHS) const {
    460     // The primary comparator is the instruction mnemonic.
    461     if (Mnemonic != RHS.Mnemonic)
    462       return Mnemonic < RHS.Mnemonic;
    463 
    464     if (AsmOperands.size() != RHS.AsmOperands.size())
    465       return AsmOperands.size() < RHS.AsmOperands.size();
    466 
    467     // Compare lexicographically by operand. The matcher validates that other
    468     // orderings wouldn't be ambiguous using \see CouldMatchAmbiguouslyWith().
    469     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    470       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    471         return true;
    472       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    473         return false;
    474     }
    475 
    476     return false;
    477   }
    478 
    479   /// CouldMatchAmbiguouslyWith - Check whether this matchable could
    480   /// ambiguously match the same set of operands as \arg RHS (without being a
    481   /// strictly superior match).
    482   bool CouldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
    483     // The primary comparator is the instruction mnemonic.
    484     if (Mnemonic != RHS.Mnemonic)
    485       return false;
    486 
    487     // The number of operands is unambiguous.
    488     if (AsmOperands.size() != RHS.AsmOperands.size())
    489       return false;
    490 
    491     // Otherwise, make sure the ordering of the two instructions is unambiguous
    492     // by checking that either (a) a token or operand kind discriminates them,
    493     // or (b) the ordering among equivalent kinds is consistent.
    494 
    495     // Tokens and operand kinds are unambiguous (assuming a correct target
    496     // specific parser).
    497     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    498       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    499           AsmOperands[i].Class->Kind == ClassInfo::Token)
    500         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    501             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    502           return false;
    503 
    504     // Otherwise, this operand could commute if all operands are equivalent, or
    505     // there is a pair of operands that compare less than and a pair that
    506     // compare greater than.
    507     bool HasLT = false, HasGT = false;
    508     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    509       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    510         HasLT = true;
    511       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    512         HasGT = true;
    513     }
    514 
    515     return !(HasLT ^ HasGT);
    516   }
    517 
    518   void dump();
    519 
    520 private:
    521   void TokenizeAsmString(const AsmMatcherInfo &Info);
    522 };
    523 
    524 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    525 /// feature which participates in instruction matching.
    526 struct SubtargetFeatureInfo {
    527   /// \brief The predicate record for this feature.
    528   Record *TheDef;
    529 
    530   /// \brief An unique index assigned to represent this feature.
    531   unsigned Index;
    532 
    533   SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
    534 
    535   /// \brief The name of the enumerated constant identifying this feature.
    536   std::string getEnumName() const {
    537     return "Feature_" + TheDef->getName();
    538   }
    539 };
    540 
    541 struct OperandMatchEntry {
    542   unsigned OperandMask;
    543   MatchableInfo* MI;
    544   ClassInfo *CI;
    545 
    546   static OperandMatchEntry Create(MatchableInfo* mi, ClassInfo *ci,
    547                                   unsigned opMask) {
    548     OperandMatchEntry X;
    549     X.OperandMask = opMask;
    550     X.CI = ci;
    551     X.MI = mi;
    552     return X;
    553   }
    554 };
    555 
    556 
    557 class AsmMatcherInfo {
    558 public:
    559   /// Tracked Records
    560   RecordKeeper &Records;
    561 
    562   /// The tablegen AsmParser record.
    563   Record *AsmParser;
    564 
    565   /// Target - The target information.
    566   CodeGenTarget &Target;
    567 
    568   /// The classes which are needed for matching.
    569   std::vector<ClassInfo*> Classes;
    570 
    571   /// The information on the matchables to match.
    572   std::vector<MatchableInfo*> Matchables;
    573 
    574   /// Info for custom matching operands by user defined methods.
    575   std::vector<OperandMatchEntry> OperandMatchInfo;
    576 
    577   /// Map of Register records to their class information.
    578   std::map<Record*, ClassInfo*> RegisterClasses;
    579 
    580   /// Map of Predicate records to their subtarget information.
    581   std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
    582 
    583 private:
    584   /// Map of token to class information which has already been constructed.
    585   std::map<std::string, ClassInfo*> TokenClasses;
    586 
    587   /// Map of RegisterClass records to their class information.
    588   std::map<Record*, ClassInfo*> RegisterClassClasses;
    589 
    590   /// Map of AsmOperandClass records to their class information.
    591   std::map<Record*, ClassInfo*> AsmOperandClasses;
    592 
    593 private:
    594   /// getTokenClass - Lookup or create the class for the given token.
    595   ClassInfo *getTokenClass(StringRef Token);
    596 
    597   /// getOperandClass - Lookup or create the class for the given operand.
    598   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    599                              int SubOpIdx);
    600   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    601 
    602   /// BuildRegisterClasses - Build the ClassInfo* instances for register
    603   /// classes.
    604   void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
    605 
    606   /// BuildOperandClasses - Build the ClassInfo* instances for user defined
    607   /// operand classes.
    608   void BuildOperandClasses();
    609 
    610   void BuildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    611                                         unsigned AsmOpIdx);
    612   void BuildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    613                                   MatchableInfo::AsmOperand &Op);
    614 
    615 public:
    616   AsmMatcherInfo(Record *AsmParser,
    617                  CodeGenTarget &Target,
    618                  RecordKeeper &Records);
    619 
    620   /// BuildInfo - Construct the various tables used during matching.
    621   void BuildInfo();
    622 
    623   /// BuildOperandMatchInfo - Build the necessary information to handle user
    624   /// defined operand parsing methods.
    625   void BuildOperandMatchInfo();
    626 
    627   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    628   /// given operand.
    629   SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    630     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    631     std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
    632       SubtargetFeatures.find(Def);
    633     return I == SubtargetFeatures.end() ? 0 : I->second;
    634   }
    635 
    636   RecordKeeper &getRecords() const {
    637     return Records;
    638   }
    639 };
    640 
    641 }
    642 
    643 void MatchableInfo::dump() {
    644   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    645 
    646   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    647     AsmOperand &Op = AsmOperands[i];
    648     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    649     errs() << '\"' << Op.Token << "\"\n";
    650   }
    651 }
    652 
    653 void MatchableInfo::Initialize(const AsmMatcherInfo &Info,
    654                                SmallPtrSet<Record*, 16> &SingletonRegisters,
    655                                int AsmVariantNo, std::string &RegisterPrefix) {
    656   AsmVariantID = AsmVariantNo;
    657   AsmString =
    658     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    659 
    660   TokenizeAsmString(Info);
    661 
    662   // Compute the require features.
    663   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
    664   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
    665     if (SubtargetFeatureInfo *Feature =
    666         Info.getSubtargetFeature(Predicates[i]))
    667       RequiredFeatures.push_back(Feature);
    668 
    669   // Collect singleton registers, if used.
    670   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    671     extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
    672     if (Record *Reg = AsmOperands[i].SingletonReg)
    673       SingletonRegisters.insert(Reg);
    674   }
    675 }
    676 
    677 /// TokenizeAsmString - Tokenize a simplified assembly string.
    678 void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) {
    679   StringRef String = AsmString;
    680   unsigned Prev = 0;
    681   bool InTok = true;
    682   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    683     switch (String[i]) {
    684     case '[':
    685     case ']':
    686     case '*':
    687     case '!':
    688     case ' ':
    689     case '\t':
    690     case ',':
    691       if (InTok) {
    692         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    693         InTok = false;
    694       }
    695       if (!isspace(String[i]) && String[i] != ',')
    696         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    697       Prev = i + 1;
    698       break;
    699 
    700     case '\\':
    701       if (InTok) {
    702         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    703         InTok = false;
    704       }
    705       ++i;
    706       assert(i != String.size() && "Invalid quoted character");
    707       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    708       Prev = i + 1;
    709       break;
    710 
    711     case '$': {
    712       if (InTok) {
    713         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    714         InTok = false;
    715       }
    716 
    717       // If this isn't "${", treat like a normal token.
    718       if (i + 1 == String.size() || String[i + 1] != '{') {
    719         Prev = i;
    720         break;
    721       }
    722 
    723       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    724       assert(End != String.end() && "Missing brace in operand reference!");
    725       size_t EndPos = End - String.begin();
    726       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
    727       Prev = EndPos + 1;
    728       i = EndPos;
    729       break;
    730     }
    731 
    732     case '.':
    733       if (InTok)
    734         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    735       Prev = i;
    736       InTok = true;
    737       break;
    738 
    739     default:
    740       InTok = true;
    741     }
    742   }
    743   if (InTok && Prev != String.size())
    744     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
    745 
    746   // The first token of the instruction is the mnemonic, which must be a
    747   // simple string, not a $foo variable or a singleton register.
    748   if (AsmOperands.empty())
    749     throw TGError(TheDef->getLoc(),
    750                   "Instruction '" + TheDef->getName() + "' has no tokens");
    751   Mnemonic = AsmOperands[0].Token;
    752   // FIXME : Check and raise an error if it is a register.
    753   if (Mnemonic[0] == '$')
    754     throw TGError(TheDef->getLoc(),
    755                   "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
    756 
    757   // Remove the first operand, it is tracked in the mnemonic field.
