Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/InlineAsm.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     30 static TryEmitResult
     31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
     33                                       const Expr *E,
     34                                       const ObjCMethodDecl *Method,
     35                                       RValue Result);
     36 
     37 /// Given the address of a variable of pointer type, find the correct
     38 /// null to store into it.
     39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
     40   llvm::Type *type =
     41     cast<llvm::PointerType>(addr->getType())->getElementType();
     42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     43 }
     44 
     45 /// Emits an instance of NSConstantString representing the object.
     46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     47 {
     48   llvm::Constant *C =
     49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
     50   // FIXME: This bitcast should just be made an invariant on the Runtime.
     51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     52 }
     53 
     54 /// EmitObjCBoxedExpr - This routine generates code to call
     55 /// the appropriate expression boxing method. This will either be
     56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
     57 ///
     58 llvm::Value *
     59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     60   // Generate the correct selector for this literal's concrete type.
     61   const Expr *SubExpr = E->getSubExpr();
     62   // Get the method.
     63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     64   assert(BoxingMethod && "BoxingMethod is null");
     65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     66   Selector Sel = BoxingMethod->getSelector();
     67 
     68   // Generate a reference to the class pointer, which will be the receiver.
     69   // Assumes that the method was introduced in the class that should be
     70   // messaged (avoids pulling it out of the result type).
     71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
     74 
     75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
     76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
     77   RValue RV = EmitAnyExpr(SubExpr);
     78   CallArgList Args;
     79   Args.add(RV, ArgQT);
     80 
     81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
     82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
     83                                               ClassDecl, BoxingMethod);
     84   return Builder.CreateBitCast(result.getScalarVal(),
     85                                ConvertType(E->getType()));
     86 }
     87 
     88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
     89                                     const ObjCMethodDecl *MethodWithObjects) {
     90   ASTContext &Context = CGM.getContext();
     91   const ObjCDictionaryLiteral *DLE = 0;
     92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
     93   if (!ALE)
     94     DLE = cast<ObjCDictionaryLiteral>(E);
     95 
     96   // Compute the type of the array we're initializing.
     97   uint64_t NumElements =
     98     ALE ? ALE->getNumElements() : DLE->getNumElements();
     99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    100                             NumElements);
    101   QualType ElementType = Context.getObjCIdType().withConst();
    102   QualType ElementArrayType
    103     = Context.getConstantArrayType(ElementType, APNumElements,
    104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    105 
    106   // Allocate the temporary array(s).
    107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
    108   llvm::Value *Keys = 0;
    109   if (DLE)
    110     Keys = CreateMemTemp(ElementArrayType, "keys");
    111 
    112   // Perform the actual initialialization of the array(s).
    113   for (uint64_t i = 0; i < NumElements; i++) {
    114     if (ALE) {
    115       // Emit the initializer.
    116       const Expr *Rhs = ALE->getElement(i);
    117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    118                                    ElementType,
    119                                    Context.getTypeAlignInChars(Rhs->getType()),
    120                                    Context);
    121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
    122     } else {
    123       // Emit the key initializer.
    124       const Expr *Key = DLE->getKeyValueElement(i).Key;
    125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
    126                                       ElementType,
    127                                     Context.getTypeAlignInChars(Key->getType()),
    128                                       Context);
    129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
    130 
    131       // Emit the value initializer.
    132       const Expr *Value = DLE->getKeyValueElement(i).Value;
    133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    134                                         ElementType,
    135                                   Context.getTypeAlignInChars(Value->getType()),
    136                                         Context);
    137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
    138     }
    139   }
    140 
    141   // Generate the argument list.
    142   CallArgList Args;
    143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    144   const ParmVarDecl *argDecl = *PI++;
    145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    146   Args.add(RValue::get(Objects), ArgQT);
    147   if (DLE) {
    148     argDecl = *PI++;
    149     ArgQT = argDecl->getType().getUnqualifiedType();
    150     Args.add(RValue::get(Keys), ArgQT);
    151   }
    152   argDecl = *PI;
    153   ArgQT = argDecl->getType().getUnqualifiedType();
    154   llvm::Value *Count =
    155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    156   Args.add(RValue::get(Count), ArgQT);
    157 
    158   // Generate a reference to the class pointer, which will be the receiver.
    159   Selector Sel = MethodWithObjects->getSelector();
    160   QualType ResultType = E->getType();
    161   const ObjCObjectPointerType *InterfacePointerType
    162     = ResultType->getAsObjCInterfacePointerType();
    163   ObjCInterfaceDecl *Class
    164     = InterfacePointerType->getObjectType()->getInterface();
    165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
    167 
    168   // Generate the message send.
    169   RValue result
    170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
    171                                   MethodWithObjects->getResultType(),
    172                                   Sel,
    173                                   Receiver, Args, Class,
    174                                   MethodWithObjects);
    175   return Builder.CreateBitCast(result.getScalarVal(),
    176                                ConvertType(E->getType()));
    177 }
    178 
    179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    181 }
    182 
    183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    184                                             const ObjCDictionaryLiteral *E) {
    185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    186 }
    187 
    188 /// Emit a selector.
    189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    190   // Untyped selector.
    191   // Note that this implementation allows for non-constant strings to be passed
    192   // as arguments to @selector().  Currently, the only thing preventing this
    193   // behaviour is the type checking in the front end.
    194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
    195 }
    196 
    197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    198   // FIXME: This should pass the Decl not the name.
    199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
    200 }
    201 
    202 /// \brief Adjust the type of the result of an Objective-C message send
    203 /// expression when the method has a related result type.
    204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
    205                                       const Expr *E,
    206                                       const ObjCMethodDecl *Method,
    207                                       RValue Result) {
    208   if (!Method)
    209     return Result;
    210 
    211   if (!Method->hasRelatedResultType() ||
    212       CGF.getContext().hasSameType(E->getType(), Method->getResultType()) ||
    213       !Result.isScalar())
    214     return Result;
    215 
    216   // We have applied a related result type. Cast the rvalue appropriately.
    217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    218                                                CGF.ConvertType(E->getType())));
    219 }
    220 
    221 /// Decide whether to extend the lifetime of the receiver of a
    222 /// returns-inner-pointer message.
    223 static bool
    224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    225   switch (message->getReceiverKind()) {
    226 
    227   // For a normal instance message, we should extend unless the
    228   // receiver is loaded from a variable with precise lifetime.
    229   case ObjCMessageExpr::Instance: {
    230     const Expr *receiver = message->getInstanceReceiver();
    231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    233     receiver = ice->getSubExpr()->IgnoreParens();
    234 
    235     // Only __strong variables.
    236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    237       return true;
    238 
    239     // All ivars and fields have precise lifetime.
    240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    241       return false;
    242 
    243     // Otherwise, check for variables.
    244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    245     if (!declRef) return true;
    246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    247     if (!var) return true;
    248 
    249     // All variables have precise lifetime except local variables with
    250     // automatic storage duration that aren't specially marked.
    251     return (var->hasLocalStorage() &&
    252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    253   }
    254 
    255   case ObjCMessageExpr::Class:
    256   case ObjCMessageExpr::SuperClass:
    257     // It's never necessary for class objects.
    258     return false;
    259 
    260   case ObjCMessageExpr::SuperInstance:
    261     // We generally assume that 'self' lives throughout a method call.
    262     return false;
    263   }
    264 
    265   llvm_unreachable("invalid receiver kind");
    266 }
    267 
    268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    269                                             ReturnValueSlot Return) {
    270   // Only the lookup mechanism and first two arguments of the method
    271   // implementation vary between runtimes.  We can get the receiver and
    272   // arguments in generic code.
    273 
    274   bool isDelegateInit = E->isDelegateInitCall();
    275 
    276   const ObjCMethodDecl *method = E->getMethodDecl();
    277 
    278   // We don't retain the receiver in delegate init calls, and this is
    279   // safe because the receiver value is always loaded from 'self',
    280   // which we zero out.  We don't want to Block_copy block receivers,
    281   // though.
    282   bool retainSelf =
    283     (!isDelegateInit &&
    284      CGM.getLangOpts().ObjCAutoRefCount &&
    285      method &&
    286      method->hasAttr<NSConsumesSelfAttr>());
    287 
    288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    289   bool isSuperMessage = false;
    290   bool isClassMessage = false;
    291   ObjCInterfaceDecl *OID = 0;
    292   // Find the receiver
    293   QualType ReceiverType;
    294   llvm::Value *Receiver = 0;
    295   switch (E->getReceiverKind()) {
    296   case ObjCMessageExpr::Instance:
    297     ReceiverType = E->getInstanceReceiver()->getType();
    298     if (retainSelf) {
    299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    300                                                    E->getInstanceReceiver());
    301       Receiver = ter.getPointer();
    302       if (ter.getInt()) retainSelf = false;
    303     } else
    304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    305     break;
    306 
    307   case ObjCMessageExpr::Class: {
    308     ReceiverType = E->getClassReceiver();
    309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    310     assert(ObjTy && "Invalid Objective-C class message send");
    311     OID = ObjTy->getInterface();
    312     assert(OID && "Invalid Objective-C class message send");
    313     Receiver = Runtime.GetClass(Builder, OID);
    314     isClassMessage = true;
    315     break;
    316   }
    317 
    318   case ObjCMessageExpr::SuperInstance:
    319     ReceiverType = E->getSuperType();
    320     Receiver = LoadObjCSelf();
    321     isSuperMessage = true;
    322     break;
    323 
    324   case ObjCMessageExpr::SuperClass:
    325     ReceiverType = E->getSuperType();
    326     Receiver = LoadObjCSelf();
    327     isSuperMessage = true;
    328     isClassMessage = true;
    329     break;
    330   }
    331 
    332   if (retainSelf)
    333     Receiver = EmitARCRetainNonBlock(Receiver);
    334 
    335   // In ARC, we sometimes want to "extend the lifetime"
    336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    337   // messages.
    338   if (getLangOpts().ObjCAutoRefCount && method &&
    339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    340       shouldExtendReceiverForInnerPointerMessage(E))
    341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    342 
    343   QualType ResultType =
    344     method ? method->getResultType() : E->getType();
    345 
    346   CallArgList Args;
    347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
    348 
    349   // For delegate init calls in ARC, do an unsafe store of null into
    350   // self.  This represents the call taking direct ownership of that
    351   // value.  We have to do this after emitting the other call
    352   // arguments because they might also reference self, but we don't
    353   // have to worry about any of them modifying self because that would
    354   // be an undefined read and write of an object in unordered
    355   // expressions.
    356   if (isDelegateInit) {
    357     assert(getLangOpts().ObjCAutoRefCount &&
    358            "delegate init calls should only be marked in ARC");
    359 
    360     // Do an unsafe store of null into self.
    361     llvm::Value *selfAddr =
    362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    363     assert(selfAddr && "no self entry for a delegate init call?");
    364 
    365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    366   }
    367 
    368   RValue result;
    369   if (isSuperMessage) {
    370     // super is only valid in an Objective-C method
    371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    374                                               E->getSelector(),
    375                                               OMD->getClassInterface(),
    376                                               isCategoryImpl,
    377                                               Receiver,
    378                                               isClassMessage,
    379                                               Args,
    380                                               method);
    381   } else {
    382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    383                                          E->getSelector(),
    384                                          Receiver, Args, OID,
    385                                          method);
    386   }
    387 
    388   // For delegate init calls in ARC, implicitly store the result of
    389   // the call back into self.  This takes ownership of the value.
    390   if (isDelegateInit) {
    391     llvm::Value *selfAddr =
    392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    393     llvm::Value *newSelf = result.getScalarVal();
    394 
    395     // The delegate return type isn't necessarily a matching type; in
    396     // fact, it's quite likely to be 'id'.
