1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a MachineCodeEmitter object that is used by the JIT to 11 // write machine code to memory and remember where relocatable values are. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "JIT.h" 17 #include "JITDwarfEmitter.h" 18 #include "llvm/ADT/OwningPtr.h" 19 #include "llvm/Constants.h" 20 #include "llvm/Module.h" 21 #include "llvm/DerivedTypes.h" 22 #include "llvm/Analysis/DebugInfo.h" 23 #include "llvm/CodeGen/JITCodeEmitter.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineCodeInfo.h" 26 #include "llvm/CodeGen/MachineConstantPool.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRelocation.h" 30 #include "llvm/ExecutionEngine/GenericValue.h" 31 #include "llvm/ExecutionEngine/JITEventListener.h" 32 #include "llvm/ExecutionEngine/JITMemoryManager.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetJITInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/ManagedStatic.h" 41 #include "llvm/Support/MutexGuard.h" 42 #include "llvm/Support/ValueHandle.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/Disassembler.h" 45 #include "llvm/Support/Memory.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/ValueMap.h" 51 #include <algorithm> 52 #ifndef NDEBUG 53 #include <iomanip> 54 #endif 55 using namespace llvm; 56 57 STATISTIC(NumBytes, "Number of bytes of machine code compiled"); 58 STATISTIC(NumRelos, "Number of relocations applied"); 59 STATISTIC(NumRetries, "Number of retries with more memory"); 60 61 62 // A declaration may stop being a declaration once it's fully read from bitcode. 63 // This function returns true if F is fully read and is still a declaration. 64 static bool isNonGhostDeclaration(const Function *F) { 65 return F->isDeclaration() && !F->isMaterializable(); 66 } 67 68 //===----------------------------------------------------------------------===// 69 // JIT lazy compilation code. 70 // 71 namespace { 72 class JITEmitter; 73 class JITResolverState; 74 75 template<typename ValueTy> 76 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { 77 typedef JITResolverState *ExtraData; 78 static void onRAUW(JITResolverState *, Value *Old, Value *New) { 79 llvm_unreachable("The JIT doesn't know how to handle a" 80 " RAUW on a value it has emitted."); 81 } 82 }; 83 84 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { 85 typedef JITResolverState *ExtraData; 86 static void onDelete(JITResolverState *JRS, Function *F); 87 }; 88 89 class JITResolverState { 90 public: 91 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > 92 FunctionToLazyStubMapTy; 93 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; 94 typedef ValueMap<Function *, SmallPtrSet<void*, 1>, 95 CallSiteValueMapConfig> FunctionToCallSitesMapTy; 96 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; 97 private: 98 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a 99 /// particular function so that we can reuse them if necessary. 100 FunctionToLazyStubMapTy FunctionToLazyStubMap; 101 102 /// CallSiteToFunctionMap - Keep track of the function that each lazy call 103 /// site corresponds to, and vice versa. 104 CallSiteToFunctionMapTy CallSiteToFunctionMap; 105 FunctionToCallSitesMapTy FunctionToCallSitesMap; 106 107 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a 108 /// particular GlobalVariable so that we can reuse them if necessary. 109 GlobalToIndirectSymMapTy GlobalToIndirectSymMap; 110 111 /// Instance of the JIT this ResolverState serves. 112 JIT *TheJIT; 113 114 public: 115 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), 116 FunctionToCallSitesMap(this), 117 TheJIT(jit) {} 118 119 FunctionToLazyStubMapTy& getFunctionToLazyStubMap( 120 const MutexGuard& locked) { 121 assert(locked.holds(TheJIT->lock)); 122 return FunctionToLazyStubMap; 123 } 124 125 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { 126 assert(lck.holds(TheJIT->lock)); 127 return GlobalToIndirectSymMap; 128 } 129 130 std::pair<void *, Function *> LookupFunctionFromCallSite( 131 const MutexGuard &locked, void *CallSite) const { 132 assert(locked.holds(TheJIT->lock)); 133 134 // The address given to us for the stub may not be exactly right, it 135 // might be a little bit after the stub. As such, use upper_bound to 136 // find it. 137 CallSiteToFunctionMapTy::const_iterator I = 138 CallSiteToFunctionMap.upper_bound(CallSite); 139 assert(I != CallSiteToFunctionMap.begin() && 140 "This is not a known call site!"); 141 --I; 142 return *I; 143 } 144 145 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { 146 assert(locked.holds(TheJIT->lock)); 147 148 bool Inserted = CallSiteToFunctionMap.insert( 149 std::make_pair(CallSite, F)).second; 150 (void)Inserted; 151 assert(Inserted && "Pair was already in CallSiteToFunctionMap"); 152 FunctionToCallSitesMap[F].insert(CallSite); 153 } 154 155 void EraseAllCallSitesForPrelocked(Function *F); 156 157 // Erases _all_ call sites regardless of their function. This is used to 158 // unregister the stub addresses from the StubToResolverMap in 159 // ~JITResolver(). 160 void EraseAllCallSitesPrelocked(); 161 }; 162 163 /// JITResolver - Keep track of, and resolve, call sites for functions that 164 /// have not yet been compiled. 165 class JITResolver { 166 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; 167 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; 168 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; 169 170 /// LazyResolverFn - The target lazy resolver function that we actually 171 /// rewrite instructions to use. 172 TargetJITInfo::LazyResolverFn LazyResolverFn; 173 174 JITResolverState state; 175 176 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap 177 /// for external functions. TODO: Of course, external functions don't need 178 /// a lazy stub. It's actually here to make it more likely that far calls 179 /// succeed, but no single stub can guarantee that. I'll remove this in a 180 /// subsequent checkin when I actually fix far calls. 