    758   AsmOperands.erase(AsmOperands.begin());
    759 }
    760 
    761 bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const {
    762   // Reject matchables with no .s string.
    763   if (AsmString.empty())
    764     throw TGError(TheDef->getLoc(), "instruction with empty asm string");
    765 
    766   // Reject any matchables with a newline in them, they should be marked
    767   // isCodeGenOnly if they are pseudo instructions.
    768   if (AsmString.find('\n') != std::string::npos)
    769     throw TGError(TheDef->getLoc(),
    770                   "multiline instruction is not valid for the asmparser, "
    771                   "mark it isCodeGenOnly");
    772 
    773   // Remove comments from the asm string.  We know that the asmstring only
    774   // has one line.
    775   if (!CommentDelimiter.empty() &&
    776       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    777     throw TGError(TheDef->getLoc(),
    778                   "asmstring for instruction has comment character in it, "
    779                   "mark it isCodeGenOnly");
    780 
    781   // Reject matchables with operand modifiers, these aren't something we can
    782   // handle, the target should be refactored to use operands instead of
    783   // modifiers.
    784   //
    785   // Also, check for instructions which reference the operand multiple times;
    786   // this implies a constraint we would not honor.
    787   std::set<std::string> OperandNames;
    788   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    789     StringRef Tok = AsmOperands[i].Token;
    790     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    791       throw TGError(TheDef->getLoc(),
    792                     "matchable with operand modifier '" + Tok.str() +
    793                     "' not supported by asm matcher.  Mark isCodeGenOnly!");
    794 
    795     // Verify that any operand is only mentioned once.
    796     // We reject aliases and ignore instructions for now.
    797     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
    798       if (!Hack)
    799         throw TGError(TheDef->getLoc(),
    800                       "ERROR: matchable with tied operand '" + Tok.str() +
    801                       "' can never be matched!");
    802       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
    803       // bunch of instructions.  It is unclear what the right answer is.
    804       DEBUG({
    805         errs() << "warning: '" << TheDef->getName() << "': "
    806                << "ignoring instruction with tied operand '"
    807                << Tok.str() << "'\n";
    808       });
    809       return false;
    810     }
    811   }
    812 
    813   return true;
    814 }
    815 
    816 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    817 /// if present, from specified token.
    818 void MatchableInfo::
    819 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
    820                                       const AsmMatcherInfo &Info,
    821                                       std::string &RegisterPrefix) {
    822   StringRef Tok = AsmOperands[OperandNo].Token;
    823   if (RegisterPrefix.empty()) {
    824     std::string LoweredTok = Tok.lower();
    825     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    826       AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    827     return;
    828   }
    829 
    830   if (!Tok.startswith(RegisterPrefix))
    831     return;
    832 
    833   StringRef RegName = Tok.substr(RegisterPrefix.size());
    834   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    835     AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    836 
    837   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    838   // be some random non-register token, just ignore it.
    839   return;
    840 }
    841 
    842 static std::string getEnumNameForToken(StringRef Str) {
    843   std::string Res;
    844 
    845   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    846     switch (*it) {
    847     case '*': Res += "_STAR_"; break;
    848     case '%': Res += "_PCT_"; break;
    849     case ':': Res += "_COLON_"; break;
    850     case '!': Res += "_EXCLAIM_"; break;
    851     case '.': Res += "_DOT_"; break;
    852     default:
    853       if (isalnum(*it))
    854         Res += *it;
    855       else
    856         Res += "_" + utostr((unsigned) *it) + "_";
    857     }
    858   }
    859 
    860   return Res;
    861 }
    862 
    863 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
    864   ClassInfo *&Entry = TokenClasses[Token];
    865 
    866   if (!Entry) {
    867     Entry = new ClassInfo();
    868     Entry->Kind = ClassInfo::Token;
    869     Entry->ClassName = "Token";
    870     Entry->Name = "MCK_" + getEnumNameForToken(Token);
    871     Entry->ValueName = Token;
    872     Entry->PredicateMethod = "<invalid>";
    873     Entry->RenderMethod = "<invalid>";
    874     Entry->ParserMethod = "";
    875     Classes.push_back(Entry);
    876   }
    877 
    878   return Entry;
    879 }
    880 
    881 ClassInfo *
    882 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
    883                                 int SubOpIdx) {
    884   Record *Rec = OI.Rec;
    885   if (SubOpIdx != -1)
    886     Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
    887   return getOperandClass(Rec, SubOpIdx);
    888 }
    889 
    890 ClassInfo *
    891 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
    892   if (Rec->isSubClassOf("RegisterOperand")) {
    893     // RegisterOperand may have an associated ParserMatchClass. If it does,
    894     // use it, else just fall back to the underlying register class.
    895     const RecordVal *R = Rec->getValue("ParserMatchClass");
    896     if (R == 0 || R->getValue() == 0)
    897       throw "Record `" + Rec->getName() +
    898         "' does not have a ParserMatchClass!\n";
    899 
    900     if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
    901       Record *MatchClass = DI->getDef();
    902       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
    903         return CI;
    904     }
    905 
    906     // No custom match class. Just use the register class.
    907     Record *ClassRec = Rec->getValueAsDef("RegClass");
    908     if (!ClassRec)
    909       throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
    910                     "' has no associated register class!\n");
    911     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
    912       return CI;
    913     throw TGError(Rec->getLoc(), "register class has no class info!");
    914   }
    915 
    916 
    917   if (Rec->isSubClassOf("RegisterClass")) {
    918     if (ClassInfo *CI = RegisterClassClasses[Rec])
    919       return CI;
    920     throw TGError(Rec->getLoc(), "register class has no class info!");
    921   }
    922 
    923   assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
    924   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
    925   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
    926     return CI;
    927 
    928   throw TGError(Rec->getLoc(), "operand has no match class!");
    929 }
    930 
    931 void AsmMatcherInfo::
    932 BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
    933   const std::vector<CodeGenRegister*> &Registers =
    934     Target.getRegBank().getRegisters();
    935   ArrayRef<CodeGenRegisterClass*> RegClassList =
    936     Target.getRegBank().getRegClasses();
    937 
    938   // The register sets used for matching.
    939   std::set< std::set<Record*> > RegisterSets;
    940 
    941   // Gather the defined sets.
    942   for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
    943        RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
    944     RegisterSets.insert(std::set<Record*>(
    945         (*it)->getOrder().begin(), (*it)->getOrder().end()));
    946 
    947   // Add any required singleton sets.
    948   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
    949        ie = SingletonRegisters.end(); it != ie; ++it) {
    950     Record *Rec = *it;
    951     RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
    952   }
    953 
    954   // Introduce derived sets where necessary (when a register does not determine
    955   // a unique register set class), and build the mapping of registers to the set
    956   // they should classify to.
    957   std::map<Record*, std::set<Record*> > RegisterMap;
    958   for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
    959          ie = Registers.end(); it != ie; ++it) {
    960     const CodeGenRegister &CGR = **it;
    961     // Compute the intersection of all sets containing this register.
    962     std::set<Record*> ContainingSet;
    963 
    964     for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
    965            ie = RegisterSets.end(); it != ie; ++it) {
    966       if (!it->count(CGR.TheDef))
    967         continue;
    968 
    969       if (ContainingSet.empty()) {
    970         ContainingSet = *it;
    971         continue;
    972       }
    973 
    974       std::set<Record*> Tmp;
    975       std::swap(Tmp, ContainingSet);
    976       std::insert_iterator< std::set<Record*> > II(ContainingSet,
    977                                                    ContainingSet.begin());
    978       std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
    979     }
    980 
    981     if (!ContainingSet.empty()) {
    982       RegisterSets.insert(ContainingSet);
    983       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
    984     }
    985   }
    986 
    987   // Construct the register classes.
    988   std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
    989   unsigned Index = 0;
    990   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
    991          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
    992     ClassInfo *CI = new ClassInfo();
    993     CI->Kind = ClassInfo::RegisterClass0 + Index;
    994     CI->ClassName = "Reg" + utostr(Index);
    995     CI->Name = "MCK_Reg" + utostr(Index);
    996     CI->ValueName = "";
    997     CI->PredicateMethod = ""; // unused
    998     CI->RenderMethod = "addRegOperands";
    999     CI->Registers = *it;
   1000     Classes.push_back(CI);
   1001     RegisterSetClasses.insert(std::make_pair(*it, CI));
   1002   }
   1003 
   1004   // Find the superclasses; we could compute only the subgroup lattice edges,
   1005   // but there isn't really a point.
   1006   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1007          ie = RegisterSets.end(); it != ie; ++it) {
   1008     ClassInfo *CI = RegisterSetClasses[*it];
   1009     for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
   1010            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
   1011       if (*it != *it2 &&
   1012           std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
   1013         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
   1014   }
   1015 
   1016   // Name the register classes which correspond to a user defined RegisterClass.
   1017   for (ArrayRef<CodeGenRegisterClass*>::const_iterator
   1018        it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
   1019     const CodeGenRegisterClass &RC = **it;
   1020     // Def will be NULL for non-user defined register classes.
