Home | History | Annotate | Download | only in Parse
      1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the Declaration portions of the Parser interfaces.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Parse/Parser.h"
     15 #include "clang/Parse/ParseDiagnostic.h"
     16 #include "clang/Basic/OpenCL.h"
     17 #include "clang/Sema/Scope.h"
     18 #include "clang/Sema/ParsedTemplate.h"
     19 #include "clang/Sema/PrettyDeclStackTrace.h"
     20 #include "RAIIObjectsForParser.h"
     21 #include "llvm/ADT/SmallSet.h"
     22 #include "llvm/ADT/SmallString.h"
     23 #include "llvm/ADT/StringSwitch.h"
     24 using namespace clang;
     25 
     26 //===----------------------------------------------------------------------===//
     27 // C99 6.7: Declarations.
     28 //===----------------------------------------------------------------------===//
     29 
     30 /// ParseTypeName
     31 ///       type-name: [C99 6.7.6]
     32 ///         specifier-qualifier-list abstract-declarator[opt]
     33 ///
     34 /// Called type-id in C++.
     35 TypeResult Parser::ParseTypeName(SourceRange *Range,
     36                                  Declarator::TheContext Context,
     37                                  AccessSpecifier AS,
     38                                  Decl **OwnedType) {
     39   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
     40 
     41   // Parse the common declaration-specifiers piece.
     42   DeclSpec DS(AttrFactory);
     43   ParseSpecifierQualifierList(DS, AS, DSC);
     44   if (OwnedType)
     45     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : 0;
     46 
     47   // Parse the abstract-declarator, if present.
     48   Declarator DeclaratorInfo(DS, Context);
     49   ParseDeclarator(DeclaratorInfo);
     50   if (Range)
     51     *Range = DeclaratorInfo.getSourceRange();
     52 
     53   if (DeclaratorInfo.isInvalidType())
     54     return true;
     55 
     56   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
     57 }
     58 
     59 
     60 /// isAttributeLateParsed - Return true if the attribute has arguments that
     61 /// require late parsing.
     62 static bool isAttributeLateParsed(const IdentifierInfo &II) {
     63     return llvm::StringSwitch<bool>(II.getName())
     64 #include "clang/Parse/AttrLateParsed.inc"
     65         .Default(false);
     66 }
     67 
     68 
     69 /// ParseGNUAttributes - Parse a non-empty attributes list.
     70 ///
     71 /// [GNU] attributes:
     72 ///         attribute
     73 ///         attributes attribute
     74 ///
     75 /// [GNU]  attribute:
     76 ///          '__attribute__' '(' '(' attribute-list ')' ')'
     77 ///
     78 /// [GNU]  attribute-list:
     79 ///          attrib
     80 ///          attribute_list ',' attrib
     81 ///
     82 /// [GNU]  attrib:
     83 ///          empty
     84 ///          attrib-name
     85 ///          attrib-name '(' identifier ')'
     86 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
     87 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
     88 ///
     89 /// [GNU]  attrib-name:
     90 ///          identifier
     91 ///          typespec
     92 ///          typequal
     93 ///          storageclass
     94 ///
     95 /// FIXME: The GCC grammar/code for this construct implies we need two
     96 /// token lookahead. Comment from gcc: "If they start with an identifier
     97 /// which is followed by a comma or close parenthesis, then the arguments
     98 /// start with that identifier; otherwise they are an expression list."
     99 ///
    100 /// GCC does not require the ',' between attribs in an attribute-list.
    101 ///
    102 /// At the moment, I am not doing 2 token lookahead. I am also unaware of
    103 /// any attributes that don't work (based on my limited testing). Most
    104 /// attributes are very simple in practice. Until we find a bug, I don't see
    105 /// a pressing need to implement the 2 token lookahead.
    106 
    107 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
    108                                 SourceLocation *endLoc,
    109                                 LateParsedAttrList *LateAttrs) {
    110   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
    111 
    112   while (Tok.is(tok::kw___attribute)) {
    113     ConsumeToken();
    114     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
    115                          "attribute")) {
    116       SkipUntil(tok::r_paren, true); // skip until ) or ;
    117       return;
    118     }
    119     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
    120       SkipUntil(tok::r_paren, true); // skip until ) or ;
    121       return;
    122     }
    123     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
    124     while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
    125            Tok.is(tok::comma)) {
    126       if (Tok.is(tok::comma)) {
    127         // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
    128         ConsumeToken();
    129         continue;
    130       }
    131       // we have an identifier or declaration specifier (const, int, etc.)
    132       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    133       SourceLocation AttrNameLoc = ConsumeToken();
    134 
    135       if (Tok.is(tok::l_paren)) {
    136         // handle "parameterized" attributes
    137         if (LateAttrs && isAttributeLateParsed(*AttrName)) {
    138           LateParsedAttribute *LA =
    139             new LateParsedAttribute(this, *AttrName, AttrNameLoc);
    140           LateAttrs->push_back(LA);
    141 
    142           // Attributes in a class are parsed at the end of the class, along
    143           // with other late-parsed declarations.
    144           if (!ClassStack.empty())
    145             getCurrentClass().LateParsedDeclarations.push_back(LA);
    146 
    147           // consume everything up to and including the matching right parens
    148           ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
    149 
    150           Token Eof;
    151           Eof.startToken();
    152           Eof.setLocation(Tok.getLocation());
    153           LA->Toks.push_back(Eof);
    154         } else {
    155           ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc);
    156         }
    157       } else {
    158         attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
    159                      0, SourceLocation(), 0, 0);
    160       }
    161     }
    162     if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
    163       SkipUntil(tok::r_paren, false);
    164     SourceLocation Loc = Tok.getLocation();
    165     if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
    166       SkipUntil(tok::r_paren, false);
    167     }
    168     if (endLoc)
    169       *endLoc = Loc;
    170   }
    171 }
    172 
    173 
    174 /// Parse the arguments to a parameterized GNU attribute
    175 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
    176                                    SourceLocation AttrNameLoc,
    177                                    ParsedAttributes &Attrs,
    178                                    SourceLocation *EndLoc) {
    179 
    180   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
    181 
    182   // Availability attributes have their own grammar.
    183   if (AttrName->isStr("availability")) {
    184     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
    185     return;
    186   }
    187   // Thread safety attributes fit into the FIXME case above, so we
    188   // just parse the arguments as a list of expressions
    189   if (IsThreadSafetyAttribute(AttrName->getName())) {
    190     ParseThreadSafetyAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc);
    191     return;
    192   }
    193 
    194   ConsumeParen(); // ignore the left paren loc for now
    195 
    196   IdentifierInfo *ParmName = 0;
    197   SourceLocation ParmLoc;
    198   bool BuiltinType = false;
    199 
    200   switch (Tok.getKind()) {
    201   case tok::kw_char:
    202   case tok::kw_wchar_t:
    203   case tok::kw_char16_t:
    204   case tok::kw_char32_t:
    205   case tok::kw_bool:
    206   case tok::kw_short:
    207   case tok::kw_int:
    208   case tok::kw_long:
    209   case tok::kw___int64:
    210   case tok::kw___int128:
    211   case tok::kw_signed:
    212   case tok::kw_unsigned:
    213   case tok::kw_float:
    214   case tok::kw_double:
    215   case tok::kw_void:
    216   case tok::kw_typeof:
    217     // __attribute__(( vec_type_hint(char) ))
    218     // FIXME: Don't just discard the builtin type token.
    219     ConsumeToken();
    220     BuiltinType = true;
    221     break;
    222 
    223   case tok::identifier:
    224     ParmName = Tok.getIdentifierInfo();
    225     ParmLoc = ConsumeToken();
    226     break;
    227 
    228   default:
    229     break;
    230   }
    231 
    232   ExprVector ArgExprs(Actions);
    233 
    234   if (!BuiltinType &&
    235       (ParmLoc.isValid() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren))) {
    236     // Eat the comma.
    237     if (ParmLoc.isValid())
    238       ConsumeToken();
    239 
    240     // Parse the non-empty comma-separated list of expressions.
    241     while (1) {
    242       ExprResult ArgExpr(ParseAssignmentExpression());
    243       if (ArgExpr.isInvalid()) {
    244         SkipUntil(tok::r_paren);
    245         return;
    246       }
    247       ArgExprs.push_back(ArgExpr.release());
    248       if (Tok.isNot(tok::comma))
    249         break;
    250       ConsumeToken(); // Eat the comma, move to the next argument
    251     }
    252   }
    253   else if (Tok.is(tok::less) && AttrName->isStr("iboutletcollection")) {
    254     if (!ExpectAndConsume(tok::less, diag::err_expected_less_after, "<",
    255                           tok::greater)) {
    256       while (Tok.is(tok::identifier)) {
    257         ConsumeToken();
    258         if (Tok.is(tok::greater))
    259           break;
    260         if (Tok.is(tok::comma)) {
    261           ConsumeToken();
    262           continue;
    263         }
    264       }
    265       if (Tok.isNot(tok::greater))
    266         Diag(Tok, diag::err_iboutletcollection_with_protocol);
    267       SkipUntil(tok::r_paren, false, true); // skip until ')'
    268     }
    269   }
    270 
    271   SourceLocation RParen = Tok.getLocation();
    272   if (!ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
    273     AttributeList *attr =
    274       Attrs.addNew(AttrName, SourceRange(AttrNameLoc, RParen), 0, AttrNameLoc,
    275                    ParmName, ParmLoc, ArgExprs.take(), ArgExprs.size());
    276     if (BuiltinType && attr->getKind() == AttributeList::AT_iboutletcollection)
    277       Diag(Tok, diag::err_iboutletcollection_builtintype);
    278   }
    279 }
    280 
    281 
    282 /// ParseMicrosoftDeclSpec - Parse an __declspec construct
    283 ///
    284 /// [MS] decl-specifier:
    285 ///             __declspec ( extended-decl-modifier-seq )
    286 ///
    287 /// [MS] extended-decl-modifier-seq:
    288 ///             extended-decl-modifier[opt]
    289 ///             extended-decl-modifier extended-decl-modifier-seq
    290 
    291 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
    292   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
    293 
    294   ConsumeToken();
    295   if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
    296                        "declspec")) {
    297     SkipUntil(tok::r_paren, true); // skip until ) or ;
    298     return;
    299   }
    300 
    301   while (Tok.getIdentifierInfo()) {
    302     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    303     SourceLocation AttrNameLoc = ConsumeToken();
    304 
    305     // FIXME: Remove this when we have proper __declspec(property()) support.
    306     // Just skip everything inside property().
    307     if (AttrName->getName() == "property") {
    308       ConsumeParen();
    309       SkipUntil(tok::r_paren);
    310     }
    311     if (Tok.is(tok::l_paren)) {
    312       ConsumeParen();
    313       // FIXME: This doesn't parse __declspec(property(get=get_func_name))
    314       // correctly.
    315       ExprResult ArgExpr(ParseAssignmentExpression());
    316       if (!ArgExpr.isInvalid()) {
    317         Expr *ExprList = ArgExpr.take();
    318         attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
    319                      SourceLocation(), &ExprList, 1, true);
    320       }
    321       if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
    322         SkipUntil(tok::r_paren, false);
    323     } else {
    324       attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc,
    325                    0, SourceLocation(), 0, 0, true);
    326     }
    327   }
    328   if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
    329     SkipUntil(tok::r_paren, false);
    330   return;
    331 }
    332 
    333 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
    334   // Treat these like attributes
    335   // FIXME: Allow Sema to distinguish between these and real attributes!
