Home | History | Annotate | Download | only in Scalar
      1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops that contain branches on loop-invariant conditions
     11 // to have multiple loops.  For example, it turns the left into the right code:
     12 //
     13 //  for (...)                  if (lic)
     14 //    A                          for (...)
     15 //    if (lic)                     A; B; C
     16 //      B                      else
     17 //    C                          for (...)
     18 //                                 A; C
     19 //
     20 // This can increase the size of the code exponentially (doubling it every time
     21 // a loop is unswitched) so we only unswitch if the resultant code will be
     22 // smaller than a threshold.
     23 //
     24 // This pass expects LICM to be run before it to hoist invariant conditions out
     25 // of the loop, to make the unswitching opportunity obvious.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #define DEBUG_TYPE "loop-unswitch"
     30 #include "llvm/Transforms/Scalar.h"
     31 #include "llvm/Constants.h"
     32 #include "llvm/DerivedTypes.h"
     33 #include "llvm/Function.h"
     34 #include "llvm/Instructions.h"
     35 #include "llvm/Analysis/CodeMetrics.h"
     36 #include "llvm/Analysis/InstructionSimplify.h"
     37 #include "llvm/Analysis/LoopInfo.h"
     38 #include "llvm/Analysis/LoopPass.h"
     39 #include "llvm/Analysis/Dominators.h"
     40 #include "llvm/Analysis/ScalarEvolution.h"
     41 #include "llvm/Transforms/Utils/Cloning.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     44 #include "llvm/ADT/Statistic.h"
     45 #include "llvm/ADT/SmallPtrSet.h"
     46 #include "llvm/ADT/STLExtras.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include <algorithm>
     51 #include <map>
     52 #include <set>
     53 using namespace llvm;
     54 
     55 STATISTIC(NumBranches, "Number of branches unswitched");
     56 STATISTIC(NumSwitches, "Number of switches unswitched");
     57 STATISTIC(NumSelects , "Number of selects unswitched");
     58 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
     59 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
     60 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
     61 
     62 // The specific value of 100 here was chosen based only on intuition and a
     63 // few specific examples.
     64 static cl::opt<unsigned>
     65 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
     66           cl::init(100), cl::Hidden);
     67 
     68 namespace {
     69 
     70   class LUAnalysisCache {
     71 
     72     typedef DenseMap<const SwitchInst*, SmallPtrSet<const Value *, 8> >
     73       UnswitchedValsMap;
     74 
     75     typedef UnswitchedValsMap::iterator UnswitchedValsIt;
     76 
     77     struct LoopProperties {
     78       unsigned CanBeUnswitchedCount;
     79       unsigned SizeEstimation;
     80       UnswitchedValsMap UnswitchedVals;
     81     };
     82 
     83     // Here we use std::map instead of DenseMap, since we need to keep valid
     84     // LoopProperties pointer for current loop for better performance.
     85     typedef std::map<const Loop*, LoopProperties> LoopPropsMap;
     86     typedef LoopPropsMap::iterator LoopPropsMapIt;
     87 
     88     LoopPropsMap LoopsProperties;
     89     UnswitchedValsMap* CurLoopInstructions;
     90     LoopProperties* CurrentLoopProperties;
     91 
     92     // Max size of code we can produce on remained iterations.
     93     unsigned MaxSize;
     94 
     95     public:
     96 
     97       LUAnalysisCache() :
     98         CurLoopInstructions(NULL), CurrentLoopProperties(NULL),
     99         MaxSize(Threshold)
    100       {}
    101 
    102       // Analyze loop. Check its size, calculate is it possible to unswitch
    103       // it. Returns true if we can unswitch this loop.
    104       bool countLoop(const Loop* L);
    105 
    106       // Clean all data related to given loop.
    107       void forgetLoop(const Loop* L);
    108 
    109       // Mark case value as unswitched.
    110       // Since SI instruction can be partly unswitched, in order to avoid
    111       // extra unswitching in cloned loops keep track all unswitched values.
    112       void setUnswitched(const SwitchInst* SI, const Value* V);
    113 
    114       // Check was this case value unswitched before or not.
    115       bool isUnswitched(const SwitchInst* SI, const Value* V);
    116 
    117       // Clone all loop-unswitch related loop properties.
    118       // Redistribute unswitching quotas.
    119       // Note, that new loop data is stored inside the VMap.
    120       void cloneData(const Loop* NewLoop, const Loop* OldLoop,
    121                      const ValueToValueMapTy& VMap);
    122   };
    123 
    124   class LoopUnswitch : public LoopPass {
    125     LoopInfo *LI;  // Loop information
    126     LPPassManager *LPM;
    127 
    128     // LoopProcessWorklist - Used to check if second loop needs processing
    129     // after RewriteLoopBodyWithConditionConstant rewrites first loop.
    130     std::vector<Loop*> LoopProcessWorklist;
    131 
    132     LUAnalysisCache BranchesInfo;
    133 
    134     bool OptimizeForSize;
    135     bool redoLoop;
    136 
    137     Loop *currentLoop;
    138     DominatorTree *DT;
    139     BasicBlock *loopHeader;
    140     BasicBlock *loopPreheader;
    141 
    142     // LoopBlocks contains all of the basic blocks of the loop, including the
    143     // preheader of the loop, the body of the loop, and the exit blocks of the
    144     // loop, in that order.
    145     std::vector<BasicBlock*> LoopBlocks;
    146     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    147     std::vector<BasicBlock*> NewBlocks;
    148 
    149   public:
    150     static char ID; // Pass ID, replacement for typeid
    151     explicit LoopUnswitch(bool Os = false) :
    152       LoopPass(ID), OptimizeForSize(Os), redoLoop(false),
    153       currentLoop(NULL), DT(NULL), loopHeader(NULL),
    154       loopPreheader(NULL) {
    155         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    156       }
    157 
    158     bool runOnLoop(Loop *L, LPPassManager &LPM);
    159     bool processCurrentLoop();
    160 
    161     /// This transformation requires natural loop information & requires that
    162     /// loop preheaders be inserted into the CFG.
