Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "function-lowering-info"
     16 #include "llvm/ADT/PostOrderIterator.h"
     17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Function.h"
     20 #include "llvm/Instructions.h"
     21 #include "llvm/IntrinsicInst.h"
     22 #include "llvm/LLVMContext.h"
     23 #include "llvm/Module.h"
     24 #include "llvm/Analysis/DebugInfo.h"
     25 #include "llvm/CodeGen/Analysis.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineFrameInfo.h"
     28 #include "llvm/CodeGen/MachineInstrBuilder.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/MachineRegisterInfo.h"
     31 #include "llvm/Target/TargetRegisterInfo.h"
     32 #include "llvm/Target/TargetData.h"
     33 #include "llvm/Target/TargetInstrInfo.h"
     34 #include "llvm/Target/TargetLowering.h"
     35 #include "llvm/Target/TargetOptions.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/ErrorHandling.h"
     38 #include "llvm/Support/MathExtras.h"
     39 #include <algorithm>
     40 using namespace llvm;
     41 
     42 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     43 /// PHI nodes or outside of the basic block that defines it, or used by a
     44 /// switch or atomic instruction, which may expand to multiple basic blocks.
     45 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     46   if (I->use_empty()) return false;
     47   if (isa<PHINode>(I)) return true;
     48   const BasicBlock *BB = I->getParent();
     49   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
     50         UI != E; ++UI) {
     51     const User *U = *UI;
     52     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     53       return true;
     54   }
     55   return false;
     56 }
     57 
     58 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
     59   : TLI(tli) {
     60 }
     61 
     62 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
     63   Fn = &fn;
     64   MF = &mf;
     65   RegInfo = &MF->getRegInfo();
     66 
     67   // Check whether the function can return without sret-demotion.
     68   SmallVector<ISD::OutputArg, 4> Outs;
     69   GetReturnInfo(Fn->getReturnType(),
     70                 Fn->getAttributes().getRetAttributes(), Outs, TLI);
     71   CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF,
     72                                       Fn->isVarArg(),
     73                                       Outs, Fn->getContext());
     74 
     75   // Initialize the mapping of values to registers.  This is only set up for
     76   // instruction values that are used outside of the block that defines
     77   // them.
     78   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
     79   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
     80     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
     81       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
     82         Type *Ty = AI->getAllocatedType();
     83         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
     84         unsigned Align =
     85           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
     86                    AI->getAlignment());
     87 
     88         TySize *= CUI->getZExtValue();   // Get total allocated size.
     89         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
     90 
     91         // The object may need to be placed onto the stack near the stack
     92         // protector if one exists. Determine here if this object is a suitable
     93         // candidate. I.e., it would trigger the creation of a stack protector.
     94         bool MayNeedSP =
     95           (AI->isArrayAllocation() ||
     96            (TySize >= 8 && isa<ArrayType>(Ty) &&
     97             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
     98         StaticAllocaMap[AI] =
     99           MF->getFrameInfo()->CreateStackObject(TySize, Align, false,
    100                                                 MayNeedSP);
    101       }
    102 
    103   for (; BB != EB; ++BB)
    104     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    105          I != E; ++I) {
    106       // Mark values used outside their block as exported, by allocating
    107       // a virtual register for them.
    108       if (isUsedOutsideOfDefiningBlock(I))
    109         if (!isa<AllocaInst>(I) ||
    110             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    111           InitializeRegForValue(I);
    112 
    113       // Collect llvm.dbg.declare information. This is done now instead of
    114       // during the initial isel pass through the IR so that it is done
    115       // in a predictable order.
    116       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    117         MachineModuleInfo &MMI = MF->getMMI();
    118         if (MMI.hasDebugInfo() &&
    119             DIVariable(DI->getVariable()).Verify() &&
    120             !DI->getDebugLoc().isUnknown()) {
    121           // Don't handle byval struct arguments or VLAs, for example.
    122           // Non-byval arguments are handled here (they refer to the stack
    123           // temporary alloca at this point).
    124           const Value *Address = DI->getAddress();
    125           if (Address) {
    126             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    127               Address = BCI->getOperand(0);
    128             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    129               DenseMap<const AllocaInst *, int>::iterator SI =
    130                 StaticAllocaMap.find(AI);
    131               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    132                 int FI = SI->second;
    133                 MMI.setVariableDbgInfo(DI->getVariable(),
    134                                        FI, DI->getDebugLoc());
    135               }
    136             }
    137           }
    138         }
    139       }
    140     }
    141 
    142   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    143   // also creates the initial PHI MachineInstrs, though none of the input
    144   // operands are populated.
    145   for (BB = Fn->begin(); BB != EB; ++BB) {
    146     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    147     MBBMap[BB] = MBB;
    148     MF->push_back(MBB);
    149 
    150     // Transfer the address-taken flag. This is necessary because there could
    151     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    152     // the first one should be marked.
    153     if (BB->hasAddressTaken())
    154       MBB->setHasAddressTaken();
    155 
    156     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    157     // appropriate.
