Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an abstract interface that is used by the machine code
     11 // emission framework to output the code.  This allows machine code emission to
     12 // be separated from concerns such as resolution of call targets, and where the
     13 // machine code will be written (memory or disk, f.e.).
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H
     18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H
     19 
     20 #include "llvm/Support/DataTypes.h"
     21 #include "llvm/Support/DebugLoc.h"
     22 
     23 #include <string>
     24 
     25 namespace llvm {
     26 
     27 class MachineBasicBlock;
     28 class MachineConstantPool;
     29 class MachineJumpTableInfo;
     30 class MachineFunction;
     31 class MachineModuleInfo;
     32 class MachineRelocation;
     33 class Value;
     34 class GlobalValue;
     35 class Function;
     36 class MCSymbol;
     37 
     38 /// MachineCodeEmitter - This class defines two sorts of methods: those for
     39 /// emitting the actual bytes of machine code, and those for emitting auxiliary
     40 /// structures, such as jump tables, relocations, etc.
     41 ///
     42 /// Emission of machine code is complicated by the fact that we don't (in
     43 /// general) know the size of the machine code that we're about to emit before
     44 /// we emit it.  As such, we preallocate a certain amount of memory, and set the
     45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer.  As we
     46 /// emit machine instructions, we advance the CurBufferPtr to indicate the
     47 /// location of the next byte to emit.  In the case of a buffer overflow (we
     48 /// need to emit more machine code than we have allocated space for), the
     49 /// CurBufferPtr will saturate to BufferEnd and ignore stores.  Once the entire
     50 /// function has been emitted, the overflow condition is checked, and if it has
     51 /// occurred, more memory is allocated, and we reemit the code into it.
     52 ///
     53 class MachineCodeEmitter {
     54   virtual void anchor();
     55 protected:
     56   /// BufferBegin/BufferEnd - Pointers to the start and end of the memory
     57   /// allocated for this code buffer.
     58   uint8_t *BufferBegin, *BufferEnd;
     59   /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
     60   /// code.  This is guaranteed to be in the range [BufferBegin,BufferEnd].  If
     61   /// this pointer is at BufferEnd, it will never move due to code emission, and
     62   /// all code emission requests will be ignored (this is the buffer overflow
     63   /// condition).
     64   uint8_t *CurBufferPtr;
     65 
     66 public:
     67   virtual ~MachineCodeEmitter() {}
     68 
     69   /// startFunction - This callback is invoked when the specified function is
     70   /// about to be code generated.  This initializes the BufferBegin/End/Ptr
     71   /// fields.
     72   ///
     73   virtual void startFunction(MachineFunction &F) = 0;
     74 
     75   /// finishFunction - This callback is invoked when the specified function has
     76   /// finished code generation.  If a buffer overflow has occurred, this method
     77   /// returns true (the callee is required to try again), otherwise it returns
     78   /// false.
     79   ///
     80   virtual bool finishFunction(MachineFunction &F) = 0;
     81 
     82   /// emitByte - This callback is invoked when a byte needs to be written to the
     83   /// output stream.
     84   ///
     85   void emitByte(uint8_t B) {
     86     if (CurBufferPtr != BufferEnd)
     87       *CurBufferPtr++ = B;
     88   }
     89 
     90   /// emitWordLE - This callback is invoked when a 32-bit word needs to be
     91   /// written to the output stream in little-endian format.
     92   ///
     93   void emitWordLE(uint32_t W) {
     94     if (4 <= BufferEnd-CurBufferPtr) {
     95       emitWordLEInto(CurBufferPtr, W);
     96     } else {
     97       CurBufferPtr = BufferEnd;
     98     }
     99   }
    100 
    101   /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
    102   /// written to an arbitrary buffer in little-endian format.  Buf must have at
    103   /// least 4 bytes of available space.
    104   ///
    105   static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
    106     *Buf++ = (uint8_t)(W >>  0);
    107     *Buf++ = (uint8_t)(W >>  8);
    108     *Buf++ = (uint8_t)(W >> 16);
    109     *Buf++ = (uint8_t)(W >> 24);
    110   }
    111 
    112   /// emitWordBE - This callback is invoked when a 32-bit word needs to be
    113   /// written to the output stream in big-endian format.