    163     ///
    164     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    165       AU.addRequiredID(LoopSimplifyID);
    166       AU.addPreservedID(LoopSimplifyID);
    167       AU.addRequired<LoopInfo>();
    168       AU.addPreserved<LoopInfo>();
    169       AU.addRequiredID(LCSSAID);
    170       AU.addPreservedID(LCSSAID);
    171       AU.addPreserved<DominatorTree>();
    172       AU.addPreserved<ScalarEvolution>();
    173     }
    174 
    175   private:
    176 
    177     virtual void releaseMemory() {
    178       BranchesInfo.forgetLoop(currentLoop);
    179     }
    180 
    181     /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
    182     /// remove it.
    183     void RemoveLoopFromWorklist(Loop *L) {
    184       std::vector<Loop*>::iterator I = std::find(LoopProcessWorklist.begin(),
    185                                                  LoopProcessWorklist.end(), L);
    186       if (I != LoopProcessWorklist.end())
    187         LoopProcessWorklist.erase(I);
    188     }
    189 
    190     void initLoopData() {
    191       loopHeader = currentLoop->getHeader();
    192       loopPreheader = currentLoop->getLoopPreheader();
    193     }
    194 
    195     /// Split all of the edges from inside the loop to their exit blocks.
    196     /// Update the appropriate Phi nodes as we do so.
    197     void SplitExitEdges(Loop *L, const SmallVector<BasicBlock *, 8> &ExitBlocks);
    198 
    199     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val);
    200     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    201                                   BasicBlock *ExitBlock);
    202     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L);
    203 
    204     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
    205                                               Constant *Val, bool isEqual);
    206 
    207     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    208                                         BasicBlock *TrueDest,
    209                                         BasicBlock *FalseDest,
    210                                         Instruction *InsertPt);
    211 
    212     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
    213     void RemoveBlockIfDead(BasicBlock *BB,
    214                            std::vector<Instruction*> &Worklist, Loop *l);
    215     void RemoveLoopFromHierarchy(Loop *L);
    216     bool IsTrivialUnswitchCondition(Value *Cond, Constant **Val = 0,
    217                                     BasicBlock **LoopExit = 0);
    218 
    219   };
    220 }
    221 
    222 // Analyze loop. Check its size, calculate is it possible to unswitch
    223 // it. Returns true if we can unswitch this loop.
    224 bool LUAnalysisCache::countLoop(const Loop* L) {
    225 
    226   std::pair<LoopPropsMapIt, bool> InsertRes =
    227       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
    228 
    229   LoopProperties& Props = InsertRes.first->second;
    230 
    231   if (InsertRes.second) {
    232     // New loop.
    233 
    234     // Limit the number of instructions to avoid causing significant code
    235     // expansion, and the number of basic blocks, to avoid loops with
    236     // large numbers of branches which cause loop unswitching to go crazy.
    237     // This is a very ad-hoc heuristic.
    238 
    239     // FIXME: This is overly conservative because it does not take into
    240     // consideration code simplification opportunities and code that can
    241     // be shared by the resultant unswitched loops.
    242     CodeMetrics Metrics;
    243     for (Loop::block_iterator I = L->block_begin(),
    244            E = L->block_end();
    245          I != E; ++I)
    246       Metrics.analyzeBasicBlock(*I);
    247 
    248     Props.SizeEstimation = std::min(Metrics.NumInsts, Metrics.NumBlocks * 5);
    249     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    250     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
    251   }
    252 
    253   if (!Props.CanBeUnswitchedCount) {
    254     DEBUG(dbgs() << "NOT unswitching loop %"
    255           << L->getHeader()->getName() << ", cost too high: "
    256           << L->getBlocks().size() << "\n");
    257 
    258     return false;
    259   }
    260 
    261   // Be careful. This links are good only before new loop addition.
    262   CurrentLoopProperties = &Props;
    263   CurLoopInstructions = &Props.UnswitchedVals;
    264 
    265   return true;
    266 }
    267 
    268 // Clean all data related to given loop.
    269 void LUAnalysisCache::forgetLoop(const Loop* L) {
    270 
    271   LoopPropsMapIt LIt = LoopsProperties.find(L);
    272 
    273   if (LIt != LoopsProperties.end()) {
    274     LoopProperties& Props = LIt->second;
    275     MaxSize += Props.CanBeUnswitchedCount * Props.SizeEstimation;
    276     LoopsProperties.erase(LIt);
    277   }
    278 
    279   CurrentLoopProperties = NULL;
    280   CurLoopInstructions = NULL;
    281 }
    282 
    283 // Mark case value as unswitched.
    284 // Since SI instruction can be partly unswitched, in order to avoid
    285 // extra unswitching in cloned loops keep track all unswitched values.
    286 void LUAnalysisCache::setUnswitched(const SwitchInst* SI, const Value* V) {
    287   (*CurLoopInstructions)[SI].insert(V);
    288 }
    289 
    290 // Check was this case value unswitched before or not.
    291 bool LUAnalysisCache::isUnswitched(const SwitchInst* SI, const Value* V) {
    292   return (*CurLoopInstructions)[SI].count(V);
    293 }
    294 
    295 // Clone all loop-unswitch related loop properties.
    296 // Redistribute unswitching quotas.
    297 // Note, that new loop data is stored inside the VMap.
    298 void LUAnalysisCache::cloneData(const Loop* NewLoop, const Loop* OldLoop,
    299                      const ValueToValueMapTy& VMap) {
    300 
    301   LoopProperties& NewLoopProps = LoopsProperties[NewLoop];
    302   LoopProperties& OldLoopProps = *CurrentLoopProperties;
    303   UnswitchedValsMap& Insts = OldLoopProps.UnswitchedVals;
    304 
    305   // Reallocate "can-be-unswitched quota"
    306 
    307   --OldLoopProps.CanBeUnswitchedCount;
    308   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
    309   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
    310   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
    311 
    312   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
    313 
    314   // Clone unswitched values info:
    315   // for new loop switches we clone info about values that was
    316   // already unswitched and has redundant successors.
    317   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    318     const SwitchInst* OldInst = I->first;
    319     Value* NewI = VMap.lookup(OldInst);
    320     const SwitchInst* NewInst = cast_or_null<SwitchInst>(NewI);
    321     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
    322 
    323     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
    324   }
    325 }
    326 
    327 char LoopUnswitch::ID = 0;
    328 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    329                       false, false)
    330 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    331 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
    332 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    333 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    334                       false, false)
    335 
    336 Pass *llvm::createLoopUnswitchPass(bool Os) {
    337   return new LoopUnswitch(Os);
    338 }
    339 
    340 /// FindLIVLoopCondition - Cond is a condition that occurs in L.  If it is
    341 /// invariant in the loop, or has an invariant piece, return the invariant.