    336   while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
    337          Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
    338          Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
    339          Tok.is(tok::kw___ptr32) ||
    340          Tok.is(tok::kw___unaligned)) {
    341     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    342     SourceLocation AttrNameLoc = ConsumeToken();
    343     if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64) ||
    344         Tok.is(tok::kw___ptr32))
    345       // FIXME: Support these properly!
    346       continue;
    347     attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
    348                  SourceLocation(), 0, 0, true);
    349   }
    350 }
    351 
    352 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
    353   // Treat these like attributes
    354   while (Tok.is(tok::kw___pascal)) {
    355     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    356     SourceLocation AttrNameLoc = ConsumeToken();
    357     attrs.addNew(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
    358                  SourceLocation(), 0, 0, true);
    359   }
    360 }
    361 
    362 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
    363   // Treat these like attributes
    364   while (Tok.is(tok::kw___kernel)) {
    365     SourceLocation AttrNameLoc = ConsumeToken();
    366     attrs.addNew(PP.getIdentifierInfo("opencl_kernel_function"),
    367                  AttrNameLoc, 0, AttrNameLoc, 0,
    368                  SourceLocation(), 0, 0, false);
    369   }
    370 }
    371 
    372 void Parser::ParseOpenCLQualifiers(DeclSpec &DS) {
    373   SourceLocation Loc = Tok.getLocation();
    374   switch(Tok.getKind()) {
    375     // OpenCL qualifiers:
    376     case tok::kw___private:
    377     case tok::kw_private:
    378       DS.getAttributes().addNewInteger(
    379           Actions.getASTContext(),
    380           PP.getIdentifierInfo("address_space"), Loc, 0);
    381       break;
    382 
    383     case tok::kw___global:
    384       DS.getAttributes().addNewInteger(
    385           Actions.getASTContext(),
    386           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_global);
    387       break;
    388 
    389     case tok::kw___local:
    390       DS.getAttributes().addNewInteger(
    391           Actions.getASTContext(),
    392           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_local);
    393       break;
    394 
    395     case tok::kw___constant:
    396       DS.getAttributes().addNewInteger(
    397           Actions.getASTContext(),
    398           PP.getIdentifierInfo("address_space"), Loc, LangAS::opencl_constant);
    399       break;
    400 
    401     case tok::kw___read_only:
    402       DS.getAttributes().addNewInteger(
    403           Actions.getASTContext(),
    404           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_only);
    405       break;
    406 
    407     case tok::kw___write_only:
    408       DS.getAttributes().addNewInteger(
    409           Actions.getASTContext(),
    410           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_write_only);
    411       break;
    412 
    413     case tok::kw___read_write:
    414       DS.getAttributes().addNewInteger(
    415           Actions.getASTContext(),
    416           PP.getIdentifierInfo("opencl_image_access"), Loc, CLIA_read_write);
    417       break;
    418     default: break;
    419   }
    420 }
    421 
    422 /// \brief Parse a version number.
    423 ///
    424 /// version:
    425 ///   simple-integer
    426 ///   simple-integer ',' simple-integer
    427 ///   simple-integer ',' simple-integer ',' simple-integer
    428 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
    429   Range = Tok.getLocation();
    430 
    431   if (!Tok.is(tok::numeric_constant)) {
    432     Diag(Tok, diag::err_expected_version);
    433     SkipUntil(tok::comma, tok::r_paren, true, true, true);
    434     return VersionTuple();
    435   }
    436 
    437   // Parse the major (and possibly minor and subminor) versions, which
    438   // are stored in the numeric constant. We utilize a quirk of the
    439   // lexer, which is that it handles something like 1.2.3 as a single
    440   // numeric constant, rather than two separate tokens.
    441   SmallString<512> Buffer;
    442   Buffer.resize(Tok.getLength()+1);
    443   const char *ThisTokBegin = &Buffer[0];
    444 
    445   // Get the spelling of the token, which eliminates trigraphs, etc.
    446   bool Invalid = false;
    447   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
    448   if (Invalid)
    449     return VersionTuple();
    450 
    451   // Parse the major version.
    452   unsigned AfterMajor = 0;
    453   unsigned Major = 0;
    454   while (AfterMajor < ActualLength && isdigit(ThisTokBegin[AfterMajor])) {
    455     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
    456     ++AfterMajor;
    457   }
    458 
    459   if (AfterMajor == 0) {
    460     Diag(Tok, diag::err_expected_version);
    461     SkipUntil(tok::comma, tok::r_paren, true, true, true);
    462     return VersionTuple();
    463   }
    464 
    465   if (AfterMajor == ActualLength) {
    466     ConsumeToken();
    467 
    468     // We only had a single version component.
    469     if (Major == 0) {
    470       Diag(Tok, diag::err_zero_version);
    471       return VersionTuple();
    472     }
    473 
    474     return VersionTuple(Major);
    475   }
    476 
    477   if (ThisTokBegin[AfterMajor] != '.' || (AfterMajor + 1 == ActualLength)) {
    478     Diag(Tok, diag::err_expected_version);
    479     SkipUntil(tok::comma, tok::r_paren, true, true, true);
    480     return VersionTuple();
    481   }
    482 
    483   // Parse the minor version.
    484   unsigned AfterMinor = AfterMajor + 1;
    485   unsigned Minor = 0;
    486   while (AfterMinor < ActualLength && isdigit(ThisTokBegin[AfterMinor])) {
    487     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
    488     ++AfterMinor;
    489   }
    490 
    491   if (AfterMinor == ActualLength) {
    492     ConsumeToken();
    493 
    494     // We had major.minor.
    495     if (Major == 0 && Minor == 0) {
    496       Diag(Tok, diag::err_zero_version);
    497       return VersionTuple();
    498     }
    499 
    500     return VersionTuple(Major, Minor);
    501   }
    502 
    503   // If what follows is not a '.', we have a problem.
    504   if (ThisTokBegin[AfterMinor] != '.') {
    505     Diag(Tok, diag::err_expected_version);
    506     SkipUntil(tok::comma, tok::r_paren, true, true, true);
    507     return VersionTuple();
    508   }
    509 
    510   // Parse the subminor version.
    511   unsigned AfterSubminor = AfterMinor + 1;
    512   unsigned Subminor = 0;
    513   while (AfterSubminor < ActualLength && isdigit(ThisTokBegin[AfterSubminor])) {
    514     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
    515     ++AfterSubminor;
    516   }
    517 
    518   if (AfterSubminor != ActualLength) {
    519     Diag(Tok, diag::err_expected_version);
    520     SkipUntil(tok::comma, tok::r_paren, true, true, true);
    521     return VersionTuple();
    522   }
    523   ConsumeToken();
    524   return VersionTuple(Major, Minor, Subminor);
    525 }
    526 
    527 /// \brief Parse the contents of the "availability" attribute.
    528 ///
    529 /// availability-attribute:
    530 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
    531 ///
    532 /// platform:
    533 ///   identifier
    534 ///
    535 /// version-arg-list:
    536 ///   version-arg
    537 ///   version-arg ',' version-arg-list
    538 ///
    539 /// version-arg:
    540 ///   'introduced' '=' version
    541 ///   'deprecated' '=' version
    542 ///   'obsoleted' = version
    543 ///   'unavailable'
    544 /// opt-message:
    545 ///   'message' '=' <string>
    546 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
    547                                         SourceLocation AvailabilityLoc,
    548                                         ParsedAttributes &attrs,
    549                                         SourceLocation *endLoc) {
    550   SourceLocation PlatformLoc;
    551   IdentifierInfo *Platform = 0;
    552 
    553   enum { Introduced, Deprecated, Obsoleted, Unknown };
    554   AvailabilityChange Changes[Unknown];
    555   ExprResult MessageExpr;
    556 
    557   // Opening '('.
    558   BalancedDelimiterTracker T(*this, tok::l_paren);
    559   if (T.consumeOpen()) {
    560     Diag(Tok, diag::err_expected_lparen);
    561     return;
    562   }
    563 
    564   // Parse the platform name,
    565   if (Tok.isNot(tok::identifier)) {
    566     Diag(Tok, diag::err_availability_expected_platform);
    567     SkipUntil(tok::r_paren);
    568     return;
    569   }
    570   Platform = Tok.getIdentifierInfo();
    571   PlatformLoc = ConsumeToken();
    572 
    573   // Parse the ',' following the platform name.
    574   if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::r_paren))
    575     return;
    576 
    577   // If we haven't grabbed the pointers for the identifiers
    578   // "introduced", "deprecated", and "obsoleted", do so now.
    579   if (!Ident_introduced) {
    580     Ident_introduced = PP.getIdentifierInfo("introduced");
    581     Ident_deprecated = PP.getIdentifierInfo("deprecated");
    582     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
    583     Ident_unavailable = PP.getIdentifierInfo("unavailable");
    584     Ident_message = PP.getIdentifierInfo("message");
    585   }
    586 
    587   // Parse the set of introductions/deprecations/removals.
    588   SourceLocation UnavailableLoc;
    589   do {
    590     if (Tok.isNot(tok::identifier)) {
    591       Diag(Tok, diag::err_availability_expected_change);
    592       SkipUntil(tok::r_paren);
    593       return;
    594     }
    595     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
    596     SourceLocation KeywordLoc = ConsumeToken();
    597 
    598     if (Keyword == Ident_unavailable) {
    599       if (UnavailableLoc.isValid()) {
    600         Diag(KeywordLoc, diag::err_availability_redundant)
    601           << Keyword << SourceRange(UnavailableLoc);
    602       }
    603       UnavailableLoc = KeywordLoc;
    604 
    605       if (Tok.isNot(tok::comma))
    606         break;
    607 
    608       ConsumeToken();
    609       continue;
    610     }
    611 
    612     if (Tok.isNot(tok::equal)) {
    613       Diag(Tok, diag::err_expected_equal_after)
    614         << Keyword;
    615       SkipUntil(tok::r_paren);
    616       return;
    617     }
    618     ConsumeToken();
    619     if (Keyword == Ident_message) {
    620       if (!isTokenStringLiteral()) {
    621         Diag(Tok, diag::err_expected_string_literal);
    622         SkipUntil(tok::r_paren);
    623         return;
    624       }
    625       MessageExpr = ParseStringLiteralExpression();
    626       break;
    627     }
    628 
    629     SourceRange VersionRange;
    630     VersionTuple Version = ParseVersionTuple(VersionRange);
    631 
    632     if (Version.empty()) {
    633       SkipUntil(tok::r_paren);
    634       return;
    635     }
    636 
    637     unsigned Index;
    638     if (Keyword == Ident_introduced)
    639       Index = Introduced;
    640     else if (Keyword == Ident_deprecated)
    641       Index = Deprecated;
    642     else if (Keyword == Ident_obsoleted)
    643       Index = Obsoleted;
    644     else
    645       Index = Unknown;
    646 
    647     if (Index < Unknown) {
    648       if (!Changes[Index].KeywordLoc.isInvalid()) {
    649         Diag(KeywordLoc, diag::err_availability_redundant)
    650           << Keyword
    651           << SourceRange(Changes[Index].KeywordLoc,
    652                          Changes[Index].VersionRange.getEnd());
    653       }
    654 
    655       Changes[Index].KeywordLoc = KeywordLoc;
    656       Changes[Index].Version = Version;
    657       Changes[Index].VersionRange = VersionRange;
    658     } else {
    659       Diag(KeywordLoc, diag::err_availability_unknown_change)
    660         << Keyword << VersionRange;
    661     }
    662 
    663     if (Tok.isNot(tok::comma))
    664       break;
    665 
    666     ConsumeToken();
    667   } while (true);
    668 
    669   // Closing ')'.