    114   ///
    115   void emitWordBE(uint32_t W) {
    116     if (4 <= BufferEnd-CurBufferPtr) {
    117       *CurBufferPtr++ = (uint8_t)(W >> 24);
    118       *CurBufferPtr++ = (uint8_t)(W >> 16);
    119       *CurBufferPtr++ = (uint8_t)(W >>  8);
    120       *CurBufferPtr++ = (uint8_t)(W >>  0);
    121     } else {
    122       CurBufferPtr = BufferEnd;
    123     }
    124   }
    125 
    126   /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
    127   /// written to the output stream in little-endian format.
    128   ///
    129   void emitDWordLE(uint64_t W) {
    130     if (8 <= BufferEnd-CurBufferPtr) {
    131       *CurBufferPtr++ = (uint8_t)(W >>  0);
    132       *CurBufferPtr++ = (uint8_t)(W >>  8);
    133       *CurBufferPtr++ = (uint8_t)(W >> 16);
    134       *CurBufferPtr++ = (uint8_t)(W >> 24);
    135       *CurBufferPtr++ = (uint8_t)(W >> 32);
    136       *CurBufferPtr++ = (uint8_t)(W >> 40);
    137       *CurBufferPtr++ = (uint8_t)(W >> 48);
    138       *CurBufferPtr++ = (uint8_t)(W >> 56);
    139     } else {
    140       CurBufferPtr = BufferEnd;
    141     }
    142   }
    143 
    144   /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
    145   /// written to the output stream in big-endian format.
    146   ///
    147   void emitDWordBE(uint64_t W) {
    148     if (8 <= BufferEnd-CurBufferPtr) {
    149       *CurBufferPtr++ = (uint8_t)(W >> 56);
    150       *CurBufferPtr++ = (uint8_t)(W >> 48);
    151       *CurBufferPtr++ = (uint8_t)(W >> 40);
    152       *CurBufferPtr++ = (uint8_t)(W >> 32);
    153       *CurBufferPtr++ = (uint8_t)(W >> 24);
    154       *CurBufferPtr++ = (uint8_t)(W >> 16);
    155       *CurBufferPtr++ = (uint8_t)(W >>  8);
    156       *CurBufferPtr++ = (uint8_t)(W >>  0);
    157     } else {
    158       CurBufferPtr = BufferEnd;
    159     }
    160   }
    161 
    162   /// emitAlignment - Move the CurBufferPtr pointer up to the specified
    163   /// alignment (saturated to BufferEnd of course).
    164   void emitAlignment(unsigned Alignment) {
    165     if (Alignment == 0) Alignment = 1;
    166 
    167     if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    168       // Move the current buffer ptr up to the specified alignment.
    169       CurBufferPtr =
    170         (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) &
    171                    ~(uintptr_t)(Alignment-1));
    172     } else {
    173       CurBufferPtr = BufferEnd;
    174     }
    175   }
    176 
    177 
    178   /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
    179   /// written to the output stream.
    180   void emitULEB128Bytes(uint64_t Value) {
    181     do {
    182       uint8_t Byte = Value & 0x7f;
    183       Value >>= 7;
    184       if (Value) Byte |= 0x80;
    185       emitByte(Byte);
    186     } while (Value);
    187   }
    188 
    189   /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
    190   /// written to the output stream.
    191   void emitSLEB128Bytes(uint64_t Value) {
    192     uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
    193     bool IsMore;
    194 
    195     do {
    196       uint8_t Byte = Value & 0x7f;
    197       Value >>= 7;
    198       IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
    199       if (IsMore) Byte |= 0x80;
    200       emitByte(Byte);
    201     } while (IsMore);
    202   }
    203 
    204   /// emitString - This callback is invoked when a String needs to be
    205   /// written to the output stream.
    206   void emitString(const std::string &String) {
    207     for (unsigned i = 0, N = static_cast<unsigned>(String.size());
    208          i < N; ++i) {
    209       uint8_t C = String[i];
    210       emitByte(C);
    211     }
    212     emitByte(0);
    213   }
    214 
    215   /// emitInt32 - Emit a int32 directive.