    342 /// Otherwise, return null.
    343 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed) {
    344 
    345   // We started analyze new instruction, increment scanned instructions counter.
    346   ++TotalInsts;
    347 
    348   // We can never unswitch on vector conditions.
    349   if (Cond->getType()->isVectorTy())
    350     return 0;
    351 
    352   // Constants should be folded, not unswitched on!
    353   if (isa<Constant>(Cond)) return 0;
    354 
    355   // TODO: Handle: br (VARIANT|INVARIANT).
    356 
    357   // Hoist simple values out.
    358   if (L->makeLoopInvariant(Cond, Changed))
    359     return Cond;
    360 
    361   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    362     if (BO->getOpcode() == Instruction::And ||
    363         BO->getOpcode() == Instruction::Or) {
    364       // If either the left or right side is invariant, we can unswitch on this,
    365       // which will cause the branch to go away in one loop and the condition to
    366       // simplify in the other one.
    367       if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed))
    368         return LHS;
    369       if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed))
    370         return RHS;
    371     }
    372 
    373   return 0;
    374 }
    375 
    376 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
    377   LI = &getAnalysis<LoopInfo>();
    378   LPM = &LPM_Ref;
    379   DT = getAnalysisIfAvailable<DominatorTree>();
    380   currentLoop = L;
    381   Function *F = currentLoop->getHeader()->getParent();
    382   bool Changed = false;
    383   do {
    384     assert(currentLoop->isLCSSAForm(*DT));
    385     redoLoop = false;
    386     Changed |= processCurrentLoop();
    387   } while(redoLoop);
    388 
    389   if (Changed) {
    390     // FIXME: Reconstruct dom info, because it is not preserved properly.
    391     if (DT)
    392       DT->runOnFunction(*F);
    393   }
    394   return Changed;
    395 }
    396 
    397 /// processCurrentLoop - Do actual work and unswitch loop if possible
    398 /// and profitable.
    399 bool LoopUnswitch::processCurrentLoop() {
    400   bool Changed = false;
    401 
    402   initLoopData();
    403 
    404   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
    405   if (!loopPreheader)
    406     return false;
    407 
    408   // Loops with indirectbr cannot be cloned.
    409   if (!currentLoop->isSafeToClone())
    410     return false;
    411 
    412   // Loops with invokes, whose unwind edge escapes the loop, cannot be
    413   // unswitched because splitting their edges are non-trivial and don't preserve
    414   // loop simplify information.
    415   for (Loop::block_iterator I = currentLoop->block_begin(),
    416          E = currentLoop->block_end(); I != E; ++I)
    417     if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
    418       if (!currentLoop->contains(II->getUnwindDest()))
    419         return false;
    420 
    421   // Without dedicated exits, splitting the exit edge may fail.
    422   if (!currentLoop->hasDedicatedExits())
    423     return false;
    424 
    425   LLVMContext &Context = loopHeader->getContext();
    426 
    427   // Probably we reach the quota of branches for this loop. If so
    428   // stop unswitching.
    429   if (!BranchesInfo.countLoop(currentLoop))
    430     return false;
    431 
    432   // Loop over all of the basic blocks in the loop.  If we find an interior
    433   // block that is branching on a loop-invariant condition, we can unswitch this
    434   // loop.
    435   for (Loop::block_iterator I = currentLoop->block_begin(),
    436          E = currentLoop->block_end(); I != E; ++I) {
    437     TerminatorInst *TI = (*I)->getTerminator();
    438     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    439       // If this isn't branching on an invariant condition, we can't unswitch
    440       // it.
    441       if (BI->isConditional()) {
    442         // See if this, or some part of it, is loop invariant.  If so, we can
    443         // unswitch on it if we desire.
    444         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
    445                                                currentLoop, Changed);
    446         if (LoopCond && UnswitchIfProfitable(LoopCond,
    447                                              ConstantInt::getTrue(Context))) {
    448           ++NumBranches;
    449           return true;
    450         }
    451       }
    452     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    453       Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    454                                              currentLoop, Changed);
    455       unsigned NumCases = SI->getNumCases();
    456       if (LoopCond && NumCases) {
    457         // Find a value to unswitch on:
    458         // FIXME: this should chose the most expensive case!
    459         // FIXME: scan for a case with a non-critical edge?
    460         Constant *UnswitchVal = NULL;
    461 
    462         // Do not process same value again and again.
    463         // At this point we have some cases already unswitched and
    464         // some not yet unswitched. Let's find the first not yet unswitched one.
    465         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    466              i != e; ++i) {
    467           Constant* UnswitchValCandidate = i.getCaseValue();
    468           if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
    469             UnswitchVal = UnswitchValCandidate;
    470             break;
    471           }
    472         }
    473 
    474         if (!UnswitchVal)
    475           continue;
    476 
    477         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
    478           ++NumSwitches;
    479           return true;
    480         }
    481       }
    482     }
    483 
    484     // Scan the instructions to check for unswitchable values.
    485     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
    486          BBI != E; ++BBI)
    487       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
    488         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    489                                                currentLoop, Changed);
    490         if (LoopCond && UnswitchIfProfitable(LoopCond,
    491                                              ConstantInt::getTrue(Context))) {
    492           ++NumSelects;
    493           return true;
    494         }
    495       }
    496   }
    497   return Changed;
    498 }
    499 
    500 /// isTrivialLoopExitBlock - Check to see if all paths from BB exit the
    501 /// loop with no side effects (including infinite loops).
    502 ///
    503 /// If true, we return true and set ExitBB to the block we
    504 /// exit through.
    505 ///
    506 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
    507                                          BasicBlock *&ExitBB,
    508                                          std::set<BasicBlock*> &Visited) {
    509   if (!Visited.insert(BB).second) {
    510     // Already visited. Without more analysis, this could indicate an infinite
    511     // loop.
    512     return false;
    513   } else if (!L->contains(BB)) {
    514     // Otherwise, this is a loop exit, this is fine so long as this is the
    515     // first exit.
    516     if (ExitBB != 0) return false;
    517     ExitBB = BB;
    518     return true;
    519   }
    520 
    521   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
    522   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    523     // Check to see if the successor is a trivial loop exit.