    397     llvm::Type *selfTy =
    398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
    399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    400 
    401     Builder.CreateStore(newSelf, selfAddr);
    402   }
    403 
    404   return AdjustRelatedResultType(*this, E, method, result);
    405 }
    406 
    407 namespace {
    408 struct FinishARCDealloc : EHScopeStack::Cleanup {
    409   void Emit(CodeGenFunction &CGF, Flags flags) {
    410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    411 
    412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    414     if (!iface->getSuperClass()) return;
    415 
    416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    417 
    418     // Call [super dealloc] if we have a superclass.
    419     llvm::Value *self = CGF.LoadObjCSelf();
    420 
    421     CallArgList args;
    422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    423                                                       CGF.getContext().VoidTy,
    424                                                       method->getSelector(),
    425                                                       iface,
    426                                                       isCategory,
    427                                                       self,
    428                                                       /*is class msg*/ false,
    429                                                       args,
    430                                                       method);
    431   }
    432 };
    433 }
    434 
    435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    436 /// the LLVM function and sets the other context used by
    437 /// CodeGenFunction.
    438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    439                                       const ObjCContainerDecl *CD,
    440                                       SourceLocation StartLoc) {
    441   FunctionArgList args;
    442   // Check if we should generate debug info for this method.
    443   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
    444     DebugInfo = CGM.getModuleDebugInfo();
    445 
    446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    447 
    448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    450 
    451   args.push_back(OMD->getSelfDecl());
    452   args.push_back(OMD->getCmdDecl());
    453 
    454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
    455          E = OMD->param_end(); PI != E; ++PI)
    456     args.push_back(*PI);
    457 
    458   CurGD = OMD;
    459 
    460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
    461 
    462   // In ARC, certain methods get an extra cleanup.
    463   if (CGM.getLangOpts().ObjCAutoRefCount &&
    464       OMD->isInstanceMethod() &&
    465       OMD->getSelector().isUnarySelector()) {
    466     const IdentifierInfo *ident =
    467       OMD->getSelector().getIdentifierInfoForSlot(0);
    468     if (ident->isStr("dealloc"))
    469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    470   }
    471 }
    472 
    473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    474                                               LValue lvalue, QualType type);
    475 
    476 /// Generate an Objective-C method.  An Objective-C method is a C function with
    477 /// its pointer, name, and types registered in the class struture.
    478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
    480   EmitStmt(OMD->getBody());
    481   FinishFunction(OMD->getBodyRBrace());
    482 }
    483 
    484 /// emitStructGetterCall - Call the runtime function to load a property
    485 /// into the return value slot.
    486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    487                                  bool isAtomic, bool hasStrong) {
    488   ASTContext &Context = CGF.getContext();
    489 
    490   llvm::Value *src =
    491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
    492                           ivar, 0).getAddress();
    493 
    494   // objc_copyStruct (ReturnValue, &structIvar,
    495   //                  sizeof (Type of Ivar), isAtomic, false);
    496   CallArgList args;
    497 
    498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    499   args.add(RValue::get(dest), Context.VoidPtrTy);
    500 
    501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    502   args.add(RValue::get(src), Context.VoidPtrTy);
    503 
    504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    508 
    509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    510   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(Context.VoidTy, args,
    511                                                   FunctionType::ExtInfo(),
    512                                                   RequiredArgs::All),
    513                fn, ReturnValueSlot(), args);
    514 }
    515 
    516 /// Determine whether the given architecture supports unaligned atomic
    517 /// accesses.  They don't have to be fast, just faster than a function
    518 /// call and a mutex.
    519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    521   // currently supported by the backend.)
    522   return 0;
    523 }
    524 
    525 /// Return the maximum size that permits atomic accesses for the given
    526 /// architecture.
    527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    528                                         llvm::Triple::ArchType arch) {
    529   // ARM has 8-byte atomic accesses, but it's not clear whether we
    530   // want to rely on them here.
    531 
    532   // In the default case, just assume that any size up to a pointer is
    533   // fine given adequate alignment.
    534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    535 }
    536 
    537 namespace {
    538   class PropertyImplStrategy {
    539   public:
    540     enum StrategyKind {
    541       /// The 'native' strategy is to use the architecture's provided
    542       /// reads and writes.
    543       Native,
    544 
    545       /// Use objc_setProperty and objc_getProperty.
    546       GetSetProperty,
    547 
    548       /// Use objc_setProperty for the setter, but use expression
    549       /// evaluation for the getter.
    550       SetPropertyAndExpressionGet,
    551 
    552       /// Use objc_copyStruct.
    553       CopyStruct,
    554 
    555       /// The 'expression' strategy is to emit normal assignment or
    556       /// lvalue-to-rvalue expressions.
    557       Expression
    558     };
    559 
    560     StrategyKind getKind() const { return StrategyKind(Kind); }
    561 
    562     bool hasStrongMember() const { return HasStrong; }
    563     bool isAtomic() const { return IsAtomic; }
    564     bool isCopy() const { return IsCopy; }
    565 
    566     CharUnits getIvarSize() const { return IvarSize; }
    567     CharUnits getIvarAlignment() const { return IvarAlignment; }
    568 
    569     PropertyImplStrategy(CodeGenModule &CGM,
    570                          const ObjCPropertyImplDecl *propImpl);
    571 
    572   private:
    573     unsigned Kind : 8;
    574     unsigned IsAtomic : 1;
    575     unsigned IsCopy : 1;
    576     unsigned HasStrong : 1;
    577 
    578     CharUnits IvarSize;
    579     CharUnits IvarAlignment;
    580   };
    581 }
    582 
    583 /// Pick an implementation strategy for the the given property synthesis.
    584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    585                                      const ObjCPropertyImplDecl *propImpl) {
    586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    588 
    589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    590   IsAtomic = prop->isAtomic();
    591   HasStrong = false; // doesn't matter here.
    592 
    593   // Evaluate the ivar's size and alignment.
    594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    595   QualType ivarType = ivar->getType();
    596   llvm::tie(IvarSize, IvarAlignment)
    597     = CGM.getContext().getTypeInfoInChars(ivarType);
    598 
    599   // If we have a copy property, we always have to use getProperty/setProperty.
    600   // TODO: we could actually use setProperty and an expression for non-atomics.
    601   if (IsCopy) {
    602     Kind = GetSetProperty;
    603     return;
    604   }
    605 
    606   // Handle retain.
    607   if (setterKind == ObjCPropertyDecl::Retain) {
    608     // In GC-only, there's nothing special that needs to be done.
    609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    610       // fallthrough
    611 
    612     // In ARC, if the property is non-atomic, use expression emission,
    613     // which translates to objc_storeStrong.  This isn't required, but
    614     // it's slightly nicer.
    615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    616       Kind = Expression;
    617       return;
    618 
    619     // Otherwise, we need to at least use setProperty.  However, if
    620     // the property isn't atomic, we can use normal expression
    621     // emission for the getter.
    622     } else if (!IsAtomic) {
    623       Kind = SetPropertyAndExpressionGet;
    624       return;
    625 
    626     // Otherwise, we have to use both setProperty and getProperty.
    627     } else {
    628       Kind = GetSetProperty;
    629       return;
    630     }
    631   }
    632 
    633   // If we're not atomic, just use expression accesses.
    634   if (!IsAtomic) {
    635     Kind = Expression;
    636     return;
    637   }
    638 
    639   // Properties on bitfield ivars need to be emitted using expression
    640   // accesses even if they're nominally atomic.
    641   if (ivar->isBitField()) {
    642     Kind = Expression;
    643     return;
    644   }
    645 
    646   // GC-qualified or ARC-qualified ivars need to be emitted as
    647   // expressions.  This actually works out to being atomic anyway,
    648   // except for ARC __strong, but that should trigger the above code.
    649   if (ivarType.hasNonTrivialObjCLifetime() ||
    650       (CGM.getLangOpts().getGC() &&
    651        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    652     Kind = Expression;
    653     return;
    654   }
    655 
    656   // Compute whether the ivar has strong members.
    657   if (CGM.getLangOpts().getGC())
    658     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    659       HasStrong = recordType->getDecl()->hasObjectMember();
    660 
    661   // We can never access structs with object members with a native
    662   // access, because we need to use write barriers.  This is what
    663   // objc_copyStruct is for.
    664   if (HasStrong) {
    665     Kind = CopyStruct;
    666     return;
    667   }
    668 
    669   // Otherwise, this is target-dependent and based on the size and
    670   // alignment of the ivar.
    671 
    672   // If the size of the ivar is not a power of two, give up.  We don't
    673   // want to get into the business of doing compare-and-swaps.
    674   if (!IvarSize.isPowerOfTwo()) {
    675     Kind = CopyStruct;
    676     return;
    677   }
    678 
    679   llvm::Triple::ArchType arch =
    680     CGM.getContext().getTargetInfo().getTriple().getArch();
    681 
    682   // Most architectures require memory to fit within a single cache
    683   // line, so the alignment has to be at least the size of the access.
    684   // Otherwise we have to grab a lock.
    685   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    686     Kind = CopyStruct;
    687     return;
    688   }
    689 
    690   // If the ivar's size exceeds the architecture's maximum atomic
    691   // access size, we have to use CopyStruct.
    692   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    693     Kind = CopyStruct;
    694     return;
    695   }
    696 
    697   // Otherwise, we can use native loads and stores.
    698   Kind = Native;
    699 }
    700 
    701 /// GenerateObjCGetter - Generate an Objective-C property getter
    702 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
    703 /// is illegal within a category.
    704 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    705                                          const ObjCPropertyImplDecl *PID) {
    706   llvm::Constant *AtomicHelperFn =
    707     GenerateObjCAtomicGetterCopyHelperFunction(PID);
    708   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    709   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    710   assert(OMD && "Invalid call to generate getter (empty method)");
    711   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
    712 
    713   generateObjCGetterBody(IMP, PID, AtomicHelperFn);
    714 
    715   FinishFunction();
    716 }
    717 
    718 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    719   const Expr *getter = propImpl->getGetterCXXConstructor();
    720   if (!getter) return true;
    721 
    722   // Sema only makes only of these when the ivar has a C++ class type,
    723   // so the form is pretty constrained.
    724 
    725   // If the property has a reference type, we might just be binding a
    726   // reference, in which case the result will be a gl-value.  We should
    727   // treat this as a non-trivial operation.
    728   if (getter->isGLValue())
    729     return false;
    730 
    731   // If we selected a trivial copy-constructor, we're okay.
    732   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    733     return (construct->getConstructor()->isTrivial());
    734 
    735   // The constructor might require cleanups (in which case it's never
    736   // trivial).
    737   assert(isa<ExprWithCleanups>(getter));
    738   return false;
    739 }
    740 
    741 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    742 /// copy the ivar into the resturn slot.
    743 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    744                                           llvm::Value *returnAddr,
    745                                           ObjCIvarDecl *ivar,
    746                                           llvm::Constant *AtomicHelperFn) {
    747   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    748   //                           AtomicHelperFn);
    749   CallArgList args;
    750 
    751   // The 1st argument is the return Slot.
    752   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    753 
    754   // The 2nd argument is the address of the ivar.
    755   llvm::Value *ivarAddr =
    756   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    757                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
    758   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    759   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    760 
    761   // Third argument is the helper function.
    762   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    763 
    764   llvm::Value *copyCppAtomicObjectFn =
    765   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
    766   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
    767                                                   FunctionType::ExtInfo(),
    768                                                   RequiredArgs::All),
    769                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    770 }
    771 
    772 void
    773 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    774                                         const ObjCPropertyImplDecl *propImpl,
    775                                         llvm::Constant *AtomicHelperFn) {
    776   // If there's a non-trivial 'get' expression, we just have to emit that.