    216   void emitInt32(int32_t Value) {
    217     if (4 <= BufferEnd-CurBufferPtr) {
    218       *((uint32_t*)CurBufferPtr) = Value;
    219       CurBufferPtr += 4;
    220     } else {
    221       CurBufferPtr = BufferEnd;
    222     }
    223   }
    224 
    225   /// emitInt64 - Emit a int64 directive.
    226   void emitInt64(uint64_t Value) {
    227     if (8 <= BufferEnd-CurBufferPtr) {
    228       *((uint64_t*)CurBufferPtr) = Value;
    229       CurBufferPtr += 8;
    230     } else {
    231       CurBufferPtr = BufferEnd;
    232     }
    233   }
    234 
    235   /// emitInt32At - Emit the Int32 Value in Addr.
    236   void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
    237     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    238       (*(uint32_t*)Addr) = (uint32_t)Value;
    239   }
    240 
    241   /// emitInt64At - Emit the Int64 Value in Addr.
    242   void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
    243     if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
    244       (*(uint64_t*)Addr) = (uint64_t)Value;
    245   }
    246 
    247   /// processDebugLoc - Records debug location information about a
    248   /// MachineInstruction.  This is called before emitting any bytes associated
    249   /// with the instruction.  Even if successive instructions have the same debug
    250   /// location, this method will be called for each one.
    251   virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
    252 
    253   /// emitLabel - Emits a label
    254   virtual void emitLabel(MCSymbol *Label) = 0;
    255 
    256   /// allocateSpace - Allocate a block of space in the current output buffer,
    257   /// returning null (and setting conditions to indicate buffer overflow) on
    258   /// failure.  Alignment is the alignment in bytes of the buffer desired.
    259   virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
    260     emitAlignment(Alignment);
    261     void *Result;
    262 
    263     // Check for buffer overflow.
    264     if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
    265       CurBufferPtr = BufferEnd;
    266       Result = 0;
    267     } else {
    268       // Allocate the space.
    269       Result = CurBufferPtr;
    270       CurBufferPtr += Size;
    271     }
    272 
    273     return Result;
    274   }
    275 
    276   /// StartMachineBasicBlock - This should be called by the target when a new
    277   /// basic block is about to be emitted.  This way the MCE knows where the
    278   /// start of the block is, and can implement getMachineBasicBlockAddress.
    279   virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
    280 
    281   /// getCurrentPCValue - This returns the address that the next emitted byte
    282   /// will be output to.
    283   ///
    284   virtual uintptr_t getCurrentPCValue() const {
    285     return (uintptr_t)CurBufferPtr;
    286   }
    287 
    288   /// getCurrentPCOffset - Return the offset from the start of the emitted
    289   /// buffer that we are currently writing to.
    290   virtual uintptr_t getCurrentPCOffset() const {
    291     return CurBufferPtr-BufferBegin;
    292   }
    293 
    294   /// earlyResolveAddresses - True if the code emitter can use symbol addresses
    295   /// during code emission time. The JIT is capable of doing this because it
    296   /// creates jump tables or constant pools in memory on the fly while the
    297   /// object code emitters rely on a linker to have real addresses and should
    298   /// use relocations instead.
    299   virtual bool earlyResolveAddresses() const = 0;
    300 
    301   /// addRelocation - Whenever a relocatable address is needed, it should be
    302   /// noted with this interface.
    303   virtual void addRelocation(const MachineRelocation &MR) = 0;
    304 
    305   /// FIXME: These should all be handled with relocations!
    306 
    307   /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
    308   /// the constant pool that was last emitted with the emitConstantPool method.
    309   ///
    310   virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
    311 
    312   /// getJumpTableEntryAddress - Return the address of the jump table with index
    313   /// 'Index' in the function that last called initJumpTableInfo.
    314   ///
    315   virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
    316 
    317   /// getMachineBasicBlockAddress - Return the address of the specified
    318   /// MachineBasicBlock, only usable after the label for the MBB has been
    319   /// emitted.
    320   ///
    321   virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
    322 
    323   /// getLabelAddress - Return the address of the specified Label, only usable
    324   /// after the LabelID has been emitted.
    325   ///
    326   virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
    327 
    328   /// Specifies the MachineModuleInfo object. This is used for exception handling
    329   /// purposes.
    330   virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
    331 };
    332 
    333 } // End llvm namespace
    334 
    335 #endif
    336