    524     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
    525       return false;
    526   }
    527 
    528   // Okay, everything after this looks good, check to make sure that this block
    529   // doesn't include any side effects.
    530   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    531     if (I->mayHaveSideEffects())
    532       return false;
    533 
    534   return true;
    535 }
    536 
    537 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
    538 /// leads to an exit from the specified loop, and has no side-effects in the
    539 /// process.  If so, return the block that is exited to, otherwise return null.
    540 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
    541   std::set<BasicBlock*> Visited;
    542   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
    543   BasicBlock *ExitBB = 0;
    544   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    545     return ExitBB;
    546   return 0;
    547 }
    548 
    549 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
    550 /// trivial: that is, that the condition controls whether or not the loop does
    551 /// anything at all.  If this is a trivial condition, unswitching produces no
    552 /// code duplications (equivalently, it produces a simpler loop and a new empty
    553 /// loop, which gets deleted).
    554 ///
    555 /// If this is a trivial condition, return true, otherwise return false.  When
    556 /// returning true, this sets Cond and Val to the condition that controls the
    557 /// trivial condition: when Cond dynamically equals Val, the loop is known to
    558 /// exit.  Finally, this sets LoopExit to the BB that the loop exits to when
    559 /// Cond == Val.
    560 ///
    561 bool LoopUnswitch::IsTrivialUnswitchCondition(Value *Cond, Constant **Val,
    562                                        BasicBlock **LoopExit) {
    563   BasicBlock *Header = currentLoop->getHeader();
    564   TerminatorInst *HeaderTerm = Header->getTerminator();
    565   LLVMContext &Context = Header->getContext();
    566 
    567   BasicBlock *LoopExitBB = 0;
    568   if (BranchInst *BI = dyn_cast<BranchInst>(HeaderTerm)) {
    569     // If the header block doesn't end with a conditional branch on Cond, we
    570     // can't handle it.
    571     if (!BI->isConditional() || BI->getCondition() != Cond)
    572       return false;
    573 
    574     // Check to see if a successor of the branch is guaranteed to
    575     // exit through a unique exit block without having any
    576     // side-effects.  If so, determine the value of Cond that causes it to do
    577     // this.
    578     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    579                                              BI->getSuccessor(0)))) {
    580       if (Val) *Val = ConstantInt::getTrue(Context);
    581     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
    582                                                     BI->getSuccessor(1)))) {
    583       if (Val) *Val = ConstantInt::getFalse(Context);
    584     }
    585   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(HeaderTerm)) {
    586     // If this isn't a switch on Cond, we can't handle it.
    587     if (SI->getCondition() != Cond) return false;
    588 
    589     // Check to see if a successor of the switch is guaranteed to go to the
    590     // latch block or exit through a one exit block without having any
    591     // side-effects.  If so, determine the value of Cond that causes it to do
    592     // this.
    593     // Note that we can't trivially unswitch on the default case or
    594     // on already unswitched cases.
    595     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
    596          i != e; ++i) {
    597       BasicBlock* LoopExitCandidate;
    598       if ((LoopExitCandidate = isTrivialLoopExitBlock(currentLoop,
    599                                                i.getCaseSuccessor()))) {
    600         // Okay, we found a trivial case, remember the value that is trivial.
    601         ConstantInt* CaseVal = i.getCaseValue();
    602 
    603         // Check that it was not unswitched before, since already unswitched
    604         // trivial vals are looks trivial too.
    605         if (BranchesInfo.isUnswitched(SI, CaseVal))
    606           continue;
    607         LoopExitBB = LoopExitCandidate;
    608         if (Val) *Val = CaseVal;
    609         break;
    610       }
    611     }
    612   }
    613 
    614   // If we didn't find a single unique LoopExit block, or if the loop exit block
    615   // contains phi nodes, this isn't trivial.
    616   if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
    617     return false;   // Can't handle this.
    618 
    619   if (LoopExit) *LoopExit = LoopExitBB;
    620 
    621   // We already know that nothing uses any scalar values defined inside of this
    622   // loop.  As such, we just have to check to see if this loop will execute any
    623   // side-effecting instructions (e.g. stores, calls, volatile loads) in the
    624   // part of the loop that the code *would* execute.  We already checked the
    625   // tail, check the header now.
    626   for (BasicBlock::iterator I = Header->begin(), E = Header->end(); I != E; ++I)
    627     if (I->mayHaveSideEffects())
    628       return false;
    629   return true;
    630 }
    631 
    632 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
    633 /// LoopCond == Val to simplify the loop.  If we decide that this is profitable,
    634 /// unswitch the loop, reprocess the pieces, then return true.
    635 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val) {
    636 
    637   Function *F = loopHeader->getParent();
    638 
    639   Constant *CondVal = 0;
    640   BasicBlock *ExitBlock = 0;
    641   if (IsTrivialUnswitchCondition(LoopCond, &CondVal, &ExitBlock)) {
    642     // If the condition is trivial, always unswitch. There is no code growth
    643     // for this case.
    644     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, ExitBlock);
    645     return true;
    646   }
    647 
    648   // Check to see if it would be profitable to unswitch current loop.
    649 
    650   // Do not do non-trivial unswitch while optimizing for size.
    651   if (OptimizeForSize || F->hasFnAttr(Attribute::OptimizeForSize))
    652     return false;
    653 
    654   UnswitchNontrivialCondition(LoopCond, Val, currentLoop);
    655   return true;
    656 }
    657 
    658 /// CloneLoop - Recursively clone the specified loop and all of its children,
    659 /// mapping the blocks with the specified map.
    660 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
    661                        LoopInfo *LI, LPPassManager *LPM) {
    662   Loop *New = new Loop();
    663   LPM->insertLoop(New, PL);
    664 
    665   // Add all of the blocks in L to the new loop.
    666   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    667        I != E; ++I)
    668     if (LI->getLoopFor(*I) == L)
    669       New->addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), LI->getBase());
    670 
    671   // Add all of the subloops to the new loop.
    672   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    673     CloneLoop(*I, New, VM, LI, LPM);
    674 
    675   return New;
    676 }
    677 
    678 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
    679 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest.  Insert the
    680 /// code immediately before InsertPt.
    681 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    682                                                   BasicBlock *TrueDest,
    683                                                   BasicBlock *FalseDest,
    684                                                   Instruction *InsertPt) {
    685   // Insert a conditional branch on LIC to the two preheaders.  The original
    686   // code is the true version and the new code is the false version.