    777   if (!hasTrivialGetExpr(propImpl)) {
    778     if (!AtomicHelperFn) {
    779       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    780                      /*nrvo*/ 0);
    781       EmitReturnStmt(ret);
    782     }
    783     else {
    784       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    785       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
    786                                     ivar, AtomicHelperFn);
    787     }
    788     return;
    789   }
    790 
    791   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    792   QualType propType = prop->getType();
    793   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    794 
    795   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    796 
    797   // Pick an implementation strategy.
    798   PropertyImplStrategy strategy(CGM, propImpl);
    799   switch (strategy.getKind()) {
    800   case PropertyImplStrategy::Native: {
    801     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    802 
    803     // Currently, all atomic accesses have to be through integer
    804     // types, so there's no point in trying to pick a prettier type.
    805     llvm::Type *bitcastType =
    806       llvm::Type::getIntNTy(getLLVMContext(),
    807                             getContext().toBits(strategy.getIvarSize()));
    808     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    809 
    810     // Perform an atomic load.  This does not impose ordering constraints.
    811     llvm::Value *ivarAddr = LV.getAddress();
    812     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    813     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    814     load->setAlignment(strategy.getIvarAlignment().getQuantity());
    815     load->setAtomic(llvm::Unordered);
    816 
    817     // Store that value into the return address.  Doing this with a
    818     // bitcast is likely to produce some pretty ugly IR, but it's not
    819     // the *most* terrible thing in the world.
    820     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    821 
    822     // Make sure we don't do an autorelease.
    823     AutoreleaseResult = false;
    824     return;
    825   }
    826 
    827   case PropertyImplStrategy::GetSetProperty: {
    828     llvm::Value *getPropertyFn =
    829       CGM.getObjCRuntime().GetPropertyGetFunction();
    830     if (!getPropertyFn) {
    831       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    832       return;
    833     }
    834 
    835     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    836     // FIXME: Can't this be simpler? This might even be worse than the
    837     // corresponding gcc code.
    838     llvm::Value *cmd =
    839       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
    840     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    841     llvm::Value *ivarOffset =
    842       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    843 
    844     CallArgList args;
    845     args.add(RValue::get(self), getContext().getObjCIdType());
    846     args.add(RValue::get(cmd), getContext().getObjCSelType());
    847     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    848     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    849              getContext().BoolTy);
    850 
    851     // FIXME: We shouldn't need to get the function info here, the
    852     // runtime already should have computed it to build the function.
    853     RValue RV = EmitCall(getTypes().arrangeFunctionCall(propType, args,
    854                                                         FunctionType::ExtInfo(),
    855                                                         RequiredArgs::All),
    856                          getPropertyFn, ReturnValueSlot(), args);
    857 
    858     // We need to fix the type here. Ivars with copy & retain are
    859     // always objects so we don't need to worry about complex or
    860     // aggregates.
    861     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
    862                                            getTypes().ConvertType(propType)));
    863 
    864     EmitReturnOfRValue(RV, propType);
    865 
    866     // objc_getProperty does an autorelease, so we should suppress ours.
    867     AutoreleaseResult = false;
    868 
    869     return;
    870   }
    871 
    872   case PropertyImplStrategy::CopyStruct:
    873     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    874                          strategy.hasStrongMember());
    875     return;
    876 
    877   case PropertyImplStrategy::Expression:
    878   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    879     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    880 
    881     QualType ivarType = ivar->getType();
    882     if (ivarType->isAnyComplexType()) {
    883       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
    884                                                LV.isVolatileQualified());
    885       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
    886     } else if (hasAggregateLLVMType(ivarType)) {
    887       // The return value slot is guaranteed to not be aliased, but
    888       // that's not necessarily the same as "on the stack", so
    889       // we still potentially need objc_memmove_collectable.
    890       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    891     } else {
    892       llvm::Value *value;
    893       if (propType->isReferenceType()) {
    894         value = LV.getAddress();
    895       } else {
    896         // We want to load and autoreleaseReturnValue ARC __weak ivars.
    897         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    898           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
    899 
    900         // Otherwise we want to do a simple load, suppressing the
    901         // final autorelease.
    902         } else {
    903           value = EmitLoadOfLValue(LV).getScalarVal();
    904           AutoreleaseResult = false;
    905         }
    906 
    907         value = Builder.CreateBitCast(value, ConvertType(propType));
    908       }
    909 
    910       EmitReturnOfRValue(RValue::get(value), propType);
    911     }
    912     return;
    913   }
    914 
    915   }
    916   llvm_unreachable("bad @property implementation strategy!");
    917 }
    918 
    919 /// emitStructSetterCall - Call the runtime function to store the value
    920 /// from the first formal parameter into the given ivar.
    921 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
    922                                  ObjCIvarDecl *ivar) {
    923   // objc_copyStruct (&structIvar, &Arg,
    924   //                  sizeof (struct something), true, false);
    925   CallArgList args;
    926 
    927   // The first argument is the address of the ivar.
    928   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    929                                                 CGF.LoadObjCSelf(), ivar, 0)
    930     .getAddress();
    931   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    932   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    933 
    934   // The second argument is the address of the parameter variable.
    935   ParmVarDecl *argVar = *OMD->param_begin();
    936   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    937                      VK_LValue, SourceLocation());
    938   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    939   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
    940   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
    941 
    942   // The third argument is the sizeof the type.
    943   llvm::Value *size =
    944     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
    945   args.add(RValue::get(size), CGF.getContext().getSizeType());
    946 
    947   // The fourth argument is the 'isAtomic' flag.
    948   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
    949 
    950   // The fifth argument is the 'hasStrong' flag.
    951   // FIXME: should this really always be false?
    952   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
    953 
    954   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
    955   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
    956                                                   FunctionType::ExtInfo(),
    957                                                   RequiredArgs::All),
    958                copyStructFn, ReturnValueSlot(), args);
    959 }
    960 
    961 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
    962 /// the value from the first formal parameter into the given ivar, using
    963 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
    964 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
    965                                           ObjCMethodDecl *OMD,
    966                                           ObjCIvarDecl *ivar,
    967                                           llvm::Constant *AtomicHelperFn) {
    968   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
    969   //                           AtomicHelperFn);
    970   CallArgList args;
    971 
    972   // The first argument is the address of the ivar.
    973   llvm::Value *ivarAddr =
    974     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    975                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
    976   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    977   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    978 
    979   // The second argument is the address of the parameter variable.
    980   ParmVarDecl *argVar = *OMD->param_begin();
    981   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    982                      VK_LValue, SourceLocation());
    983   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    984   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
    985   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
    986 
    987   // Third argument is the helper function.
    988   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    989 
    990   llvm::Value *copyCppAtomicObjectFn =
    991     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
    992   CGF.EmitCall(CGF.getTypes().arrangeFunctionCall(CGF.getContext().VoidTy, args,
    993                                                   FunctionType::ExtInfo(),
    994                                                   RequiredArgs::All),
    995                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    996 
    997 
    998 }
    999 
   1000 
   1001 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1002   Expr *setter = PID->getSetterCXXAssignment();
   1003   if (!setter) return true;
   1004 
   1005   // Sema only makes only of these when the ivar has a C++ class type,
   1006   // so the form is pretty constrained.
   1007 
   1008   // An operator call is trivial if the function it calls is trivial.
   1009   // This also implies that there's nothing non-trivial going on with
   1010   // the arguments, because operator= can only be trivial if it's a
   1011   // synthesized assignment operator and therefore both parameters are
   1012   // references.
   1013   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1014     if (const FunctionDecl *callee
   1015           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1016       if (callee->isTrivial())
   1017         return true;
   1018     return false;
   1019   }
   1020 
   1021   assert(isa<ExprWithCleanups>(setter));
   1022   return false;
   1023 }
   1024 
   1025 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1026   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1027     return false;
   1028   const TargetInfo &Target = CGM.getContext().getTargetInfo();
   1029 
   1030   if (Target.getPlatformName() != "macosx")
   1031     return false;
   1032 
   1033   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
   1034 }
   1035 
   1036 void
   1037 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1038                                         const ObjCPropertyImplDecl *propImpl,
   1039                                         llvm::Constant *AtomicHelperFn) {
   1040   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1041   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1042   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1043 
   1044   // Just use the setter expression if Sema gave us one and it's
   1045   // non-trivial.
   1046   if (!hasTrivialSetExpr(propImpl)) {
   1047     if (!AtomicHelperFn)
   1048       // If non-atomic, assignment is called directly.
   1049       EmitStmt(propImpl->getSetterCXXAssignment());
   1050     else
   1051       // If atomic, assignment is called via a locking api.
   1052       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1053                                     AtomicHelperFn);
   1054     return;
   1055   }
   1056 
   1057   PropertyImplStrategy strategy(CGM, propImpl);
   1058   switch (strategy.getKind()) {
   1059   case PropertyImplStrategy::Native: {
   1060     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
   1061 
   1062     LValue ivarLValue =
   1063       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1064     llvm::Value *ivarAddr = ivarLValue.getAddress();
   1065 
   1066     // Currently, all atomic accesses have to be through integer
   1067     // types, so there's no point in trying to pick a prettier type.
   1068     llvm::Type *bitcastType =
   1069       llvm::Type::getIntNTy(getLLVMContext(),
   1070                             getContext().toBits(strategy.getIvarSize()));
   1071     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
   1072 
   1073     // Cast both arguments to the chosen operation type.
   1074     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
   1075     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
   1076 
   1077     // This bitcast load is likely to cause some nasty IR.
   1078     llvm::Value *load = Builder.CreateLoad(argAddr);
   1079 
   1080     // Perform an atomic store.  There are no memory ordering requirements.
   1081     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1082     store->setAlignment(strategy.getIvarAlignment().getQuantity());
   1083     store->setAtomic(llvm::Unordered);
   1084     return;
   1085   }
   1086 
   1087   case PropertyImplStrategy::GetSetProperty:
   1088   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1089 
   1090     llvm::Value *setOptimizedPropertyFn = 0;
   1091     llvm::Value *setPropertyFn = 0;
   1092     if (UseOptimizedSetter(CGM)) {
   1093       // 10.8 code and GC is off
   1094       setOptimizedPropertyFn =
   1095         CGM.getObjCRuntime()
   1096            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1097                                             strategy.isCopy());
   1098       if (!setOptimizedPropertyFn) {
   1099         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1100         return;
   1101       }
   1102     }
   1103     else {
   1104       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1105       if (!setPropertyFn) {
   1106         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1107         return;
   1108       }
   1109     }
   1110 
   1111     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1112     //                       <is-atomic>, <is-copy>).
   1113     llvm::Value *cmd =
   1114       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
   1115     llvm::Value *self =
   1116       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1117     llvm::Value *ivarOffset =
   1118       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1119     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
   1120     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
   1121 
   1122     CallArgList args;
   1123     args.add(RValue::get(self), getContext().getObjCIdType());
   1124     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1125     if (setOptimizedPropertyFn) {
   1126       args.add(RValue::get(arg), getContext().getObjCIdType());
   1127       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1128       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
   1129                                               FunctionType::ExtInfo(),
   1130                                               RequiredArgs::All),
   1131                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1132     } else {
   1133       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1134       args.add(RValue::get(arg), getContext().getObjCIdType());
   1135       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1136                getContext().BoolTy);
   1137       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1138                getContext().BoolTy);
   1139       // FIXME: We shouldn't need to get the function info here, the runtime
   1140       // already should have computed it to build the function.