    670   if (T.consumeClose())
    671     return;
    672 
    673   if (endLoc)
    674     *endLoc = T.getCloseLocation();
    675 
    676   // The 'unavailable' availability cannot be combined with any other
    677   // availability changes. Make sure that hasn't happened.
    678   if (UnavailableLoc.isValid()) {
    679     bool Complained = false;
    680     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
    681       if (Changes[Index].KeywordLoc.isValid()) {
    682         if (!Complained) {
    683           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
    684             << SourceRange(Changes[Index].KeywordLoc,
    685                            Changes[Index].VersionRange.getEnd());
    686           Complained = true;
    687         }
    688 
    689         // Clear out the availability.
    690         Changes[Index] = AvailabilityChange();
    691       }
    692     }
    693   }
    694 
    695   // Record this attribute
    696   attrs.addNew(&Availability,
    697                SourceRange(AvailabilityLoc, T.getCloseLocation()),
    698                0, AvailabilityLoc,
    699                Platform, PlatformLoc,
    700                Changes[Introduced],
    701                Changes[Deprecated],
    702                Changes[Obsoleted],
    703                UnavailableLoc, MessageExpr.take(),
    704                false, false);
    705 }
    706 
    707 
    708 // Late Parsed Attributes:
    709 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
    710 
    711 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
    712 
    713 void Parser::LateParsedClass::ParseLexedAttributes() {
    714   Self->ParseLexedAttributes(*Class);
    715 }
    716 
    717 void Parser::LateParsedAttribute::ParseLexedAttributes() {
    718   Self->ParseLexedAttribute(*this, true, false);
    719 }
    720 
    721 /// Wrapper class which calls ParseLexedAttribute, after setting up the
    722 /// scope appropriately.
    723 void Parser::ParseLexedAttributes(ParsingClass &Class) {
    724   // Deal with templates
    725   // FIXME: Test cases to make sure this does the right thing for templates.
    726   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
    727   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
    728                                 HasTemplateScope);
    729   if (HasTemplateScope)
    730     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
    731 
    732   // Set or update the scope flags.
    733   bool AlreadyHasClassScope = Class.TopLevelClass;
    734   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
    735   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
    736   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
    737 
    738   // Enter the scope of nested classes
    739   if (!AlreadyHasClassScope)
    740     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
    741                                                 Class.TagOrTemplate);
    742   {
    743     // Allow 'this' within late-parsed attributes.
    744     Sema::CXXThisScopeRAII ThisScope(Actions, Class.TagOrTemplate,
    745                                      /*TypeQuals=*/0);
    746 
    747     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
    748       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
    749     }
    750   }
    751 
    752   if (!AlreadyHasClassScope)
    753     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
    754                                                  Class.TagOrTemplate);
    755 }
    756 
    757 
    758 /// \brief Parse all attributes in LAs, and attach them to Decl D.
    759 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
    760                                      bool EnterScope, bool OnDefinition) {
    761   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
    762     LAs[i]->addDecl(D);
    763     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
    764     delete LAs[i];
    765   }
    766   LAs.clear();
    767 }
    768 
    769 
    770 /// \brief Finish parsing an attribute for which parsing was delayed.
    771 /// This will be called at the end of parsing a class declaration
    772 /// for each LateParsedAttribute. We consume the saved tokens and
    773 /// create an attribute with the arguments filled in. We add this
    774 /// to the Attribute list for the decl.
    775 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
    776                                  bool EnterScope, bool OnDefinition) {
    777   // Save the current token position.
    778   SourceLocation OrigLoc = Tok.getLocation();
    779 
    780   // Append the current token at the end of the new token stream so that it
    781   // doesn't get lost.
    782   LA.Toks.push_back(Tok);
    783   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
    784   // Consume the previously pushed token.
    785   ConsumeAnyToken();
    786 
    787   if (OnDefinition && !IsThreadSafetyAttribute(LA.AttrName.getName())) {
    788     Diag(Tok, diag::warn_attribute_on_function_definition)
    789       << LA.AttrName.getName();
    790   }
    791 
    792   ParsedAttributes Attrs(AttrFactory);
    793   SourceLocation endLoc;
    794 
    795   if (LA.Decls.size() == 1) {
    796     Decl *D = LA.Decls[0];
    797 
    798     // If the Decl is templatized, add template parameters to scope.
    799     bool HasTemplateScope = EnterScope && D->isTemplateDecl();
    800     ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
    801     if (HasTemplateScope)
    802       Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
    803 
    804     // If the Decl is on a function, add function parameters to the scope.
    805     bool HasFunctionScope = EnterScope && D->isFunctionOrFunctionTemplate();
    806     ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunctionScope);
    807     if (HasFunctionScope)
    808       Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
    809 
    810     ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
    811 
    812     if (HasFunctionScope) {
    813       Actions.ActOnExitFunctionContext();
    814       FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
    815     }
    816     if (HasTemplateScope) {
    817       TempScope.Exit();
    818     }
    819   } else if (LA.Decls.size() > 0) {
    820     // If there are multiple decls, then the decl cannot be within the
    821     // function scope.
    822     ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc);
    823   } else {
    824     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
    825   }
    826 
    827   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) {
    828     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
    829   }
    830 
    831   if (Tok.getLocation() != OrigLoc) {
    832     // Due to a parsing error, we either went over the cached tokens or
    833     // there are still cached tokens left, so we skip the leftover tokens.
    834     // Since this is an uncommon situation that should be avoided, use the
    835     // expensive isBeforeInTranslationUnit call.
    836     if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
    837                                                         OrigLoc))
    838     while (Tok.getLocation() != OrigLoc && Tok.isNot(tok::eof))
    839       ConsumeAnyToken();
    840   }
    841 }
    842 
    843 /// \brief Wrapper around a case statement checking if AttrName is
    844 /// one of the thread safety attributes
    845 bool Parser::IsThreadSafetyAttribute(llvm::StringRef AttrName){
    846   return llvm::StringSwitch<bool>(AttrName)
    847       .Case("guarded_by", true)
    848       .Case("guarded_var", true)
    849       .Case("pt_guarded_by", true)
    850       .Case("pt_guarded_var", true)
    851       .Case("lockable", true)
    852       .Case("scoped_lockable", true)
    853       .Case("no_thread_safety_analysis", true)
    854       .Case("acquired_after", true)
    855       .Case("acquired_before", true)
    856       .Case("exclusive_lock_function", true)
    857       .Case("shared_lock_function", true)
    858       .Case("exclusive_trylock_function", true)
    859       .Case("shared_trylock_function", true)
    860       .Case("unlock_function", true)
    861       .Case("lock_returned", true)
    862       .Case("locks_excluded", true)
    863       .Case("exclusive_locks_required", true)
    864       .Case("shared_locks_required", true)
    865       .Default(false);
    866 }
    867 
    868 /// \brief Parse the contents of thread safety attributes. These
    869 /// should always be parsed as an expression list.
    870 ///
    871 /// We need to special case the parsing due to the fact that if the first token
    872 /// of the first argument is an identifier, the main parse loop will store
    873 /// that token as a "parameter" and the rest of
    874 /// the arguments will be added to a list of "arguments". However,
    875 /// subsequent tokens in the first argument are lost. We instead parse each
    876 /// argument as an expression and add all arguments to the list of "arguments".
    877 /// In future, we will take advantage of this special case to also
    878 /// deal with some argument scoping issues here (for example, referring to a
    879 /// function parameter in the attribute on that function).
    880 void Parser::ParseThreadSafetyAttribute(IdentifierInfo &AttrName,
    881                                         SourceLocation AttrNameLoc,
    882                                         ParsedAttributes &Attrs,
    883                                         SourceLocation *EndLoc) {
    884   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
    885 
    886   BalancedDelimiterTracker T(*this, tok::l_paren);
    887   T.consumeOpen();
    888 
    889   ExprVector ArgExprs(Actions);
    890   bool ArgExprsOk = true;
    891 
    892   // now parse the list of expressions
    893   while (Tok.isNot(tok::r_paren)) {
    894     ExprResult ArgExpr(ParseAssignmentExpression());
    895     if (ArgExpr.isInvalid()) {
    896       ArgExprsOk = false;
    897       T.consumeClose();
    898       break;
    899     } else {
    900       ArgExprs.push_back(ArgExpr.release());
    901     }
    902     if (Tok.isNot(tok::comma))
    903       break;
    904     ConsumeToken(); // Eat the comma, move to the next argument
    905   }
    906   // Match the ')'.
    907   if (ArgExprsOk && !T.consumeClose()) {
    908     Attrs.addNew(&AttrName, AttrNameLoc, 0, AttrNameLoc, 0, SourceLocation(),
    909                  ArgExprs.take(), ArgExprs.size());
    910   }
    911   if (EndLoc)
    912     *EndLoc = T.getCloseLocation();
    913 }
    914 
    915 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
    916 /// of a C++11 attribute-specifier in a location where an attribute is not
    917 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
    918 /// situation.
    919 ///
    920 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
    921 /// this doesn't appear to actually be an attribute-specifier, and the caller
    922 /// should try to parse it.
    923 bool Parser::DiagnoseProhibitedCXX11Attribute() {
    924   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
    925 
    926   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
    927   case CAK_NotAttributeSpecifier:
    928     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
    929     return false;
    930 
    931   case CAK_InvalidAttributeSpecifier:
    932     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
    933     return false;
    934 
    935   case CAK_AttributeSpecifier:
    936     // Parse and discard the attributes.
    937     SourceLocation BeginLoc = ConsumeBracket();
    938     ConsumeBracket();
    939     SkipUntil(tok::r_square, /*StopAtSemi*/ false);
    940     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
    941     SourceLocation EndLoc = ConsumeBracket();
    942     Diag(BeginLoc, diag::err_attributes_not_allowed)
    943       << SourceRange(BeginLoc, EndLoc);
    944     return true;
    945   }
    946   llvm_unreachable("All cases handled above.");
    947 }
    948 
    949 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
    950   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
    951     << attrs.Range;
    952 }
    953 
    954 /// ParseDeclaration - Parse a full 'declaration', which consists of
    955 /// declaration-specifiers, some number of declarators, and a semicolon.
    956 /// 'Context' should be a Declarator::TheContext value.  This returns the
    957 /// location of the semicolon in DeclEnd.
    958 ///
    959 ///       declaration: [C99 6.7]
    960 ///         block-declaration ->
    961 ///           simple-declaration
    962 ///           others                   [FIXME]
    963 /// [C++]   template-declaration
    964 /// [C++]   namespace-definition
    965 /// [C++]   using-directive
    966 /// [C++]   using-declaration
    967 /// [C++11/C11] static_assert-declaration
    968 ///         others... [FIXME]
    969 ///
    970 Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
    971                                                 unsigned Context,
    972                                                 SourceLocation &DeclEnd,
    973                                           ParsedAttributesWithRange &attrs) {
    974   ParenBraceBracketBalancer BalancerRAIIObj(*this);
    975   // Must temporarily exit the objective-c container scope for
    976   // parsing c none objective-c decls.