    687   Value *BranchVal = LIC;
    688   if (!isa<ConstantInt>(Val) ||
    689       Val->getType() != Type::getInt1Ty(LIC->getContext()))
    690     BranchVal = new ICmpInst(InsertPt, ICmpInst::ICMP_EQ, LIC, Val);
    691   else if (Val != ConstantInt::getTrue(Val->getContext()))
    692     // We want to enter the new loop when the condition is true.
    693     std::swap(TrueDest, FalseDest);
    694 
    695   // Insert the new branch.
    696   BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
    697 
    698   // If either edge is critical, split it. This helps preserve LoopSimplify
    699   // form for enclosing loops.
    700   SplitCriticalEdge(BI, 0, this);
    701   SplitCriticalEdge(BI, 1, this);
    702 }
    703 
    704 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
    705 /// condition in it (a cond branch from its header block to its latch block,
    706 /// where the path through the loop that doesn't execute its body has no
    707 /// side-effects), unswitch it.  This doesn't involve any code duplication, just
    708 /// moving the conditional branch outside of the loop and updating loop info.
    709 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond,
    710                                             Constant *Val,
    711                                             BasicBlock *ExitBlock) {
    712   DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
    713         << loopHeader->getName() << " [" << L->getBlocks().size()
    714         << " blocks] in Function " << L->getHeader()->getParent()->getName()
    715         << " on cond: " << *Val << " == " << *Cond << "\n");
    716 
    717   // First step, split the preheader, so that we know that there is a safe place
    718   // to insert the conditional branch.  We will change loopPreheader to have a
    719   // conditional branch on Cond.
    720   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, this);
    721 
    722   // Now that we have a place to insert the conditional branch, create a place
    723   // to branch to: this is the exit block out of the loop that we should
    724   // short-circuit to.
    725 
    726   // Split this block now, so that the loop maintains its exit block, and so
    727   // that the jump from the preheader can execute the contents of the exit block
    728   // without actually branching to it (the exit block should be dominated by the
    729   // loop header, not the preheader).
    730   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
    731   BasicBlock *NewExit = SplitBlock(ExitBlock, ExitBlock->begin(), this);
    732 
    733   // Okay, now we have a position to branch from and a position to branch to,
    734   // insert the new conditional branch.
    735   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH,
    736                                  loopPreheader->getTerminator());
    737   LPM->deleteSimpleAnalysisValue(loopPreheader->getTerminator(), L);
    738   loopPreheader->getTerminator()->eraseFromParent();
    739 
    740   // We need to reprocess this loop, it could be unswitched again.
    741   redoLoop = true;
    742 
    743   // Now that we know that the loop is never entered when this condition is a
    744   // particular value, rewrite the loop with this info.  We know that this will
    745   // at least eliminate the old branch.
    746   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
    747   ++NumTrivial;
    748 }
    749 
    750 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
    751 /// blocks.  Update the appropriate Phi nodes as we do so.
    752 void LoopUnswitch::SplitExitEdges(Loop *L,
    753                                 const SmallVector<BasicBlock *, 8> &ExitBlocks){
    754 
    755   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    756     BasicBlock *ExitBlock = ExitBlocks[i];
    757     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
    758                                        pred_end(ExitBlock));
    759 
    760     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
    761     // general, if we call it on all predecessors of all exits then it does.
    762     if (!ExitBlock->isLandingPad()) {
    763       SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", this);
    764     } else {
    765       SmallVector<BasicBlock*, 2> NewBBs;
    766       SplitLandingPadPredecessors(ExitBlock, Preds, ".us-lcssa", ".us-lcssa",
    767                                   this, NewBBs);
    768     }
    769   }
    770 }
    771 
    772 /// UnswitchNontrivialCondition - We determined that the loop is profitable
    773 /// to unswitch when LIC equal Val.  Split it into loop versions and test the
    774 /// condition outside of either loop.  Return the loops created as Out1/Out2.
    775 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
    776                                                Loop *L) {
    777   Function *F = loopHeader->getParent();
    778   DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
    779         << loopHeader->getName() << " [" << L->getBlocks().size()
    780         << " blocks] in Function " << F->getName()
    781         << " when '" << *Val << "' == " << *LIC << "\n");
    782 
    783   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    784     SE->forgetLoop(L);
    785 
    786   LoopBlocks.clear();
    787   NewBlocks.clear();
    788 
    789   // First step, split the preheader and exit blocks, and add these blocks to
    790   // the LoopBlocks list.
    791   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, this);
    792   LoopBlocks.push_back(NewPreheader);
    793 
    794   // We want the loop to come after the preheader, but before the exit blocks.
    795   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
    796 
    797   SmallVector<BasicBlock*, 8> ExitBlocks;
    798   L->getUniqueExitBlocks(ExitBlocks);
    799 
    800   // Split all of the edges from inside the loop to their exit blocks.  Update
    801   // the appropriate Phi nodes as we do so.
    802   SplitExitEdges(L, ExitBlocks);
    803 
    804   // The exit blocks may have been changed due to edge splitting, recompute.
    805   ExitBlocks.clear();
    806   L->getUniqueExitBlocks(ExitBlocks);
    807 
    808   // Add exit blocks to the loop blocks.
    809   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
    810 
    811   // Next step, clone all of the basic blocks that make up the loop (including
    812   // the loop preheader and exit blocks), keeping track of the mapping between
    813   // the instructions and blocks.
    814   NewBlocks.reserve(LoopBlocks.size());
    815   ValueToValueMapTy VMap;
    816   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
    817     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
    818 
    819     NewBlocks.push_back(NewBB);
    820     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
    821     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
    822   }
    823 
    824   // Splice the newly inserted blocks into the function right before the
    825   // original preheader.
    826   F->getBasicBlockList().splice(NewPreheader, F->getBasicBlockList(),
    827                                 NewBlocks[0], F->end());
    828 
    829   // Now we create the new Loop object for the versioned loop.
    830   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
    831 
    832   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
    833   // Probably clone more loop-unswitch related loop properties.
    834   BranchesInfo.cloneData(NewLoop, L, VMap);
    835 
    836   Loop *ParentLoop = L->getParentLoop();
    837   if (ParentLoop) {
    838     // Make sure to add the cloned preheader and exit blocks to the parent loop
    839     // as well.