   1141       EmitCall(getTypes().arrangeFunctionCall(getContext().VoidTy, args,
   1142                                               FunctionType::ExtInfo(),
   1143                                               RequiredArgs::All),
   1144                setPropertyFn, ReturnValueSlot(), args);
   1145     }
   1146 
   1147     return;
   1148   }
   1149 
   1150   case PropertyImplStrategy::CopyStruct:
   1151     emitStructSetterCall(*this, setterMethod, ivar);
   1152     return;
   1153 
   1154   case PropertyImplStrategy::Expression:
   1155     break;
   1156   }
   1157 
   1158   // Otherwise, fake up some ASTs and emit a normal assignment.
   1159   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1160   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1161                    VK_LValue, SourceLocation());
   1162   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1163                             selfDecl->getType(), CK_LValueToRValue, &self,
   1164                             VK_RValue);
   1165   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1166                           SourceLocation(), &selfLoad, true, true);
   1167 
   1168   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1169   QualType argType = argDecl->getType().getNonReferenceType();
   1170   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1171   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1172                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1173                            &arg, VK_RValue);
   1174 
   1175   // The property type can differ from the ivar type in some situations with
   1176   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1177   // The following absurdity is just to ensure well-formed IR.
   1178   CastKind argCK = CK_NoOp;
   1179   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1180     if (argLoad.getType()->isObjCObjectPointerType())
   1181       argCK = CK_BitCast;
   1182     else if (argLoad.getType()->isBlockPointerType())
   1183       argCK = CK_BlockPointerToObjCPointerCast;
   1184     else
   1185       argCK = CK_CPointerToObjCPointerCast;
   1186   } else if (ivarRef.getType()->isBlockPointerType()) {
   1187      if (argLoad.getType()->isBlockPointerType())
   1188       argCK = CK_BitCast;
   1189     else
   1190       argCK = CK_AnyPointerToBlockPointerCast;
   1191   } else if (ivarRef.getType()->isPointerType()) {
   1192     argCK = CK_BitCast;
   1193   }
   1194   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1195                            ivarRef.getType(), argCK, &argLoad,
   1196                            VK_RValue);
   1197   Expr *finalArg = &argLoad;
   1198   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1199                                            argLoad.getType()))
   1200     finalArg = &argCast;
   1201 
   1202 
   1203   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1204                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1205                         SourceLocation());
   1206   EmitStmt(&assign);
   1207 }
   1208 
   1209 /// GenerateObjCSetter - Generate an Objective-C property setter
   1210 /// function. The given Decl must be an ObjCImplementationDecl. @synthesize
   1211 /// is illegal within a category.
   1212 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1213                                          const ObjCPropertyImplDecl *PID) {
   1214   llvm::Constant *AtomicHelperFn =
   1215     GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1216   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1217   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1218   assert(OMD && "Invalid call to generate setter (empty method)");
   1219   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
   1220 
   1221   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1222 
   1223   FinishFunction();
   1224 }
   1225 
   1226 namespace {
   1227   struct DestroyIvar : EHScopeStack::Cleanup {
   1228   private:
   1229     llvm::Value *addr;
   1230     const ObjCIvarDecl *ivar;
   1231     CodeGenFunction::Destroyer *destroyer;
   1232     bool useEHCleanupForArray;
   1233   public:
   1234     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1235                 CodeGenFunction::Destroyer *destroyer,
   1236                 bool useEHCleanupForArray)
   1237       : addr(addr), ivar(ivar), destroyer(destroyer),
   1238         useEHCleanupForArray(useEHCleanupForArray) {}
   1239 
   1240     void Emit(CodeGenFunction &CGF, Flags flags) {
   1241       LValue lvalue
   1242         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1243       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1244                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1245     }
   1246   };
   1247 }
   1248 
   1249 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1250 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1251                                       llvm::Value *addr,
   1252                                       QualType type) {
   1253   llvm::Value *null = getNullForVariable(addr);
   1254   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1255 }
   1256 
   1257 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1258                                   ObjCImplementationDecl *impl) {
   1259   CodeGenFunction::RunCleanupsScope scope(CGF);
   1260 
   1261   llvm::Value *self = CGF.LoadObjCSelf();
   1262 
   1263   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1264   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1265        ivar; ivar = ivar->getNextIvar()) {
   1266     QualType type = ivar->getType();
   1267 
   1268     // Check whether the ivar is a destructible type.
   1269     QualType::DestructionKind dtorKind = type.isDestructedType();
   1270     if (!dtorKind) continue;
   1271 
   1272     CodeGenFunction::Destroyer *destroyer = 0;
   1273 
   1274     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1275     // general benefit of the tools.
   1276     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1277       destroyer = destroyARCStrongWithStore;
   1278 
   1279     // Otherwise use the default for the destruction kind.
   1280     } else {
   1281       destroyer = CGF.getDestroyer(dtorKind);
   1282     }
   1283 
   1284     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1285 
   1286     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1287                                          cleanupKind & EHCleanup);
   1288   }
   1289 
   1290   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1291 }
   1292 
   1293 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1294                                                  ObjCMethodDecl *MD,
   1295                                                  bool ctor) {
   1296   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1297   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
   1298 
   1299   // Emit .cxx_construct.
   1300   if (ctor) {
   1301     // Suppress the final autorelease in ARC.
   1302     AutoreleaseResult = false;
   1303 
   1304     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
   1305     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
   1306            E = IMP->init_end(); B != E; ++B) {
   1307       CXXCtorInitializer *IvarInit = (*B);
   1308       FieldDecl *Field = IvarInit->getAnyMember();
   1309       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
   1310       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1311                                     LoadObjCSelf(), Ivar, 0);
   1312       EmitAggExpr(IvarInit->getInit(),
   1313                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1314                                           AggValueSlot::DoesNotNeedGCBarriers,
   1315                                           AggValueSlot::IsNotAliased));
   1316     }
   1317     // constructor returns 'self'.
   1318     CodeGenTypes &Types = CGM.getTypes();
   1319     QualType IdTy(CGM.getContext().getObjCIdType());
   1320     llvm::Value *SelfAsId =
   1321       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1322     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1323 
   1324   // Emit .cxx_destruct.
   1325   } else {
   1326     emitCXXDestructMethod(*this, IMP);
   1327   }
   1328   FinishFunction();
   1329 }
   1330 
   1331 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
   1332   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
   1333   it++; it++;
   1334   const ABIArgInfo &AI = it->info;
   1335   // FIXME. Is this sufficient check?
   1336   return (AI.getKind() == ABIArgInfo::Indirect);
   1337 }
   1338 
   1339 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
   1340   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
   1341     return false;
   1342   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
   1343     return FDTTy->getDecl()->hasObjectMember();
   1344   return false;
   1345 }
   1346 
   1347 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1348   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1349   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
   1350 }
   1351 
   1352 QualType CodeGenFunction::TypeOfSelfObject() {
   1353   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1354   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1355   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1356     getContext().getCanonicalType(selfDecl->getType()));
   1357   return PTy->getPointeeType();
   1358 }
   1359 
   1360 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1361   llvm::Constant *EnumerationMutationFn =
   1362     CGM.getObjCRuntime().EnumerationMutationFunction();
   1363 
   1364   if (!EnumerationMutationFn) {
   1365     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1366     return;
   1367   }
   1368 
   1369   CGDebugInfo *DI = getDebugInfo();
   1370   if (DI)
   1371     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1372 
   1373   // The local variable comes into scope immediately.
   1374   AutoVarEmission variable = AutoVarEmission::invalid();
   1375   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1376     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1377 
   1378   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1379 
   1380   // Fast enumeration state.
   1381   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1382   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1383   EmitNullInitialization(StatePtr, StateTy);
   1384 
   1385   // Number of elements in the items array.
   1386   static const unsigned NumItems = 16;
   1387 
   1388   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1389   IdentifierInfo *II[] = {
   1390     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1391     &CGM.getContext().Idents.get("objects"),
   1392     &CGM.getContext().Idents.get("count")
   1393   };
   1394   Selector FastEnumSel =
   1395     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1396 
   1397   QualType ItemsTy =
   1398     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1399                                       llvm::APInt(32, NumItems),
   1400                                       ArrayType::Normal, 0);
   1401   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1402 
   1403   // Emit the collection pointer.  In ARC, we do a retain.
   1404   llvm::Value *Collection;
   1405   if (getLangOpts().ObjCAutoRefCount) {
   1406     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1407 
   1408     // Enter a cleanup to do the release.
   1409     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1410   } else {
   1411     Collection = EmitScalarExpr(S.getCollection());
   1412   }
   1413 
   1414   // The 'continue' label needs to appear within the cleanup for the
   1415   // collection object.
   1416   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1417 
   1418   // Send it our message:
   1419   CallArgList Args;
   1420 
   1421   // The first argument is a temporary of the enumeration-state type.
   1422   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
   1423 
   1424   // The second argument is a temporary array with space for NumItems
   1425   // pointers.  We'll actually be loading elements from the array
   1426   // pointer written into the control state; this buffer is so that
   1427   // collections that *aren't* backed by arrays can still queue up
   1428   // batches of elements.
   1429   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
   1430 
   1431   // The third argument is the capacity of that temporary array.
   1432   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1433   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1434   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1435 
   1436   // Start the enumeration.
   1437   RValue CountRV =
   1438     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1439                                              getContext().UnsignedLongTy,
   1440                                              FastEnumSel,
   1441                                              Collection, Args);
   1442 
   1443   // The initial number of objects that were returned in the buffer.
   1444   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1445 
   1446   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1447   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1448 
   1449   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1450 
   1451   // If the limit pointer was zero to begin with, the collection is
   1452   // empty; skip all this.
   1453   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
   1454                        EmptyBB, LoopInitBB);
   1455 
   1456   // Otherwise, initialize the loop.
   1457   EmitBlock(LoopInitBB);
   1458 
   1459   // Save the initial mutations value.  This is the value at an
   1460   // address that was written into the state object by
   1461   // countByEnumeratingWithState:objects:count:.
   1462   llvm::Value *StateMutationsPtrPtr =
   1463     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
   1464   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
   1465                                                       "mutationsptr");
   1466 
   1467   llvm::Value *initialMutations =
   1468     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
   1469 
   1470   // Start looping.  This is the point we return to whenever we have a
   1471   // fresh, non-empty batch of objects.
   1472   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1473   EmitBlock(LoopBodyBB);
   1474 
   1475   // The current index into the buffer.
   1476   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1477   index->addIncoming(zero, LoopInitBB);
   1478 
   1479   // The current buffer size.
   1480   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1481   count->addIncoming(initialBufferLimit, LoopInitBB);
   1482 
   1483   // Check whether the mutations value has changed from where it was
   1484   // at start.  StateMutationsPtr should actually be invariant between
   1485   // refreshes.
   1486   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1487   llvm::Value *currentMutations
   1488     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
   1489 
   1490   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1491   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1492 
   1493   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1494                        WasNotMutatedBB, WasMutatedBB);
   1495 
   1496   // If so, call the enumeration-mutation function.
   1497   EmitBlock(WasMutatedBB);
   1498   llvm::Value *V =
   1499     Builder.CreateBitCast(Collection,
   1500                           ConvertType(getContext().getObjCIdType()));
   1501   CallArgList Args2;
   1502   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1503   // FIXME: We shouldn't need to get the function info here, the runtime already
   1504   // should have computed it to build the function.
   1505   EmitCall(CGM.getTypes().arrangeFunctionCall(getContext().VoidTy, Args2,
   1506                                               FunctionType::ExtInfo(),
   1507                                               RequiredArgs::All),
   1508            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1509 
   1510   // Otherwise, or if the mutation function returns, just continue.
   1511   EmitBlock(WasNotMutatedBB);
   1512 
   1513   // Initialize the element variable.
   1514   RunCleanupsScope elementVariableScope(*this);
   1515   bool elementIsVariable;
   1516   LValue elementLValue;
   1517   QualType elementType;
   1518   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1519     // Initialize the variable, in case it's a __block variable or something.