   1021     Record *Def = RC.getDef();
   1022     if (!Def)
   1023       continue;
   1024     ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
   1025                                                          RC.getOrder().end())];
   1026     if (CI->ValueName.empty()) {
   1027       CI->ClassName = RC.getName();
   1028       CI->Name = "MCK_" + RC.getName();
   1029       CI->ValueName = RC.getName();
   1030     } else
   1031       CI->ValueName = CI->ValueName + "," + RC.getName();
   1032 
   1033     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1034   }
   1035 
   1036   // Populate the map for individual registers.
   1037   for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
   1038          ie = RegisterMap.end(); it != ie; ++it)
   1039     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1040 
   1041   // Name the register classes which correspond to singleton registers.
   1042   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1043          ie = SingletonRegisters.end(); it != ie; ++it) {
   1044     Record *Rec = *it;
   1045     ClassInfo *CI = RegisterClasses[Rec];
   1046     assert(CI && "Missing singleton register class info!");
   1047 
   1048     if (CI->ValueName.empty()) {
   1049       CI->ClassName = Rec->getName();
   1050       CI->Name = "MCK_" + Rec->getName();
   1051       CI->ValueName = Rec->getName();
   1052     } else
   1053       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1054   }
   1055 }
   1056 
   1057 void AsmMatcherInfo::BuildOperandClasses() {
   1058   std::vector<Record*> AsmOperands =
   1059     Records.getAllDerivedDefinitions("AsmOperandClass");
   1060 
   1061   // Pre-populate AsmOperandClasses map.
   1062   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1063          ie = AsmOperands.end(); it != ie; ++it)
   1064     AsmOperandClasses[*it] = new ClassInfo();
   1065 
   1066   unsigned Index = 0;
   1067   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1068          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
   1069     ClassInfo *CI = AsmOperandClasses[*it];
   1070     CI->Kind = ClassInfo::UserClass0 + Index;
   1071 
   1072     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
   1073     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
   1074       DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
   1075       if (!DI) {
   1076         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1077         continue;
   1078       }
   1079 
   1080       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1081       if (!SC)
   1082         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1083       else
   1084         CI->SuperClasses.push_back(SC);
   1085     }
   1086     CI->ClassName = (*it)->getValueAsString("Name");
   1087     CI->Name = "MCK_" + CI->ClassName;
   1088     CI->ValueName = (*it)->getName();
   1089 
   1090     // Get or construct the predicate method name.
   1091     Init *PMName = (*it)->getValueInit("PredicateMethod");
   1092     if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
   1093       CI->PredicateMethod = SI->getValue();
   1094     } else {
   1095       assert(dynamic_cast<UnsetInit*>(PMName) &&
   1096              "Unexpected PredicateMethod field!");
   1097       CI->PredicateMethod = "is" + CI->ClassName;
   1098     }
   1099 
   1100     // Get or construct the render method name.
   1101     Init *RMName = (*it)->getValueInit("RenderMethod");
   1102     if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
   1103       CI->RenderMethod = SI->getValue();
   1104     } else {
   1105       assert(dynamic_cast<UnsetInit*>(RMName) &&
   1106              "Unexpected RenderMethod field!");
   1107       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1108     }
   1109 
   1110     // Get the parse method name or leave it as empty.
   1111     Init *PRMName = (*it)->getValueInit("ParserMethod");
   1112     if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
   1113       CI->ParserMethod = SI->getValue();
   1114 
   1115     AsmOperandClasses[*it] = CI;
   1116     Classes.push_back(CI);
   1117   }
   1118 }
   1119 
   1120 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1121                                CodeGenTarget &target,
   1122                                RecordKeeper &records)
   1123   : Records(records), AsmParser(asmParser), Target(target) {
   1124 }
   1125 
   1126 /// BuildOperandMatchInfo - Build the necessary information to handle user
   1127 /// defined operand parsing methods.
   1128 void AsmMatcherInfo::BuildOperandMatchInfo() {
   1129 
   1130   /// Map containing a mask with all operands indices that can be found for
   1131   /// that class inside a instruction.
   1132   std::map<ClassInfo*, unsigned> OpClassMask;
   1133 
   1134   for (std::vector<MatchableInfo*>::const_iterator it =
   1135        Matchables.begin(), ie = Matchables.end();
   1136        it != ie; ++it) {
   1137     MatchableInfo &II = **it;
   1138     OpClassMask.clear();
   1139 
   1140     // Keep track of all operands of this instructions which belong to the
   1141     // same class.
   1142     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   1143       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   1144       if (Op.Class->ParserMethod.empty())
   1145         continue;
   1146       unsigned &OperandMask = OpClassMask[Op.Class];
   1147       OperandMask |= (1 << i);
   1148     }
   1149 
   1150     // Generate operand match info for each mnemonic/operand class pair.
   1151     for (std::map<ClassInfo*, unsigned>::iterator iit = OpClassMask.begin(),
   1152          iie = OpClassMask.end(); iit != iie; ++iit) {
   1153       unsigned OpMask = iit->second;
   1154       ClassInfo *CI = iit->first;
   1155       OperandMatchInfo.push_back(OperandMatchEntry::Create(&II, CI, OpMask));
   1156     }
   1157   }
   1158 }
   1159 
   1160 void AsmMatcherInfo::BuildInfo() {
   1161   // Build information about all of the AssemblerPredicates.
   1162   std::vector<Record*> AllPredicates =
   1163     Records.getAllDerivedDefinitions("Predicate");
   1164   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1165     Record *Pred = AllPredicates[i];
   1166     // Ignore predicates that are not intended for the assembler.
   1167     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1168       continue;
   1169 
   1170     if (Pred->getName().empty())
   1171       throw TGError(Pred->getLoc(), "Predicate has no name!");
   1172 
   1173     unsigned FeatureNo = SubtargetFeatures.size();
   1174     SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
   1175     assert(FeatureNo < 32 && "Too many subtarget features!");
   1176   }
   1177 
   1178   // Parse the instructions; we need to do this first so that we can gather the
   1179   // singleton register classes.
   1180   SmallPtrSet<Record*, 16> SingletonRegisters;
   1181   unsigned VariantCount = Target.getAsmParserVariantCount();
   1182   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1183     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1184     std::string CommentDelimiter =
   1185       AsmVariant->getValueAsString("CommentDelimiter");
   1186     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1187     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1188 
   1189     for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
   1190            E = Target.inst_end(); I != E; ++I) {
   1191       const CodeGenInstruction &CGI = **I;
   1192 
   1193       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1194       // filter the set of instructions we consider.
   1195       if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
   1196         continue;
   1197 
   1198       // Ignore "codegen only" instructions.
   1199       if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
   1200         continue;
   1201 
   1202       // Validate the operand list to ensure we can handle this instruction.
   1203       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
   1204         const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
   1205 
   1206         // Validate tied operands.
   1207         if (OI.getTiedRegister() != -1) {
   1208           // If we have a tied operand that consists of multiple MCOperands,
   1209           // reject it.  We reject aliases and ignore instructions for now.
   1210           if (OI.MINumOperands != 1) {
   1211             // FIXME: Should reject these.  The ARM backend hits this with $lane
   1212             // in a bunch of instructions. The right answer is unclear.
   1213             DEBUG({
   1214                 errs() << "warning: '" << CGI.TheDef->getName() << "': "
   1215                      << "ignoring instruction with multi-operand tied operand '"
   1216                      << OI.Name << "'\n";
   1217               });
   1218             continue;
   1219           }
   1220         }
   1221       }
   1222 
   1223       OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
   1224 
   1225       II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1226 
   1227       // Ignore instructions which shouldn't be matched and diagnose invalid
   1228       // instruction definitions with an error.
   1229       if (!II->Validate(CommentDelimiter, true))
   1230         continue;
   1231 
   1232       // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
   1233       //
   1234       // FIXME: This is a total hack.
   1235       if (StringRef(II->TheDef->getName()).startswith("Int_") ||
   1236           StringRef(II->TheDef->getName()).endswith("_Int"))
   1237         continue;
   1238 
   1239       Matchables.push_back(II.take());
   1240     }
   1241 
   1242     // Parse all of the InstAlias definitions and stick them in the list of
   1243     // matchables.
   1244     std::vector<Record*> AllInstAliases =
   1245       Records.getAllDerivedDefinitions("InstAlias");
   1246     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1247       CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
   1248 
   1249       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1250       // filter the set of instruction aliases we consider, based on the target
   1251       // instruction.
   1252       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1253             .startswith( MatchPrefix))
   1254         continue;
   1255 
   1256       OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
   1257 
   1258       II->Initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1259 
   1260       // Validate the alias definitions.
   1261       II->Validate(CommentDelimiter, false);
   1262 
   1263       Matchables.push_back(II.take());
   1264     }
   1265   }
   1266 
   1267   // Build info for the register classes.
   1268   BuildRegisterClasses(SingletonRegisters);
   1269 
   1270   // Build info for the user defined assembly operand classes.
   1271   BuildOperandClasses();
   1272 
   1273   // Build the information about matchables, now that we have fully formed
   1274   // classes.
   1275   for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
   1276          ie = Matchables.end(); it != ie; ++it) {
   1277     MatchableInfo *II = *it;
   1278 
   1279     // Parse the tokens after the mnemonic.