    158     for (BasicBlock::const_iterator I = BB->begin();
    159          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    160       if (PN->use_empty()) continue;
    161 
    162       // Skip empty types
    163       if (PN->getType()->isEmptyTy())
    164         continue;
    165 
    166       DebugLoc DL = PN->getDebugLoc();
    167       unsigned PHIReg = ValueMap[PN];
    168       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    169 
    170       SmallVector<EVT, 4> ValueVTs;
    171       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
    172       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    173         EVT VT = ValueVTs[vti];
    174         unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
    175         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
    176         for (unsigned i = 0; i != NumRegisters; ++i)
    177           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    178         PHIReg += NumRegisters;
    179       }
    180     }
    181   }
    182 
    183   // Mark landing pad blocks.
    184   for (BB = Fn->begin(); BB != EB; ++BB)
    185     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    186       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    187 }
    188 
    189 /// clear - Clear out all the function-specific state. This returns this
    190 /// FunctionLoweringInfo to an empty state, ready to be used for a
    191 /// different function.
    192 void FunctionLoweringInfo::clear() {
    193   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    194          "Not all catch info was assigned to a landing pad!");
    195 
    196   MBBMap.clear();
    197   ValueMap.clear();
    198   StaticAllocaMap.clear();
    199 #ifndef NDEBUG
    200   CatchInfoLost.clear();
    201   CatchInfoFound.clear();
    202 #endif
    203   LiveOutRegInfo.clear();
    204   VisitedBBs.clear();
    205   ArgDbgValues.clear();
    206   ByValArgFrameIndexMap.clear();
    207   RegFixups.clear();
    208 }
    209 
    210 /// CreateReg - Allocate a single virtual register for the given type.
    211 unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
    212   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
    213 }
    214 
    215 /// CreateRegs - Allocate the appropriate number of virtual registers of
    216 /// the correctly promoted or expanded types.  Assign these registers
    217 /// consecutive vreg numbers and return the first assigned number.
    218 ///
    219 /// In the case that the given value has struct or array type, this function
    220 /// will assign registers for each member or element.
    221 ///
    222 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    223   SmallVector<EVT, 4> ValueVTs;
    224   ComputeValueVTs(TLI, Ty, ValueVTs);
    225 
    226   unsigned FirstReg = 0;
    227   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    228     EVT ValueVT = ValueVTs[Value];
    229     EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
    230 
    231     unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
    232     for (unsigned i = 0; i != NumRegs; ++i) {
    233       unsigned R = CreateReg(RegisterVT);
    234       if (!FirstReg) FirstReg = R;
    235     }
    236   }
    237   return FirstReg;
    238 }
    239 
    240 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    241 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    242 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    243 /// the larger bit width by zero extension. The bit width must be no smaller
    244 /// than the LiveOutInfo's existing bit width.
    245 const FunctionLoweringInfo::LiveOutInfo *
    246 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    247   if (!LiveOutRegInfo.inBounds(Reg))
    248     return NULL;
    249 
    250   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    251   if (!LOI->IsValid)
    252     return NULL;
    253 
    254   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    255     LOI->NumSignBits = 1;
    256     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    257     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    258   }
    259 
    260   return LOI;
    261 }
    262 
    263 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    264 /// register based on the LiveOutInfo of its operands.
    265 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    266   Type *Ty = PN->getType();
    267   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    268     return;
    269 
    270   SmallVector<EVT, 1> ValueVTs;
    271   ComputeValueVTs(TLI, Ty, ValueVTs);
    272   assert(ValueVTs.size() == 1 &&
    273          "PHIs with non-vector integer types should have a single VT.");
    274   EVT IntVT = ValueVTs[0];
    275 
    276   if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
    277     return;
    278   IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
    279   unsigned BitWidth = IntVT.getSizeInBits();
    280 
    281   unsigned DestReg = ValueMap[PN];
    282   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    283     return;
    284   LiveOutRegInfo.grow(DestReg);
    285   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    286 
    287   Value *V = PN->getIncomingValue(0);
    288   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    289     DestLOI.NumSignBits = 1;
    290     APInt Zero(BitWidth, 0);
    291     DestLOI.KnownZero = Zero;
    292     DestLOI.KnownOne = Zero;
    293     return;
    294   }
    295 
    296   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    297     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    298     DestLOI.NumSignBits = Val.getNumSignBits();
    299     DestLOI.KnownZero = ~Val;
    300     DestLOI.KnownOne = Val;
    301   } else {
    302     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    303                                 "CopyToReg node was created.");
    304     unsigned SrcReg = ValueMap[V];
    305     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    306       DestLOI.IsValid = false;
    307       return;
    308     }
    309     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    310     if (!SrcLOI) {
    311       DestLOI.IsValid = false;
    312       return;
    313     }
    314     DestLOI = *SrcLOI;
    315   }
    316 
    317   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    318          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    319          "Masks should have the same bit width as the type.");
    320 
    321   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    322     Value *V = PN->getIncomingValue(i);
    323     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    324       DestLOI.NumSignBits = 1;
    325       APInt Zero(BitWidth, 0);
    326       DestLOI.KnownZero = Zero;
    327       DestLOI.KnownOne = Zero;
    328       return;
    329     }
    330 
    331     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    332       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    333       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    334       DestLOI.KnownZero &= ~Val;
    335       DestLOI.KnownOne &= Val;
    336       continue;
    337     }
    338 
    339     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    340                                 "its CopyToReg node was created.");
    341     unsigned SrcReg = ValueMap[V];
    342     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    343       DestLOI.IsValid = false;
    344       return;
    345     }
    346     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    347     if (!SrcLOI) {
    348       DestLOI.IsValid = false;
    349       return;
    350     }
    351     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    352     DestLOI.KnownZero &= SrcLOI->KnownZero;
    353     DestLOI.KnownOne &= SrcLOI->KnownOne;
    354   }
    355 }
    356 
    357 /// setArgumentFrameIndex - Record frame index for the byval
    358 /// argument. This overrides previous frame index entry for this argument,
    359 /// if any.
