Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the code that handles AST -> LLVM type lowering.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenTypes.h"
     15 #include "CGCall.h"
     16 #include "CGCXXABI.h"
     17 #include "CGRecordLayout.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/DeclCXX.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/RecordLayout.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Module.h"
     26 #include "llvm/Target/TargetData.h"
     27 using namespace clang;
     28 using namespace CodeGen;
     29 
     30 CodeGenTypes::CodeGenTypes(CodeGenModule &CGM)
     31   : Context(CGM.getContext()), Target(Context.getTargetInfo()),
     32     TheModule(CGM.getModule()), TheTargetData(CGM.getTargetData()),
     33     TheABIInfo(CGM.getTargetCodeGenInfo().getABIInfo()),
     34     TheCXXABI(CGM.getCXXABI()),
     35     CodeGenOpts(CGM.getCodeGenOpts()), CGM(CGM) {
     36   SkippedLayout = false;
     37 }
     38 
     39 CodeGenTypes::~CodeGenTypes() {
     40   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
     41          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
     42       I != E; ++I)
     43     delete I->second;
     44 
     45   for (llvm::FoldingSet<CGFunctionInfo>::iterator
     46        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
     47     delete &*I++;
     48 }
     49 
     50 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
     51                                      llvm::StructType *Ty,
     52                                      StringRef suffix) {
     53   SmallString<256> TypeName;
     54   llvm::raw_svector_ostream OS(TypeName);
     55   OS << RD->getKindName() << '.';
     56 
     57   // Name the codegen type after the typedef name
     58   // if there is no tag type name available
     59   if (RD->getIdentifier()) {
     60     // FIXME: We should not have to check for a null decl context here.
     61     // Right now we do it because the implicit Obj-C decls don't have one.
     62     if (RD->getDeclContext())
     63       OS << RD->getQualifiedNameAsString();
     64     else
     65       RD->printName(OS);
     66   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
     67     // FIXME: We should not have to check for a null decl context here.
     68     // Right now we do it because the implicit Obj-C decls don't have one.
     69     if (TDD->getDeclContext())
     70       OS << TDD->getQualifiedNameAsString();
     71     else
     72       TDD->printName(OS);
     73   } else
     74     OS << "anon";
     75 
     76   if (!suffix.empty())
     77     OS << suffix;
     78 
     79   Ty->setName(OS.str());
     80 }
     81 
     82 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
     83 /// ConvertType in that it is used to convert to the memory representation for
     84 /// a type.  For example, the scalar representation for _Bool is i1, but the
     85 /// memory representation is usually i8 or i32, depending on the target.
     86 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
     87   llvm::Type *R = ConvertType(T);
     88 
     89   // If this is a non-bool type, don't map it.
     90   if (!R->isIntegerTy(1))
     91     return R;
     92 
     93   // Otherwise, return an integer of the target-specified size.
     94   return llvm::IntegerType::get(getLLVMContext(),
     95                                 (unsigned)Context.getTypeSize(T));
     96 }
     97 
     98 
     99 /// isRecordLayoutComplete - Return true if the specified type is already
    100 /// completely laid out.
    101 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
    102   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
    103   RecordDeclTypes.find(Ty);
    104   return I != RecordDeclTypes.end() && !I->second->isOpaque();
    105 }
    106 
    107 static bool
    108 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    109                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
    110 
    111 
    112 /// isSafeToConvert - Return true if it is safe to convert the specified record
    113 /// decl to IR and lay it out, false if doing so would cause us to get into a
    114 /// recursive compilation mess.
    115 static bool
    116 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
    117                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    118   // If we have already checked this type (maybe the same type is used by-value
    119   // multiple times in multiple structure fields, don't check again.
    120   if (!AlreadyChecked.insert(RD)) return true;
    121 
    122   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
    123 
    124   // If this type is already laid out, converting it is a noop.
    125   if (CGT.isRecordLayoutComplete(Key)) return true;
    126 
    127   // If this type is currently being laid out, we can't recursively compile it.
    128   if (CGT.isRecordBeingLaidOut(Key))
    129     return false;
    130 
    131   // If this type would require laying out bases that are currently being laid
    132   // out, don't do it.  This includes virtual base classes which get laid out
    133   // when a class is translated, even though they aren't embedded by-value into
    134   // the class.
    135   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    136     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
    137          E = CRD->bases_end(); I != E; ++I)
    138       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
    139                            CGT, AlreadyChecked))
    140         return false;
    141   }
    142 
    143   // If this type would require laying out members that are currently being laid
    144   // out, don't do it.