   1520     EmitAutoVarInit(variable);
   1521 
   1522     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1523     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1524                         VK_LValue, SourceLocation());
   1525     elementLValue = EmitLValue(&tempDRE);
   1526     elementType = D->getType();
   1527     elementIsVariable = true;
   1528 
   1529     if (D->isARCPseudoStrong())
   1530       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1531   } else {
   1532     elementLValue = LValue(); // suppress warning
   1533     elementType = cast<Expr>(S.getElement())->getType();
   1534     elementIsVariable = false;
   1535   }
   1536   llvm::Type *convertedElementType = ConvertType(elementType);
   1537 
   1538   // Fetch the buffer out of the enumeration state.
   1539   // TODO: this pointer should actually be invariant between
   1540   // refreshes, which would help us do certain loop optimizations.
   1541   llvm::Value *StateItemsPtr =
   1542     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
   1543   llvm::Value *EnumStateItems =
   1544     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1545 
   1546   // Fetch the value at the current index from the buffer.
   1547   llvm::Value *CurrentItemPtr =
   1548     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1549   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
   1550 
   1551   // Cast that value to the right type.
   1552   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1553                                       "currentitem");
   1554 
   1555   // Make sure we have an l-value.  Yes, this gets evaluated every
   1556   // time through the loop.
   1557   if (!elementIsVariable) {
   1558     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1559     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1560   } else {
   1561     EmitScalarInit(CurrentItem, elementLValue);
   1562   }
   1563 
   1564   // If we do have an element variable, this assignment is the end of
   1565   // its initialization.
   1566   if (elementIsVariable)
   1567     EmitAutoVarCleanups(variable);
   1568 
   1569   // Perform the loop body, setting up break and continue labels.
   1570   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1571   {
   1572     RunCleanupsScope Scope(*this);
   1573     EmitStmt(S.getBody());
   1574   }
   1575   BreakContinueStack.pop_back();
   1576 
   1577   // Destroy the element variable now.
   1578   elementVariableScope.ForceCleanup();
   1579 
   1580   // Check whether there are more elements.
   1581   EmitBlock(AfterBody.getBlock());
   1582 
   1583   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1584 
   1585   // First we check in the local buffer.
   1586   llvm::Value *indexPlusOne
   1587     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1588 
   1589   // If we haven't overrun the buffer yet, we can continue.
   1590   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
   1591                        LoopBodyBB, FetchMoreBB);
   1592 
   1593   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1594   count->addIncoming(count, AfterBody.getBlock());
   1595 
   1596   // Otherwise, we have to fetch more elements.
   1597   EmitBlock(FetchMoreBB);
   1598 
   1599   CountRV =
   1600     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1601                                              getContext().UnsignedLongTy,
   1602                                              FastEnumSel,
   1603                                              Collection, Args);
   1604 
   1605   // If we got a zero count, we're done.
   1606   llvm::Value *refetchCount = CountRV.getScalarVal();
   1607 
   1608   // (note that the message send might split FetchMoreBB)
   1609   index->addIncoming(zero, Builder.GetInsertBlock());
   1610   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1611 
   1612   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1613                        EmptyBB, LoopBodyBB);
   1614 
   1615   // No more elements.
   1616   EmitBlock(EmptyBB);
   1617 
   1618   if (!elementIsVariable) {
   1619     // If the element was not a declaration, set it to be null.
   1620 
   1621     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1622     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1623     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1624   }
   1625 
   1626   if (DI)
   1627     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1628 
   1629   // Leave the cleanup we entered in ARC.
   1630   if (getLangOpts().ObjCAutoRefCount)
   1631     PopCleanupBlock();
   1632 
   1633   EmitBlock(LoopEnd.getBlock());
   1634 }
   1635 
   1636 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1637   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1638 }
   1639 
   1640 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1641   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1642 }
   1643 
   1644 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1645                                               const ObjCAtSynchronizedStmt &S) {
   1646   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1647 }
   1648 
   1649 /// Produce the code for a CK_ARCProduceObject.  Just does a
   1650 /// primitive retain.
   1651 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
   1652                                                     llvm::Value *value) {
   1653   return EmitARCRetain(type, value);
   1654 }
   1655 
   1656 namespace {
   1657   struct CallObjCRelease : EHScopeStack::Cleanup {
   1658     CallObjCRelease(llvm::Value *object) : object(object) {}
   1659     llvm::Value *object;
   1660 
   1661     void Emit(CodeGenFunction &CGF, Flags flags) {
   1662       CGF.EmitARCRelease(object, /*precise*/ true);
   1663     }
   1664   };
   1665 }
   1666 
   1667 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1668 /// release at the end of the full-expression.
   1669 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1670                                                     llvm::Value *object) {
   1671   // If we're in a conditional branch, we need to make the cleanup
   1672   // conditional.
   1673   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1674   return object;
   1675 }
   1676 
   1677 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1678                                                            llvm::Value *value) {
   1679   return EmitARCRetainAutorelease(type, value);
   1680 }
   1681 
   1682 
   1683 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1684                                                 llvm::FunctionType *type,
   1685                                                 StringRef fnName) {
   1686   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1687 
   1688   // In -fobjc-no-arc-runtime, emit weak references to the runtime
   1689   // support library.
   1690   if (!CGM.getCodeGenOpts().ObjCRuntimeHasARC)
   1691     if (llvm::Function *f = dyn_cast<llvm::Function>(fn))
   1692       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1693 
   1694   return fn;
   1695 }
   1696 
   1697 /// Perform an operation having the signature
   1698 ///   i8* (i8*)
   1699 /// where a null input causes a no-op and returns null.
   1700 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1701                                           llvm::Value *value,
   1702                                           llvm::Constant *&fn,
   1703                                           StringRef fnName) {
   1704   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1705 
   1706   if (!fn) {
   1707     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
   1708     llvm::FunctionType *fnType =
   1709       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
   1710     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1711   }
   1712 
   1713   // Cast the argument to 'id'.
   1714   llvm::Type *origType = value->getType();
   1715   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1716 
   1717   // Call the function.
   1718   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
   1719   call->setDoesNotThrow();
   1720 
   1721   // Cast the result back to the original type.
   1722   return CGF.Builder.CreateBitCast(call, origType);
   1723 }
   1724 
   1725 /// Perform an operation having the following signature:
   1726 ///   i8* (i8**)
   1727 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1728                                          llvm::Value *addr,
   1729                                          llvm::Constant *&fn,
   1730                                          StringRef fnName) {
   1731   if (!fn) {
   1732     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
   1733     llvm::FunctionType *fnType =
   1734       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
   1735     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1736   }
   1737 
   1738   // Cast the argument to 'id*'.
   1739   llvm::Type *origType = addr->getType();
   1740   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1741 
   1742   // Call the function.
   1743   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
   1744   call->setDoesNotThrow();
   1745 
   1746   // Cast the result back to a dereference of the original type.
   1747   llvm::Value *result = call;
   1748   if (origType != CGF.Int8PtrPtrTy)
   1749     result = CGF.Builder.CreateBitCast(result,
   1750                         cast<llvm::PointerType>(origType)->getElementType());
   1751 
   1752   return result;
   1753 }
   1754 
   1755 /// Perform an operation having the following signature:
   1756 ///   i8* (i8**, i8*)
   1757 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1758                                           llvm::Value *addr,
   1759                                           llvm::Value *value,
   1760                                           llvm::Constant *&fn,
   1761                                           StringRef fnName,
   1762                                           bool ignored) {
   1763   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1764            == value->getType());
   1765 
   1766   if (!fn) {
   1767     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1768 
   1769     llvm::FunctionType *fnType
   1770       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1771     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1772   }
   1773 
   1774   llvm::Type *origType = value->getType();
   1775 
   1776   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1777   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1778 
   1779   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
   1780   result->setDoesNotThrow();
   1781 
   1782   if (ignored) return 0;
   1783 
   1784   return CGF.Builder.CreateBitCast(result, origType);
   1785 }
   1786 
   1787 /// Perform an operation having the following signature:
   1788 ///   void (i8**, i8**)
   1789 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1790                                  llvm::Value *dst,
   1791                                  llvm::Value *src,
   1792                                  llvm::Constant *&fn,
   1793                                  StringRef fnName) {
   1794   assert(dst->getType() == src->getType());
   1795 
   1796   if (!fn) {
   1797     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
   1798     llvm::FunctionType *fnType
   1799       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1800     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1801   }
   1802 
   1803   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
   1804   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
   1805 
   1806   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
   1807   result->setDoesNotThrow();
   1808 }
   1809 
   1810 /// Produce the code to do a retain.  Based on the type, calls one of:
   1811 ///   call i8* @objc_retain(i8* %value)
   1812 ///   call i8* @objc_retainBlock(i8* %value)
   1813 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1814   if (type->isBlockPointerType())
   1815     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1816   else
   1817     return EmitARCRetainNonBlock(value);
   1818 }
   1819 
   1820 /// Retain the given object, with normal retain semantics.
   1821 ///   call i8* @objc_retain(i8* %value)
   1822 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1823   return emitARCValueOperation(*this, value,
   1824                                CGM.getARCEntrypoints().objc_retain,
   1825                                "objc_retain");
   1826 }
   1827 
   1828 /// Retain the given block, with _Block_copy semantics.
   1829 ///   call i8* @objc_retainBlock(i8* %value)
   1830 ///
   1831 /// \param mandatory - If false, emit the call with metadata
   1832 /// indicating that it's okay for the optimizer to eliminate this call
   1833 /// if it can prove that the block never escapes except down the stack.
   1834 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1835                                                  bool mandatory) {
   1836   llvm::Value *result
   1837     = emitARCValueOperation(*this, value,
   1838                             CGM.getARCEntrypoints().objc_retainBlock,
   1839                             "objc_retainBlock");
   1840 
   1841   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1842   // tell the optimizer that it doesn't need to do this copy if the
   1843   // block doesn't escape, where being passed as an argument doesn't
   1844   // count as escaping.
   1845   if (!mandatory && isa<llvm::Instruction>(result)) {
   1846     llvm::CallInst *call
   1847       = cast<llvm::CallInst>(result->stripPointerCasts());
   1848     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
   1849 
   1850     SmallVector<llvm::Value*,1> args;
   1851     call->setMetadata("clang.arc.copy_on_escape",
   1852                       llvm::MDNode::get(Builder.getContext(), args));
   1853   }
   1854 
   1855   return result;
   1856 }
   1857 
   1858 /// Retain the given object which is the result of a function call.
   1859 ///   call i8* @objc_retainAutoreleasedReturnValue(i8* %value)
   1860 ///
   1861 /// Yes, this function name is one character away from a different
   1862 /// call with completely different semantics.
   1863 llvm::Value *
   1864 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1865   // Fetch the void(void) inline asm which marks that we're going to
   1866   // retain the autoreleased return value.
   1867   llvm::InlineAsm *&marker
   1868     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
   1869   if (!marker) {
   1870     StringRef assembly
   1871       = CGM.getTargetCodeGenInfo()
   1872            .getARCRetainAutoreleasedReturnValueMarker();
   1873 
   1874     // If we have an empty assembly string, there's nothing to do.
   1875     if (assembly.empty()) {
   1876 
   1877     // Otherwise, at -O0, build an inline asm that we're going to call
   1878     // in a moment.
   1879     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1880       llvm::FunctionType *type =
   1881         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   1882 
   1883       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   1884 
   1885     // If we're at -O1 and above, we don't want to litter the code
   1886     // with this marker yet, so leave a breadcrumb for the ARC
   1887     // optimizer to pick up.