   1280     // Note: BuildInstructionOperandReference may insert new AsmOperands, so
   1281     // don't precompute the loop bound.
   1282     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1283       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1284       StringRef Token = Op.Token;
   1285 
   1286       // Check for singleton registers.
   1287       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1288         Op.Class = RegisterClasses[RegRecord];
   1289         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1290                "Unexpected class for singleton register");
   1291         continue;
   1292       }
   1293 
   1294       // Check for simple tokens.
   1295       if (Token[0] != '$') {
   1296         Op.Class = getTokenClass(Token);
   1297         continue;
   1298       }
   1299 
   1300       if (Token.size() > 1 && isdigit(Token[1])) {
   1301         Op.Class = getTokenClass(Token);
   1302         continue;
   1303       }
   1304 
   1305       // Otherwise this is an operand reference.
   1306       StringRef OperandName;
   1307       if (Token[1] == '{')
   1308         OperandName = Token.substr(2, Token.size() - 3);
   1309       else
   1310         OperandName = Token.substr(1);
   1311 
   1312       if (II->DefRec.is<const CodeGenInstruction*>())
   1313         BuildInstructionOperandReference(II, OperandName, i);
   1314       else
   1315         BuildAliasOperandReference(II, OperandName, Op);
   1316     }
   1317 
   1318     if (II->DefRec.is<const CodeGenInstruction*>())
   1319       II->BuildInstructionResultOperands();
   1320     else
   1321       II->BuildAliasResultOperands();
   1322   }
   1323 
   1324   // Process token alias definitions and set up the associated superclass
   1325   // information.
   1326   std::vector<Record*> AllTokenAliases =
   1327     Records.getAllDerivedDefinitions("TokenAlias");
   1328   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1329     Record *Rec = AllTokenAliases[i];
   1330     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1331     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1332     if (FromClass == ToClass)
   1333       throw TGError(Rec->getLoc(),
   1334                     "error: Destination value identical to source value.");
   1335     FromClass->SuperClasses.push_back(ToClass);
   1336   }
   1337 
   1338   // Reorder classes so that classes precede super classes.
   1339   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
   1340 }
   1341 
   1342 /// BuildInstructionOperandReference - The specified operand is a reference to a
   1343 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1344 void AsmMatcherInfo::
   1345 BuildInstructionOperandReference(MatchableInfo *II,
   1346                                  StringRef OperandName,
   1347                                  unsigned AsmOpIdx) {
   1348   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1349   const CGIOperandList &Operands = CGI.Operands;
   1350   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1351 
   1352   // Map this token to an operand.
   1353   unsigned Idx;
   1354   if (!Operands.hasOperandNamed(OperandName, Idx))
   1355     throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1356                   OperandName.str() + "'");
   1357 
   1358   // If the instruction operand has multiple suboperands, but the parser
   1359   // match class for the asm operand is still the default "ImmAsmOperand",
   1360   // then handle each suboperand separately.
   1361   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1362     Record *Rec = Operands[Idx].Rec;
   1363     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1364     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1365     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1366       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1367       StringRef Token = Op->Token; // save this in case Op gets moved
   1368       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1369         MatchableInfo::AsmOperand NewAsmOp(Token);
   1370         NewAsmOp.SubOpIdx = SI;
   1371         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1372       }
   1373       // Replace Op with first suboperand.
   1374       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1375       Op->SubOpIdx = 0;
   1376     }
   1377   }
   1378 
   1379   // Set up the operand class.
   1380   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1381 
   1382   // If the named operand is tied, canonicalize it to the untied operand.
   1383   // For example, something like:
   1384   //   (outs GPR:$dst), (ins GPR:$src)
   1385   // with an asmstring of
   1386   //   "inc $src"
   1387   // we want to canonicalize to:
   1388   //   "inc $dst"
   1389   // so that we know how to provide the $dst operand when filling in the result.
   1390   int OITied = Operands[Idx].getTiedRegister();
   1391   if (OITied != -1) {
   1392     // The tied operand index is an MIOperand index, find the operand that
   1393     // contains it.
   1394     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1395     OperandName = Operands[Idx.first].Name;
   1396     Op->SubOpIdx = Idx.second;
   1397   }
   1398 
   1399   Op->SrcOpName = OperandName;
   1400 }
   1401 
   1402 /// BuildAliasOperandReference - When parsing an operand reference out of the
   1403 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1404 /// operand reference is by looking it up in the result pattern definition.
   1405 void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II,
   1406                                                 StringRef OperandName,
   1407                                                 MatchableInfo::AsmOperand &Op) {
   1408   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1409 
   1410   // Set up the operand class.
   1411   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1412     if (CGA.ResultOperands[i].isRecord() &&
   1413         CGA.ResultOperands[i].getName() == OperandName) {
   1414       // It's safe to go with the first one we find, because CodeGenInstAlias
   1415       // validates that all operands with the same name have the same record.
   1416       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1417       // Use the match class from the Alias definition, not the
   1418       // destination instruction, as we may have an immediate that's
   1419       // being munged by the match class.
   1420       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1421                                  Op.SubOpIdx);
   1422       Op.SrcOpName = OperandName;
   1423       return;
   1424     }
   1425 
   1426   throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1427                 OperandName.str() + "'");
   1428 }
   1429 
   1430 void MatchableInfo::BuildInstructionResultOperands() {
   1431   const CodeGenInstruction *ResultInst = getResultInst();
   1432 
   1433   // Loop over all operands of the result instruction, determining how to
   1434   // populate them.
   1435   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1436     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1437 
   1438     // If this is a tied operand, just copy from the previously handled operand.
   1439     int TiedOp = OpInfo.getTiedRegister();
   1440     if (TiedOp != -1) {
   1441       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1442       continue;
   1443     }
   1444 
   1445     // Find out what operand from the asmparser this MCInst operand comes from.
   1446     int SrcOperand = FindAsmOperandNamed(OpInfo.Name);
   1447     if (OpInfo.Name.empty() || SrcOperand == -1)
   1448       throw TGError(TheDef->getLoc(), "Instruction '" +
   1449                     TheDef->getName() + "' has operand '" + OpInfo.Name +
   1450                     "' that doesn't appear in asm string!");
   1451 
   1452     // Check if the one AsmOperand populates the entire operand.
   1453     unsigned NumOperands = OpInfo.MINumOperands;
   1454     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1455       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1456       continue;
   1457     }
   1458 
   1459     // Add a separate ResOperand for each suboperand.
   1460     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1461       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1462              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1463              "unexpected AsmOperands for suboperands");
   1464       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1465     }
   1466   }
   1467 }
   1468 
   1469 void MatchableInfo::BuildAliasResultOperands() {
   1470   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1471   const CodeGenInstruction *ResultInst = getResultInst();
   1472 
   1473   // Loop over all operands of the result instruction, determining how to
   1474   // populate them.
   1475   unsigned AliasOpNo = 0;
   1476   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1477   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1478     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1479 
   1480     // If this is a tied operand, just copy from the previously handled operand.
   1481     int TiedOp = OpInfo->getTiedRegister();
   1482     if (TiedOp != -1) {
   1483       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1484       continue;
   1485     }
   1486 
   1487     // Handle all the suboperands for this operand.
   1488     const std::string &OpName = OpInfo->Name;
   1489     for ( ; AliasOpNo <  LastOpNo &&
   1490             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1491       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1492 
   1493       // Find out what operand from the asmparser that this MCInst operand
   1494       // comes from.
   1495       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1496       case CodeGenInstAlias::ResultOperand::K_Record: {
   1497         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1498         int SrcOperand = FindAsmOperand(Name, SubIdx);
   1499         if (SrcOperand == -1)
   1500           throw TGError(TheDef->getLoc(), "Instruction '" +
   1501                         TheDef->getName() + "' has operand '" + OpName +
   1502                         "' that doesn't appear in asm string!");
   1503         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1504         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1505                                                         NumOperands));
   1506         break;
   1507       }
   1508       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1509         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1510         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1511         break;
   1512       }
   1513       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1514         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1515         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1516         break;
   1517       }
   1518       }
   1519     }
   1520   }
   1521 }
   1522 
   1523 static void EmitConvertToMCInst(CodeGenTarget &Target, StringRef ClassName,
   1524                                 std::vector<MatchableInfo*> &Infos,
   1525                                 raw_ostream &OS) {
   1526   // Write the convert function to a separate stream, so we can drop it after
   1527   // the enum.
   1528   std::string ConvertFnBody;
   1529   raw_string_ostream CvtOS(ConvertFnBody);
   1530 
   1531   // Function we have already generated.
   1532   std::set<std::string> GeneratedFns;
   1533 
   1534   // Start the unified conversion function.
   1535   CvtOS << "bool " << Target.getName() << ClassName << "::\n";
   1536   CvtOS << "ConvertToMCInst(unsigned Kind, MCInst &Inst, "
   1537         << "unsigned Opcode,\n"
   1538         << "                      const SmallVectorImpl<MCParsedAsmOperand*"
   1539         << "> &Operands) {\n";
   1540   CvtOS << "  Inst.setOpcode(Opcode);\n";
   1541   CvtOS << "  switch (Kind) {\n";
   1542   CvtOS << "  default:\n";
   1543 
   1544   // Start the enum, which we will generate inline.