    145   for (RecordDecl::field_iterator I = RD->field_begin(),
    146        E = RD->field_end(); I != E; ++I)
    147     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
    148       return false;
    149 
    150   // If there are no problems, lets do it.
    151   return true;
    152 }
    153 
    154 /// isSafeToConvert - Return true if it is safe to convert this field type,
    155 /// which requires the structure elements contained by-value to all be
    156 /// recursively safe to convert.
    157 static bool
    158 isSafeToConvert(QualType T, CodeGenTypes &CGT,
    159                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
    160   T = T.getCanonicalType();
    161 
    162   // If this is a record, check it.
    163   if (const RecordType *RT = dyn_cast<RecordType>(T))
    164     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
    165 
    166   // If this is an array, check the elements, which are embedded inline.
    167   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
    168     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
    169 
    170   // Otherwise, there is no concern about transforming this.  We only care about
    171   // things that are contained by-value in a structure that can have another
    172   // structure as a member.
    173   return true;
    174 }
    175 
    176 
    177 /// isSafeToConvert - Return true if it is safe to convert the specified record
    178 /// decl to IR and lay it out, false if doing so would cause us to get into a
    179 /// recursive compilation mess.
    180 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
    181   // If no structs are being laid out, we can certainly do this one.
    182   if (CGT.noRecordsBeingLaidOut()) return true;
    183 
    184   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
    185   return isSafeToConvert(RD, CGT, AlreadyChecked);
    186 }
    187 
    188 
    189 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
    190 /// function argument or result position can be converted to an IR type at this
    191 /// point.  This boils down to being whether it is complete, as well as whether
    192 /// we've temporarily deferred expanding the type because we're in a recursive
    193 /// context.
    194 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
    195   // If this isn't a tagged type, we can convert it!
    196   const TagType *TT = Ty->getAs<TagType>();
    197   if (TT == 0) return true;
    198 
    199   // Incomplete types cannot be converted.
    200   if (TT->isIncompleteType())
    201     return false;
    202 
    203   // If this is an enum, then it is always safe to convert.
    204   const RecordType *RT = dyn_cast<RecordType>(TT);
    205   if (RT == 0) return true;
    206 
    207   // Otherwise, we have to be careful.  If it is a struct that we're in the
    208   // process of expanding, then we can't convert the function type.  That's ok
    209   // though because we must be in a pointer context under the struct, so we can
    210   // just convert it to a dummy type.
    211   //
    212   // We decide this by checking whether ConvertRecordDeclType returns us an
    213   // opaque type for a struct that we know is defined.
    214   return isSafeToConvert(RT->getDecl(), *this);
    215 }
    216 
    217 
    218 /// Code to verify a given function type is complete, i.e. the return type
    219 /// and all of the argument types are complete.  Also check to see if we are in
    220 /// a RS_StructPointer context, and if so whether any struct types have been
    221 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
    222 /// that cannot be converted to an IR type.
    223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
    224   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
    225     return false;
    226 
    227   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
    228     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
    229       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
    230         return false;
    231 
    232   return true;
    233 }
    234 
    235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
    236 /// replace the 'opaque' type we previously made for it if applicable.
    237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
    238   // If this is an enum being completed, then we flush all non-struct types from
    239   // the cache.  This allows function types and other things that may be derived
    240   // from the enum to be recomputed.
    241   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
    242     // Only flush the cache if we've actually already converted this type.
    243     if (TypeCache.count(ED->getTypeForDecl())) {
    244       // Okay, we formed some types based on this.  We speculated that the enum
    245       // would be lowered to i32, so we only need to flush the cache if this
    246       // didn't happen.
    247       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
    248         TypeCache.clear();
    249     }
    250     return;
    251   }
    252 
    253   // If we completed a RecordDecl that we previously used and converted to an
    254   // anonymous type, then go ahead and complete it now.
    255   const RecordDecl *RD = cast<RecordDecl>(TD);
    256   if (RD->isDependentType()) return;
    257 
    258   // Only complete it if we converted it already.  If we haven't converted it
    259   // yet, we'll just do it lazily.
    260   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
    261     ConvertRecordDeclType(RD);
    262 }
    263 
    264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
    265                                     const llvm::fltSemantics &format) {
    266   if (&format == &llvm::APFloat::IEEEhalf)
    267     return llvm::Type::getInt16Ty(VMContext);
    268   if (&format == &llvm::APFloat::IEEEsingle)
    269     return llvm::Type::getFloatTy(VMContext);
    270   if (&format == &llvm::APFloat::IEEEdouble)
    271     return llvm::Type::getDoubleTy(VMContext);
    272   if (&format == &llvm::APFloat::IEEEquad)
    273     return llvm::Type::getFP128Ty(VMContext);
    274   if (&format == &llvm::APFloat::PPCDoubleDouble)
    275     return llvm::Type::getPPC_FP128Ty(VMContext);
    276   if (&format == &llvm::APFloat::x87DoubleExtended)
    277     return llvm::Type::getX86_FP80Ty(VMContext);
    278   llvm_unreachable("Unknown float format!");
    279 }
    280 
    281 /// ConvertType - Convert the specified type to its LLVM form.