   1888     } else {
   1889       llvm::NamedMDNode *metadata =
   1890         CGM.getModule().getOrInsertNamedMetadata(
   1891                             "clang.arc.retainAutoreleasedReturnValueMarker");
   1892       assert(metadata->getNumOperands() <= 1);
   1893       if (metadata->getNumOperands() == 0) {
   1894         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
   1895         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
   1896       }
   1897     }
   1898   }
   1899 
   1900   // Call the marker asm if we made one, which we do only at -O0.
   1901   if (marker) Builder.CreateCall(marker);
   1902 
   1903   return emitARCValueOperation(*this, value,
   1904                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
   1905                                "objc_retainAutoreleasedReturnValue");
   1906 }
   1907 
   1908 /// Release the given object.
   1909 ///   call void @objc_release(i8* %value)
   1910 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
   1911   if (isa<llvm::ConstantPointerNull>(value)) return;
   1912 
   1913   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
   1914   if (!fn) {
   1915     std::vector<llvm::Type*> args(1, Int8PtrTy);
   1916     llvm::FunctionType *fnType =
   1917       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   1918     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   1919   }
   1920 
   1921   // Cast the argument to 'id'.
   1922   value = Builder.CreateBitCast(value, Int8PtrTy);
   1923 
   1924   // Call objc_release.
   1925   llvm::CallInst *call = Builder.CreateCall(fn, value);
   1926   call->setDoesNotThrow();
   1927 
   1928   if (!precise) {
   1929     SmallVector<llvm::Value*,1> args;
   1930     call->setMetadata("clang.imprecise_release",
   1931                       llvm::MDNode::get(Builder.getContext(), args));
   1932   }
   1933 }
   1934 
   1935 /// Store into a strong object.  Always calls this:
   1936 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
   1937 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
   1938                                                      llvm::Value *value,
   1939                                                      bool ignored) {
   1940   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1941            == value->getType());
   1942 
   1943   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
   1944   if (!fn) {
   1945     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   1946     llvm::FunctionType *fnType
   1947       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   1948     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   1949   }
   1950 
   1951   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   1952   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
   1953 
   1954   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
   1955 
   1956   if (ignored) return 0;
   1957   return value;
   1958 }
   1959 
   1960 /// Store into a strong object.  Sometimes calls this:
   1961 ///   call void @objc_storeStrong(i8** %addr, i8* %value)
   1962 /// Other times, breaks it down into components.
   1963 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   1964                                                  llvm::Value *newValue,
   1965                                                  bool ignored) {
   1966   QualType type = dst.getType();
   1967   bool isBlock = type->isBlockPointerType();
   1968 
   1969   // Use a store barrier at -O0 unless this is a block type or the
   1970   // lvalue is inadequately aligned.
   1971   if (shouldUseFusedARCCalls() &&
   1972       !isBlock &&
   1973       (dst.getAlignment().isZero() ||
   1974        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   1975     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   1976   }
   1977 
   1978   // Otherwise, split it out.
   1979 
   1980   // Retain the new value.
   1981   newValue = EmitARCRetain(type, newValue);
   1982 
   1983   // Read the old value.
   1984   llvm::Value *oldValue = EmitLoadOfScalar(dst);
   1985 
   1986   // Store.  We do this before the release so that any deallocs won't
   1987   // see the old value.
   1988   EmitStoreOfScalar(newValue, dst);
   1989 
   1990   // Finally, release the old value.
   1991   EmitARCRelease(oldValue, /*precise*/ false);
   1992 
   1993   return newValue;
   1994 }
   1995 
   1996 /// Autorelease the given object.
   1997 ///   call i8* @objc_autorelease(i8* %value)
   1998 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   1999   return emitARCValueOperation(*this, value,
   2000                                CGM.getARCEntrypoints().objc_autorelease,
   2001                                "objc_autorelease");
   2002 }
   2003 
   2004 /// Autorelease the given object.
   2005 ///   call i8* @objc_autoreleaseReturnValue(i8* %value)
   2006 llvm::Value *
   2007 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2008   return emitARCValueOperation(*this, value,
   2009                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
   2010                                "objc_autoreleaseReturnValue");
   2011 }
   2012 
   2013 /// Do a fused retain/autorelease of the given object.
   2014 ///   call i8* @objc_retainAutoreleaseReturnValue(i8* %value)
   2015 llvm::Value *
   2016 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2017   return emitARCValueOperation(*this, value,
   2018                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
   2019                                "objc_retainAutoreleaseReturnValue");
   2020 }
   2021 
   2022 /// Do a fused retain/autorelease of the given object.
   2023 ///   call i8* @objc_retainAutorelease(i8* %value)
   2024 /// or
   2025 ///   %retain = call i8* @objc_retainBlock(i8* %value)
   2026 ///   call i8* @objc_autorelease(i8* %retain)
   2027 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2028                                                        llvm::Value *value) {
   2029   if (!type->isBlockPointerType())
   2030     return EmitARCRetainAutoreleaseNonBlock(value);
   2031 
   2032   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2033 
   2034   llvm::Type *origType = value->getType();
   2035   value = Builder.CreateBitCast(value, Int8PtrTy);
   2036   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2037   value = EmitARCAutorelease(value);
   2038   return Builder.CreateBitCast(value, origType);
   2039 }
   2040 
   2041 /// Do a fused retain/autorelease of the given object.
   2042 ///   call i8* @objc_retainAutorelease(i8* %value)
   2043 llvm::Value *
   2044 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2045   return emitARCValueOperation(*this, value,
   2046                                CGM.getARCEntrypoints().objc_retainAutorelease,
   2047                                "objc_retainAutorelease");
   2048 }
   2049 
   2050 /// i8* @objc_loadWeak(i8** %addr)
   2051 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2052 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
   2053   return emitARCLoadOperation(*this, addr,
   2054                               CGM.getARCEntrypoints().objc_loadWeak,
   2055                               "objc_loadWeak");
   2056 }
   2057 
   2058 /// i8* @objc_loadWeakRetained(i8** %addr)
   2059 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
   2060   return emitARCLoadOperation(*this, addr,
   2061                               CGM.getARCEntrypoints().objc_loadWeakRetained,
   2062                               "objc_loadWeakRetained");
   2063 }
   2064 
   2065 /// i8* @objc_storeWeak(i8** %addr, i8* %value)
   2066 /// Returns %value.
   2067 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
   2068                                                llvm::Value *value,
   2069                                                bool ignored) {
   2070   return emitARCStoreOperation(*this, addr, value,
   2071                                CGM.getARCEntrypoints().objc_storeWeak,
   2072                                "objc_storeWeak", ignored);
   2073 }
   2074 
   2075 /// i8* @objc_initWeak(i8** %addr, i8* %value)
   2076 /// Returns %value.  %addr is known to not have a current weak entry.
   2077 /// Essentially equivalent to:
   2078 ///   *addr = nil; objc_storeWeak(addr, value);
   2079 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
   2080   // If we're initializing to null, just write null to memory; no need
   2081   // to get the runtime involved.  But don't do this if optimization
   2082   // is enabled, because accounting for this would make the optimizer
   2083   // much more complicated.
   2084   if (isa<llvm::ConstantPointerNull>(value) &&
   2085       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2086     Builder.CreateStore(value, addr);
   2087     return;
   2088   }
   2089 
   2090   emitARCStoreOperation(*this, addr, value,
   2091                         CGM.getARCEntrypoints().objc_initWeak,
   2092                         "objc_initWeak", /*ignored*/ true);
   2093 }
   2094 
   2095 /// void @objc_destroyWeak(i8** %addr)
   2096 /// Essentially objc_storeWeak(addr, nil).
   2097 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
   2098   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
   2099   if (!fn) {
   2100     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
   2101     llvm::FunctionType *fnType =
   2102       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   2103     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2104   }
   2105 
   2106   // Cast the argument to 'id*'.
   2107   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2108 
   2109   llvm::CallInst *call = Builder.CreateCall(fn, addr);
   2110   call->setDoesNotThrow();
   2111 }
   2112 
   2113 /// void @objc_moveWeak(i8** %dest, i8** %src)
   2114 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2115 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2116 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
   2117   emitARCCopyOperation(*this, dst, src,
   2118                        CGM.getARCEntrypoints().objc_moveWeak,
   2119                        "objc_moveWeak");
   2120 }
   2121 
   2122 /// void @objc_copyWeak(i8** %dest, i8** %src)
   2123 /// Disregards the current value in %dest.  Essentially
   2124 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2125 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
   2126   emitARCCopyOperation(*this, dst, src,
   2127                        CGM.getARCEntrypoints().objc_copyWeak,
   2128                        "objc_copyWeak");
   2129 }
   2130 
   2131 /// Produce the code to do a objc_autoreleasepool_push.
   2132 ///   call i8* @objc_autoreleasePoolPush(void)
   2133 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2134   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
   2135   if (!fn) {
   2136     llvm::FunctionType *fnType =
   2137       llvm::FunctionType::get(Int8PtrTy, false);
   2138     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2139   }
   2140 
   2141   llvm::CallInst *call = Builder.CreateCall(fn);
   2142   call->setDoesNotThrow();
   2143 
   2144   return call;
   2145 }
   2146 
   2147 /// Produce the code to do a primitive release.
   2148 ///   call void @objc_autoreleasePoolPop(i8* %ptr)
   2149 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2150   assert(value->getType() == Int8PtrTy);
   2151 
   2152   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
   2153   if (!fn) {
   2154     std::vector<llvm::Type*> args(1, Int8PtrTy);
   2155     llvm::FunctionType *fnType =
   2156       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   2157 
   2158     // We don't want to use a weak import here; instead we should not
   2159     // fall into this path.
   2160     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2161   }
   2162 
   2163   llvm::CallInst *call = Builder.CreateCall(fn, value);
   2164   call->setDoesNotThrow();
   2165 }
   2166 
   2167 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2168 /// Which is: [[NSAutoreleasePool alloc] init];
   2169 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2170 /// init is declared as: - (id) init; in its NSObject super class.
   2171 ///
   2172 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2173   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2174   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
   2175   // [NSAutoreleasePool alloc]
   2176   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2177   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2178   CallArgList Args;
   2179   RValue AllocRV =
   2180     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2181                                 getContext().getObjCIdType(),
   2182                                 AllocSel, Receiver, Args);
   2183 
   2184   // [Receiver init]
   2185   Receiver = AllocRV.getScalarVal();
   2186   II = &CGM.getContext().Idents.get("init");
   2187   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2188   RValue InitRV =
   2189     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2190                                 getContext().getObjCIdType(),
   2191                                 InitSel, Receiver, Args);
   2192   return InitRV.getScalarVal();
   2193 }
   2194 
   2195 /// Produce the code to do a primitive release.
   2196 /// [tmp drain];
   2197 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2198   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2199   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2200   CallArgList Args;
   2201   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2202                               getContext().VoidTy, DrainSel, Arg, Args);
   2203 }
   2204 
   2205 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2206                                               llvm::Value *addr,
   2207                                               QualType type) {
   2208   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
   2209   CGF.EmitARCRelease(ptr, /*precise*/ true);
   2210 }
   2211 
   2212 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2213                                                 llvm::Value *addr,
   2214                                                 QualType type) {
   2215   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
   2216   CGF.EmitARCRelease(ptr, /*precise*/ false);
   2217 }
   2218 
   2219 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2220                                      llvm::Value *addr,
   2221                                      QualType type) {
   2222   CGF.EmitARCDestroyWeak(addr);
   2223 }
   2224 
   2225 namespace {
   2226   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
   2227     llvm::Value *Token;
   2228 
   2229     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2230 
   2231     void Emit(CodeGenFunction &CGF, Flags flags) {
   2232       CGF.EmitObjCAutoreleasePoolPop(Token);
   2233     }
   2234   };
   2235   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
   2236     llvm::Value *Token;
   2237 
   2238     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2239 
   2240     void Emit(CodeGenFunction &CGF, Flags flags) {
   2241       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2242     }
   2243   };
   2244 }
   2245 
   2246 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2247   if (CGM.getLangOpts().ObjCAutoRefCount)
   2248     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2249   else
   2250     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2251 }
   2252 
   2253 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2254                                                   LValue lvalue,
   2255                                                   QualType type) {
   2256   switch (type.getObjCLifetime()) {
   2257   case Qualifiers::OCL_None:
   2258   case Qualifiers::OCL_ExplicitNone:
   2259   case Qualifiers::OCL_Strong:
   2260   case Qualifiers::OCL_Autoreleasing:
   2261     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
   2262                          false);
   2263 
   2264   case Qualifiers::OCL_Weak:
   2265     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2266                          true);
   2267   }
   2268 
   2269   llvm_unreachable("impossible lifetime!");
   2270 }
   2271 
   2272 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2273                                                   const Expr *e) {
   2274   e = e->IgnoreParens();
   2275   QualType type = e->getType();
   2276 
   2277   // If we're loading retained from a __strong xvalue, we can avoid
   2278   // an extra retain/release pair by zeroing out the source of this
   2279   // "move" operation.