181 std::map<void*, void*> ExternalFnToStubMap; 182 183 /// revGOTMap - map addresses to indexes in the GOT 184 std::map<void*, unsigned> revGOTMap; 185 unsigned nextGOTIndex; 186 187 JITEmitter &JE; 188 189 /// Instance of JIT corresponding to this Resolver. 190 JIT *TheJIT; 191 192 public: 193 explicit JITResolver(JIT &jit, JITEmitter &je) 194 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { 195 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); 196 } 197 198 ~JITResolver(); 199 200 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's 201 /// lazy-compilation stub if it has already been created. 202 void *getLazyFunctionStubIfAvailable(Function *F); 203 204 /// getLazyFunctionStub - This returns a pointer to a function's 205 /// lazy-compilation stub, creating one on demand as needed. 206 void *getLazyFunctionStub(Function *F); 207 208 /// getExternalFunctionStub - Return a stub for the function at the 209 /// specified address, created lazily on demand. 210 void *getExternalFunctionStub(void *FnAddr); 211 212 /// getGlobalValueIndirectSym - Return an indirect symbol containing the 213 /// specified GV address. 214 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); 215 216 /// getGOTIndexForAddress - Return a new or existing index in the GOT for 217 /// an address. This function only manages slots, it does not manage the 218 /// contents of the slots or the memory associated with the GOT. 219 unsigned getGOTIndexForAddr(void *addr); 220 221 /// JITCompilerFn - This function is called to resolve a stub to a compiled 222 /// address. If the LLVM Function corresponding to the stub has not yet 223 /// been compiled, this function compiles it first. 224 static void *JITCompilerFn(void *Stub); 225 }; 226 227 class StubToResolverMapTy { 228 /// Map a stub address to a specific instance of a JITResolver so that 229 /// lazily-compiled functions can find the right resolver to use. 230 /// 231 /// Guarded by Lock. 232 std::map<void*, JITResolver*> Map; 233 234 /// Guards Map from concurrent accesses. 235 mutable sys::Mutex Lock; 236 237 public: 238 /// Registers a Stub to be resolved by Resolver. 239 void RegisterStubResolver(void *Stub, JITResolver *Resolver) { 240 MutexGuard guard(Lock); 241 Map.insert(std::make_pair(Stub, Resolver)); 242 } 243 /// Unregisters the Stub when it's invalidated. 244 void UnregisterStubResolver(void *Stub) { 245 MutexGuard guard(Lock); 246 Map.erase(Stub); 247 } 248 /// Returns the JITResolver instance that owns the Stub. 249 JITResolver *getResolverFromStub(void *Stub) const { 250 MutexGuard guard(Lock); 251 // The address given to us for the stub may not be exactly right, it might 252 // be a little bit after the stub. As such, use upper_bound to find it. 253 // This is the same trick as in LookupFunctionFromCallSite from 254 // JITResolverState. 255 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); 256 assert(I != Map.begin() && "This is not a known stub!"); 257 --I; 258 return I->second; 259 } 260 /// True if any stubs refer to the given resolver. Only used in an assert(). 261 /// O(N) 262 bool ResolverHasStubs(JITResolver* Resolver) const { 263 MutexGuard guard(Lock); 264 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), 265 E = Map.end(); I != E; ++I) { 266 if (I->second == Resolver) 267 return true; 268 } 269 return false; 270 } 271 }; 272 /// This needs to be static so that a lazy call stub can access it with no 273 /// context except the address of the stub. 274 ManagedStatic<StubToResolverMapTy> StubToResolverMap; 275 276 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is 277 /// used to output functions to memory for execution. 278 class JITEmitter : public JITCodeEmitter { 279 JITMemoryManager *MemMgr; 280 281 // When outputting a function stub in the context of some other function, we 282 // save BufferBegin/BufferEnd/CurBufferPtr here. 283 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; 284 285 // When reattempting to JIT a function after running out of space, we store 286 // the estimated size of the function we're trying to JIT here, so we can 287 // ask the memory manager for at least this much space. When we 288 // successfully emit the function, we reset this back to zero. 289 uintptr_t SizeEstimate; 290 291 /// Relocations - These are the relocations that the function needs, as 292 /// emitted. 293 std::vector<MachineRelocation> Relocations; 294 295 /// MBBLocations - This vector is a mapping from MBB ID's to their address. 296 /// It is filled in by the StartMachineBasicBlock callback and queried by 297 /// the getMachineBasicBlockAddress callback. 298 std::vector<uintptr_t> MBBLocations; 299 300 /// ConstantPool - The constant pool for the current function. 301 /// 302 MachineConstantPool *ConstantPool; 303 304 /// ConstantPoolBase - A pointer to the first entry in the constant pool. 305 /// 306 void *ConstantPoolBase; 307 308 /// ConstPoolAddresses - Addresses of individual constant pool entries. 309 /// 310 SmallVector<uintptr_t, 8> ConstPoolAddresses; 311 312 /// JumpTable - The jump tables for the current function. 313 /// 314 MachineJumpTableInfo *JumpTable; 315 316 /// JumpTableBase - A pointer to the first entry in the jump table. 317 /// 318 void *JumpTableBase; 319 320 /// Resolver - This contains info about the currently resolved functions. 321 JITResolver Resolver; 322 323 /// DE - The dwarf emitter for the jit. 324 OwningPtr<JITDwarfEmitter> DE; 325 326 /// LabelLocations - This vector is a mapping from Label ID's to their 327 /// address. 