    977   ObjCDeclContextSwitch ObjCDC(*this);
    978 
    979   Decl *SingleDecl = 0;
    980   Decl *OwnedType = 0;
    981   switch (Tok.getKind()) {
    982   case tok::kw_template:
    983   case tok::kw_export:
    984     ProhibitAttributes(attrs);
    985     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
    986     break;
    987   case tok::kw_inline:
    988     // Could be the start of an inline namespace. Allowed as an ext in C++03.
    989     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
    990       ProhibitAttributes(attrs);
    991       SourceLocation InlineLoc = ConsumeToken();
    992       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
    993       break;
    994     }
    995     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
    996                                   true);
    997   case tok::kw_namespace:
    998     ProhibitAttributes(attrs);
    999     SingleDecl = ParseNamespace(Context, DeclEnd);
   1000     break;
   1001   case tok::kw_using:
   1002     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
   1003                                                   DeclEnd, attrs, &OwnedType);
   1004     break;
   1005   case tok::kw_static_assert:
   1006   case tok::kw__Static_assert:
   1007     ProhibitAttributes(attrs);
   1008     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
   1009     break;
   1010   default:
   1011     return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
   1012   }
   1013 
   1014   // This routine returns a DeclGroup, if the thing we parsed only contains a
   1015   // single decl, convert it now. Alias declarations can also declare a type;
   1016   // include that too if it is present.
   1017   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
   1018 }
   1019 
   1020 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
   1021 ///         declaration-specifiers init-declarator-list[opt] ';'
   1022 ///[C90/C++]init-declarator-list ';'                             [TODO]
   1023 /// [OMP]   threadprivate-directive                              [TODO]
   1024 ///
   1025 ///       for-range-declaration: [C++0x 6.5p1: stmt.ranged]
   1026 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
   1027 ///
   1028 /// If RequireSemi is false, this does not check for a ';' at the end of the
   1029 /// declaration.  If it is true, it checks for and eats it.
   1030 ///
   1031 /// If FRI is non-null, we might be parsing a for-range-declaration instead
   1032 /// of a simple-declaration. If we find that we are, we also parse the
   1033 /// for-range-initializer, and place it here.
   1034 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
   1035                                                       unsigned Context,
   1036                                                       SourceLocation &DeclEnd,
   1037                                                       ParsedAttributes &attrs,
   1038                                                       bool RequireSemi,
   1039                                                       ForRangeInit *FRI) {
   1040   // Parse the common declaration-specifiers piece.
   1041   ParsingDeclSpec DS(*this);
   1042   DS.takeAttributesFrom(attrs);
   1043 
   1044   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
   1045                              getDeclSpecContextFromDeclaratorContext(Context));
   1046 
   1047   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
   1048   // declaration-specifiers init-declarator-list[opt] ';'
   1049   if (Tok.is(tok::semi)) {
   1050     if (RequireSemi) ConsumeToken();
   1051     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
   1052                                                        DS);
   1053     DS.complete(TheDecl);
   1054     return Actions.ConvertDeclToDeclGroup(TheDecl);
   1055   }
   1056 
   1057   return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd, FRI);
   1058 }
   1059 
   1060 /// Returns true if this might be the start of a declarator, or a common typo
   1061 /// for a declarator.
   1062 bool Parser::MightBeDeclarator(unsigned Context) {
   1063   switch (Tok.getKind()) {
   1064   case tok::annot_cxxscope:
   1065   case tok::annot_template_id:
   1066   case tok::caret:
   1067   case tok::code_completion:
   1068   case tok::coloncolon:
   1069   case tok::ellipsis:
   1070   case tok::kw___attribute:
   1071   case tok::kw_operator:
   1072   case tok::l_paren:
   1073   case tok::star:
   1074     return true;
   1075 
   1076   case tok::amp:
   1077   case tok::ampamp:
   1078     return getLangOpts().CPlusPlus;
   1079 
   1080   case tok::l_square: // Might be an attribute on an unnamed bit-field.
   1081     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus0x &&
   1082            NextToken().is(tok::l_square);
   1083 
   1084   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
   1085     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
   1086 
   1087   case tok::identifier:
   1088     switch (NextToken().getKind()) {
   1089     case tok::code_completion:
   1090     case tok::coloncolon:
   1091     case tok::comma:
   1092     case tok::equal:
   1093     case tok::equalequal: // Might be a typo for '='.
   1094     case tok::kw_alignas:
   1095     case tok::kw_asm:
   1096     case tok::kw___attribute:
   1097     case tok::l_brace:
   1098     case tok::l_paren:
   1099     case tok::l_square:
   1100     case tok::less:
   1101     case tok::r_brace:
   1102     case tok::r_paren:
   1103     case tok::r_square:
   1104     case tok::semi:
   1105       return true;
   1106 
   1107     case tok::colon:
   1108       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
   1109       // and in block scope it's probably a label. Inside a class definition,
   1110       // this is a bit-field.
   1111       return Context == Declarator::MemberContext ||
   1112              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
   1113 
   1114     case tok::identifier: // Possible virt-specifier.
   1115       return getLangOpts().CPlusPlus0x && isCXX0XVirtSpecifier(NextToken());
   1116 
   1117     default:
   1118       return false;
   1119     }
   1120 
   1121   default:
   1122     return false;
   1123   }
   1124 }
   1125 
   1126 /// Skip until we reach something which seems like a sensible place to pick
   1127 /// up parsing after a malformed declaration. This will sometimes stop sooner
   1128 /// than SkipUntil(tok::r_brace) would, but will never stop later.
   1129 void Parser::SkipMalformedDecl() {
   1130   while (true) {
   1131     switch (Tok.getKind()) {
   1132     case tok::l_brace:
   1133       // Skip until matching }, then stop. We've probably skipped over
   1134       // a malformed class or function definition or similar.
   1135       ConsumeBrace();
   1136       SkipUntil(tok::r_brace, /*StopAtSemi*/false);
   1137       if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
   1138         // This declaration isn't over yet. Keep skipping.
   1139         continue;
   1140       }
   1141       if (Tok.is(tok::semi))
   1142         ConsumeToken();
   1143       return;
   1144 
   1145     case tok::l_square:
   1146       ConsumeBracket();
   1147       SkipUntil(tok::r_square, /*StopAtSemi*/false);
   1148       continue;
   1149 
   1150     case tok::l_paren:
   1151       ConsumeParen();
   1152       SkipUntil(tok::r_paren, /*StopAtSemi*/false);
   1153       continue;
   1154 
   1155     case tok::r_brace:
   1156       return;
   1157 
   1158     case tok::semi:
   1159       ConsumeToken();
   1160       return;
   1161 
   1162     case tok::kw_inline:
   1163       // 'inline namespace' at the start of a line is almost certainly
   1164       // a good place to pick back up parsing.
   1165       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace))
   1166         return;
   1167       break;
   1168 
   1169     case tok::kw_namespace:
   1170       // 'namespace' at the start of a line is almost certainly a good
   1171       // place to pick back up parsing.
   1172       if (Tok.isAtStartOfLine())
   1173         return;
   1174       break;
   1175 
   1176     case tok::eof:
   1177       return;
   1178 
   1179     default:
   1180       break;
   1181     }
   1182 
   1183     ConsumeAnyToken();
   1184   }
   1185 }
   1186 
   1187 /// ParseDeclGroup - Having concluded that this is either a function
   1188 /// definition or a group of object declarations, actually parse the
   1189 /// result.
   1190 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
   1191                                               unsigned Context,
   1192                                               bool AllowFunctionDefinitions,
   1193                                               SourceLocation *DeclEnd,
   1194                                               ForRangeInit *FRI) {
   1195   // Parse the first declarator.
   1196   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
   1197   ParseDeclarator(D);
   1198 
   1199   // Bail out if the first declarator didn't seem well-formed.
   1200   if (!D.hasName() && !D.mayOmitIdentifier()) {
   1201     SkipMalformedDecl();
   1202     return DeclGroupPtrTy();
   1203   }
   1204 
   1205   // Save late-parsed attributes for now; they need to be parsed in the
   1206   // appropriate function scope after the function Decl has been constructed.
   1207   LateParsedAttrList LateParsedAttrs;
   1208   if (D.isFunctionDeclarator())
   1209     MaybeParseGNUAttributes(D, &LateParsedAttrs);
   1210 
   1211   // Check to see if we have a function *definition* which must have a body.
   1212   if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
   1213       // Look at the next token to make sure that this isn't a function
   1214       // declaration.  We have to check this because __attribute__ might be the
   1215       // start of a function definition in GCC-extended K&R C.
   1216       !isDeclarationAfterDeclarator()) {
   1217 
   1218     if (isStartOfFunctionDefinition(D)) {
   1219       if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   1220         Diag(Tok, diag::err_function_declared_typedef);
   1221 
   1222         // Recover by treating the 'typedef' as spurious.
   1223         DS.ClearStorageClassSpecs();
   1224       }
   1225 
   1226       Decl *TheDecl =
   1227         ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
   1228       return Actions.ConvertDeclToDeclGroup(TheDecl);
   1229     }
   1230 
   1231     if (isDeclarationSpecifier()) {
   1232       // If there is an invalid declaration specifier right after the function
   1233       // prototype, then we must be in a missing semicolon case where this isn't
   1234       // actually a body.  Just fall through into the code that handles it as a
   1235       // prototype, and let the top-level code handle the erroneous declspec
   1236       // where it would otherwise expect a comma or semicolon.
   1237     } else {
   1238       Diag(Tok, diag::err_expected_fn_body);
   1239       SkipUntil(tok::semi);
   1240       return DeclGroupPtrTy();
   1241     }
   1242   }
   1243 
   1244   if (ParseAsmAttributesAfterDeclarator(D))
   1245     return DeclGroupPtrTy();
   1246 
   1247   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
   1248   // must parse and analyze the for-range-initializer before the declaration is
   1249   // analyzed.
   1250   if (FRI && Tok.is(tok::colon)) {
   1251     FRI->ColonLoc = ConsumeToken();
   1252     if (Tok.is(tok::l_brace))
   1253       FRI->RangeExpr = ParseBraceInitializer();
   1254     else
   1255       FRI->RangeExpr = ParseExpression();
   1256     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1257     Actions.ActOnCXXForRangeDecl(ThisDecl);
   1258     Actions.FinalizeDeclaration(ThisDecl);
   1259     D.complete(ThisDecl);
   1260     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, &ThisDecl, 1);
   1261   }
   1262 
   1263   SmallVector<Decl *, 8> DeclsInGroup;
   1264   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(D);
   1265   if (LateParsedAttrs.size() > 0)
   1266     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
   1267   D.complete(FirstDecl);
   1268   if (FirstDecl)
   1269     DeclsInGroup.push_back(FirstDecl);
   1270 
   1271   bool ExpectSemi = Context != Declarator::ForContext;
   1272 
   1273   // If we don't have a comma, it is either the end of the list (a ';') or an
   1274   // error, bail out.
   1275   while (Tok.is(tok::comma)) {
   1276     SourceLocation CommaLoc = ConsumeToken();
   1277 
   1278     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
   1279       // This comma was followed by a line-break and something which can't be
   1280       // the start of a declarator. The comma was probably a typo for a
   1281       // semicolon.