   1545 
   1546   OS << "// Unified function for converting operands to MCInst instances.\n\n";
   1547   OS << "enum ConversionKind {\n";
   1548 
   1549   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1550   std::string TargetOperandClass = Target.getName() + "Operand";
   1551 
   1552   for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
   1553          ie = Infos.end(); it != ie; ++it) {
   1554     MatchableInfo &II = **it;
   1555 
   1556     // Check if we have a custom match function.
   1557     std::string AsmMatchConverter =
   1558       II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1559     if (!AsmMatchConverter.empty()) {
   1560       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1561       II.ConversionFnKind = Signature;
   1562 
   1563       // Check if we have already generated this signature.
   1564       if (!GeneratedFns.insert(Signature).second)
   1565         continue;
   1566 
   1567       // If not, emit it now.  Add to the enum list.
   1568       OS << "  " << Signature << ",\n";
   1569 
   1570       CvtOS << "  case " << Signature << ":\n";
   1571       CvtOS << "    return " << AsmMatchConverter
   1572             << "(Inst, Opcode, Operands);\n";
   1573       continue;
   1574     }
   1575 
   1576     // Build the conversion function signature.
   1577     std::string Signature = "Convert";
   1578     std::string CaseBody;
   1579     raw_string_ostream CaseOS(CaseBody);
   1580 
   1581     // Compute the convert enum and the case body.
   1582     for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
   1583       const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
   1584 
   1585       // Generate code to populate each result operand.
   1586       switch (OpInfo.Kind) {
   1587       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1588         // This comes from something we parsed.
   1589         MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
   1590 
   1591         // Registers are always converted the same, don't duplicate the
   1592         // conversion function based on them.
   1593         Signature += "__";
   1594         if (Op.Class->isRegisterClass())
   1595           Signature += "Reg";
   1596         else
   1597           Signature += Op.Class->ClassName;
   1598         Signature += utostr(OpInfo.MINumOperands);
   1599         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1600 
   1601         CaseOS << "    ((" << TargetOperandClass << "*)Operands["
   1602                << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod
   1603                << "(Inst, " << OpInfo.MINumOperands << ");\n";
   1604         break;
   1605       }
   1606 
   1607       case MatchableInfo::ResOperand::TiedOperand: {
   1608         // If this operand is tied to a previous one, just copy the MCInst
   1609         // operand from the earlier one.We can only tie single MCOperand values.
   1610         //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1611         unsigned TiedOp = OpInfo.TiedOperandNum;
   1612         assert(i > TiedOp && "Tied operand precedes its target!");
   1613         CaseOS << "    Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n";
   1614         Signature += "__Tie" + utostr(TiedOp);
   1615         break;
   1616       }
   1617       case MatchableInfo::ResOperand::ImmOperand: {
   1618         int64_t Val = OpInfo.ImmVal;
   1619         CaseOS << "    Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n";
   1620         Signature += "__imm" + itostr(Val);
   1621         break;
   1622       }
   1623       case MatchableInfo::ResOperand::RegOperand: {
   1624         if (OpInfo.Register == 0) {
   1625           CaseOS << "    Inst.addOperand(MCOperand::CreateReg(0));\n";
   1626           Signature += "__reg0";
   1627         } else {
   1628           std::string N = getQualifiedName(OpInfo.Register);
   1629           CaseOS << "    Inst.addOperand(MCOperand::CreateReg(" << N << "));\n";
   1630           Signature += "__reg" + OpInfo.Register->getName();
   1631         }
   1632       }
   1633       }
   1634     }
   1635 
   1636     II.ConversionFnKind = Signature;
   1637 
   1638     // Check if we have already generated this signature.
   1639     if (!GeneratedFns.insert(Signature).second)
   1640       continue;
   1641 
   1642     // If not, emit it now.  Add to the enum list.
   1643     OS << "  " << Signature << ",\n";
   1644 
   1645     CvtOS << "  case " << Signature << ":\n";
   1646     CvtOS << CaseOS.str();
   1647     CvtOS << "    return true;\n";
   1648   }
   1649 
   1650   // Finish the convert function.
   1651 
   1652   CvtOS << "  }\n";
   1653   CvtOS << "  return false;\n";
   1654   CvtOS << "}\n\n";
   1655 
   1656   // Finish the enum, and drop the convert function after it.
   1657 
   1658   OS << "  NumConversionVariants\n";
   1659   OS << "};\n\n";
   1660 
   1661   OS << CvtOS.str();
   1662 }
   1663 
   1664 /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds.
   1665 static void EmitMatchClassEnumeration(CodeGenTarget &Target,
   1666                                       std::vector<ClassInfo*> &Infos,
   1667                                       raw_ostream &OS) {
   1668   OS << "namespace {\n\n";
   1669 
   1670   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   1671      << "/// instruction matching.\n";
   1672   OS << "enum MatchClassKind {\n";
   1673   OS << "  InvalidMatchClass = 0,\n";
   1674   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1675          ie = Infos.end(); it != ie; ++it) {
   1676     ClassInfo &CI = **it;
   1677     OS << "  " << CI.Name << ", // ";
   1678     if (CI.Kind == ClassInfo::Token) {
   1679       OS << "'" << CI.ValueName << "'\n";
   1680     } else if (CI.isRegisterClass()) {
   1681       if (!CI.ValueName.empty())
   1682         OS << "register class '" << CI.ValueName << "'\n";
   1683       else
   1684         OS << "derived register class\n";
   1685     } else {
   1686       OS << "user defined class '" << CI.ValueName << "'\n";
   1687     }
   1688   }
   1689   OS << "  NumMatchClassKinds\n";
   1690   OS << "};\n\n";
   1691 
   1692   OS << "}\n\n";
   1693 }
   1694 
   1695 /// EmitValidateOperandClass - Emit the function to validate an operand class.
   1696 static void EmitValidateOperandClass(AsmMatcherInfo &Info,
   1697                                      raw_ostream &OS) {
   1698   OS << "static bool validateOperandClass(MCParsedAsmOperand *GOp, "
   1699      << "MatchClassKind Kind) {\n";
   1700   OS << "  " << Info.Target.getName() << "Operand &Operand = *("
   1701      << Info.Target.getName() << "Operand*)GOp;\n";
   1702 
   1703   // The InvalidMatchClass is not to match any operand.
   1704   OS << "  if (Kind == InvalidMatchClass)\n";
   1705   OS << "    return false;\n\n";
   1706 
   1707   // Check for Token operands first.
   1708   OS << "  if (Operand.isToken())\n";
   1709   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind);"
   1710      << "\n\n";
   1711 
   1712   // Check for register operands, including sub-classes.
   1713   OS << "  if (Operand.isReg()) {\n";
   1714   OS << "    MatchClassKind OpKind;\n";
   1715   OS << "    switch (Operand.getReg()) {\n";
   1716   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   1717   for (std::map<Record*, ClassInfo*>::iterator
   1718          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
   1719        it != ie; ++it)
   1720     OS << "    case " << Info.Target.getName() << "::"
   1721        << it->first->getName() << ": OpKind = " << it->second->Name
   1722        << "; break;\n";
   1723   OS << "    }\n";
   1724   OS << "    return isSubclass(OpKind, Kind);\n";
   1725   OS << "  }\n\n";
   1726 
   1727   // Check the user classes. We don't care what order since we're only
   1728   // actually matching against one of them.
   1729   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
   1730          ie = Info.Classes.end(); it != ie; ++it) {
   1731     ClassInfo &CI = **it;
   1732 
   1733     if (!CI.isUserClass())
   1734       continue;
   1735 
   1736     OS << "  // '" << CI.ClassName << "' class\n";
   1737     OS << "  if (Kind == " << CI.Name
   1738        << " && Operand." << CI.PredicateMethod << "()) {\n";
   1739     OS << "    return true;\n";
   1740     OS << "  }\n\n";
   1741   }
   1742 
   1743   OS << "  return false;\n";
   1744   OS << "}\n\n";
   1745 }
   1746 
   1747 /// EmitIsSubclass - Emit the subclass predicate function.
   1748 static void EmitIsSubclass(CodeGenTarget &Target,
   1749                            std::vector<ClassInfo*> &Infos,
   1750                            raw_ostream &OS) {
   1751   OS << "/// isSubclass - Compute whether \\arg A is a subclass of \\arg B.\n";
   1752   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   1753   OS << "  if (A == B)\n";
   1754   OS << "    return true;\n\n";
   1755 
   1756   OS << "  switch (A) {\n";
   1757   OS << "  default:\n";
   1758   OS << "    return false;\n";
   1759   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1760          ie = Infos.end(); it != ie; ++it) {
   1761     ClassInfo &A = **it;
   1762 
   1763     std::vector<StringRef> SuperClasses;
   1764     for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1765          ie = Infos.end(); it != ie; ++it) {
   1766       ClassInfo &B = **it;
   1767 
   1768       if (&A != &B && A.isSubsetOf(B))
   1769         SuperClasses.push_back(B.Name);
   1770     }
   1771 
   1772     if (SuperClasses.empty())
   1773       continue;
   1774 
   1775     OS << "\n  case " << A.Name << ":\n";
   1776 
   1777     if (SuperClasses.size() == 1) {
   1778       OS << "    return B == " << SuperClasses.back() << ";\n";
   1779       continue;
   1780     }
   1781 
   1782     OS << "    switch (B) {\n";
   1783     OS << "    default: return false;\n";
   1784     for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   1785       OS << "    case " << SuperClasses[i] << ": return true;\n";
   1786     OS << "    }\n";
   1787   }
   1788   OS << "  }\n";
   1789   OS << "}\n\n";
   1790 }
   1791 
   1792 /// EmitMatchTokenString - Emit the function to match a token string to the
   1793 /// appropriate match class value.