328 DenseMap<MCSymbol*, uintptr_t> LabelLocations; 329 330 /// MMI - Machine module info for exception informations 331 MachineModuleInfo* MMI; 332 333 // CurFn - The llvm function being emitted. Only valid during 334 // finishFunction(). 335 const Function *CurFn; 336 337 /// Information about emitted code, which is passed to the 338 /// JITEventListeners. This is reset in startFunction and used in 339 /// finishFunction. 340 JITEvent_EmittedFunctionDetails EmissionDetails; 341 342 struct EmittedCode { 343 void *FunctionBody; // Beginning of the function's allocation. 344 void *Code; // The address the function's code actually starts at. 345 void *ExceptionTable; 346 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} 347 }; 348 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { 349 typedef JITEmitter *ExtraData; 350 static void onDelete(JITEmitter *, const Function*); 351 static void onRAUW(JITEmitter *, const Function*, const Function*); 352 }; 353 ValueMap<const Function *, EmittedCode, 354 EmittedFunctionConfig> EmittedFunctions; 355 356 DebugLoc PrevDL; 357 358 /// Instance of the JIT 359 JIT *TheJIT; 360 361 bool JITExceptionHandling; 362 363 public: 364 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) 365 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), 366 EmittedFunctions(this), TheJIT(&jit), 367 JITExceptionHandling(TM.Options.JITExceptionHandling) { 368 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); 369 if (jit.getJITInfo().needsGOT()) { 370 MemMgr->AllocateGOT(); 371 DEBUG(dbgs() << "JIT is managing a GOT\n"); 372 } 373 374 if (JITExceptionHandling) { 375 DE.reset(new JITDwarfEmitter(jit)); 376 } 377 } 378 ~JITEmitter() { 379 delete MemMgr; 380 } 381 382 /// classof - Methods for support type inquiry through isa, cast, and 383 /// dyn_cast: 384 /// 385 static inline bool classof(const MachineCodeEmitter*) { return true; } 386 387 JITResolver &getJITResolver() { return Resolver; } 388 389 virtual void startFunction(MachineFunction &F); 390 virtual bool finishFunction(MachineFunction &F); 391 392 void emitConstantPool(MachineConstantPool *MCP); 393 void initJumpTableInfo(MachineJumpTableInfo *MJTI); 394 void emitJumpTableInfo(MachineJumpTableInfo *MJTI); 395 396 void startGVStub(const GlobalValue* GV, 397 unsigned StubSize, unsigned Alignment = 1); 398 void startGVStub(void *Buffer, unsigned StubSize); 399 void finishGVStub(); 400 virtual void *allocIndirectGV(const GlobalValue *GV, 401 const uint8_t *Buffer, size_t Size, 402 unsigned Alignment); 403 404 /// allocateSpace - Reserves space in the current block if any, or 405 /// allocate a new one of the given size. 406 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); 407 408 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 409 /// this method does not allocate memory in the current output buffer, 410 /// because a global may live longer than the current function. 411 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); 412 413 virtual void addRelocation(const MachineRelocation &MR) { 414 Relocations.push_back(MR); 415 } 416 417 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { 418 if (MBBLocations.size() <= (unsigned)MBB->getNumber()) 419 MBBLocations.resize((MBB->getNumber()+1)*2); 420 MBBLocations[MBB->getNumber()] = getCurrentPCValue(); 421 if (MBB->hasAddressTaken()) 422 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), 423 (void*)getCurrentPCValue()); 424 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" 425 << (void*) getCurrentPCValue() << "]\n"); 426 } 427 428 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; 429 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; 430 431 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ 432 assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 433 MBBLocations[MBB->getNumber()] && "MBB not emitted!"); 434 return MBBLocations[MBB->getNumber()]; 435 } 436 437 /// retryWithMoreMemory - Log a retry and deallocate all memory for the 438 /// given function. Increase the minimum allocation size so that we get 439 /// more memory next time. 440 void retryWithMoreMemory(MachineFunction &F); 441 442 /// deallocateMemForFunction - Deallocate all memory for the specified 443 /// function body. 444 void deallocateMemForFunction(const Function *F); 445 446 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); 447 448 virtual void emitLabel(MCSymbol *Label) { 449 LabelLocations[Label] = getCurrentPCValue(); 450 } 451 452 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { 453 return &LabelLocations; 454 } 455 456 virtual uintptr_t getLabelAddress(MCSymbol *Label) const { 457 assert(LabelLocations.count(Label) && "Label not emitted!"); 458 return LabelLocations.find(Label)->second; 459 } 460 461 virtual void setModuleInfo(MachineModuleInfo* Info) { 462 MMI = Info; 463 if (DE.get()) DE->setModuleInfo(Info); 464 } 465 466 private: 467 void *getPointerToGlobal(GlobalValue *GV, void *Reference, 468 bool MayNeedFarStub); 469 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); 470 }; 471 } 472 473 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { 474 JRS->EraseAllCallSitesForPrelocked(F); 475 } 476 477 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { 478 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); 479 if (F2C == FunctionToCallSitesMap.end()) 480 return; 481 StubToResolverMapTy &S2RMap = *StubToResolverMap; 482 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), 483 E = F2C->second.end(); I != E; ++I) { 484 S2RMap.UnregisterStubResolver(*I); 485 bool Erased = CallSiteToFunctionMap.erase(*I); 486 (void)Erased; 487 assert(Erased && "Missing call site->function mapping"); 488 } 489 FunctionToCallSitesMap.erase(F2C); 490 } 491 492 void JITResolverState::EraseAllCallSitesPrelocked() { 493 StubToResolverMapTy &S2RMap = *StubToResolverMap; 494 for (CallSiteToFunctionMapTy::const_iterator 495 I = CallSiteToFunctionMap.begin(), 496 E = CallSiteToFunctionMap.end(); I != E; ++I) { 497 S2RMap.UnregisterStubResolver(I->first); 498 } 499 CallSiteToFunctionMap.clear(); 500 FunctionToCallSitesMap.clear(); 501 } 502 503 JITResolver::~JITResolver() { 504 // No need to lock because we're in the destructor, and state isn't shared. 