   1282       Diag(CommaLoc, diag::err_expected_semi_declaration)
   1283         << FixItHint::CreateReplacement(CommaLoc, ";");
   1284       ExpectSemi = false;
   1285       break;
   1286     }
   1287 
   1288     // Parse the next declarator.
   1289     D.clear();
   1290     D.setCommaLoc(CommaLoc);
   1291 
   1292     // Accept attributes in an init-declarator.  In the first declarator in a
   1293     // declaration, these would be part of the declspec.  In subsequent
   1294     // declarators, they become part of the declarator itself, so that they
   1295     // don't apply to declarators after *this* one.  Examples:
   1296     //    short __attribute__((common)) var;    -> declspec
   1297     //    short var __attribute__((common));    -> declarator
   1298     //    short x, __attribute__((common)) var;    -> declarator
   1299     MaybeParseGNUAttributes(D);
   1300 
   1301     ParseDeclarator(D);
   1302     if (!D.isInvalidType()) {
   1303       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
   1304       D.complete(ThisDecl);
   1305       if (ThisDecl)
   1306         DeclsInGroup.push_back(ThisDecl);
   1307     }
   1308   }
   1309 
   1310   if (DeclEnd)
   1311     *DeclEnd = Tok.getLocation();
   1312 
   1313   if (ExpectSemi &&
   1314       ExpectAndConsume(tok::semi,
   1315                        Context == Declarator::FileContext
   1316                          ? diag::err_invalid_token_after_toplevel_declarator
   1317                          : diag::err_expected_semi_declaration)) {
   1318     // Okay, there was no semicolon and one was expected.  If we see a
   1319     // declaration specifier, just assume it was missing and continue parsing.
   1320     // Otherwise things are very confused and we skip to recover.
   1321     if (!isDeclarationSpecifier()) {
   1322       SkipUntil(tok::r_brace, true, true);
   1323       if (Tok.is(tok::semi))
   1324         ConsumeToken();
   1325     }
   1326   }
   1327 
   1328   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
   1329                                          DeclsInGroup.data(),
   1330                                          DeclsInGroup.size());
   1331 }
   1332 
   1333 /// Parse an optional simple-asm-expr and attributes, and attach them to a
   1334 /// declarator. Returns true on an error.
   1335 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
   1336   // If a simple-asm-expr is present, parse it.
   1337   if (Tok.is(tok::kw_asm)) {
   1338     SourceLocation Loc;
   1339     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   1340     if (AsmLabel.isInvalid()) {
   1341       SkipUntil(tok::semi, true, true);
   1342       return true;
   1343     }
   1344 
   1345     D.setAsmLabel(AsmLabel.release());
   1346     D.SetRangeEnd(Loc);
   1347   }
   1348 
   1349   MaybeParseGNUAttributes(D);
   1350   return false;
   1351 }
   1352 
   1353 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
   1354 /// declarator'. This method parses the remainder of the declaration
   1355 /// (including any attributes or initializer, among other things) and
   1356 /// finalizes the declaration.
   1357 ///
   1358 ///       init-declarator: [C99 6.7]
   1359 ///         declarator
   1360 ///         declarator '=' initializer
   1361 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
   1362 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
   1363 /// [C++]   declarator initializer[opt]
   1364 ///
   1365 /// [C++] initializer:
   1366 /// [C++]   '=' initializer-clause
   1367 /// [C++]   '(' expression-list ')'
   1368 /// [C++0x] '=' 'default'                                                [TODO]
   1369 /// [C++0x] '=' 'delete'
   1370 /// [C++0x] braced-init-list
   1371 ///
   1372 /// According to the standard grammar, =default and =delete are function
   1373 /// definitions, but that definitely doesn't fit with the parser here.
   1374 ///
   1375 Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
   1376                                      const ParsedTemplateInfo &TemplateInfo) {
   1377   if (ParseAsmAttributesAfterDeclarator(D))
   1378     return 0;
   1379 
   1380   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
   1381 }
   1382 
   1383 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(Declarator &D,
   1384                                      const ParsedTemplateInfo &TemplateInfo) {
   1385   // Inform the current actions module that we just parsed this declarator.
   1386   Decl *ThisDecl = 0;
   1387   switch (TemplateInfo.Kind) {
   1388   case ParsedTemplateInfo::NonTemplate:
   1389     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1390     break;
   1391 
   1392   case ParsedTemplateInfo::Template:
   1393   case ParsedTemplateInfo::ExplicitSpecialization:
   1394     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
   1395                              MultiTemplateParamsArg(Actions,
   1396                                           TemplateInfo.TemplateParams->data(),
   1397                                           TemplateInfo.TemplateParams->size()),
   1398                                                D);
   1399     break;
   1400 
   1401   case ParsedTemplateInfo::ExplicitInstantiation: {
   1402     DeclResult ThisRes
   1403       = Actions.ActOnExplicitInstantiation(getCurScope(),
   1404                                            TemplateInfo.ExternLoc,
   1405                                            TemplateInfo.TemplateLoc,
   1406                                            D);
   1407     if (ThisRes.isInvalid()) {
   1408       SkipUntil(tok::semi, true, true);
   1409       return 0;
   1410     }
   1411 
   1412     ThisDecl = ThisRes.get();
   1413     break;
   1414     }
   1415   }
   1416 
   1417   bool TypeContainsAuto =
   1418     D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
   1419 
   1420   // Parse declarator '=' initializer.
   1421   // If a '==' or '+=' is found, suggest a fixit to '='.
   1422   if (isTokenEqualOrEqualTypo()) {
   1423     ConsumeToken();
   1424     if (Tok.is(tok::kw_delete)) {
   1425       if (D.isFunctionDeclarator())
   1426         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   1427           << 1 /* delete */;
   1428       else
   1429         Diag(ConsumeToken(), diag::err_deleted_non_function);
   1430     } else if (Tok.is(tok::kw_default)) {
   1431       if (D.isFunctionDeclarator())
   1432         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   1433           << 0 /* default */;
   1434       else
   1435         Diag(ConsumeToken(), diag::err_default_special_members);
   1436     } else {
   1437       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   1438         EnterScope(0);
   1439         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   1440       }
   1441 
   1442       if (Tok.is(tok::code_completion)) {
   1443         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
   1444         cutOffParsing();
   1445         return 0;
   1446       }
   1447 
   1448       ExprResult Init(ParseInitializer());
   1449 
   1450       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   1451         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   1452         ExitScope();
   1453       }
   1454 
   1455       if (Init.isInvalid()) {
   1456         SkipUntil(tok::comma, true, true);
   1457         Actions.ActOnInitializerError(ThisDecl);
   1458       } else
   1459         Actions.AddInitializerToDecl(ThisDecl, Init.take(),
   1460                                      /*DirectInit=*/false, TypeContainsAuto);
   1461     }
   1462   } else if (Tok.is(tok::l_paren)) {
   1463     // Parse C++ direct initializer: '(' expression-list ')'
   1464     BalancedDelimiterTracker T(*this, tok::l_paren);
   1465     T.consumeOpen();
   1466 
   1467     ExprVector Exprs(Actions);
   1468     CommaLocsTy CommaLocs;
   1469 
   1470     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   1471       EnterScope(0);
   1472       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   1473     }
   1474 
   1475     if (ParseExpressionList(Exprs, CommaLocs)) {
   1476       SkipUntil(tok::r_paren);
   1477 
   1478       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   1479         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   1480         ExitScope();
   1481       }
   1482     } else {
   1483       // Match the ')'.
   1484       T.consumeClose();
   1485 
   1486       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
   1487              "Unexpected number of commas!");
   1488 
   1489       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   1490         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   1491         ExitScope();
   1492       }
   1493 
   1494       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
   1495                                                           T.getCloseLocation(),
   1496                                                           move_arg(Exprs));
   1497       Actions.AddInitializerToDecl(ThisDecl, Initializer.take(),
   1498                                    /*DirectInit=*/true, TypeContainsAuto);
   1499     }
   1500   } else if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
   1501     // Parse C++0x braced-init-list.
   1502     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   1503 
   1504     if (D.getCXXScopeSpec().isSet()) {
   1505       EnterScope(0);
   1506       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   1507     }
   1508 
   1509     ExprResult Init(ParseBraceInitializer());
   1510 
   1511     if (D.getCXXScopeSpec().isSet()) {
   1512       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   1513       ExitScope();
   1514     }
   1515 
   1516     if (Init.isInvalid()) {
   1517       Actions.ActOnInitializerError(ThisDecl);
   1518     } else
   1519       Actions.AddInitializerToDecl(ThisDecl, Init.take(),
   1520                                    /*DirectInit=*/true, TypeContainsAuto);
   1521 
   1522   } else {
   1523     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
   1524   }
   1525 
   1526   Actions.FinalizeDeclaration(ThisDecl);
   1527 
   1528   return ThisDecl;
   1529 }
   1530 
   1531 /// ParseSpecifierQualifierList
   1532 ///        specifier-qualifier-list:
   1533 ///          type-specifier specifier-qualifier-list[opt]
   1534 ///          type-qualifier specifier-qualifier-list[opt]
   1535 /// [GNU]    attributes     specifier-qualifier-list[opt]
   1536 ///
   1537 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
   1538                                          DeclSpecContext DSC) {
   1539   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
   1540   /// parse declaration-specifiers and complain about extra stuff.
   1541   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
   1542   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
   1543 
   1544   // Validate declspec for type-name.
   1545   unsigned Specs = DS.getParsedSpecifiers();
   1546   if (DSC == DSC_type_specifier && !DS.hasTypeSpecifier()) {
   1547     Diag(Tok, diag::err_expected_type);
   1548     DS.SetTypeSpecError();
   1549   } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
   1550              !DS.hasAttributes()) {
   1551     Diag(Tok, diag::err_typename_requires_specqual);
   1552     if (!DS.hasTypeSpecifier())
   1553       DS.SetTypeSpecError();
   1554   }
   1555 
   1556   // Issue diagnostic and remove storage class if present.
   1557   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
   1558     if (DS.getStorageClassSpecLoc().isValid())
   1559       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
   1560     else
   1561       Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
   1562     DS.ClearStorageClassSpecs();
   1563   }
   1564 
   1565   // Issue diagnostic and remove function specfier if present.
   1566   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
   1567     if (DS.isInlineSpecified())
   1568       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
   1569     if (DS.isVirtualSpecified())
   1570       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
   1571     if (DS.isExplicitSpecified())
   1572       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
   1573     DS.ClearFunctionSpecs();
   1574   }
   1575 
   1576   // Issue diagnostic and remove constexpr specfier if present.
   1577   if (DS.isConstexprSpecified()) {
   1578     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
   1579     DS.ClearConstexprSpec();
   1580   }
   1581 }
   1582 
   1583 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
   1584 /// specified token is valid after the identifier in a declarator which
   1585 /// immediately follows the declspec.  For example, these things are valid:
   1586 ///
   1587 ///      int x   [             4];         // direct-declarator
   1588 ///      int x   (             int y);     // direct-declarator
   1589 ///  int(int x   )                         // direct-declarator
   1590 ///      int x   ;                         // simple-declaration
   1591 ///      int x   =             17;         // init-declarator-list
   1592 ///      int x   ,             y;          // init-declarator-list
   1593 ///      int x   __asm__       ("foo");    // init-declarator-list
   1594 ///      int x   :             4;          // struct-declarator
   1595 ///      int x   {             5};         // C++'0x unified initializers
   1596 ///
   1597 /// This is not, because 'x' does not immediately follow the declspec (though
   1598 /// ')' happens to be valid anyway).