   2280   if (e->isXValue() &&
   2281       !type.isConstQualified() &&
   2282       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2283     // Emit the lvalue.
   2284     LValue lv = CGF.EmitLValue(e);
   2285 
   2286     // Load the object pointer.
   2287     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
   2288 
   2289     // Set the source pointer to NULL.
   2290     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2291 
   2292     return TryEmitResult(result, true);
   2293   }
   2294 
   2295   // As a very special optimization, in ARC++, if the l-value is the
   2296   // result of a non-volatile assignment, do a simple retain of the
   2297   // result of the call to objc_storeWeak instead of reloading.
   2298   if (CGF.getLangOpts().CPlusPlus &&
   2299       !type.isVolatileQualified() &&
   2300       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2301       isa<BinaryOperator>(e) &&
   2302       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2303     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2304 
   2305   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2306 }
   2307 
   2308 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2309                                            llvm::Value *value);
   2310 
   2311 /// Given that the given expression is some sort of call (which does
   2312 /// not return retained), emit a retain following it.
   2313 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2314   llvm::Value *value = CGF.EmitScalarExpr(e);
   2315   return emitARCRetainAfterCall(CGF, value);
   2316 }
   2317 
   2318 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2319                                            llvm::Value *value) {
   2320   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2321     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2322 
   2323     // Place the retain immediately following the call.
   2324     CGF.Builder.SetInsertPoint(call->getParent(),
   2325                                ++llvm::BasicBlock::iterator(call));
   2326     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2327 
   2328     CGF.Builder.restoreIP(ip);
   2329     return value;
   2330   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2331     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2332 
   2333     // Place the retain at the beginning of the normal destination block.
   2334     llvm::BasicBlock *BB = invoke->getNormalDest();
   2335     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2336     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2337 
   2338     CGF.Builder.restoreIP(ip);
   2339     return value;
   2340 
   2341   // Bitcasts can arise because of related-result returns.  Rewrite
   2342   // the operand.
   2343   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2344     llvm::Value *operand = bitcast->getOperand(0);
   2345     operand = emitARCRetainAfterCall(CGF, operand);
   2346     bitcast->setOperand(0, operand);
   2347     return bitcast;
   2348 
   2349   // Generic fall-back case.
   2350   } else {
   2351     // Retain using the non-block variant: we never need to do a copy
   2352     // of a block that's been returned to us.
   2353     return CGF.EmitARCRetainNonBlock(value);
   2354   }
   2355 }
   2356 
   2357 /// Determine whether it might be important to emit a separate
   2358 /// objc_retain_block on the result of the given expression, or
   2359 /// whether it's okay to just emit it in a +1 context.
   2360 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2361   assert(e->getType()->isBlockPointerType());
   2362   e = e->IgnoreParens();
   2363 
   2364   // For future goodness, emit block expressions directly in +1
   2365   // contexts if we can.
   2366   if (isa<BlockExpr>(e))
   2367     return false;
   2368 
   2369   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2370     switch (cast->getCastKind()) {
   2371     // Emitting these operations in +1 contexts is goodness.
   2372     case CK_LValueToRValue:
   2373     case CK_ARCReclaimReturnedObject:
   2374     case CK_ARCConsumeObject:
   2375     case CK_ARCProduceObject:
   2376       return false;
   2377 
   2378     // These operations preserve a block type.
   2379     case CK_NoOp:
   2380     case CK_BitCast:
   2381       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2382 
   2383     // These operations are known to be bad (or haven't been considered).
   2384     case CK_AnyPointerToBlockPointerCast:
   2385     default:
   2386       return true;
   2387     }
   2388   }
   2389 
   2390   return true;
   2391 }
   2392 
   2393 /// Try to emit a PseudoObjectExpr at +1.
   2394 ///
   2395 /// This massively duplicates emitPseudoObjectRValue.
   2396 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2397                                                   const PseudoObjectExpr *E) {
   2398   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2399 
   2400   // Find the result expression.
   2401   const Expr *resultExpr = E->getResultExpr();
   2402   assert(resultExpr);
   2403   TryEmitResult result;
   2404 
   2405   for (PseudoObjectExpr::const_semantics_iterator
   2406          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2407     const Expr *semantic = *i;
   2408 
   2409     // If this semantic expression is an opaque value, bind it
   2410     // to the result of its source expression.
   2411     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2412       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2413       OVMA opaqueData;
   2414 
   2415       // If this semantic is the result of the pseudo-object
   2416       // expression, try to evaluate the source as +1.
   2417       if (ov == resultExpr) {
   2418         assert(!OVMA::shouldBindAsLValue(ov));
   2419         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2420         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2421 
   2422       // Otherwise, just bind it.
   2423       } else {
   2424         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2425       }
   2426       opaques.push_back(opaqueData);
   2427 
   2428     // Otherwise, if the expression is the result, evaluate it
   2429     // and remember the result.
   2430     } else if (semantic == resultExpr) {
   2431       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2432 
   2433     // Otherwise, evaluate the expression in an ignored context.
   2434     } else {
   2435       CGF.EmitIgnoredExpr(semantic);
   2436     }
   2437   }
   2438 
   2439   // Unbind all the opaques now.
   2440   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2441     opaques[i].unbind(CGF);
   2442 
   2443   return result;
   2444 }
   2445 
   2446 static TryEmitResult
   2447 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2448   // Look through cleanups.
   2449   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2450     CGF.enterFullExpression(cleanups);
   2451     CodeGenFunction::RunCleanupsScope scope(CGF);
   2452     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
   2453   }
   2454 
   2455   // The desired result type, if it differs from the type of the
   2456   // ultimate opaque expression.
   2457   llvm::Type *resultType = 0;
   2458 
   2459   while (true) {
   2460     e = e->IgnoreParens();
   2461 
   2462     // There's a break at the end of this if-chain;  anything
   2463     // that wants to keep looping has to explicitly continue.
   2464     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2465       switch (ce->getCastKind()) {
   2466       // No-op casts don't change the type, so we just ignore them.
   2467       case CK_NoOp:
   2468         e = ce->getSubExpr();
   2469         continue;
   2470 
   2471       case CK_LValueToRValue: {
   2472         TryEmitResult loadResult
   2473           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2474         if (resultType) {
   2475           llvm::Value *value = loadResult.getPointer();
   2476           value = CGF.Builder.CreateBitCast(value, resultType);
   2477           loadResult.setPointer(value);
   2478         }
   2479         return loadResult;
   2480       }
   2481 
   2482       // These casts can change the type, so remember that and
   2483       // soldier on.  We only need to remember the outermost such
   2484       // cast, though.
   2485       case CK_CPointerToObjCPointerCast:
   2486       case CK_BlockPointerToObjCPointerCast:
   2487       case CK_AnyPointerToBlockPointerCast:
   2488       case CK_BitCast:
   2489         if (!resultType)
   2490           resultType = CGF.ConvertType(ce->getType());
   2491         e = ce->getSubExpr();
   2492         assert(e->getType()->hasPointerRepresentation());
   2493         continue;
   2494 
   2495       // For consumptions, just emit the subexpression and thus elide
   2496       // the retain/release pair.
   2497       case CK_ARCConsumeObject: {
   2498         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2499         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2500         return TryEmitResult(result, true);
   2501       }
   2502 
   2503       // Block extends are net +0.  Naively, we could just recurse on
   2504       // the subexpression, but actually we need to ensure that the
   2505       // value is copied as a block, so there's a little filter here.
   2506       case CK_ARCExtendBlockObject: {
   2507         llvm::Value *result; // will be a +0 value
   2508 
   2509         // If we can't safely assume the sub-expression will produce a
   2510         // block-copied value, emit the sub-expression at +0.
   2511         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2512           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2513 
   2514         // Otherwise, try to emit the sub-expression at +1 recursively.
   2515         } else {
   2516           TryEmitResult subresult
   2517             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2518           result = subresult.getPointer();
   2519 
   2520           // If that produced a retained value, just use that,
   2521           // possibly casting down.
   2522           if (subresult.getInt()) {
   2523             if (resultType)
   2524               result = CGF.Builder.CreateBitCast(result, resultType);
   2525             return TryEmitResult(result, true);
   2526           }
   2527 
   2528           // Otherwise it's +0.
   2529         }
   2530 
   2531         // Retain the object as a block, then cast down.
   2532         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2533         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2534         return TryEmitResult(result, true);
   2535       }
   2536 
   2537       // For reclaims, emit the subexpression as a retained call and
   2538       // skip the consumption.
   2539       case CK_ARCReclaimReturnedObject: {
   2540         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2541         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2542         return TryEmitResult(result, true);
   2543       }
   2544 
   2545       default:
   2546         break;
   2547       }
   2548 
   2549     // Skip __extension__.
   2550     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2551       if (op->getOpcode() == UO_Extension) {
   2552         e = op->getSubExpr();
   2553         continue;
   2554       }
   2555 
   2556     // For calls and message sends, use the retained-call logic.
   2557     // Delegate inits are a special case in that they're the only
   2558     // returns-retained expression that *isn't* surrounded by
   2559     // a consume.
   2560     } else if (isa<CallExpr>(e) ||
   2561                (isa<ObjCMessageExpr>(e) &&
   2562                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2563       llvm::Value *result = emitARCRetainCall(CGF, e);
   2564       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2565       return TryEmitResult(result, true);
   2566 
   2567     // Look through pseudo-object expressions.
   2568     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2569       TryEmitResult result
   2570         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2571       if (resultType) {
   2572         llvm::Value *value = result.getPointer();
   2573         value = CGF.Builder.CreateBitCast(value, resultType);
   2574         result.setPointer(value);
   2575       }
   2576       return result;
   2577     }
   2578 
   2579     // Conservatively halt the search at any other expression kind.
   2580     break;
   2581   }
   2582 
   2583   // We didn't find an obvious production, so emit what we've got and
   2584   // tell the caller that we didn't manage to retain.
   2585   llvm::Value *result = CGF.EmitScalarExpr(e);
   2586   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2587   return TryEmitResult(result, false);
   2588 }
   2589 
   2590 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2591                                                 LValue lvalue,
   2592                                                 QualType type) {
   2593   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2594   llvm::Value *value = result.getPointer();
   2595   if (!result.getInt())
   2596     value = CGF.EmitARCRetain(type, value);
   2597   return value;
   2598 }
   2599 
   2600 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2601 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2602 /// best-effort attempt to peephole expressions that naturally produce
   2603 /// retained objects.