505 state.EraseAllCallSitesPrelocked(); 506 assert(!StubToResolverMap->ResolverHasStubs(this) && 507 "Resolver destroyed with stubs still alive."); 508 } 509 510 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub 511 /// if it has already been created. 512 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { 513 MutexGuard locked(TheJIT->lock); 514 515 // If we already have a stub for this function, recycle it. 516 return state.getFunctionToLazyStubMap(locked).lookup(F); 517 } 518 519 /// getFunctionStub - This returns a pointer to a function stub, creating 520 /// one on demand as needed. 521 void *JITResolver::getLazyFunctionStub(Function *F) { 522 MutexGuard locked(TheJIT->lock); 523 524 // If we already have a lazy stub for this function, recycle it. 525 void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; 526 if (Stub) return Stub; 527 528 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we 529 // must resolve the symbol now. 530 void *Actual = TheJIT->isCompilingLazily() 531 ? (void *)(intptr_t)LazyResolverFn : (void *)0; 532 533 // If this is an external declaration, attempt to resolve the address now 534 // to place in the stub. 535 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { 536 Actual = TheJIT->getPointerToFunction(F); 537 538 // If we resolved the symbol to a null address (eg. a weak external) 539 // don't emit a stub. Return a null pointer to the application. 540 if (!Actual) return 0; 541 } 542 543 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 544 JE.startGVStub(F, SL.Size, SL.Alignment); 545 // Codegen a new stub, calling the lazy resolver or the actual address of the 546 // external function, if it was resolved. 547 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); 548 JE.finishGVStub(); 549 550 if (Actual != (void*)(intptr_t)LazyResolverFn) { 551 // If we are getting the stub for an external function, we really want the 552 // address of the stub in the GlobalAddressMap for the JIT, not the address 553 // of the external function. 554 TheJIT->updateGlobalMapping(F, Stub); 555 } 556 557 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" 558 << F->getName() << "'\n"); 559 560 if (TheJIT->isCompilingLazily()) { 561 // Register this JITResolver as the one corresponding to this call site so 562 // JITCompilerFn will be able to find it. 563 StubToResolverMap->RegisterStubResolver(Stub, this); 564 565 // Finally, keep track of the stub-to-Function mapping so that the 566 // JITCompilerFn knows which function to compile! 567 state.AddCallSite(locked, Stub, F); 568 } else if (!Actual) { 569 // If we are JIT'ing non-lazily but need to call a function that does not 570 // exist yet, add it to the JIT's work list so that we can fill in the 571 // stub address later. 572 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && 573 "'Actual' should have been set above."); 574 TheJIT->addPendingFunction(F); 575 } 576 577 return Stub; 578 } 579 580 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified 581 /// GV address. 582 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { 583 MutexGuard locked(TheJIT->lock); 584 585 // If we already have a stub for this global variable, recycle it. 586 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; 587 if (IndirectSym) return IndirectSym; 588 589 // Otherwise, codegen a new indirect symbol. 590 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, 591 JE); 592 593 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym 594 << "] for GV '" << GV->getName() << "'\n"); 595 596 return IndirectSym; 597 } 598 599 /// getExternalFunctionStub - Return a stub for the function at the 600 /// specified address, created lazily on demand. 601 void *JITResolver::getExternalFunctionStub(void *FnAddr) { 602 // If we already have a stub for this function, recycle it. 603 void *&Stub = ExternalFnToStubMap[FnAddr]; 604 if (Stub) return Stub; 605 606 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 607 JE.startGVStub(0, SL.Size, SL.Alignment); 608 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); 609 JE.finishGVStub(); 610 611 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub 612 << "] for external function at '" << FnAddr << "'\n"); 613 return Stub; 614 } 615 616 unsigned JITResolver::getGOTIndexForAddr(void* addr) { 617 unsigned idx = revGOTMap[addr]; 618 if (!idx) { 619 idx = ++nextGOTIndex; 620 revGOTMap[addr] = idx; 621 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" 622 << addr << "]\n"); 623 } 624 return idx; 625 } 626 627 /// JITCompilerFn - This function is called when a lazy compilation stub has 628 /// been entered. It looks up which function this stub corresponds to, compiles 629 /// it if necessary, then returns the resultant function pointer. 630 void *JITResolver::JITCompilerFn(void *Stub) { 631 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); 632 assert(JR && "Unable to find the corresponding JITResolver to the call site"); 633 634 Function* F = 0; 635 void* ActualPtr = 0; 636 637 { 638 // Only lock for getting the Function. The call getPointerToFunction made 639 // in this function might trigger function materializing, which requires 640 // JIT lock to be unlocked. 641 MutexGuard locked(JR->TheJIT->lock); 642 643 // The address given to us for the stub may not be exactly right, it might 644 // be a little bit after the stub. As such, use upper_bound to find it. 645 std::pair<void*, Function*> I = 646 JR->state.LookupFunctionFromCallSite(locked, Stub); 647 F = I.second; 648 ActualPtr = I.first; 649 } 650 651 // If we have already code generated the function, just return the address. 