    360 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    361                                                  int FI) {
    362   ByValArgFrameIndexMap[A] = FI;
    363 }
    364 
    365 /// getArgumentFrameIndex - Get frame index for the byval argument.
    366 /// If the argument does not have any assigned frame index then 0 is
    367 /// returned.
    368 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    369   DenseMap<const Argument *, int>::iterator I =
    370     ByValArgFrameIndexMap.find(A);
    371   if (I != ByValArgFrameIndexMap.end())
    372     return I->second;
    373   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    374   return 0;
    375 }
    376 
    377 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    378 /// being passed to this variadic function, and set the MachineModuleInfo's
    379 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    380 /// reference to _fltused on Windows, which will link in MSVCRT's
    381 /// floating-point support.
    382 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    383                                       MachineModuleInfo *MMI)
    384 {
    385   FunctionType *FT = cast<FunctionType>(
    386     I.getCalledValue()->getType()->getContainedType(0));
    387   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    388     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    389       Type* T = I.getArgOperand(i)->getType();
    390       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
    391            i != e; ++i) {
    392         if (i->isFloatingPointTy()) {
    393           MMI->setUsesVAFloatArgument(true);
    394           return;
    395         }
    396       }
    397     }
    398   }
    399 }
    400 
    401 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
    402 /// call, and add them to the specified machine basic block.
    403 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
    404                         MachineBasicBlock *MBB) {
    405   // Inform the MachineModuleInfo of the personality for this landing pad.
    406   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
    407   assert(CE->getOpcode() == Instruction::BitCast &&
    408          isa<Function>(CE->getOperand(0)) &&
    409          "Personality should be a function");
    410   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
    411 
    412   // Gather all the type infos for this landing pad and pass them along to
    413   // MachineModuleInfo.
    414   std::vector<const GlobalVariable *> TyInfo;
    415   unsigned N = I.getNumArgOperands();
    416 
    417   for (unsigned i = N - 1; i > 1; --i) {
    418     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
    419       unsigned FilterLength = CI->getZExtValue();
    420       unsigned FirstCatch = i + FilterLength + !FilterLength;
    421       assert(FirstCatch <= N && "Invalid filter length");
    422 
    423       if (FirstCatch < N) {
    424         TyInfo.reserve(N - FirstCatch);
    425         for (unsigned j = FirstCatch; j < N; ++j)
    426           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    427         MMI->addCatchTypeInfo(MBB, TyInfo);
    428         TyInfo.clear();
    429       }
    430 
    431       if (!FilterLength) {
    432         // Cleanup.
    433         MMI->addCleanup(MBB);
    434       } else {
    435         // Filter.
    436         TyInfo.reserve(FilterLength - 1);
    437         for (unsigned j = i + 1; j < FirstCatch; ++j)
    438           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    439         MMI->addFilterTypeInfo(MBB, TyInfo);
    440         TyInfo.clear();
    441       }
    442 
    443       N = i;
    444     }
    445   }
    446 
    447   if (N > 2) {
    448     TyInfo.reserve(N - 2);
    449     for (unsigned j = 2; j < N; ++j)
    450       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
    451     MMI->addCatchTypeInfo(MBB, TyInfo);
    452   }
    453 }
    454 
    455 /// AddLandingPadInfo - Extract the exception handling information from the
    456 /// landingpad instruction and add them to the specified machine module info.
    457 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    458                              MachineBasicBlock *MBB) {
    459   MMI.addPersonality(MBB,
    460                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    461 
    462   if (I.isCleanup())
    463     MMI.addCleanup(MBB);
    464 
    465   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    466   //        but we need to do it this way because of how the DWARF EH emitter
    467   //        processes the clauses.
    468   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    469     Value *Val = I.getClause(i - 1);
    470     if (I.isCatch(i - 1)) {
    471       MMI.addCatchTypeInfo(MBB,
    472                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
    473     } else {
    474       // Add filters in a list.
    475       Constant *CVal = cast<Constant>(Val);
    476       SmallVector<const GlobalVariable*, 4> FilterList;
    477       for (User::op_iterator
    478              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    479         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
    480 
    481       MMI.addFilterTypeInfo(MBB, FilterList);
    482     }
    483   }
    484 }
    485