   1599 ///    int (x)
   1600 ///
   1601 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
   1602   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
   1603          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
   1604          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
   1605 }
   1606 
   1607 
   1608 /// ParseImplicitInt - This method is called when we have an non-typename
   1609 /// identifier in a declspec (which normally terminates the decl spec) when
   1610 /// the declspec has no type specifier.  In this case, the declspec is either
   1611 /// malformed or is "implicit int" (in K&R and C89).
   1612 ///
   1613 /// This method handles diagnosing this prettily and returns false if the
   1614 /// declspec is done being processed.  If it recovers and thinks there may be
   1615 /// other pieces of declspec after it, it returns true.
   1616 ///
   1617 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
   1618                               const ParsedTemplateInfo &TemplateInfo,
   1619                               AccessSpecifier AS, DeclSpecContext DSC) {
   1620   assert(Tok.is(tok::identifier) && "should have identifier");
   1621 
   1622   SourceLocation Loc = Tok.getLocation();
   1623   // If we see an identifier that is not a type name, we normally would
   1624   // parse it as the identifer being declared.  However, when a typename
   1625   // is typo'd or the definition is not included, this will incorrectly
   1626   // parse the typename as the identifier name and fall over misparsing
   1627   // later parts of the diagnostic.
   1628   //
   1629   // As such, we try to do some look-ahead in cases where this would
   1630   // otherwise be an "implicit-int" case to see if this is invalid.  For
   1631   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
   1632   // an identifier with implicit int, we'd get a parse error because the
   1633   // next token is obviously invalid for a type.  Parse these as a case
   1634   // with an invalid type specifier.
   1635   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
   1636 
   1637   // Since we know that this either implicit int (which is rare) or an
   1638   // error, do lookahead to try to do better recovery. This never applies within
   1639   // a type specifier.
   1640   // FIXME: Don't bail out here in languages with no implicit int (like
   1641   // C++ with no -fms-extensions). This is much more likely to be an undeclared
   1642   // type or typo than a use of implicit int.
   1643   if (DSC != DSC_type_specifier &&
   1644       isValidAfterIdentifierInDeclarator(NextToken())) {
   1645     // If this token is valid for implicit int, e.g. "static x = 4", then
   1646     // we just avoid eating the identifier, so it will be parsed as the
   1647     // identifier in the declarator.
   1648     return false;
   1649   }
   1650 
   1651   // Otherwise, if we don't consume this token, we are going to emit an
   1652   // error anyway.  Try to recover from various common problems.  Check
   1653   // to see if this was a reference to a tag name without a tag specified.
   1654   // This is a common problem in C (saying 'foo' instead of 'struct foo').
   1655   //
   1656   // C++ doesn't need this, and isTagName doesn't take SS.
   1657   if (SS == 0) {
   1658     const char *TagName = 0, *FixitTagName = 0;
   1659     tok::TokenKind TagKind = tok::unknown;
   1660 
   1661     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
   1662       default: break;
   1663       case DeclSpec::TST_enum:
   1664         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
   1665       case DeclSpec::TST_union:
   1666         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
   1667       case DeclSpec::TST_struct:
   1668         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
   1669       case DeclSpec::TST_class:
   1670         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
   1671     }
   1672 
   1673     if (TagName) {
   1674       Diag(Loc, diag::err_use_of_tag_name_without_tag)
   1675         << Tok.getIdentifierInfo() << TagName << getLangOpts().CPlusPlus
   1676         << FixItHint::CreateInsertion(Tok.getLocation(),FixitTagName);
   1677 
   1678       // Parse this as a tag as if the missing tag were present.
   1679       if (TagKind == tok::kw_enum)
   1680         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
   1681       else
   1682         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
   1683                             /*EnteringContext*/ false, DSC_normal);
   1684       return true;
   1685     }
   1686   }
   1687 
   1688   // This is almost certainly an invalid type name. Let the action emit a
   1689   // diagnostic and attempt to recover.
   1690   ParsedType T;
   1691   if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
   1692                                       getCurScope(), SS, T)) {
   1693     // The action emitted a diagnostic, so we don't have to.
   1694     if (T) {
   1695       // The action has suggested that the type T could be used. Set that as
   1696       // the type in the declaration specifiers, consume the would-be type
   1697       // name token, and we're done.
   1698       const char *PrevSpec;
   1699       unsigned DiagID;
   1700       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
   1701       DS.SetRangeEnd(Tok.getLocation());
   1702       ConsumeToken();
   1703 
   1704       // There may be other declaration specifiers after this.
   1705       return true;
   1706     }
   1707 
   1708     // Fall through; the action had no suggestion for us.
   1709   } else {
   1710     // The action did not emit a diagnostic, so emit one now.
   1711     SourceRange R;
   1712     if (SS) R = SS->getRange();
   1713     Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
   1714   }
   1715 
   1716   // Mark this as an error.
   1717   DS.SetTypeSpecError();
   1718   DS.SetRangeEnd(Tok.getLocation());
   1719   ConsumeToken();
   1720 
   1721   // TODO: Could inject an invalid typedef decl in an enclosing scope to
   1722   // avoid rippling error messages on subsequent uses of the same type,
   1723   // could be useful if #include was forgotten.
   1724   return false;
   1725 }
   1726 
   1727 /// \brief Determine the declaration specifier context from the declarator
   1728 /// context.
   1729 ///
   1730 /// \param Context the declarator context, which is one of the
   1731 /// Declarator::TheContext enumerator values.
   1732 Parser::DeclSpecContext
   1733 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
   1734   if (Context == Declarator::MemberContext)
   1735     return DSC_class;
   1736   if (Context == Declarator::FileContext)
   1737     return DSC_top_level;
   1738   if (Context == Declarator::TrailingReturnContext)
   1739     return DSC_trailing;
   1740   return DSC_normal;
   1741 }
   1742 
   1743 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
   1744 ///
   1745 /// FIXME: Simply returns an alignof() expression if the argument is a
   1746 /// type. Ideally, the type should be propagated directly into Sema.
   1747 ///
   1748 /// [C11]   type-id
   1749 /// [C11]   constant-expression
   1750 /// [C++0x] type-id ...[opt]
   1751 /// [C++0x] assignment-expression ...[opt]
   1752 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
   1753                                       SourceLocation &EllipsisLoc) {
   1754   ExprResult ER;
   1755   if (isTypeIdInParens()) {
   1756     SourceLocation TypeLoc = Tok.getLocation();
   1757     ParsedType Ty = ParseTypeName().get();
   1758     SourceRange TypeRange(Start, Tok.getLocation());
   1759     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
   1760                                                Ty.getAsOpaquePtr(), TypeRange);
   1761   } else
   1762     ER = ParseConstantExpression();
   1763 
   1764   if (getLangOpts().CPlusPlus0x && Tok.is(tok::ellipsis))
   1765     EllipsisLoc = ConsumeToken();
   1766 
   1767   return ER;
   1768 }
   1769 
   1770 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
   1771 /// attribute to Attrs.
   1772 ///
   1773 /// alignment-specifier:
   1774 /// [C11]   '_Alignas' '(' type-id ')'
   1775 /// [C11]   '_Alignas' '(' constant-expression ')'
   1776 /// [C++0x] 'alignas' '(' type-id ...[opt] ')'
   1777 /// [C++0x] 'alignas' '(' assignment-expression ...[opt] ')'
   1778 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
   1779                                      SourceLocation *endLoc) {
   1780   assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
   1781          "Not an alignment-specifier!");
   1782 
   1783   SourceLocation KWLoc = Tok.getLocation();
   1784   ConsumeToken();
   1785 
   1786   BalancedDelimiterTracker T(*this, tok::l_paren);
   1787   if (T.expectAndConsume(diag::err_expected_lparen))
   1788     return;
   1789 
   1790   SourceLocation EllipsisLoc;
   1791   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
   1792   if (ArgExpr.isInvalid()) {
   1793     SkipUntil(tok::r_paren);
   1794     return;
   1795   }
   1796 
   1797   T.consumeClose();
   1798   if (endLoc)
   1799     *endLoc = T.getCloseLocation();
   1800 
   1801   // FIXME: Handle pack-expansions here.
   1802   if (EllipsisLoc.isValid()) {
   1803     Diag(EllipsisLoc, diag::err_alignas_pack_exp_unsupported);
   1804     return;
   1805   }
   1806 
   1807   ExprVector ArgExprs(Actions);
   1808   ArgExprs.push_back(ArgExpr.release());
   1809   Attrs.addNew(PP.getIdentifierInfo("aligned"), KWLoc, 0, KWLoc,
   1810                0, T.getOpenLocation(), ArgExprs.take(), 1, false, true);
   1811 }
   1812 
   1813 /// ParseDeclarationSpecifiers
   1814 ///       declaration-specifiers: [C99 6.7]
   1815 ///         storage-class-specifier declaration-specifiers[opt]
   1816 ///         type-specifier declaration-specifiers[opt]
   1817 /// [C99]   function-specifier declaration-specifiers[opt]
   1818 /// [C11]   alignment-specifier declaration-specifiers[opt]
   1819 /// [GNU]   attributes declaration-specifiers[opt]
   1820 /// [Clang] '__module_private__' declaration-specifiers[opt]
   1821 ///
   1822 ///       storage-class-specifier: [C99 6.7.1]
   1823 ///         'typedef'
   1824 ///         'extern'
   1825 ///         'static'
   1826 ///         'auto'
   1827 ///         'register'
   1828 /// [C++]   'mutable'
   1829 /// [GNU]   '__thread'
   1830 ///       function-specifier: [C99 6.7.4]
   1831 /// [C99]   'inline'
   1832 /// [C++]   'virtual'
   1833 /// [C++]   'explicit'
   1834 /// [OpenCL] '__kernel'
   1835 ///       'friend': [C++ dcl.friend]
   1836 ///       'constexpr': [C++0x dcl.constexpr]
   1837 
   1838 ///
   1839 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
   1840                                         const ParsedTemplateInfo &TemplateInfo,
   1841                                         AccessSpecifier AS,
   1842                                         DeclSpecContext DSContext,
   1843                                         LateParsedAttrList *LateAttrs) {
   1844   if (DS.getSourceRange().isInvalid()) {
   1845     DS.SetRangeStart(Tok.getLocation());
   1846     DS.SetRangeEnd(Tok.getLocation());
   1847   }
   1848 
   1849   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
   1850   while (1) {
   1851     bool isInvalid = false;
   1852     const char *PrevSpec = 0;
   1853     unsigned DiagID = 0;
   1854 
   1855     SourceLocation Loc = Tok.getLocation();
   1856 
   1857     switch (Tok.getKind()) {
   1858     default:
   1859     DoneWithDeclSpec:
   1860       // [C++0x] decl-specifier-seq: decl-specifier attribute-specifier-seq[opt]
   1861       MaybeParseCXX0XAttributes(DS.getAttributes());
   1862 
   1863       // If this is not a declaration specifier token, we're done reading decl
   1864       // specifiers.  First verify that DeclSpec's are consistent.