652 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); 653 654 if (!Result) { 655 // Otherwise we don't have it, do lazy compilation now. 656 657 // If lazy compilation is disabled, emit a useful error message and abort. 658 if (!JR->TheJIT->isCompilingLazily()) { 659 report_fatal_error("LLVM JIT requested to do lazy compilation of" 660 " function '" 661 + F->getName() + "' when lazy compiles are disabled!"); 662 } 663 664 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() 665 << "' In stub ptr = " << Stub << " actual ptr = " 666 << ActualPtr << "\n"); 667 (void)ActualPtr; 668 669 Result = JR->TheJIT->getPointerToFunction(F); 670 } 671 672 // Reacquire the lock to update the GOT map. 673 MutexGuard locked(JR->TheJIT->lock); 674 675 // We might like to remove the call site from the CallSiteToFunction map, but 676 // we can't do that! Multiple threads could be stuck, waiting to acquire the 677 // lock above. As soon as the 1st function finishes compiling the function, 678 // the next one will be released, and needs to be able to find the function it 679 // needs to call. 680 681 // FIXME: We could rewrite all references to this stub if we knew them. 682 683 // What we will do is set the compiled function address to map to the 684 // same GOT entry as the stub so that later clients may update the GOT 685 // if they see it still using the stub address. 686 // Note: this is done so the Resolver doesn't have to manage GOT memory 687 // Do this without allocating map space if the target isn't using a GOT 688 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) 689 JR->revGOTMap[Result] = JR->revGOTMap[Stub]; 690 691 return Result; 692 } 693 694 //===----------------------------------------------------------------------===// 695 // JITEmitter code. 696 // 697 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, 698 bool MayNeedFarStub) { 699 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 700 return TheJIT->getOrEmitGlobalVariable(GV); 701 702 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 703 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); 704 705 // If we have already compiled the function, return a pointer to its body. 706 Function *F = cast<Function>(V); 707 708 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); 709 if (FnStub) { 710 // Return the function stub if it's already created. We do this first so 711 // that we're returning the same address for the function as any previous 712 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be 713 // close enough to call. 714 return FnStub; 715 } 716 717 // If we know the target can handle arbitrary-distance calls, try to 718 // return a direct pointer. 719 if (!MayNeedFarStub) { 720 // If we have code, go ahead and return that. 721 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); 722 if (ResultPtr) return ResultPtr; 723 724 // If this is an external function pointer, we can force the JIT to 725 // 'compile' it, which really just adds it to the map. 726 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) 727 return TheJIT->getPointerToFunction(F); 728 } 729 730 // Otherwise, we may need a to emit a stub, and, conservatively, we always do 731 // so. Note that it's possible to return null from getLazyFunctionStub in the 732 // case of a weak extern that fails to resolve. 733 return Resolver.getLazyFunctionStub(F); 734 } 735 736 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { 737 // Make sure GV is emitted first, and create a stub containing the fully 738 // resolved address. 739 void *GVAddress = getPointerToGlobal(V, Reference, false); 740 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); 741 return StubAddr; 742 } 743 744 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { 745 if (DL.isUnknown()) return; 746 if (!BeforePrintingInsn) return; 747 748 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); 749 750 if (DL.getScope(Context) != 0 && PrevDL != DL) { 751 JITEvent_EmittedFunctionDetails::LineStart NextLine; 752 NextLine.Address = getCurrentPCValue(); 753 NextLine.Loc = DL; 754 EmissionDetails.LineStarts.push_back(NextLine); 755 } 756 757 PrevDL = DL; 758 } 759 760 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, 761 const TargetData *TD) { 762 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 763 if (Constants.empty()) return 0; 764 765 unsigned Size = 0; 766 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 767 MachineConstantPoolEntry CPE = Constants[i]; 768 unsigned AlignMask = CPE.getAlignment() - 1; 769 Size = (Size + AlignMask) & ~AlignMask; 770 Type *Ty = CPE.getType(); 771 Size += TD->getTypeAllocSize(Ty); 772 } 773 return Size; 774 } 775 776 void JITEmitter::startFunction(MachineFunction &F) { 777 DEBUG(dbgs() << "JIT: Starting CodeGen of Function " 778 << F.getFunction()->getName() << "\n"); 779 780 uintptr_t ActualSize = 0; 781 // Set the memory writable, if it's not already 782 MemMgr->setMemoryWritable(); 783 784 if (SizeEstimate > 0) { 785 // SizeEstimate will be non-zero on reallocation attempts. 786 ActualSize = SizeEstimate; 787 } 788 789 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), 790 ActualSize); 791 BufferEnd = BufferBegin+ActualSize; 792 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; 793 794 // Ensure the constant pool/jump table info is at least 4-byte aligned. 795 emitAlignment(16); 796 797 emitConstantPool(F.getConstantPool()); 798 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 799 initJumpTableInfo(MJTI); 800 801 // About to start emitting the machine code for the function. 