1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines an abstract interface that is used by the machine code 11 // emission framework to output the code. This allows machine code emission to 12 // be separated from concerns such as resolution of call targets, and where the 13 // machine code will be written (memory or disk, f.e.). 14 // 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H 18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H 19 20 #include "llvm/Support/DataTypes.h" 21 #include "llvm/Support/DebugLoc.h" 22 23 #include <string> 24 25 namespace llvm { 26 27 class MachineBasicBlock; 28 class MachineConstantPool; 29 class MachineJumpTableInfo; 30 class MachineFunction; 31 class MachineModuleInfo; 32 class MachineRelocation; 33 class Value; 34 class GlobalValue; 35 class Function; 36 class MCSymbol; 37 38 /// MachineCodeEmitter - This class defines two sorts of methods: those for 39 /// emitting the actual bytes of machine code, and those for emitting auxiliary 40 /// structures, such as jump tables, relocations, etc. 41 /// 42 /// Emission of machine code is complicated by the fact that we don't (in 43 /// general) know the size of the machine code that we're about to emit before 44 /// we emit it. As such, we preallocate a certain amount of memory, and set the 45 /// BufferBegin/BufferEnd pointers to the start and end of the buffer. As we 46 /// emit machine instructions, we advance the CurBufferPtr to indicate the 47 /// location of the next byte to emit. In the case of a buffer overflow (we 48 /// need to emit more machine code than we have allocated space for), the 49 /// CurBufferPtr will saturate to BufferEnd and ignore stores. Once the entire 50 /// function has been emitted, the overflow condition is checked, and if it has 51 /// occurred, more memory is allocated, and we reemit the code into it. 52 /// 53 class MachineCodeEmitter { 54 virtual void anchor(); 55 protected: 56 /// BufferBegin/BufferEnd - Pointers to the start and end of the memory 57 /// allocated for this code buffer. 58 uint8_t *BufferBegin, *BufferEnd; 59 /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting 60 /// code. This is guaranteed to be in the range [BufferBegin,BufferEnd]. If 61 /// this pointer is at BufferEnd, it will never move due to code emission, and 62 /// all code emission requests will be ignored (this is the buffer overflow 63 /// condition). 64 uint8_t *CurBufferPtr; 65 66 public: 67 virtual ~MachineCodeEmitter() {} 68 69 /// startFunction - This callback is invoked when the specified function is 70 /// about to be code generated. This initializes the BufferBegin/End/Ptr 71 /// fields. 72 /// 73 virtual void startFunction(MachineFunction &F) = 0; 74 75 /// finishFunction - This callback is invoked when the specified function has 76 /// finished code generation. If a buffer overflow has occurred, this method 77 /// returns true (the callee is required to try again), otherwise it returns 78 /// false. 79 /// 80 virtual bool finishFunction(MachineFunction &F) = 0; 81 82 /// emitByte - This callback is invoked when a byte needs to be written to the 83 /// output stream. 84 /// 85 void emitByte(uint8_t B) { 86 if (CurBufferPtr != BufferEnd) 87 *CurBufferPtr++ = B; 88 } 89 90 /// emitWordLE - This callback is invoked when a 32-bit word needs to be 91 /// written to the output stream in little-endian format. 92 /// 93 void emitWordLE(uint32_t W) { 94 if (4 <= BufferEnd-CurBufferPtr) { 95 emitWordLEInto(CurBufferPtr, W); 96 } else { 97 CurBufferPtr = BufferEnd; 98 } 99 } 100 101 /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be 102 /// written to an arbitrary buffer in little-endian format. Buf must have at 103 /// least 4 bytes of available space. 