    840     ParentLoop->addBasicBlockToLoop(NewBlocks[0], LI->getBase());
    841   }
    842 
    843   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    844     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
    845     // The new exit block should be in the same loop as the old one.
    846     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
    847       ExitBBLoop->addBasicBlockToLoop(NewExit, LI->getBase());
    848 
    849     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
    850            "Exit block should have been split to have one successor!");
    851     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
    852 
    853     // If the successor of the exit block had PHI nodes, add an entry for
    854     // NewExit.
    855     PHINode *PN;
    856     for (BasicBlock::iterator I = ExitSucc->begin(); isa<PHINode>(I); ++I) {
    857       PN = cast<PHINode>(I);
    858       Value *V = PN->getIncomingValueForBlock(ExitBlocks[i]);
    859       ValueToValueMapTy::iterator It = VMap.find(V);
    860       if (It != VMap.end()) V = It->second;
    861       PN->addIncoming(V, NewExit);
    862     }
    863 
    864     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
    865       PN = PHINode::Create(LPad->getType(), 0, "",
    866                            ExitSucc->getFirstInsertionPt());
    867 
    868       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
    869            I != E; ++I) {
    870         BasicBlock *BB = *I;
    871         LandingPadInst *LPI = BB->getLandingPadInst();
    872         LPI->replaceAllUsesWith(PN);
    873         PN->addIncoming(LPI, BB);
    874       }
    875     }
    876   }
    877 
    878   // Rewrite the code to refer to itself.
    879   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i)
    880     for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    881            E = NewBlocks[i]->end(); I != E; ++I)
    882       RemapInstruction(I, VMap,RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    883 
    884   // Rewrite the original preheader to select between versions of the loop.
    885   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
    886   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
    887          "Preheader splitting did not work correctly!");
    888 
    889   // Emit the new branch that selects between the two versions of this loop.
    890   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR);
    891   LPM->deleteSimpleAnalysisValue(OldBR, L);
    892   OldBR->eraseFromParent();
    893 
    894   LoopProcessWorklist.push_back(NewLoop);
    895   redoLoop = true;
    896 
    897   // Keep a WeakVH holding onto LIC.  If the first call to RewriteLoopBody
    898   // deletes the instruction (for example by simplifying a PHI that feeds into
    899   // the condition that we're unswitching on), we don't rewrite the second
    900   // iteration.
    901   WeakVH LICHandle(LIC);
    902 
    903   // Now we rewrite the original code to know that the condition is true and the
    904   // new code to know that the condition is false.
    905   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
    906 
    907   // It's possible that simplifying one loop could cause the other to be
    908   // changed to another value or a constant.  If its a constant, don't simplify
    909   // it.
    910   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
    911       LICHandle && !isa<Constant>(LICHandle))
    912     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
    913 }
    914 
    915 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
    916 /// specified.
    917 static void RemoveFromWorklist(Instruction *I,
    918                                std::vector<Instruction*> &Worklist) {
    919   std::vector<Instruction*>::iterator WI = std::find(Worklist.begin(),
    920                                                      Worklist.end(), I);
    921   while (WI != Worklist.end()) {
    922     unsigned Offset = WI-Worklist.begin();
    923     Worklist.erase(WI);
    924     WI = std::find(Worklist.begin()+Offset, Worklist.end(), I);
    925   }
    926 }
    927 
    928 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
    929 /// program, replacing all uses with V and update the worklist.
    930 static void ReplaceUsesOfWith(Instruction *I, Value *V,
    931                               std::vector<Instruction*> &Worklist,
    932                               Loop *L, LPPassManager *LPM) {
    933   DEBUG(dbgs() << "Replace with '" << *V << "': " << *I);
    934 
    935   // Add uses to the worklist, which may be dead now.
    936   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    937     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
    938       Worklist.push_back(Use);
    939 
    940   // Add users to the worklist which may be simplified now.
    941   for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
    942        UI != E; ++UI)
    943     Worklist.push_back(cast<Instruction>(*UI));
    944   LPM->deleteSimpleAnalysisValue(I, L);
    945   RemoveFromWorklist(I, Worklist);
    946   I->replaceAllUsesWith(V);
    947   I->eraseFromParent();
    948   ++NumSimplify;
    949 }
    950 
    951 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
    952 /// information, and remove any dead successors it has.
    953 ///
    954 void LoopUnswitch::RemoveBlockIfDead(BasicBlock *BB,
    955                                      std::vector<Instruction*> &Worklist,
    956                                      Loop *L) {
    957   if (pred_begin(BB) != pred_end(BB)) {
    958     // This block isn't dead, since an edge to BB was just removed, see if there
    959     // are any easy simplifications we can do now.
    960     if (BasicBlock *Pred = BB->getSinglePredecessor()) {
    961       // If it has one pred, fold phi nodes in BB.
    962       while (isa<PHINode>(BB->begin()))
    963         ReplaceUsesOfWith(BB->begin(),
    964                           cast<PHINode>(BB->begin())->getIncomingValue(0),
    965                           Worklist, L, LPM);
    966 
    967       // If this is the header of a loop and the only pred is the latch, we now
    968       // have an unreachable loop.
    969       if (Loop *L = LI->getLoopFor(BB))
    970         if (loopHeader == BB && L->contains(Pred)) {
    971           // Remove the branch from the latch to the header block, this makes
    972           // the header dead, which will make the latch dead (because the header
    973           // dominates the latch).
    974           LPM->deleteSimpleAnalysisValue(Pred->getTerminator(), L);
    975           Pred->getTerminator()->eraseFromParent();
    976           new UnreachableInst(BB->getContext(), Pred);
    977 
    978           // The loop is now broken, remove it from LI.
    979           RemoveLoopFromHierarchy(L);
    980 
    981           // Reprocess the header, which now IS dead.
    982           RemoveBlockIfDead(BB, Worklist, L);
    983           return;
    984         }
    985 
    986       // If pred ends in a uncond branch, add uncond branch to worklist so that
    987       // the two blocks will get merged.
    988       if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
    989         if (BI->isUnconditional())
    990           Worklist.push_back(BI);
    991     }
    992     return;
    993   }
    994 
    995   DEBUG(dbgs() << "Nuking dead block: " << *BB);
    996 
    997   // Remove the instructions in the basic block from the worklist.