802 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); 803 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); 804 EmittedFunctions[F.getFunction()].Code = CurBufferPtr; 805 806 MBBLocations.clear(); 807 808 EmissionDetails.MF = &F; 809 EmissionDetails.LineStarts.clear(); 810 } 811 812 bool JITEmitter::finishFunction(MachineFunction &F) { 813 if (CurBufferPtr == BufferEnd) { 814 // We must call endFunctionBody before retrying, because 815 // deallocateMemForFunction requires it. 816 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 817 retryWithMoreMemory(F); 818 return true; 819 } 820 821 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 822 emitJumpTableInfo(MJTI); 823 824 // FnStart is the start of the text, not the start of the constant pool and 825 // other per-function data. 826 uint8_t *FnStart = 827 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); 828 829 // FnEnd is the end of the function's machine code. 830 uint8_t *FnEnd = CurBufferPtr; 831 832 if (!Relocations.empty()) { 833 CurFn = F.getFunction(); 834 NumRelos += Relocations.size(); 835 836 // Resolve the relocations to concrete pointers. 837 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { 838 MachineRelocation &MR = Relocations[i]; 839 void *ResultPtr = 0; 840 if (!MR.letTargetResolve()) { 841 if (MR.isExternalSymbol()) { 842 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), 843 false); 844 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" 845 << ResultPtr << "]\n"); 846 847 // If the target REALLY wants a stub for this function, emit it now. 848 if (MR.mayNeedFarStub()) { 849 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); 850 } 851 } else if (MR.isGlobalValue()) { 852 ResultPtr = getPointerToGlobal(MR.getGlobalValue(), 853 BufferBegin+MR.getMachineCodeOffset(), 854 MR.mayNeedFarStub()); 855 } else if (MR.isIndirectSymbol()) { 856 ResultPtr = getPointerToGVIndirectSym( 857 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); 858 } else if (MR.isBasicBlock()) { 859 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); 860 } else if (MR.isConstantPoolIndex()) { 861 ResultPtr = 862 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); 863 } else { 864 assert(MR.isJumpTableIndex()); 865 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); 866 } 867 868 MR.setResultPointer(ResultPtr); 869 } 870 871 // if we are managing the GOT and the relocation wants an index, 872 // give it one 873 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { 874 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); 875 MR.setGOTIndex(idx); 876 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { 877 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr 878 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 879 << "\n"); 880 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; 881 } 882 } 883 } 884 885 CurFn = 0; 886 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], 887 Relocations.size(), MemMgr->getGOTBase()); 888 } 889 890 // Update the GOT entry for F to point to the new code. 891 if (MemMgr->isManagingGOT()) { 892 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); 893 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { 894 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin 895 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 896 << "\n"); 897 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; 898 } 899 } 900 901 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for 902 // global variables that were referenced in the relocations. 903 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 904 905 if (CurBufferPtr == BufferEnd) { 906 retryWithMoreMemory(F); 907 return true; 908 } else { 909 // Now that we've succeeded in emitting the function, reset the 910 // SizeEstimate back down to zero. 911 SizeEstimate = 0; 912 } 913 914 BufferBegin = CurBufferPtr = 0; 915 NumBytes += FnEnd-FnStart; 916 917 // Invalidate the icache if necessary. 918 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); 919 920 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, 921 EmissionDetails); 922 923 // Reset the previous debug location. 924 PrevDL = DebugLoc(); 925 926 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart 927 << "] Function: " << F.getFunction()->getName() 928 << ": " << (FnEnd-FnStart) << " bytes of text, " 929 << Relocations.size() << " relocations\n"); 930 931 Relocations.clear(); 932 ConstPoolAddresses.clear(); 933 934 // Mark code region readable and executable if it's not so already. 935 MemMgr->setMemoryExecutable(); 936 937 DEBUG({ 938 if (sys::hasDisassembler()) { 939 dbgs() << "JIT: Disassembled code:\n"; 940 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, 941 (uintptr_t)FnStart); 942 } else { 943 dbgs() << "JIT: Binary code:\n"; 944 uint8_t* q = FnStart; 945 for (int i = 0; q < FnEnd; q += 4, ++i) { 946 if (i == 4) 947 i = 0; 948 if (i == 0) 949 dbgs() << "JIT: " << (long)(q - FnStart) << ": "; 950 bool Done = false; 951 for (int j = 3; j >= 0; --j) { 952 if (q + j >= FnEnd) 953 Done = true; 954 else 955 dbgs() << (unsigned short)q[j]; 956 } 957 if (Done) 958 break; 959 dbgs() << ' '; 960 if (i == 3) 961 dbgs() << '\n'; 962 } 963 dbgs()<< '\n'; 964 } 965 }); 966 967 if (JITExceptionHandling) { 968 uintptr_t ActualSize = 0; 969 SavedBufferBegin = BufferBegin; 970 SavedBufferEnd = BufferEnd; 971 SavedCurBufferPtr = CurBufferPtr; 972 973 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(), 974 ActualSize); 975 BufferEnd = BufferBegin+ActualSize; 976 EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin; 977 uint8_t *EhStart; 978 uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd, 979 EhStart); 980 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr, 981 FrameRegister); 982 BufferBegin = SavedBufferBegin; 983 BufferEnd = SavedBufferEnd; 984 CurBufferPtr = SavedCurBufferPtr; 985 986 if (JITExceptionHandling) { 987 TheJIT->RegisterTable(F.getFunction(), FrameRegister); 988 } 989 } 990 991 if (MMI) 992 MMI->EndFunction(); 993 994 return false; 995 } 996 997 void JITEmitter::retryWithMoreMemory(MachineFunction &F) { 998 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); 999 Relocations.clear(); // Clear the old relocations or we'll reapply them. 1000 ConstPoolAddresses.clear(); 1001 ++NumRetries; 1002 deallocateMemForFunction(F.getFunction()); 1003 // Try again with at least twice as much free space. 