104 /// 105 static void emitWordLEInto(uint8_t *&Buf, uint32_t W) { 106 *Buf++ = (uint8_t)(W >> 0); 107 *Buf++ = (uint8_t)(W >> 8); 108 *Buf++ = (uint8_t)(W >> 16); 109 *Buf++ = (uint8_t)(W >> 24); 110 } 111 112 /// emitWordBE - This callback is invoked when a 32-bit word needs to be 113 /// written to the output stream in big-endian format. 114 /// 115 void emitWordBE(uint32_t W) { 116 if (4 <= BufferEnd-CurBufferPtr) { 117 *CurBufferPtr++ = (uint8_t)(W >> 24); 118 *CurBufferPtr++ = (uint8_t)(W >> 16); 119 *CurBufferPtr++ = (uint8_t)(W >> 8); 120 *CurBufferPtr++ = (uint8_t)(W >> 0); 121 } else { 122 CurBufferPtr = BufferEnd; 123 } 124 } 125 126 /// emitDWordLE - This callback is invoked when a 64-bit word needs to be 127 /// written to the output stream in little-endian format. 128 /// 129 void emitDWordLE(uint64_t W) { 130 if (8 <= BufferEnd-CurBufferPtr) { 131 *CurBufferPtr++ = (uint8_t)(W >> 0); 132 *CurBufferPtr++ = (uint8_t)(W >> 8); 133 *CurBufferPtr++ = (uint8_t)(W >> 16); 134 *CurBufferPtr++ = (uint8_t)(W >> 24); 135 *CurBufferPtr++ = (uint8_t)(W >> 32); 136 *CurBufferPtr++ = (uint8_t)(W >> 40); 137 *CurBufferPtr++ = (uint8_t)(W >> 48); 138 *CurBufferPtr++ = (uint8_t)(W >> 56); 139 } else { 140 CurBufferPtr = BufferEnd; 141 } 142 } 143 144 /// emitDWordBE - This callback is invoked when a 64-bit word needs to be 145 /// written to the output stream in big-endian format. 146 /// 147 void emitDWordBE(uint64_t W) { 148 if (8 <= BufferEnd-CurBufferPtr) { 149 *CurBufferPtr++ = (uint8_t)(W >> 56); 150 *CurBufferPtr++ = (uint8_t)(W >> 48); 151 *CurBufferPtr++ = (uint8_t)(W >> 40); 152 *CurBufferPtr++ = (uint8_t)(W >> 32); 153 *CurBufferPtr++ = (uint8_t)(W >> 24); 154 *CurBufferPtr++ = (uint8_t)(W >> 16); 155 *CurBufferPtr++ = (uint8_t)(W >> 8); 156 *CurBufferPtr++ = (uint8_t)(W >> 0); 157 } else { 158 CurBufferPtr = BufferEnd; 159 } 160 } 161 162 /// emitAlignment - Move the CurBufferPtr pointer up to the specified 163 /// alignment (saturated to BufferEnd of course). 164 void emitAlignment(unsigned Alignment) { 165 if (Alignment == 0) Alignment = 1; 166 167 if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) { 168 // Move the current buffer ptr up to the specified alignment. 169 CurBufferPtr = 170 (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) & 171 ~(uintptr_t)(Alignment-1)); 172 } else { 173 CurBufferPtr = BufferEnd; 174 } 175 } 176 177 178 /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be 179 /// written to the output stream. 180 void emitULEB128Bytes(uint64_t Value) { 181 do { 182 uint8_t Byte = Value & 0x7f; 183 Value >>= 7; 184 if (Value) Byte |= 0x80; 185 emitByte(Byte); 186 } while (Value); 187 } 188 189 /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be 190 /// written to the output stream. 191 void emitSLEB128Bytes(uint64_t Value) { 192 uint64_t Sign = Value >> (8 * sizeof(Value) - 1); 193 bool IsMore; 194 195 do { 196 uint8_t Byte = Value & 0x7f; 197 Value >>= 7; 198 IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0; 199 if (IsMore) Byte |= 0x80; 200 emitByte(Byte); 201 } while (IsMore); 202 } 203 204 /// emitString - This callback is invoked when a String needs to be 205 /// written to the output stream. 206 void emitString(const std::string &String) { 207 for (unsigned i = 0, N = static_cast<unsigned>(String.size()); 208 i < N; ++i) { 209 uint8_t C = String[i]; 210 emitByte(C); 211 } 212 emitByte(0); 213 } 214 215 /// emitInt32 - Emit a int32 directive. 216 void emitInt32(int32_t Value) { 217 if (4 <= BufferEnd-CurBufferPtr) { 218 *((uint32_t*)CurBufferPtr) = Value; 219 CurBufferPtr += 4; 220 } else { 221 CurBufferPtr = BufferEnd; 222 } 223 } 224 225 /// emitInt64 - Emit a int64 directive. 