   1794 static void EmitMatchTokenString(CodeGenTarget &Target,
   1795                                  std::vector<ClassInfo*> &Infos,
   1796                                  raw_ostream &OS) {
   1797   // Construct the match list.
   1798   std::vector<StringMatcher::StringPair> Matches;
   1799   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1800          ie = Infos.end(); it != ie; ++it) {
   1801     ClassInfo &CI = **it;
   1802 
   1803     if (CI.Kind == ClassInfo::Token)
   1804       Matches.push_back(StringMatcher::StringPair(CI.ValueName,
   1805                                                   "return " + CI.Name + ";"));
   1806   }
   1807 
   1808   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   1809 
   1810   StringMatcher("Name", Matches, OS).Emit();
   1811 
   1812   OS << "  return InvalidMatchClass;\n";
   1813   OS << "}\n\n";
   1814 }
   1815 
   1816 /// EmitMatchRegisterName - Emit the function to match a string to the target
   1817 /// specific register enum.
   1818 static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   1819                                   raw_ostream &OS) {
   1820   // Construct the match list.
   1821   std::vector<StringMatcher::StringPair> Matches;
   1822   const std::vector<CodeGenRegister*> &Regs =
   1823     Target.getRegBank().getRegisters();
   1824   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   1825     const CodeGenRegister *Reg = Regs[i];
   1826     if (Reg->TheDef->getValueAsString("AsmName").empty())
   1827       continue;
   1828 
   1829     Matches.push_back(StringMatcher::StringPair(
   1830                                      Reg->TheDef->getValueAsString("AsmName"),
   1831                                      "return " + utostr(Reg->EnumValue) + ";"));
   1832   }
   1833 
   1834   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   1835 
   1836   StringMatcher("Name", Matches, OS).Emit();
   1837 
   1838   OS << "  return 0;\n";
   1839   OS << "}\n\n";
   1840 }
   1841 
   1842 /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   1843 /// definitions.
   1844 static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   1845                                                 raw_ostream &OS) {
   1846   OS << "// Flags for subtarget features that participate in "
   1847      << "instruction matching.\n";
   1848   OS << "enum SubtargetFeatureFlag {\n";
   1849   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   1850          it = Info.SubtargetFeatures.begin(),
   1851          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   1852     SubtargetFeatureInfo &SFI = *it->second;
   1853     OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
   1854   }
   1855   OS << "  Feature_None = 0\n";
   1856   OS << "};\n\n";
   1857 }
   1858 
   1859 /// EmitComputeAvailableFeatures - Emit the function to compute the list of
   1860 /// available features given a subtarget.
   1861 static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info,
   1862                                          raw_ostream &OS) {
   1863   std::string ClassName =
   1864     Info.AsmParser->getValueAsString("AsmParserClassName");
   1865 
   1866   OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
   1867      << "ComputeAvailableFeatures(uint64_t FB) const {\n";
   1868   OS << "  unsigned Features = 0;\n";
   1869   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   1870          it = Info.SubtargetFeatures.begin(),
   1871          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   1872     SubtargetFeatureInfo &SFI = *it->second;
   1873 
   1874     OS << "  if (";
   1875     std::string CondStorage =
   1876       SFI.TheDef->getValueAsString("AssemblerCondString");
   1877     StringRef Conds = CondStorage;
   1878     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   1879     bool First = true;
   1880     do {
   1881       if (!First)
   1882         OS << " && ";
   1883 
   1884       bool Neg = false;
   1885       StringRef Cond = Comma.first;
   1886       if (Cond[0] == '!') {
   1887         Neg = true;
   1888         Cond = Cond.substr(1);
   1889       }
   1890 
   1891       OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
   1892       if (Neg)
   1893         OS << " == 0";
   1894       else
   1895         OS << " != 0";
   1896       OS << ")";
   1897 
   1898       if (Comma.second.empty())
   1899         break;
   1900 
   1901       First = false;
   1902       Comma = Comma.second.split(',');
   1903     } while (true);
   1904 
   1905     OS << ")\n";
   1906     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   1907   }
   1908   OS << "  return Features;\n";
   1909   OS << "}\n\n";
   1910 }
   1911 
   1912 static std::string GetAliasRequiredFeatures(Record *R,
   1913                                             const AsmMatcherInfo &Info) {
   1914   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   1915   std::string Result;
   1916   unsigned NumFeatures = 0;
   1917   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   1918     SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   1919 
   1920     if (F == 0)
   1921       throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   1922                     "' is not marked as an AssemblerPredicate!");
   1923 
   1924     if (NumFeatures)
   1925       Result += '|';
   1926 
   1927     Result += F->getEnumName();
   1928     ++NumFeatures;
   1929   }
   1930 
   1931   if (NumFeatures > 1)
   1932     Result = '(' + Result + ')';
   1933   return Result;
   1934 }
   1935 
   1936 /// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   1937 /// emit a function for them and return true, otherwise return false.
   1938 static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
   1939   // Ignore aliases when match-prefix is set.
   1940   if (!MatchPrefix.empty())
   1941     return false;
   1942 
   1943   std::vector<Record*> Aliases =
   1944     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   1945   if (Aliases.empty()) return false;
   1946 
   1947   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   1948         "unsigned Features) {\n";
   1949 
   1950   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   1951   // iteration order of the map is stable.
   1952   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   1953 
   1954   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   1955     Record *R = Aliases[i];
   1956     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   1957   }
   1958 
   1959   // Process each alias a "from" mnemonic at a time, building the code executed
   1960   // by the string remapper.
   1961   std::vector<StringMatcher::StringPair> Cases;
   1962   for (std::map<std::string, std::vector<Record*> >::iterator
   1963        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   1964        I != E; ++I) {
   1965     const std::vector<Record*> &ToVec = I->second;
   1966 
   1967     // Loop through each alias and emit code that handles each case.  If there
   1968     // are two instructions without predicates, emit an error.  If there is one,
   1969     // emit it last.
   1970     std::string MatchCode;
   1971     int AliasWithNoPredicate = -1;
   1972 
   1973     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   1974       Record *R = ToVec[i];
   1975       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   1976 
   1977       // If this unconditionally matches, remember it for later and diagnose
   1978       // duplicates.
   1979       if (FeatureMask.empty()) {
   1980         if (AliasWithNoPredicate != -1) {
   1981           // We can't have two aliases from the same mnemonic with no predicate.
   1982           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   1983                      "two MnemonicAliases with the same 'from' mnemonic!");
   1984           throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
   1985         }
   1986 
   1987         AliasWithNoPredicate = i;
   1988         continue;
   1989       }
   1990       if (R->getValueAsString("ToMnemonic") == I->first)
   1991         throw TGError(R->getLoc(), "MnemonicAlias to the same string");
   1992 
   1993       if (!MatchCode.empty())
   1994         MatchCode += "else ";
   1995       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   1996       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   1997     }
   1998 
   1999     if (AliasWithNoPredicate != -1) {
   2000       Record *R = ToVec[AliasWithNoPredicate];
   2001       if (!MatchCode.empty())
   2002         MatchCode += "else\n  ";
   2003       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2004     }
   2005 
   2006     MatchCode += "return;";
   2007 
   2008     Cases.push_back(std::make_pair(I->first, MatchCode));
   2009   }
   2010 
   2011   StringMatcher("Mnemonic", Cases, OS).Emit();
   2012   OS << "}\n\n";
   2013 
   2014   return true;
   2015 }
   2016 
   2017 static const char *getMinimalTypeForRange(uint64_t Range) {
   2018   assert(Range < 0xFFFFFFFFULL && "Enum too large");
   2019   if (Range > 0xFFFF)
   2020     return "uint32_t";
   2021   if (Range > 0xFF)
   2022     return "uint16_t";
   2023   return "uint8_t";
   2024 }
   2025 
   2026 static void EmitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2027                               const AsmMatcherInfo &Info, StringRef ClassName) {
   2028   // Emit the static custom operand parsing table;
   2029   OS << "namespace {\n";
   2030   OS << "  struct OperandMatchEntry {\n";
   2031   OS << "    static const char *const MnemonicTable;\n";
   2032   OS << "    uint32_t OperandMask;\n";
   2033   OS << "    uint32_t Mnemonic;\n";
   2034   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2035                << " RequiredFeatures;\n";
   2036   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2037                << " Class;\n\n";
   2038   OS << "    StringRef getMnemonic() const {\n";
   2039   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2040   OS << "                       MnemonicTable[Mnemonic]);\n";
   2041   OS << "    }\n";
   2042   OS << "  };\n\n";
   2043 
   2044   OS << "  // Predicate for searching for an opcode.\n";
   2045   OS << "  struct LessOpcodeOperand {\n";
   2046   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2047   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2048   OS << "    }\n";
   2049   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2050   OS << "      return LHS < RHS.getMnemonic();\n";
   2051   OS << "    }\n";
   2052   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2053   OS << " const OperandMatchEntry &RHS) {\n";
   2054   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2055   OS << "    }\n";
   2056   OS << "  };\n";
   2057 
   2058   OS << "} // end anonymous namespace.\n\n";
   2059 
   2060   StringToOffsetTable StringTable;
   2061 
   2062   OS << "static const OperandMatchEntry OperandMatchTable["
   2063      << Info.OperandMatchInfo.size() << "] = {\n";
   2064 
   2065   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2066   for (std::vector<OperandMatchEntry>::const_iterator it =
   2067        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2068        it != ie; ++it) {
   2069     const OperandMatchEntry &OMI = *it;
   2070     const MatchableInfo &II = *OMI.MI;
   2071 
   2072     OS << "  { " << OMI.OperandMask;
   2073 
   2074     OS << " /* ";
   2075     bool printComma = false;
   2076     for (int i = 0, e = 31; i !=e; ++i)
   2077       if (OMI.OperandMask & (1 << i)) {
   2078         if (printComma)
   2079           OS << ", ";
   2080         OS << i;
   2081         printComma = true;
   2082       }
   2083     OS << " */";
   2084 
   2085     // Store a pascal-style length byte in the mnemonic.