1004 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); 1005 1006 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ 1007 if (MBB->hasAddressTaken()) 1008 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); 1009 } 1010 } 1011 1012 /// deallocateMemForFunction - Deallocate all memory for the specified 1013 /// function body. Also drop any references the function has to stubs. 1014 /// May be called while the Function is being destroyed inside ~Value(). 1015 void JITEmitter::deallocateMemForFunction(const Function *F) { 1016 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator 1017 Emitted = EmittedFunctions.find(F); 1018 if (Emitted != EmittedFunctions.end()) { 1019 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); 1020 MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable); 1021 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); 1022 1023 EmittedFunctions.erase(Emitted); 1024 } 1025 1026 if (JITExceptionHandling) { 1027 TheJIT->DeregisterTable(F); 1028 } 1029 } 1030 1031 1032 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { 1033 if (BufferBegin) 1034 return JITCodeEmitter::allocateSpace(Size, Alignment); 1035 1036 // create a new memory block if there is no active one. 1037 // care must be taken so that BufferBegin is invalidated when a 1038 // block is trimmed 1039 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); 1040 BufferEnd = BufferBegin+Size; 1041 return CurBufferPtr; 1042 } 1043 1044 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { 1045 // Delegate this call through the memory manager. 1046 return MemMgr->allocateGlobal(Size, Alignment); 1047 } 1048 1049 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { 1050 if (TheJIT->getJITInfo().hasCustomConstantPool()) 1051 return; 1052 1053 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 1054 if (Constants.empty()) return; 1055 1056 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData()); 1057 unsigned Align = MCP->getConstantPoolAlignment(); 1058 ConstantPoolBase = allocateSpace(Size, Align); 1059 ConstantPool = MCP; 1060 1061 if (ConstantPoolBase == 0) return; // Buffer overflow. 1062 1063 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase 1064 << "] (size: " << Size << ", alignment: " << Align << ")\n"); 1065 1066 // Initialize the memory for all of the constant pool entries. 1067 unsigned Offset = 0; 1068 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1069 MachineConstantPoolEntry CPE = Constants[i]; 1070 unsigned AlignMask = CPE.getAlignment() - 1; 1071 Offset = (Offset + AlignMask) & ~AlignMask; 1072 1073 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; 1074 ConstPoolAddresses.push_back(CAddr); 1075 if (CPE.isMachineConstantPoolEntry()) { 1076 // FIXME: add support to lower machine constant pool values into bytes! 1077 report_fatal_error("Initialize memory with machine specific constant pool" 1078 "entry has not been implemented!"); 1079 } 1080 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); 1081 DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; 1082 dbgs().write_hex(CAddr) << "]\n"); 1083 1084 Type *Ty = CPE.Val.ConstVal->getType(); 1085 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty); 1086 } 1087 } 1088 1089 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { 1090 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1091 return; 1092 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) 1093 return; 1094 1095 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1096 if (JT.empty()) return; 1097 1098 unsigned NumEntries = 0; 1099 for (unsigned i = 0, e = JT.size(); i != e; ++i) 1100 NumEntries += JT[i].MBBs.size(); 1101 1102 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData()); 1103 1104 // Just allocate space for all the jump tables now. We will fix up the actual 1105 // MBB entries in the tables after we emit the code for each block, since then 1106 // we will know the final locations of the MBBs in memory. 1107 JumpTable = MJTI; 1108 JumpTableBase = allocateSpace(NumEntries * EntrySize, 1109 MJTI->getEntryAlignment(*TheJIT->getTargetData())); 1110 } 1111 1112 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { 1113 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1114 return; 1115 1116 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1117 if (JT.empty() || JumpTableBase == 0) return; 1118 1119 1120 switch (MJTI->getEntryKind()) { 1121 case MachineJumpTableInfo::EK_Inline: 1122 return; 1123 case MachineJumpTableInfo::EK_BlockAddress: { 1124 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1125 // .word LBB123 1126 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) && 1127 "Cross JIT'ing?"); 1128 1129 // For each jump table, map each target in the jump table to the address of 1130 // an emitted MachineBasicBlock. 1131 intptr_t *SlotPtr = (intptr_t*)JumpTableBase; 1132 1133 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1134 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1135 // Store the address of the basic block for this jump table slot in the 1136 // memory we allocated for the jump table in 'initJumpTableInfo' 1137 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) 1138 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); 1139 } 1140 break; 1141 } 1142 1143 case MachineJumpTableInfo::EK_Custom32: 1144 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1145 case MachineJumpTableInfo::EK_LabelDifference32: { 1146 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?"); 1147 // For each jump table, place the offset from the beginning of the table 1148 // to the target address. 