226 void emitInt64(uint64_t Value) { 227 if (8 <= BufferEnd-CurBufferPtr) { 228 *((uint64_t*)CurBufferPtr) = Value; 229 CurBufferPtr += 8; 230 } else { 231 CurBufferPtr = BufferEnd; 232 } 233 } 234 235 /// emitInt32At - Emit the Int32 Value in Addr. 236 void emitInt32At(uintptr_t *Addr, uintptr_t Value) { 237 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 238 (*(uint32_t*)Addr) = (uint32_t)Value; 239 } 240 241 /// emitInt64At - Emit the Int64 Value in Addr. 242 void emitInt64At(uintptr_t *Addr, uintptr_t Value) { 243 if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd) 244 (*(uint64_t*)Addr) = (uint64_t)Value; 245 } 246 247 /// processDebugLoc - Records debug location information about a 248 /// MachineInstruction. This is called before emitting any bytes associated 249 /// with the instruction. Even if successive instructions have the same debug 250 /// location, this method will be called for each one. 251 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {} 252 253 /// emitLabel - Emits a label 254 virtual void emitLabel(MCSymbol *Label) = 0; 255 256 /// allocateSpace - Allocate a block of space in the current output buffer, 257 /// returning null (and setting conditions to indicate buffer overflow) on 258 /// failure. Alignment is the alignment in bytes of the buffer desired. 259 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) { 260 emitAlignment(Alignment); 261 void *Result; 262 263 // Check for buffer overflow. 264 if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) { 265 CurBufferPtr = BufferEnd; 266 Result = 0; 267 } else { 268 // Allocate the space. 269 Result = CurBufferPtr; 270 CurBufferPtr += Size; 271 } 272 273 return Result; 274 } 275 276 /// StartMachineBasicBlock - This should be called by the target when a new 277 /// basic block is about to be emitted. This way the MCE knows where the 278 /// start of the block is, and can implement getMachineBasicBlockAddress. 279 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0; 280 281 /// getCurrentPCValue - This returns the address that the next emitted byte 282 /// will be output to. 283 /// 284 virtual uintptr_t getCurrentPCValue() const { 285 return (uintptr_t)CurBufferPtr; 286 } 287 288 /// getCurrentPCOffset - Return the offset from the start of the emitted 289 /// buffer that we are currently writing to. 290 virtual uintptr_t getCurrentPCOffset() const { 291 return CurBufferPtr-BufferBegin; 292 } 293 294 /// earlyResolveAddresses - True if the code emitter can use symbol addresses 295 /// during code emission time. The JIT is capable of doing this because it 296 /// creates jump tables or constant pools in memory on the fly while the 297 /// object code emitters rely on a linker to have real addresses and should 298 /// use relocations instead. 299 virtual bool earlyResolveAddresses() const = 0; 300 301 /// addRelocation - Whenever a relocatable address is needed, it should be 302 /// noted with this interface. 303 virtual void addRelocation(const MachineRelocation &MR) = 0; 304 305 /// FIXME: These should all be handled with relocations! 306 307 /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in 308 /// the constant pool that was last emitted with the emitConstantPool method. 309 /// 310 virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0; 311 312 /// getJumpTableEntryAddress - Return the address of the jump table with index 313 /// 'Index' in the function that last called initJumpTableInfo. 314 /// 315 virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0; 316 317 /// getMachineBasicBlockAddress - Return the address of the specified 318 /// MachineBasicBlock, only usable after the label for the MBB has been 319 /// emitted. 320 /// 321 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0; 322 323 /// getLabelAddress - Return the address of the specified Label, only usable 324 /// after the LabelID has been emitted. 325 /// 326 virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0; 327 328 /// Specifies the MachineModuleInfo object. This is used for exception handling 329 /// purposes. 330 virtual void setModuleInfo(MachineModuleInfo* Info) = 0; 331 }; 332 333 } // End llvm namespace 334 335 #endif 336