   2086     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2087     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2088        << " /* " << II.Mnemonic << " */, ";
   2089 
   2090     // Write the required features mask.
   2091     if (!II.RequiredFeatures.empty()) {
   2092       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2093         if (i) OS << "|";
   2094         OS << II.RequiredFeatures[i]->getEnumName();
   2095       }
   2096     } else
   2097       OS << "0";
   2098 
   2099     OS << ", " << OMI.CI->Name;
   2100 
   2101     OS << " },\n";
   2102   }
   2103   OS << "};\n\n";
   2104 
   2105   OS << "const char *const OperandMatchEntry::MnemonicTable =\n";
   2106   StringTable.EmitString(OS);
   2107   OS << ";\n\n";
   2108 
   2109   // Emit the operand class switch to call the correct custom parser for
   2110   // the found operand class.
   2111   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2112      << Target.getName() << ClassName << "::\n"
   2113      << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
   2114      << " &Operands,\n                      unsigned MCK) {\n\n"
   2115      << "  switch(MCK) {\n";
   2116 
   2117   for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
   2118        ie = Info.Classes.end(); it != ie; ++it) {
   2119     ClassInfo *CI = *it;
   2120     if (CI->ParserMethod.empty())
   2121       continue;
   2122     OS << "  case " << CI->Name << ":\n"
   2123        << "    return " << CI->ParserMethod << "(Operands);\n";
   2124   }
   2125 
   2126   OS << "  default:\n";
   2127   OS << "    return MatchOperand_NoMatch;\n";
   2128   OS << "  }\n";
   2129   OS << "  return MatchOperand_NoMatch;\n";
   2130   OS << "}\n\n";
   2131 
   2132   // Emit the static custom operand parser. This code is very similar with
   2133   // the other matcher. Also use MatchResultTy here just in case we go for
   2134   // a better error handling.
   2135   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2136      << Target.getName() << ClassName << "::\n"
   2137      << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
   2138      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2139 
   2140   // Emit code to get the available features.
   2141   OS << "  // Get the current feature set.\n";
   2142   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2143 
   2144   OS << "  // Get the next operand index.\n";
   2145   OS << "  unsigned NextOpNum = Operands.size()-1;\n";
   2146 
   2147   // Emit code to search the table.
   2148   OS << "  // Search the table.\n";
   2149   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2150   OS << " MnemonicRange =\n";
   2151   OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
   2152      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2153      << "                     LessOpcodeOperand());\n\n";
   2154 
   2155   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2156   OS << "    return MatchOperand_NoMatch;\n\n";
   2157 
   2158   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2159      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2160 
   2161   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2162   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2163 
   2164   // Emit check that the required features are available.
   2165   OS << "    // check if the available features match\n";
   2166   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2167      << "!= it->RequiredFeatures) {\n";
   2168   OS << "      continue;\n";
   2169   OS << "    }\n\n";
   2170 
   2171   // Emit check to ensure the operand number matches.
   2172   OS << "    // check if the operand in question has a custom parser.\n";
   2173   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2174   OS << "      continue;\n\n";
   2175 
   2176   // Emit call to the custom parser method
   2177   OS << "    // call custom parse method to handle the operand\n";
   2178   OS << "    OperandMatchResultTy Result = ";
   2179   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2180   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2181   OS << "      return Result;\n";
   2182   OS << "  }\n\n";
   2183 
   2184   OS << "  // Okay, we had no match.\n";
   2185   OS << "  return MatchOperand_NoMatch;\n";
   2186   OS << "}\n\n";
   2187 }
   2188 
   2189 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2190   CodeGenTarget Target(Records);
   2191   Record *AsmParser = Target.getAsmParser();
   2192   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2193 
   2194   // Compute the information on the instructions to match.
   2195   AsmMatcherInfo Info(AsmParser, Target, Records);
   2196   Info.BuildInfo();
   2197 
   2198   // Sort the instruction table using the partial order on classes. We use
   2199   // stable_sort to ensure that ambiguous instructions are still
   2200   // deterministically ordered.
   2201   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2202                    less_ptr<MatchableInfo>());
   2203 
   2204   DEBUG_WITH_TYPE("instruction_info", {
   2205       for (std::vector<MatchableInfo*>::iterator
   2206              it = Info.Matchables.begin(), ie = Info.Matchables.end();
   2207            it != ie; ++it)
   2208         (*it)->dump();
   2209     });
   2210 
   2211   // Check for ambiguous matchables.
   2212   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2213     unsigned NumAmbiguous = 0;
   2214     for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
   2215       for (unsigned j = i + 1; j != e; ++j) {
   2216         MatchableInfo &A = *Info.Matchables[i];
   2217         MatchableInfo &B = *Info.Matchables[j];
   2218 
   2219         if (A.CouldMatchAmbiguouslyWith(B)) {
   2220           errs() << "warning: ambiguous matchables:\n";
   2221           A.dump();
   2222           errs() << "\nis incomparable with:\n";
   2223           B.dump();
   2224           errs() << "\n\n";
   2225           ++NumAmbiguous;
   2226         }
   2227       }
   2228     }
   2229     if (NumAmbiguous)
   2230       errs() << "warning: " << NumAmbiguous
   2231              << " ambiguous matchables!\n";
   2232   });
   2233 
   2234   // Compute the information on the custom operand parsing.
   2235   Info.BuildOperandMatchInfo();
   2236 
   2237   // Write the output.
   2238 
   2239   EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   2240 
   2241   // Information for the class declaration.
   2242   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2243   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2244   OS << "  // This should be included into the middle of the declaration of\n";
   2245   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2246   OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
   2247   OS << "  bool ConvertToMCInst(unsigned Kind, MCInst &Inst, "
   2248      << "unsigned Opcode,\n"
   2249      << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
   2250      << "&Operands);\n";
   2251   OS << "  bool MnemonicIsValid(StringRef Mnemonic);\n";
   2252   OS << "  unsigned MatchInstructionImpl(\n";
   2253   OS << "    const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2254   OS << "    MCInst &Inst, unsigned &ErrorInfo, unsigned VariantID = 0);\n";
   2255 
   2256   if (Info.OperandMatchInfo.size()) {
   2257     OS << "\n  enum OperandMatchResultTy {\n";
   2258     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2259     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2260     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2261     OS << "  };\n";
   2262     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2263     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2264     OS << "    StringRef Mnemonic);\n";
   2265 
   2266     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2267     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2268     OS << "    unsigned MCK);\n\n";
   2269   }
   2270 
   2271   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2272 
   2273   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2274   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2275 
   2276   // Emit the subtarget feature enumeration.
   2277   EmitSubtargetFeatureFlagEnumeration(Info, OS);
   2278 
   2279   // Emit the function to match a register name to number.
   2280   EmitMatchRegisterName(Target, AsmParser, OS);
   2281 
   2282   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2283 
   2284 
   2285   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2286   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2287 
   2288   // Generate the function that remaps for mnemonic aliases.
   2289   bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info);
   2290 
   2291   // Generate the unified function to convert operands into an MCInst.
   2292   EmitConvertToMCInst(Target, ClassName, Info.Matchables, OS);
   2293 
   2294   // Emit the enumeration for classes which participate in matching.
   2295   EmitMatchClassEnumeration(Target, Info.Classes, OS);
   2296 
   2297   // Emit the routine to match token strings to their match class.
   2298   EmitMatchTokenString(Target, Info.Classes, OS);
   2299 
   2300   // Emit the subclass predicate routine.
   2301   EmitIsSubclass(Target, Info.Classes, OS);
   2302 
   2303   // Emit the routine to validate an operand against a match class.