    282 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
    283   T = Context.getCanonicalType(T);
    284 
    285   const Type *Ty = T.getTypePtr();
    286 
    287   // RecordTypes are cached and processed specially.
    288   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    289     return ConvertRecordDeclType(RT->getDecl());
    290 
    291   // See if type is already cached.
    292   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
    293   // If type is found in map then use it. Otherwise, convert type T.
    294   if (TCI != TypeCache.end())
    295     return TCI->second;
    296 
    297   // If we don't have it in the cache, convert it now.
    298   llvm::Type *ResultType = 0;
    299   switch (Ty->getTypeClass()) {
    300   case Type::Record: // Handled above.
    301 #define TYPE(Class, Base)
    302 #define ABSTRACT_TYPE(Class, Base)
    303 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
    304 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
    305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
    306 #include "clang/AST/TypeNodes.def"
    307     llvm_unreachable("Non-canonical or dependent types aren't possible.");
    308 
    309   case Type::Builtin: {
    310     switch (cast<BuiltinType>(Ty)->getKind()) {
    311     case BuiltinType::Void:
    312     case BuiltinType::ObjCId:
    313     case BuiltinType::ObjCClass:
    314     case BuiltinType::ObjCSel:
    315       // LLVM void type can only be used as the result of a function call.  Just
    316       // map to the same as char.
    317       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    318       break;
    319 
    320     case BuiltinType::Bool:
    321       // Note that we always return bool as i1 for use as a scalar type.
    322       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
    323       break;
    324 
    325     case BuiltinType::Char_S:
    326     case BuiltinType::Char_U:
    327     case BuiltinType::SChar:
    328     case BuiltinType::UChar:
    329     case BuiltinType::Short:
    330     case BuiltinType::UShort:
    331     case BuiltinType::Int:
    332     case BuiltinType::UInt:
    333     case BuiltinType::Long:
    334     case BuiltinType::ULong:
    335     case BuiltinType::LongLong:
    336     case BuiltinType::ULongLong:
    337     case BuiltinType::WChar_S:
    338     case BuiltinType::WChar_U:
    339     case BuiltinType::Char16:
    340     case BuiltinType::Char32:
    341       ResultType = llvm::IntegerType::get(getLLVMContext(),
    342                                  static_cast<unsigned>(Context.getTypeSize(T)));
    343       break;
    344 
    345     case BuiltinType::Half:
    346       // Half is special: it might be lowered to i16 (and will be storage-only
    347       // type),. or can be represented as a set of native operations.
    348 
    349       // FIXME: Ask target which kind of half FP it prefers (storage only vs
    350       // native).
    351       ResultType = llvm::Type::getInt16Ty(getLLVMContext());
    352       break;
    353     case BuiltinType::Float:
    354     case BuiltinType::Double:
    355     case BuiltinType::LongDouble:
    356       ResultType = getTypeForFormat(getLLVMContext(),
    357                                     Context.getFloatTypeSemantics(T));
    358       break;
    359 
    360     case BuiltinType::NullPtr:
    361       // Model std::nullptr_t as i8*
    362       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
    363       break;
    364 
    365     case BuiltinType::UInt128:
    366     case BuiltinType::Int128:
    367       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
    368       break;
    369 
    370     case BuiltinType::Dependent:
    371 #define BUILTIN_TYPE(Id, SingletonId)
    372 #define PLACEHOLDER_TYPE(Id, SingletonId) \
    373     case BuiltinType::Id:
    374 #include "clang/AST/BuiltinTypes.def"
    375       llvm_unreachable("Unexpected placeholder builtin type!");
    376     }
    377     break;
    378   }
    379   case Type::Complex: {
    380     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
    381     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    382     break;
    383   }
    384   case Type::LValueReference:
    385   case Type::RValueReference: {
    386     const ReferenceType *RTy = cast<ReferenceType>(Ty);
    387     QualType ETy = RTy->getPointeeType();
    388     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    389     unsigned AS = Context.getTargetAddressSpace(ETy);
    390     ResultType = llvm::PointerType::get(PointeeType, AS);
    391     break;
    392   }
    393   case Type::Pointer: {
    394     const PointerType *PTy = cast<PointerType>(Ty);
    395     QualType ETy = PTy->getPointeeType();
    396     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    397     if (PointeeType->isVoidTy())
    398       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    399     unsigned AS = Context.getTargetAddressSpace(ETy);
    400     ResultType = llvm::PointerType::get(PointeeType, AS);
    401     break;
    402   }
    403 
    404   case Type::VariableArray: {
    405     const VariableArrayType *A = cast<VariableArrayType>(Ty);
    406     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    407            "FIXME: We only handle trivial array types so far!");
    408     // VLAs resolve to the innermost element type; this matches
    409     // the return of alloca, and there isn't any obviously better choice.