   1865       DS.Finish(Diags, PP);
   1866       return;
   1867 
   1868     case tok::code_completion: {
   1869       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
   1870       if (DS.hasTypeSpecifier()) {
   1871         bool AllowNonIdentifiers
   1872           = (getCurScope()->getFlags() & (Scope::ControlScope |
   1873                                           Scope::BlockScope |
   1874                                           Scope::TemplateParamScope |
   1875                                           Scope::FunctionPrototypeScope |
   1876                                           Scope::AtCatchScope)) == 0;
   1877         bool AllowNestedNameSpecifiers
   1878           = DSContext == DSC_top_level ||
   1879             (DSContext == DSC_class && DS.isFriendSpecified());
   1880 
   1881         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
   1882                                      AllowNonIdentifiers,
   1883                                      AllowNestedNameSpecifiers);
   1884         return cutOffParsing();
   1885       }
   1886 
   1887       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
   1888         CCC = Sema::PCC_LocalDeclarationSpecifiers;
   1889       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
   1890         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
   1891                                     : Sema::PCC_Template;
   1892       else if (DSContext == DSC_class)
   1893         CCC = Sema::PCC_Class;
   1894       else if (CurParsedObjCImpl)
   1895         CCC = Sema::PCC_ObjCImplementation;
   1896 
   1897       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
   1898       return cutOffParsing();
   1899     }
   1900 
   1901     case tok::coloncolon: // ::foo::bar
   1902       // C++ scope specifier.  Annotate and loop, or bail out on error.
   1903       if (TryAnnotateCXXScopeToken(true)) {
   1904         if (!DS.hasTypeSpecifier())
   1905           DS.SetTypeSpecError();
   1906         goto DoneWithDeclSpec;
   1907       }
   1908       if (Tok.is(tok::coloncolon)) // ::new or ::delete
   1909         goto DoneWithDeclSpec;
   1910       continue;
   1911 
   1912     case tok::annot_cxxscope: {
   1913       if (DS.hasTypeSpecifier())
   1914         goto DoneWithDeclSpec;
   1915 
   1916       CXXScopeSpec SS;
   1917       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
   1918                                                    Tok.getAnnotationRange(),
   1919                                                    SS);
   1920 
   1921       // We are looking for a qualified typename.
   1922       Token Next = NextToken();
   1923       if (Next.is(tok::annot_template_id) &&
   1924           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
   1925             ->Kind == TNK_Type_template) {
   1926         // We have a qualified template-id, e.g., N::A<int>
   1927 
   1928         // C++ [class.qual]p2:
   1929         //   In a lookup in which the constructor is an acceptable lookup
   1930         //   result and the nested-name-specifier nominates a class C:
   1931         //
   1932         //     - if the name specified after the
   1933         //       nested-name-specifier, when looked up in C, is the
   1934         //       injected-class-name of C (Clause 9), or
   1935         //
   1936         //     - if the name specified after the nested-name-specifier
   1937         //       is the same as the identifier or the
   1938         //       simple-template-id's template-name in the last
   1939         //       component of the nested-name-specifier,
   1940         //
   1941         //   the name is instead considered to name the constructor of
   1942         //   class C.
   1943         //
   1944         // Thus, if the template-name is actually the constructor
   1945         // name, then the code is ill-formed; this interpretation is
   1946         // reinforced by the NAD status of core issue 635.
   1947         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
   1948         if ((DSContext == DSC_top_level ||
   1949              (DSContext == DSC_class && DS.isFriendSpecified())) &&
   1950             TemplateId->Name &&
   1951             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
   1952           if (isConstructorDeclarator()) {
   1953             // The user meant this to be an out-of-line constructor
   1954             // definition, but template arguments are not allowed
   1955             // there.  Just allow this as a constructor; we'll
   1956             // complain about it later.
   1957             goto DoneWithDeclSpec;
   1958           }
   1959 
   1960           // The user meant this to name a type, but it actually names
   1961           // a constructor with some extraneous template
   1962           // arguments. Complain, then parse it as a type as the user
   1963           // intended.
   1964           Diag(TemplateId->TemplateNameLoc,
   1965                diag::err_out_of_line_template_id_names_constructor)
   1966             << TemplateId->Name;
   1967         }
   1968 
   1969         DS.getTypeSpecScope() = SS;
   1970         ConsumeToken(); // The C++ scope.
   1971         assert(Tok.is(tok::annot_template_id) &&
   1972                "ParseOptionalCXXScopeSpecifier not working");
   1973         AnnotateTemplateIdTokenAsType();
   1974         continue;
   1975       }
   1976 
   1977       if (Next.is(tok::annot_typename)) {
   1978         DS.getTypeSpecScope() = SS;
   1979         ConsumeToken(); // The C++ scope.
   1980         if (Tok.getAnnotationValue()) {
   1981           ParsedType T = getTypeAnnotation(Tok);
   1982           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
   1983                                          Tok.getAnnotationEndLoc(),
   1984                                          PrevSpec, DiagID, T);
   1985         }
   1986         else
   1987           DS.SetTypeSpecError();
   1988         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   1989         ConsumeToken(); // The typename
   1990       }
   1991 
   1992       if (Next.isNot(tok::identifier))
   1993         goto DoneWithDeclSpec;
   1994 
   1995       // If we're in a context where the identifier could be a class name,
   1996       // check whether this is a constructor declaration.
   1997       if ((DSContext == DSC_top_level ||
   1998            (DSContext == DSC_class && DS.isFriendSpecified())) &&
   1999           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
   2000                                      &SS)) {
   2001         if (isConstructorDeclarator())
   2002           goto DoneWithDeclSpec;
   2003 
   2004         // As noted in C++ [class.qual]p2 (cited above), when the name
   2005         // of the class is qualified in a context where it could name
   2006         // a constructor, its a constructor name. However, we've
   2007         // looked at the declarator, and the user probably meant this
   2008         // to be a type. Complain that it isn't supposed to be treated
   2009         // as a type, then proceed to parse it as a type.
   2010         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
   2011           << Next.getIdentifierInfo();
   2012       }
   2013 
   2014       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
   2015                                                Next.getLocation(),
   2016                                                getCurScope(), &SS,
   2017                                                false, false, ParsedType(),
   2018                                                /*IsCtorOrDtorName=*/false,
   2019                                                /*NonTrivialSourceInfo=*/true);
   2020 
   2021       // If the referenced identifier is not a type, then this declspec is
   2022       // erroneous: We already checked about that it has no type specifier, and
   2023       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
   2024       // typename.
   2025       if (TypeRep == 0) {
   2026         ConsumeToken();   // Eat the scope spec so the identifier is current.
   2027         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext)) continue;
   2028         goto DoneWithDeclSpec;
   2029       }
   2030 
   2031       DS.getTypeSpecScope() = SS;
   2032       ConsumeToken(); // The C++ scope.
   2033 
   2034       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2035                                      DiagID, TypeRep);
   2036       if (isInvalid)
   2037         break;
   2038 
   2039       DS.SetRangeEnd(Tok.getLocation());
   2040       ConsumeToken(); // The typename.
   2041 
   2042       continue;
   2043     }
   2044 
   2045     case tok::annot_typename: {
   2046       if (Tok.getAnnotationValue()) {
   2047         ParsedType T = getTypeAnnotation(Tok);
   2048         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2049                                        DiagID, T);
   2050       } else
   2051         DS.SetTypeSpecError();
   2052 
   2053       if (isInvalid)
   2054         break;
   2055 
   2056       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   2057       ConsumeToken(); // The typename
   2058 
   2059       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
   2060       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
   2061       // Objective-C interface.
   2062       if (Tok.is(tok::less) && getLangOpts().ObjC1)
   2063         ParseObjCProtocolQualifiers(DS);
   2064 
   2065       continue;
   2066     }
   2067 
   2068     case tok::kw___is_signed:
   2069       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
   2070       // typically treats it as a trait. If we see __is_signed as it appears
   2071       // in libstdc++, e.g.,
   2072       //
   2073       //   static const bool __is_signed;
   2074       //
   2075       // then treat __is_signed as an identifier rather than as a keyword.
   2076       if (DS.getTypeSpecType() == TST_bool &&
   2077           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
   2078           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
   2079         Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
   2080         Tok.setKind(tok::identifier);
   2081       }
   2082 
   2083       // We're done with the declaration-specifiers.
   2084       goto DoneWithDeclSpec;
   2085 
   2086       // typedef-name
   2087     case tok::kw_decltype:
   2088     case tok::identifier: {
   2089       // In C++, check to see if this is a scope specifier like foo::bar::, if
   2090       // so handle it as such.  This is important for ctor parsing.
   2091       if (getLangOpts().CPlusPlus) {
   2092         if (TryAnnotateCXXScopeToken(true)) {
   2093           if (!DS.hasTypeSpecifier())
   2094             DS.SetTypeSpecError();
   2095           goto DoneWithDeclSpec;
   2096         }
   2097         if (!Tok.is(tok::identifier))
   2098           continue;
   2099       }
   2100 
   2101       // This identifier can only be a typedef name if we haven't already seen
   2102       // a type-specifier.  Without this check we misparse:
   2103       //  typedef int X; struct Y { short X; };  as 'short int'.
   2104       if (DS.hasTypeSpecifier())
   2105         goto DoneWithDeclSpec;
   2106 
   2107       // Check for need to substitute AltiVec keyword tokens.
   2108       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
   2109         break;
   2110 
   2111       ParsedType TypeRep =
   2112         Actions.getTypeName(*Tok.getIdentifierInfo(),
   2113                             Tok.getLocation(), getCurScope());
   2114 
   2115       // If this is not a typedef name, don't parse it as part of the declspec,
   2116       // it must be an implicit int or an error.
   2117       if (!TypeRep) {
   2118         if (ParseImplicitInt(DS, 0, TemplateInfo, AS, DSContext)) continue;
   2119         goto DoneWithDeclSpec;
   2120       }
   2121 
   2122       // If we're in a context where the identifier could be a class name,
   2123       // check whether this is a constructor declaration.
   2124       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   2125           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
   2126           isConstructorDeclarator())
   2127         goto DoneWithDeclSpec;
   2128 
   2129       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2130                                      DiagID, TypeRep);
   2131       if (isInvalid)
   2132         break;
   2133 
   2134       DS.SetRangeEnd(Tok.getLocation());
   2135       ConsumeToken(); // The identifier
   2136 
   2137       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
   2138       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
   2139       // Objective-C interface.
   2140       if (Tok.is(tok::less) && getLangOpts().ObjC1)
   2141         ParseObjCProtocolQualifiers(DS);
   2142 
   2143       // Need to support trailing type qualifiers (e.g. "id<p> const").
   2144       // If a type specifier follows, it will be diagnosed elsewhere.
   2145       continue;
   2146     }
   2147 
   2148       // type-name
   2149     case tok::annot_template_id: {
   2150       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   2151       if (TemplateId->Kind != TNK_Type_template) {
   2152         // This template-id does not refer to a type name, so we're
   2153         // done with the type-specifiers.
   2154         goto DoneWithDeclSpec;
   2155       }
   2156 
   2157       // If we're in a context where the template-id could be a
   2158       // constructor name or specialization, check whether this is a
   2159       // constructor declaration.
   2160       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   2161           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
   2162           isConstructorDeclarator())
   2163         goto DoneWithDeclSpec;
   2164 
   2165       // Turn the template-id annotation token into a type annotation
   2166       // token, then try again to parse it as a type-specifier.
   2167       AnnotateTemplateIdTokenAsType();
   2168       continue;
   2169     }
   2170 
   2171     // GNU attributes support.