   2304   EmitValidateOperandClass(Info, OS);
   2305 
   2306   // Emit the available features compute function.
   2307   EmitComputeAvailableFeatures(Info, OS);
   2308 
   2309 
   2310   size_t MaxNumOperands = 0;
   2311   for (std::vector<MatchableInfo*>::const_iterator it =
   2312          Info.Matchables.begin(), ie = Info.Matchables.end();
   2313        it != ie; ++it)
   2314     MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size());
   2315 
   2316   // Emit the static match table; unused classes get initalized to 0 which is
   2317   // guaranteed to be InvalidMatchClass.
   2318   //
   2319   // FIXME: We can reduce the size of this table very easily. First, we change
   2320   // it so that store the kinds in separate bit-fields for each index, which
   2321   // only needs to be the max width used for classes at that index (we also need
   2322   // to reject based on this during classification). If we then make sure to
   2323   // order the match kinds appropriately (putting mnemonics last), then we
   2324   // should only end up using a few bits for each class, especially the ones
   2325   // following the mnemonic.
   2326   OS << "namespace {\n";
   2327   OS << "  struct MatchEntry {\n";
   2328   OS << "    static const char *const MnemonicTable;\n";
   2329   OS << "    uint32_t Mnemonic;\n";
   2330   OS << "    uint16_t Opcode;\n";
   2331   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2332                << " ConvertFn;\n";
   2333   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2334                << " RequiredFeatures;\n";
   2335   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2336                << " Classes[" << MaxNumOperands << "];\n";
   2337   OS << "    uint8_t AsmVariantID;\n\n";
   2338   OS << "    StringRef getMnemonic() const {\n";
   2339   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2340   OS << "                       MnemonicTable[Mnemonic]);\n";
   2341   OS << "    }\n";
   2342   OS << "  };\n\n";
   2343 
   2344   OS << "  // Predicate for searching for an opcode.\n";
   2345   OS << "  struct LessOpcode {\n";
   2346   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2347   OS << "      return LHS.getMnemonic() < RHS;\n";
   2348   OS << "    }\n";
   2349   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2350   OS << "      return LHS < RHS.getMnemonic();\n";
   2351   OS << "    }\n";
   2352   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2353   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2354   OS << "    }\n";
   2355   OS << "  };\n";
   2356 
   2357   OS << "} // end anonymous namespace.\n\n";
   2358 
   2359   StringToOffsetTable StringTable;
   2360 
   2361   OS << "static const MatchEntry MatchTable["
   2362      << Info.Matchables.size() << "] = {\n";
   2363 
   2364   for (std::vector<MatchableInfo*>::const_iterator it =
   2365        Info.Matchables.begin(), ie = Info.Matchables.end();
   2366        it != ie; ++it) {
   2367     MatchableInfo &II = **it;
   2368 
   2369     // Store a pascal-style length byte in the mnemonic.
   2370     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2371     OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2372        << " /* " << II.Mnemonic << " */, "
   2373        << Target.getName() << "::"
   2374        << II.getResultInst()->TheDef->getName() << ", "
   2375        << II.ConversionFnKind << ", ";
   2376 
   2377     // Write the required features mask.
   2378     if (!II.RequiredFeatures.empty()) {
   2379       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2380         if (i) OS << "|";
   2381         OS << II.RequiredFeatures[i]->getEnumName();
   2382       }
   2383     } else
   2384       OS << "0";
   2385 
   2386     OS << ", { ";
   2387     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   2388       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   2389 
   2390       if (i) OS << ", ";
   2391       OS << Op.Class->Name;
   2392     }
   2393     OS << " }, " << II.AsmVariantID;
   2394     OS << "},\n";
   2395   }
   2396 
   2397   OS << "};\n\n";
   2398 
   2399   OS << "const char *const MatchEntry::MnemonicTable =\n";
   2400   StringTable.EmitString(OS);
   2401   OS << ";\n\n";
   2402 
   2403   // A method to determine if a mnemonic is in the list.
   2404   OS << "bool " << Target.getName() << ClassName << "::\n"
   2405      << "MnemonicIsValid(StringRef Mnemonic) {\n";
   2406   OS << "  // Search the table.\n";
   2407   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2408   OS << "    std::equal_range(MatchTable, MatchTable+"
   2409      << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
   2410   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2411   OS << "}\n\n";
   2412 
   2413   // Finally, build the match function.
   2414   OS << "unsigned "
   2415      << Target.getName() << ClassName << "::\n"
   2416      << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
   2417      << " &Operands,\n";
   2418   OS << "                     MCInst &Inst, unsigned &ErrorInfo,\n";
   2419   OS << "                     unsigned VariantID) {\n";
   2420 
   2421   // Emit code to get the available features.
   2422   OS << "  // Get the current feature set.\n";
   2423   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2424 
   2425   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2426   OS << "  StringRef Mnemonic = ((" << Target.getName()
   2427      << "Operand*)Operands[0])->getToken();\n\n";
   2428 
   2429   if (HasMnemonicAliases) {
   2430     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2431     OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
   2432     OS << "  if (!VariantID)\n";
   2433     OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
   2434   }
   2435 
   2436   // Emit code to compute the class list for this operand vector.
   2437   OS << "  // Eliminate obvious mismatches.\n";
   2438   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
   2439   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
   2440   OS << "    return Match_InvalidOperand;\n";
   2441   OS << "  }\n\n";
   2442 
   2443   OS << "  // Some state to try to produce better error messages.\n";
   2444   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2445   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2446   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2447   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2448   OS << "  // wrong for all instances of the instruction.\n";
   2449   OS << "  ErrorInfo = ~0U;\n";
   2450 
   2451   // Emit code to search the table.
   2452   OS << "  // Search the table.\n";
   2453   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2454   OS << "    std::equal_range(MatchTable, MatchTable+"
   2455      << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
   2456 
   2457   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2458   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2459   OS << "    return Match_MnemonicFail;\n\n";
   2460 
   2461   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2462      << "*ie = MnemonicRange.second;\n";
   2463   OS << "       it != ie; ++it) {\n";
   2464 
   2465   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2466   OS << "    assert(Mnemonic == it->getMnemonic());\n";
   2467 
   2468   // Emit check that the subclasses match.
   2469   OS << "    if (VariantID != it->AsmVariantID) continue;\n";
   2470   OS << "    bool OperandsValid = true;\n";
   2471   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
   2472   OS << "      if (i + 1 >= Operands.size()) {\n";
   2473   OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
   2474   OS << "        break;\n";
   2475   OS << "      }\n";
   2476   OS << "      if (validateOperandClass(Operands[i+1], "
   2477                                        "(MatchClassKind)it->Classes[i]))\n";
   2478   OS << "        continue;\n";
   2479   OS << "      // If this operand is broken for all of the instances of this\n";
   2480   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2481   OS << "      if (it == MnemonicRange.first || ErrorInfo <= i+1)\n";
   2482   OS << "        ErrorInfo = i+1;\n";
   2483   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   2484   OS << "      OperandsValid = false;\n";
   2485   OS << "      break;\n";
   2486   OS << "    }\n\n";
   2487 
   2488   OS << "    if (!OperandsValid) continue;\n";
   2489 
   2490   // Emit check that the required features are available.
   2491   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2492      << "!= it->RequiredFeatures) {\n";
   2493   OS << "      HadMatchOtherThanFeatures = true;\n";
   2494   OS << "      continue;\n";
   2495   OS << "    }\n";
   2496   OS << "\n";
   2497   OS << "    // We have selected a definite instruction, convert the parsed\n"
   2498      << "    // operands into the appropriate MCInst.\n";
   2499   OS << "    if (!ConvertToMCInst(it->ConvertFn, Inst,\n"
   2500      << "                         it->Opcode, Operands))\n";
   2501   OS << "      return Match_ConversionFail;\n";
   2502   OS << "\n";
   2503 
   2504   // Verify the instruction with the target-specific match predicate function.
   2505   OS << "    // We have a potential match. Check the target predicate to\n"
   2506      << "    // handle any context sensitive constraints.\n"
   2507      << "    unsigned MatchResult;\n"
   2508      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   2509      << " Match_Success) {\n"
   2510      << "      Inst.clear();\n"
   2511      << "      RetCode = MatchResult;\n"
   2512      << "      HadMatchOtherThanPredicate = true;\n"
   2513      << "      continue;\n"
   2514      << "    }\n\n";
   2515 
   2516   // Call the post-processing function, if used.
   2517   std::string InsnCleanupFn =
   2518     AsmParser->getValueAsString("AsmParserInstCleanup");
   2519   if (!InsnCleanupFn.empty())
   2520     OS << "    " << InsnCleanupFn << "(Inst);\n";
   2521 
   2522   OS << "    return Match_Success;\n";
   2523   OS << "  }\n\n";
   2524 
   2525   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   2526   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)";
   2527   OS << " return RetCode;\n";
   2528   OS << "  return Match_MissingFeature;\n";
   2529   OS << "}\n\n";
   2530 
   2531   if (Info.OperandMatchInfo.size())
   2532     EmitCustomOperandParsing(OS, Target, Info, ClassName);
   2533 
   2534   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   2535 }
   2536