    410     ResultType = ConvertTypeForMem(A->getElementType());
    411     break;
    412   }
    413   case Type::IncompleteArray: {
    414     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    415     assert(A->getIndexTypeCVRQualifiers() == 0 &&
    416            "FIXME: We only handle trivial array types so far!");
    417     // int X[] -> [0 x int], unless the element type is not sized.  If it is
    418     // unsized (e.g. an incomplete struct) just use [0 x i8].
    419     ResultType = ConvertTypeForMem(A->getElementType());
    420     if (!ResultType->isSized()) {
    421       SkippedLayout = true;
    422       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
    423     }
    424     ResultType = llvm::ArrayType::get(ResultType, 0);
    425     break;
    426   }
    427   case Type::ConstantArray: {
    428     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    429     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    430 
    431     // Lower arrays of undefined struct type to arrays of i8 just to have a
    432     // concrete type.
    433     if (!EltTy->isSized()) {
    434       SkippedLayout = true;
    435       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
    436     }
    437 
    438     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    439     break;
    440   }
    441   case Type::ExtVector:
    442   case Type::Vector: {
    443     const VectorType *VT = cast<VectorType>(Ty);
    444     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
    445                                        VT->getNumElements());
    446     break;
    447   }
    448   case Type::FunctionNoProto:
    449   case Type::FunctionProto: {
    450     const FunctionType *FT = cast<FunctionType>(Ty);
    451     // First, check whether we can build the full function type.  If the
    452     // function type depends on an incomplete type (e.g. a struct or enum), we
    453     // cannot lower the function type.
    454     if (!isFuncTypeConvertible(FT)) {
    455       // This function's type depends on an incomplete tag type.
    456       // Return a placeholder type.
    457       ResultType = llvm::StructType::get(getLLVMContext());
    458 
    459       SkippedLayout = true;
    460       break;
    461     }
    462 
    463     // While we're converting the argument types for a function, we don't want
    464     // to recursively convert any pointed-to structs.  Converting directly-used
    465     // structs is ok though.
    466     if (!RecordsBeingLaidOut.insert(Ty)) {
    467       ResultType = llvm::StructType::get(getLLVMContext());
    468 
    469       SkippedLayout = true;
    470       break;
    471     }
    472 
    473     // The function type can be built; call the appropriate routines to
    474     // build it.
    475     const CGFunctionInfo *FI;
    476     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
    477       FI = &arrangeFunctionType(
    478                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
    479     } else {
    480       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
    481       FI = &arrangeFunctionType(
    482                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
    483     }
    484 
    485     // If there is something higher level prodding our CGFunctionInfo, then
    486     // don't recurse into it again.
    487     if (FunctionsBeingProcessed.count(FI)) {
    488 
    489       ResultType = llvm::StructType::get(getLLVMContext());
    490       SkippedLayout = true;
    491     } else {
    492 
    493       // Otherwise, we're good to go, go ahead and convert it.
    494       ResultType = GetFunctionType(*FI);
    495     }
    496 
    497     RecordsBeingLaidOut.erase(Ty);
    498 
    499     if (SkippedLayout)
    500       TypeCache.clear();
    501 
    502     if (RecordsBeingLaidOut.empty())
    503       while (!DeferredRecords.empty())
    504         ConvertRecordDeclType(DeferredRecords.pop_back_val());
    505     break;
    506   }
    507 
    508   case Type::ObjCObject:
    509     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    510     break;
    511 
    512   case Type::ObjCInterface: {
    513     // Objective-C interfaces are always opaque (outside of the
    514     // runtime, which can do whatever it likes); we never refine
    515     // these.
    516     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    517     if (!T)
    518       T = llvm::StructType::create(getLLVMContext());
    519     ResultType = T;
    520     break;
    521   }
    522 
    523   case Type::ObjCObjectPointer: {
    524     // Protocol qualifications do not influence the LLVM type, we just return a
    525     // pointer to the underlying interface type. We don't need to worry about
    526     // recursive conversion.