    998   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    999     RemoveFromWorklist(I, Worklist);
   1000 
   1001     // Anything that uses the instructions in this basic block should have their
   1002     // uses replaced with undefs.
   1003     // If I is not void type then replaceAllUsesWith undef.
   1004     // This allows ValueHandlers and custom metadata to adjust itself.
   1005     if (!I->getType()->isVoidTy())
   1006       I->replaceAllUsesWith(UndefValue::get(I->getType()));
   1007   }
   1008 
   1009   // If this is the edge to the header block for a loop, remove the loop and
   1010   // promote all subloops.
   1011   if (Loop *BBLoop = LI->getLoopFor(BB)) {
   1012     if (BBLoop->getLoopLatch() == BB) {
   1013       RemoveLoopFromHierarchy(BBLoop);
   1014       if (currentLoop == BBLoop) {
   1015         currentLoop = 0;
   1016         redoLoop = false;
   1017       }
   1018     }
   1019   }
   1020 
   1021   // Remove the block from the loop info, which removes it from any loops it
   1022   // was in.
   1023   LI->removeBlock(BB);
   1024 
   1025 
   1026   // Remove phi node entries in successors for this block.
   1027   TerminatorInst *TI = BB->getTerminator();
   1028   SmallVector<BasicBlock*, 4> Succs;
   1029   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
   1030     Succs.push_back(TI->getSuccessor(i));
   1031     TI->getSuccessor(i)->removePredecessor(BB);
   1032   }
   1033 
   1034   // Unique the successors, remove anything with multiple uses.
   1035   array_pod_sort(Succs.begin(), Succs.end());
   1036   Succs.erase(std::unique(Succs.begin(), Succs.end()), Succs.end());
   1037 
   1038   // Remove the basic block, including all of the instructions contained in it.
   1039   LPM->deleteSimpleAnalysisValue(BB, L);
   1040   BB->eraseFromParent();
   1041   // Remove successor blocks here that are not dead, so that we know we only
   1042   // have dead blocks in this list.  Nondead blocks have a way of becoming dead,
   1043   // then getting removed before we revisit them, which is badness.
   1044   //
   1045   for (unsigned i = 0; i != Succs.size(); ++i)
   1046     if (pred_begin(Succs[i]) != pred_end(Succs[i])) {
   1047       // One exception is loop headers.  If this block was the preheader for a
   1048       // loop, then we DO want to visit the loop so the loop gets deleted.
   1049       // We know that if the successor is a loop header, that this loop had to
   1050       // be the preheader: the case where this was the latch block was handled
   1051       // above and headers can only have two predecessors.
   1052       if (!LI->isLoopHeader(Succs[i])) {
   1053         Succs.erase(Succs.begin()+i);
   1054         --i;
   1055       }
   1056     }
   1057 
   1058   for (unsigned i = 0, e = Succs.size(); i != e; ++i)
   1059     RemoveBlockIfDead(Succs[i], Worklist, L);
   1060 }
   1061 
   1062 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
   1063 /// become unwrapped, either because the backedge was deleted, or because the
   1064 /// edge into the header was removed.  If the edge into the header from the
   1065 /// latch block was removed, the loop is unwrapped but subloops are still alive,
   1066 /// so they just reparent loops.  If the loops are actually dead, they will be
   1067 /// removed later.
   1068 void LoopUnswitch::RemoveLoopFromHierarchy(Loop *L) {
   1069   LPM->deleteLoopFromQueue(L);
   1070   RemoveLoopFromWorklist(L);
   1071 }
   1072 
   1073 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
   1074 // the value specified by Val in the specified loop, or we know it does NOT have
   1075 // that value.  Rewrite any uses of LIC or of properties correlated to it.
   1076 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
   1077                                                         Constant *Val,
   1078                                                         bool IsEqual) {
   1079   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
   1080 
   1081   // FIXME: Support correlated properties, like:
   1082   //  for (...)
   1083   //    if (li1 < li2)
   1084   //      ...
   1085   //    if (li1 > li2)
   1086   //      ...
   1087 
   1088   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
   1089   // selects, switches.
   1090   std::vector<Instruction*> Worklist;
   1091   LLVMContext &Context = Val->getContext();
   1092 
   1093 
   1094   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
   1095   // in the loop with the appropriate one directly.
   1096   if (IsEqual || (isa<ConstantInt>(Val) &&
   1097       Val->getType()->isIntegerTy(1))) {
   1098     Value *Replacement;
   1099     if (IsEqual)
   1100       Replacement = Val;
   1101     else
   1102       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
   1103                                      !cast<ConstantInt>(Val)->getZExtValue());
   1104 
   1105     for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
   1106          UI != E; ++UI) {
   1107       Instruction *U = dyn_cast<Instruction>(*UI);
   1108       if (!U || !L->contains(U))
   1109         continue;
   1110       Worklist.push_back(U);
   1111     }
   1112 
   1113     for (std::vector<Instruction*>::iterator UI = Worklist.begin();
   1114          UI != Worklist.end(); ++UI)
   1115       (*UI)->replaceUsesOfWith(LIC, Replacement);
   1116 
   1117     SimplifyCode(Worklist, L);
   1118     return;
   1119   }
   1120 
   1121   // Otherwise, we don't know the precise value of LIC, but we do know that it
   1122   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
   1123   // can.  This case occurs when we unswitch switch statements.
   1124   for (Value::use_iterator UI = LIC->use_begin(), E = LIC->use_end();
   1125        UI != E; ++UI) {
   1126     Instruction *U = dyn_cast<Instruction>(*UI);
   1127     if (!U || !L->contains(U))
   1128       continue;
   1129 
   1130     Worklist.push_back(U);
   1131 
   1132     // TODO: We could do other simplifications, for example, turning
   1133     // 'icmp eq LIC, Val' -> false.
   1134 
   1135     // If we know that LIC is not Val, use this info to simplify code.
   1136     SwitchInst *SI = dyn_cast<SwitchInst>(U);
   1137     if (SI == 0 || !isa<ConstantInt>(Val)) continue;
   1138 
   1139     SwitchInst::CaseIt DeadCase = SI->findCaseValue(cast<ConstantInt>(Val));
   1140     // Default case is live for multiple values.
   1141     if (DeadCase == SI->case_default()) continue;
   1142 
   1143     // Found a dead case value.  Don't remove PHI nodes in the
   1144     // successor if they become single-entry, those PHI nodes may
   1145     // be in the Users list.