   2604 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2605   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2606   llvm::Value *value = result.getPointer();
   2607   if (!result.getInt())
   2608     value = EmitARCRetain(e->getType(), value);
   2609   return value;
   2610 }
   2611 
   2612 llvm::Value *
   2613 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2614   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2615   llvm::Value *value = result.getPointer();
   2616   if (result.getInt())
   2617     value = EmitARCAutorelease(value);
   2618   else
   2619     value = EmitARCRetainAutorelease(e->getType(), value);
   2620   return value;
   2621 }
   2622 
   2623 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2624   llvm::Value *result;
   2625   bool doRetain;
   2626 
   2627   if (shouldEmitSeparateBlockRetain(e)) {
   2628     result = EmitScalarExpr(e);
   2629     doRetain = true;
   2630   } else {
   2631     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2632     result = subresult.getPointer();
   2633     doRetain = !subresult.getInt();
   2634   }
   2635 
   2636   if (doRetain)
   2637     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2638   return EmitObjCConsumeObject(e->getType(), result);
   2639 }
   2640 
   2641 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2642   // In ARC, retain and autorelease the expression.
   2643   if (getLangOpts().ObjCAutoRefCount) {
   2644     // Do so before running any cleanups for the full-expression.
   2645     // tryEmitARCRetainScalarExpr does make an effort to do things
   2646     // inside cleanups, but there are crazy cases like
   2647     //   @throw A().foo;
   2648     // where a full retain+autorelease is required and would
   2649     // otherwise happen after the destructor for the temporary.
   2650     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
   2651       enterFullExpression(ewc);
   2652       expr = ewc->getSubExpr();
   2653     }
   2654 
   2655     CodeGenFunction::RunCleanupsScope cleanups(*this);
   2656     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2657   }
   2658 
   2659   // Otherwise, use the normal scalar-expression emission.  The
   2660   // exception machinery doesn't do anything special with the
   2661   // exception like retaining it, so there's no safety associated with
   2662   // only running cleanups after the throw has started, and when it
   2663   // matters it tends to be substantially inferior code.
   2664   return EmitScalarExpr(expr);
   2665 }
   2666 
   2667 std::pair<LValue,llvm::Value*>
   2668 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2669                                     bool ignored) {
   2670   // Evaluate the RHS first.
   2671   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2672   llvm::Value *value = result.getPointer();
   2673 
   2674   bool hasImmediateRetain = result.getInt();
   2675 
   2676   // If we didn't emit a retained object, and the l-value is of block
   2677   // type, then we need to emit the block-retain immediately in case
   2678   // it invalidates the l-value.
   2679   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2680     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2681     hasImmediateRetain = true;
   2682   }
   2683 
   2684   LValue lvalue = EmitLValue(e->getLHS());
   2685 
   2686   // If the RHS was emitted retained, expand this.
   2687   if (hasImmediateRetain) {
   2688     llvm::Value *oldValue =
   2689       EmitLoadOfScalar(lvalue);
   2690     EmitStoreOfScalar(value, lvalue);
   2691     EmitARCRelease(oldValue, /*precise*/ false);
   2692   } else {
   2693     value = EmitARCStoreStrong(lvalue, value, ignored);
   2694   }
   2695 
   2696   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2697 }
   2698 
   2699 std::pair<LValue,llvm::Value*>
   2700 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2701   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2702   LValue lvalue = EmitLValue(e->getLHS());
   2703 
   2704   EmitStoreOfScalar(value, lvalue);
   2705 
   2706   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2707 }
   2708 
   2709 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2710                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2711   const Stmt *subStmt = ARPS.getSubStmt();
   2712   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2713 
   2714   CGDebugInfo *DI = getDebugInfo();
   2715   if (DI)
   2716     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2717 
   2718   // Keep track of the current cleanup stack depth.
   2719   RunCleanupsScope Scope(*this);
   2720   if (CGM.getCodeGenOpts().ObjCRuntimeHasARC) {
   2721     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2722     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2723   } else {
   2724     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2725     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2726   }
   2727 
   2728   for (CompoundStmt::const_body_iterator I = S.body_begin(),
   2729        E = S.body_end(); I != E; ++I)
   2730     EmitStmt(*I);
   2731 
   2732   if (DI)
   2733     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2734 }
   2735 
   2736 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2737 /// make sure it survives garbage collection until this point.
   2738 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2739   // We just use an inline assembly.
   2740   llvm::FunctionType *extenderType
   2741     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2742   llvm::Value *extender
   2743     = llvm::InlineAsm::get(extenderType,
   2744                            /* assembly */ "",
   2745                            /* constraints */ "r",
   2746                            /* side effects */ true);
   2747 
   2748   object = Builder.CreateBitCast(object, VoidPtrTy);
   2749   Builder.CreateCall(extender, object)->setDoesNotThrow();
   2750 }
   2751 
   2752 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2753 /// non-trivial copy assignment function, produce following helper function.
   2754 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2755 ///
   2756 llvm::Constant *
   2757 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2758                                         const ObjCPropertyImplDecl *PID) {
   2759   // FIXME. This api is for NeXt runtime only for now.
   2760   if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
   2761     return 0;
   2762   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2763   if (!Ty->isRecordType())
   2764     return 0;
   2765   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2766   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2767     return 0;
   2768   llvm::Constant * HelperFn = 0;
   2769   if (hasTrivialSetExpr(PID))
   2770     return 0;
   2771   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2772   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2773     return HelperFn;
   2774 
   2775   ASTContext &C = getContext();
   2776   IdentifierInfo *II
   2777     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2778   FunctionDecl *FD = FunctionDecl::Create(C,
   2779                                           C.getTranslationUnitDecl(),
   2780                                           SourceLocation(),
   2781                                           SourceLocation(), II, C.VoidTy, 0,
   2782                                           SC_Static,
   2783                                           SC_None,
   2784                                           false,
   2785                                           false);
   2786 
   2787   QualType DestTy = C.getPointerType(Ty);
   2788   QualType SrcTy = Ty;
   2789   SrcTy.addConst();
   2790   SrcTy = C.getPointerType(SrcTy);
   2791 
   2792   FunctionArgList args;
   2793   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2794   args.push_back(&dstDecl);
   2795   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2796   args.push_back(&srcDecl);
   2797 
   2798   const CGFunctionInfo &FI =
   2799     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2800                                               FunctionType::ExtInfo(),
   2801                                               RequiredArgs::All);
   2802 
   2803   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2804 
   2805   llvm::Function *Fn =
   2806     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2807                            "__assign_helper_atomic_property_",
   2808                            &CGM.getModule());
   2809 
   2810   if (CGM.getModuleDebugInfo())
   2811     DebugInfo = CGM.getModuleDebugInfo();
   2812 
   2813 
   2814   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2815 
   2816   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2817                       VK_RValue, SourceLocation());
   2818   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2819                     VK_LValue, OK_Ordinary, SourceLocation());
   2820 
   2821   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2822                       VK_RValue, SourceLocation());
   2823   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2824                     VK_LValue, OK_Ordinary, SourceLocation());
   2825 
   2826   Expr *Args[2] = { &DST, &SRC };
   2827   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2828   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2829                               Args, 2, DestTy->getPointeeType(),
   2830                               VK_LValue, SourceLocation());
   2831 
   2832   EmitStmt(&TheCall);
   2833 
   2834   FinishFunction();
   2835   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2836   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2837   return HelperFn;
   2838 }
   2839 
   2840 llvm::Constant *
   2841 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2842                                             const ObjCPropertyImplDecl *PID) {
   2843   // FIXME. This api is for NeXt runtime only for now.
   2844   if (!getLangOpts().CPlusPlus || !getLangOpts().NeXTRuntime)
   2845     return 0;
   2846   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2847   QualType Ty = PD->getType();
   2848   if (!Ty->isRecordType())
   2849     return 0;
   2850   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2851     return 0;
   2852   llvm::Constant * HelperFn = 0;
   2853 
   2854   if (hasTrivialGetExpr(PID))
   2855     return 0;
   2856   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2857   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2858     return HelperFn;
   2859 
   2860 
   2861   ASTContext &C = getContext();
   2862   IdentifierInfo *II
   2863   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   2864   FunctionDecl *FD = FunctionDecl::Create(C,
   2865                                           C.getTranslationUnitDecl(),
   2866                                           SourceLocation(),
   2867                                           SourceLocation(), II, C.VoidTy, 0,
   2868                                           SC_Static,
   2869                                           SC_None,
   2870                                           false,
   2871                                           false);
   2872 
   2873   QualType DestTy = C.getPointerType(Ty);
   2874   QualType SrcTy = Ty;
   2875   SrcTy.addConst();
   2876   SrcTy = C.getPointerType(SrcTy);
   2877 
   2878   FunctionArgList args;
   2879   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2880   args.push_back(&dstDecl);
   2881   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2882   args.push_back(&srcDecl);
   2883 
   2884   const CGFunctionInfo &FI =
   2885   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2886                                             FunctionType::ExtInfo(),
   2887                                             RequiredArgs::All);
   2888 
   2889   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2890 
   2891   llvm::Function *Fn =
   2892   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2893                          "__copy_helper_atomic_property_", &CGM.getModule());
   2894 
   2895   if (CGM.getModuleDebugInfo())
   2896     DebugInfo = CGM.getModuleDebugInfo();
   2897 
   2898 
   2899   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2900 
   2901   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2902                       VK_RValue, SourceLocation());
   2903 
   2904   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2905                     VK_LValue, OK_Ordinary, SourceLocation());
   2906 
   2907   CXXConstructExpr *CXXConstExpr =
   2908     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   2909 
   2910   SmallVector<Expr*, 4> ConstructorArgs;
   2911   ConstructorArgs.push_back(&SRC);
   2912   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
   2913   ++A;
   2914 
   2915   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
   2916        A != AEnd; ++A)
   2917     ConstructorArgs.push_back(*A);
   2918 
   2919   CXXConstructExpr *TheCXXConstructExpr =
   2920     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   2921                              CXXConstExpr->getConstructor(),
   2922                              CXXConstExpr->isElidable(),
   2923                              &ConstructorArgs[0], ConstructorArgs.size(),
   2924                              CXXConstExpr->hadMultipleCandidates(),
   2925                              CXXConstExpr->isListInitialization(),
   2926                              CXXConstExpr->requiresZeroInitialization(),
   2927                              CXXConstExpr->getConstructionKind(),
   2928                              SourceRange());
   2929 
   2930   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2931                       VK_RValue, SourceLocation());
   2932 
   2933   RValue DV = EmitAnyExpr(&DstExpr);
   2934   CharUnits Alignment
   2935     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   2936   EmitAggExpr(TheCXXConstructExpr,
   2937               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
   2938                                     AggValueSlot::IsDestructed,
   2939                                     AggValueSlot::DoesNotNeedGCBarriers,
   2940                                     AggValueSlot::IsNotAliased));
   2941 
   2942   FinishFunction();
   2943   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2944   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   2945   return HelperFn;
   2946 }
   2947 
   2948 llvm::Value *
   2949 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   2950   // Get selectors for retain/autorelease.
   2951   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   2952   Selector CopySelector =
   2953       getContext().Selectors.getNullarySelector(CopyID);
   2954   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   2955   Selector AutoreleaseSelector =
   2956       getContext().Selectors.getNullarySelector(AutoreleaseID);
   2957 
   2958   // Emit calls to retain/autorelease.
   2959   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2960   llvm::Value *Val = Block;
   2961   RValue Result;
   2962   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2963                                        Ty, CopySelector,
   2964                                        Val, CallArgList(), 0, 0);
   2965   Val = Result.getScalarVal();
   2966   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2967                                        Ty, AutoreleaseSelector,
   2968                                        Val, CallArgList(), 0, 0);
   2969   Val = Result.getScalarVal();
   2970   return Val;
   2971 }
   2972 
   2973 
   2974 CGObjCRuntime::~CGObjCRuntime() {}
   2975