    527     llvm::Type *T =
    528       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    529     ResultType = T->getPointerTo();
    530     break;
    531   }
    532 
    533   case Type::Enum: {
    534     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    535     if (ED->isCompleteDefinition() || ED->isFixed())
    536       return ConvertType(ED->getIntegerType());
    537     // Return a placeholder 'i32' type.  This can be changed later when the
    538     // type is defined (see UpdateCompletedType), but is likely to be the
    539     // "right" answer.
    540     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
    541     break;
    542   }
    543 
    544   case Type::BlockPointer: {
    545     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    546     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    547     unsigned AS = Context.getTargetAddressSpace(FTy);
    548     ResultType = llvm::PointerType::get(PointeeType, AS);
    549     break;
    550   }
    551 
    552   case Type::MemberPointer: {
    553     ResultType =
    554       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    555     break;
    556   }
    557 
    558   case Type::Atomic: {
    559     ResultType = ConvertType(cast<AtomicType>(Ty)->getValueType());
    560     break;
    561   }
    562   }
    563 
    564   assert(ResultType && "Didn't convert a type?");
    565 
    566   TypeCache[Ty] = ResultType;
    567   return ResultType;
    568 }
    569 
    570 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
    571 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
    572   // TagDecl's are not necessarily unique, instead use the (clang)
    573   // type connected to the decl.
    574   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    575 
    576   llvm::StructType *&Entry = RecordDeclTypes[Key];
    577 
    578   // If we don't have a StructType at all yet, create the forward declaration.
    579   if (Entry == 0) {
    580     Entry = llvm::StructType::create(getLLVMContext());
    581     addRecordTypeName(RD, Entry, "");
    582   }
    583   llvm::StructType *Ty = Entry;
    584 
    585   // If this is still a forward declaration, or the LLVM type is already
    586   // complete, there's nothing more to do.
    587   RD = RD->getDefinition();
    588   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
    589     return Ty;
    590 
    591   // If converting this type would cause us to infinitely loop, don't do it!
    592   if (!isSafeToConvert(RD, *this)) {
    593     DeferredRecords.push_back(RD);
    594     return Ty;
    595   }
    596 
    597   // Okay, this is a definition of a type.  Compile the implementation now.
    598   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
    599   assert(InsertResult && "Recursively compiling a struct?");
    600 
    601   // Force conversion of non-virtual base classes recursively.
    602   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    603     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
    604          e = CRD->bases_end(); i != e; ++i) {
    605       if (i->isVirtual()) continue;
    606 
    607       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
    608     }
    609   }
    610 
    611   // Layout fields.
    612   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
    613   CGRecordLayouts[Key] = Layout;
    614 
    615   // We're done laying out this struct.
    616   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
    617   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
    618 
    619   // If this struct blocked a FunctionType conversion, then recompute whatever
    620   // was derived from that.
    621   // FIXME: This is hugely overconservative.
    622   if (SkippedLayout)
    623     TypeCache.clear();
    624 
    625   // If we're done converting the outer-most record, then convert any deferred
    626   // structs as well.
    627   if (RecordsBeingLaidOut.empty())
    628     while (!DeferredRecords.empty())
    629       ConvertRecordDeclType(DeferredRecords.pop_back_val());
    630 
    631   return Ty;
    632 }
    633 
    634 /// getCGRecordLayout - Return record layout info for the given record decl.
    635 const CGRecordLayout &
    636 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
    637   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
    638 
    639   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
    640   if (!Layout) {
    641     // Compute the type information.
    642     ConvertRecordDeclType(RD);
    643 
    644     // Now try again.
    645     Layout = CGRecordLayouts.lookup(Key);
    646   }
    647 
    648   assert(Layout && "Unable to find record layout information for type");
    649   return *Layout;
    650 }
    651 
    652 bool CodeGenTypes::isZeroInitializable(QualType T) {
    653   // No need to check for member pointers when not compiling C++.
    654   if (!Context.getLangOpts().CPlusPlus)
    655     return true;
    656 
    657   T = Context.getBaseElementType(T);
    658 
    659   // Records are non-zero-initializable if they contain any
    660   // non-zero-initializable subobjects.
    661   if (const RecordType *RT = T->getAs<RecordType>()) {
    662     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    663     return isZeroInitializable(RD);
    664   }
    665 
    666   // We have to ask the ABI about member pointers.
    667   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    668     return getCXXABI().isZeroInitializable(MPT);
    669 
    670   // Everything else is okay.
    671   return true;
    672 }
    673 
    674 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
    675   return getCGRecordLayout(RD).isZeroInitializable();
    676 }
    677