1149 int *SlotPtr = (int*)JumpTableBase; 1150 1151 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1152 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1153 // Store the offset of the basic block for this jump table slot in the 1154 // memory we allocated for the jump table in 'initJumpTableInfo' 1155 uintptr_t Base = (uintptr_t)SlotPtr; 1156 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { 1157 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); 1158 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. 1159 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); 1160 } 1161 } 1162 break; 1163 } 1164 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1165 llvm_unreachable( 1166 "JT Info emission not implemented for GPRel64BlockAddress yet."); 1167 } 1168 } 1169 1170 void JITEmitter::startGVStub(const GlobalValue* GV, 1171 unsigned StubSize, unsigned Alignment) { 1172 SavedBufferBegin = BufferBegin; 1173 SavedBufferEnd = BufferEnd; 1174 SavedCurBufferPtr = CurBufferPtr; 1175 1176 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); 1177 BufferEnd = BufferBegin+StubSize+1; 1178 } 1179 1180 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { 1181 SavedBufferBegin = BufferBegin; 1182 SavedBufferEnd = BufferEnd; 1183 SavedCurBufferPtr = CurBufferPtr; 1184 1185 BufferBegin = CurBufferPtr = (uint8_t *)Buffer; 1186 BufferEnd = BufferBegin+StubSize+1; 1187 } 1188 1189 void JITEmitter::finishGVStub() { 1190 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); 1191 NumBytes += getCurrentPCOffset(); 1192 BufferBegin = SavedBufferBegin; 1193 BufferEnd = SavedBufferEnd; 1194 CurBufferPtr = SavedCurBufferPtr; 1195 } 1196 1197 void *JITEmitter::allocIndirectGV(const GlobalValue *GV, 1198 const uint8_t *Buffer, size_t Size, 1199 unsigned Alignment) { 1200 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); 1201 memcpy(IndGV, Buffer, Size); 1202 return IndGV; 1203 } 1204 1205 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry 1206 // in the constant pool that was last emitted with the 'emitConstantPool' 1207 // method. 1208 // 1209 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { 1210 assert(ConstantNum < ConstantPool->getConstants().size() && 1211 "Invalid ConstantPoolIndex!"); 1212 return ConstPoolAddresses[ConstantNum]; 1213 } 1214 1215 // getJumpTableEntryAddress - Return the address of the JumpTable with index 1216 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' 1217 // 1218 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { 1219 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); 1220 assert(Index < JT.size() && "Invalid jump table index!"); 1221 1222 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData()); 1223 1224 unsigned Offset = 0; 1225 for (unsigned i = 0; i < Index; ++i) 1226 Offset += JT[i].MBBs.size(); 1227 1228 Offset *= EntrySize; 1229 1230 return (uintptr_t)((char *)JumpTableBase + Offset); 1231 } 1232 1233 void JITEmitter::EmittedFunctionConfig::onDelete( 1234 JITEmitter *Emitter, const Function *F) { 1235 Emitter->deallocateMemForFunction(F); 1236 } 1237 void JITEmitter::EmittedFunctionConfig::onRAUW( 1238 JITEmitter *, const Function*, const Function*) { 1239 llvm_unreachable("The JIT doesn't know how to handle a" 1240 " RAUW on a value it has emitted."); 1241 } 1242 1243 1244 //===----------------------------------------------------------------------===// 1245 // Public interface to this file 1246 //===----------------------------------------------------------------------===// 1247 1248 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, 1249 TargetMachine &tm) { 1250 return new JITEmitter(jit, JMM, tm); 1251 } 1252 1253 // getPointerToFunctionOrStub - If the specified function has been 1254 // code-gen'd, return a pointer to the function. If not, compile it, or use 1255 // a stub to implement lazy compilation if available. 1256 // 1257 void *JIT::getPointerToFunctionOrStub(Function *F) { 1258 // If we have already code generated the function, just return the address. 1259 if (void *Addr = getPointerToGlobalIfAvailable(F)) 1260 return Addr; 1261 1262 // Get a stub if the target supports it. 1263 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1264 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); 1265 return JE->getJITResolver().getLazyFunctionStub(F); 1266 } 1267 1268 void JIT::updateFunctionStub(Function *F) { 1269 // Get the empty stub we generated earlier. 1270 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1271 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter()); 1272 void *Stub = JE->getJITResolver().getLazyFunctionStub(F); 1273 void *Addr = getPointerToGlobalIfAvailable(F); 1274 assert(Addr != Stub && "Function must have non-stub address to be updated."); 1275 1276 // Tell the target jit info to rewrite the stub at the specified address, 1277 // rather than creating a new one. 1278 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); 1279 JE->startGVStub(Stub, layout.Size); 1280 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); 1281 JE->finishGVStub(); 1282 } 1283 1284 /// freeMachineCodeForFunction - release machine code memory for given Function. 1285 /// 1286 void JIT::freeMachineCodeForFunction(Function *F) { 1287 // Delete translation for this from the ExecutionEngine, so it will get 1288 // retranslated next time it is used. 1289 updateGlobalMapping(F, 0); 1290 1291 // Free the actual memory for the function body and related stuff. 1292 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?"); 1293 cast<JITEmitter>(JCE)->deallocateMemForFunction(F); 1294 } 1295