   1146 
   1147     BasicBlock *Switch = SI->getParent();
   1148     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
   1149     BasicBlock *Latch = L->getLoopLatch();
   1150 
   1151     BranchesInfo.setUnswitched(SI, Val);
   1152 
   1153     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
   1154     // If the DeadCase successor dominates the loop latch, then the
   1155     // transformation isn't safe since it will delete the sole predecessor edge
   1156     // to the latch.
   1157     if (Latch && DT->dominates(SISucc, Latch))
   1158       continue;
   1159 
   1160     // FIXME: This is a hack.  We need to keep the successor around
   1161     // and hooked up so as to preserve the loop structure, because
   1162     // trying to update it is complicated.  So instead we preserve the
   1163     // loop structure and put the block on a dead code path.
   1164     SplitEdge(Switch, SISucc, this);
   1165     // Compute the successors instead of relying on the return value
   1166     // of SplitEdge, since it may have split the switch successor
   1167     // after PHI nodes.
   1168     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
   1169     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
   1170     // Create an "unreachable" destination.
   1171     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
   1172                                            Switch->getParent(),
   1173                                            OldSISucc);
   1174     new UnreachableInst(Context, Abort);
   1175     // Force the new case destination to branch to the "unreachable"
   1176     // block while maintaining a (dead) CFG edge to the old block.
   1177     NewSISucc->getTerminator()->eraseFromParent();
   1178     BranchInst::Create(Abort, OldSISucc,
   1179                        ConstantInt::getTrue(Context), NewSISucc);
   1180     // Release the PHI operands for this edge.
   1181     for (BasicBlock::iterator II = NewSISucc->begin();
   1182          PHINode *PN = dyn_cast<PHINode>(II); ++II)
   1183       PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
   1184                            UndefValue::get(PN->getType()));
   1185     // Tell the domtree about the new block. We don't fully update the
   1186     // domtree here -- instead we force it to do a full recomputation
   1187     // after the pass is complete -- but we do need to inform it of
   1188     // new blocks.
   1189     if (DT)
   1190       DT->addNewBlock(Abort, NewSISucc);
   1191   }
   1192 
   1193   SimplifyCode(Worklist, L);
   1194 }
   1195 
   1196 /// SimplifyCode - Okay, now that we have simplified some instructions in the
   1197 /// loop, walk over it and constant prop, dce, and fold control flow where
   1198 /// possible.  Note that this is effectively a very simple loop-structure-aware
   1199 /// optimizer.  During processing of this loop, L could very well be deleted, so
   1200 /// it must not be used.
   1201 ///
   1202 /// FIXME: When the loop optimizer is more mature, separate this out to a new
   1203 /// pass.
   1204 ///
   1205 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
   1206   while (!Worklist.empty()) {
   1207     Instruction *I = Worklist.back();
   1208     Worklist.pop_back();
   1209 
   1210     // Simple DCE.
   1211     if (isInstructionTriviallyDead(I)) {
   1212       DEBUG(dbgs() << "Remove dead instruction '" << *I);
   1213 
   1214       // Add uses to the worklist, which may be dead now.
   1215       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1216         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1217           Worklist.push_back(Use);
   1218       LPM->deleteSimpleAnalysisValue(I, L);
   1219       RemoveFromWorklist(I, Worklist);
   1220       I->eraseFromParent();
   1221       ++NumSimplify;
   1222       continue;
   1223     }
   1224 
   1225     // See if instruction simplification can hack this up.  This is common for
   1226     // things like "select false, X, Y" after unswitching made the condition be
   1227     // 'false'.
   1228     if (Value *V = SimplifyInstruction(I, 0, 0, DT))
   1229       if (LI->replacementPreservesLCSSAForm(I, V)) {
   1230         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
   1231         continue;
   1232       }
   1233 
   1234     // Special case hacks that appear commonly in unswitched code.
   1235     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1236       if (BI->isUnconditional()) {
   1237         // If BI's parent is the only pred of the successor, fold the two blocks
   1238         // together.
   1239         BasicBlock *Pred = BI->getParent();
   1240         BasicBlock *Succ = BI->getSuccessor(0);
   1241         BasicBlock *SinglePred = Succ->getSinglePredecessor();
   1242         if (!SinglePred) continue;  // Nothing to do.
   1243         assert(SinglePred == Pred && "CFG broken");
   1244 
   1245         DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
   1246               << Succ->getName() << "\n");
   1247 
   1248         // Resolve any single entry PHI nodes in Succ.
   1249         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
   1250           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
   1251 
   1252         // If Succ has any successors with PHI nodes, update them to have
   1253         // entries coming from Pred instead of Succ.
   1254         Succ->replaceAllUsesWith(Pred);
   1255 
   1256         // Move all of the successor contents from Succ to Pred.
   1257         Pred->getInstList().splice(BI, Succ->getInstList(), Succ->begin(),
   1258                                    Succ->end());
   1259         LPM->deleteSimpleAnalysisValue(BI, L);
   1260         BI->eraseFromParent();
   1261         RemoveFromWorklist(BI, Worklist);
   1262 
   1263         // Remove Succ from the loop tree.
   1264         LI->removeBlock(Succ);
   1265         LPM->deleteSimpleAnalysisValue(Succ, L);
   1266         Succ->eraseFromParent();
   1267         ++NumSimplify;
   1268         continue;
   1269       }
   1270 
   1271       if (ConstantInt *CB = dyn_cast<ConstantInt>(BI->getCondition())){
   1272         // Conditional branch.  Turn it into an unconditional branch, then
   1273         // remove dead blocks.
   1274         continue;  // FIXME: Enable.
   1275 
   1276         DEBUG(dbgs() << "Folded branch: " << *BI);
   1277         BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
   1278         BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
   1279         DeadSucc->removePredecessor(BI->getParent(), true);
   1280         Worklist.push_back(BranchInst::Create(LiveSucc, BI));
   1281         LPM->deleteSimpleAnalysisValue(BI, L);
   1282         BI->eraseFromParent();
   1283         RemoveFromWorklist(BI, Worklist);
   1284         ++NumSimplify;
   1285 
   1286         RemoveBlockIfDead(DeadSucc, Worklist, L);
   1287       }
   1288       continue;
   1289     }
   1290   }
   1291 }
   1292