   2172     case tok::kw___attribute:
   2173       ParseGNUAttributes(DS.getAttributes(), 0, LateAttrs);
   2174       continue;
   2175 
   2176     // Microsoft declspec support.
   2177     case tok::kw___declspec:
   2178       ParseMicrosoftDeclSpec(DS.getAttributes());
   2179       continue;
   2180 
   2181     // Microsoft single token adornments.
   2182     case tok::kw___forceinline:
   2183       // FIXME: Add handling here!
   2184       break;
   2185 
   2186     case tok::kw___ptr64:
   2187     case tok::kw___ptr32:
   2188     case tok::kw___w64:
   2189     case tok::kw___cdecl:
   2190     case tok::kw___stdcall:
   2191     case tok::kw___fastcall:
   2192     case tok::kw___thiscall:
   2193     case tok::kw___unaligned:
   2194       ParseMicrosoftTypeAttributes(DS.getAttributes());
   2195       continue;
   2196 
   2197     // Borland single token adornments.
   2198     case tok::kw___pascal:
   2199       ParseBorlandTypeAttributes(DS.getAttributes());
   2200       continue;
   2201 
   2202     // OpenCL single token adornments.
   2203     case tok::kw___kernel:
   2204       ParseOpenCLAttributes(DS.getAttributes());
   2205       continue;
   2206 
   2207     // storage-class-specifier
   2208     case tok::kw_typedef:
   2209       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
   2210                                          PrevSpec, DiagID);
   2211       break;
   2212     case tok::kw_extern:
   2213       if (DS.isThreadSpecified())
   2214         Diag(Tok, diag::ext_thread_before) << "extern";
   2215       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
   2216                                          PrevSpec, DiagID);
   2217       break;
   2218     case tok::kw___private_extern__:
   2219       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
   2220                                          Loc, PrevSpec, DiagID);
   2221       break;
   2222     case tok::kw_static:
   2223       if (DS.isThreadSpecified())
   2224         Diag(Tok, diag::ext_thread_before) << "static";
   2225       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
   2226                                          PrevSpec, DiagID);
   2227       break;
   2228     case tok::kw_auto:
   2229       if (getLangOpts().CPlusPlus0x) {
   2230         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
   2231           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   2232                                              PrevSpec, DiagID);
   2233           if (!isInvalid)
   2234             Diag(Tok, diag::ext_auto_storage_class)
   2235               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   2236         } else
   2237           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
   2238                                          DiagID);
   2239       } else
   2240         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   2241                                            PrevSpec, DiagID);
   2242       break;
   2243     case tok::kw_register:
   2244       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
   2245                                          PrevSpec, DiagID);
   2246       break;
   2247     case tok::kw_mutable:
   2248       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
   2249                                          PrevSpec, DiagID);
   2250       break;
   2251     case tok::kw___thread:
   2252       isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
   2253       break;
   2254 
   2255     // function-specifier
   2256     case tok::kw_inline:
   2257       isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
   2258       break;
   2259     case tok::kw_virtual:
   2260       isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
   2261       break;
   2262     case tok::kw_explicit:
   2263       isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
   2264       break;
   2265 
   2266     // alignment-specifier
   2267     case tok::kw__Alignas:
   2268       if (!getLangOpts().C11)
   2269         Diag(Tok, diag::ext_c11_alignas);
   2270       ParseAlignmentSpecifier(DS.getAttributes());
   2271       continue;
   2272 
   2273     // friend
   2274     case tok::kw_friend:
   2275       if (DSContext == DSC_class)
   2276         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
   2277       else {
   2278         PrevSpec = ""; // not actually used by the diagnostic
   2279         DiagID = diag::err_friend_invalid_in_context;
   2280         isInvalid = true;
   2281       }
   2282       break;
   2283 
   2284     // Modules
   2285     case tok::kw___module_private__:
   2286       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
   2287       break;
   2288 
   2289     // constexpr
   2290     case tok::kw_constexpr:
   2291       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
   2292       break;
   2293 
   2294     // type-specifier
   2295     case tok::kw_short:
   2296       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
   2297                                       DiagID);
   2298       break;
   2299     case tok::kw_long:
   2300       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
   2301         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
   2302                                         DiagID);
   2303       else
   2304         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   2305                                         DiagID);
   2306       break;
   2307     case tok::kw___int64:
   2308         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   2309                                         DiagID);
   2310       break;
   2311     case tok::kw_signed:
   2312       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
   2313                                      DiagID);
   2314       break;
   2315     case tok::kw_unsigned:
   2316       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
   2317                                      DiagID);
   2318       break;
   2319     case tok::kw__Complex:
   2320       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
   2321                                         DiagID);
   2322       break;
   2323     case tok::kw__Imaginary:
   2324       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
   2325                                         DiagID);
   2326       break;
   2327     case tok::kw_void:
   2328       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
   2329                                      DiagID);
   2330       break;
   2331     case tok::kw_char:
   2332       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
   2333                                      DiagID);
   2334       break;
   2335     case tok::kw_int:
   2336       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
   2337                                      DiagID);
   2338       break;
   2339     case tok::kw___int128:
   2340       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
   2341                                      DiagID);
   2342       break;
   2343     case tok::kw_half:
   2344       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
   2345                                      DiagID);
   2346       break;
   2347     case tok::kw_float:
   2348       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
   2349                                      DiagID);
   2350       break;
   2351     case tok::kw_double:
   2352       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
   2353                                      DiagID);
   2354       break;
   2355     case tok::kw_wchar_t:
   2356       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
   2357                                      DiagID);
   2358       break;
   2359     case tok::kw_char16_t:
   2360       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
   2361                                      DiagID);
   2362       break;
   2363     case tok::kw_char32_t:
   2364       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
   2365                                      DiagID);
   2366       break;
   2367     case tok::kw_bool:
   2368     case tok::kw__Bool:
   2369       if (Tok.is(tok::kw_bool) &&
   2370           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
   2371           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   2372         PrevSpec = ""; // Not used by the diagnostic.
   2373         DiagID = diag::err_bool_redeclaration;
   2374         // For better error recovery.
   2375         Tok.setKind(tok::identifier);
   2376         isInvalid = true;
   2377       } else {
   2378         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
   2379                                        DiagID);
   2380       }
   2381       break;
   2382     case tok::kw__Decimal32:
   2383       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
   2384                                      DiagID);
   2385       break;
   2386     case tok::kw__Decimal64:
   2387       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
   2388                                      DiagID);
   2389       break;
   2390     case tok::kw__Decimal128:
   2391       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
   2392                                      DiagID);
   2393       break;
   2394     case tok::kw___vector:
   2395       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
   2396       break;
   2397     case tok::kw___pixel:
   2398       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
   2399       break;
   2400     case tok::kw___unknown_anytype:
   2401       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
   2402                                      PrevSpec, DiagID);
   2403       break;
   2404 
   2405     // class-specifier:
   2406     case tok::kw_class:
   2407     case tok::kw_struct:
   2408     case tok::kw_union: {
   2409       tok::TokenKind Kind = Tok.getKind();
   2410       ConsumeToken();
   2411       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
   2412                           EnteringContext, DSContext);
   2413       continue;
   2414     }
   2415 
   2416     // enum-specifier:
   2417     case tok::kw_enum:
   2418       ConsumeToken();
   2419       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
   2420       continue;
   2421 
   2422     // cv-qualifier:
   2423     case tok::kw_const:
   2424       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
   2425                                  getLangOpts());
   2426       break;
   2427     case tok::kw_volatile:
   2428       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   2429                                  getLangOpts());
   2430       break;
   2431     case tok::kw_restrict:
   2432       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   2433                                  getLangOpts());
   2434       break;
   2435 
   2436     // C++ typename-specifier:
   2437     case tok::kw_typename:
   2438       if (TryAnnotateTypeOrScopeToken()) {
   2439         DS.SetTypeSpecError();
   2440         goto DoneWithDeclSpec;
   2441       }
   2442       if (!Tok.is(tok::kw_typename))
   2443         continue;
   2444       break;
   2445 
   2446     // GNU typeof support.
   2447     case tok::kw_typeof:
   2448       ParseTypeofSpecifier(DS);
   2449       continue;
   2450 
   2451     case tok::annot_decltype:
   2452       ParseDecltypeSpecifier(DS);
   2453       continue;
   2454 
   2455     case tok::kw___underlying_type:
   2456       ParseUnderlyingTypeSpecifier(DS);
   2457       continue;
   2458 
   2459     case tok::kw__Atomic:
   2460       ParseAtomicSpecifier(DS);
   2461       continue;
   2462 
   2463     // OpenCL qualifiers:
   2464     case tok::kw_private:
   2465       if (!getLangOpts().OpenCL)
   2466         goto DoneWithDeclSpec;
   2467     case tok::kw___private:
   2468     case tok::kw___global:
   2469     case tok::kw___local:
   2470     case tok::kw___constant:
   2471     case tok::kw___read_only:
   2472     case tok::kw___write_only:
   2473     case tok::kw___read_write:
   2474       ParseOpenCLQualifiers(DS);
   2475       break;
   2476 
   2477     case tok::less:
   2478       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
   2479       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
   2480       // but we support it.
   2481       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
   2482         goto DoneWithDeclSpec;
   2483 
   2484       if (!ParseObjCProtocolQualifiers(DS))
   2485         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
   2486           << FixItHint::CreateInsertion(Loc, "id")
   2487           << SourceRange(Loc, DS.getSourceRange().getEnd());
   2488 
   2489       // Need to support trailing type qualifiers (e.g. "id<p> const").
   2490       // If a type specifier follows, it will be diagnosed elsewhere.
   2491       continue;
   2492     }
   2493     // If the specifier wasn't legal, issue a diagnostic.
   2494     if (isInvalid) {
   2495       assert(PrevSpec && "Method did not return previous specifier!");
   2496       assert(DiagID);
   2497 
   2498       if (DiagID == diag::ext_duplicate_declspec)
   2499         Diag(Tok, DiagID)
   2500           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
   2501       else
   2502         Diag(Tok, DiagID) << PrevSpec;
   2503     }
   2504 
   2505     DS.SetRangeEnd(Tok.getLocation());
   2506     if (DiagID != diag::err_bool_redeclaration)
   2507       ConsumeToken();
   2508   }
   2509 }
   2510 
   2511 /// ParseStructDeclaration - Parse a struct declaration without the terminating
   2512 /// semicolon.
   2513 ///
   2514 ///       struct-declaration:
   2515 ///         specifier-qualifier-list struct-declarator-list
   2516 /// [GNU]   __extension__ struct-declaration
   2517 /// [GNU]   specifier-qualifier-list
   2518 ///       struct-declarator-list:
   2519 ///         struct-declarator
   2520 ///         struct-declarator-list ',' struct-declarator
   2521 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
   2522 ///       struct-declarator:
   2523 ///         declarator
   2524 /// [GNU]   declarator attributes[opt]
   2525 ///         declarator[opt] ':' constant-expression
   2526 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
   2527 ///
   2528 void Parser::
   2529 ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
   2530 
   2531   if (Tok.is(tok::kw___extension__)) {
   2532     // __extension__ silences extension warnings in the subexpression.
   2533     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   2534     ConsumeToken();
   2535     return ParseStructDeclaration(DS, Fields);
   2536   }
   2537 
   2538   // Parse the common specifier-qualifiers-list piece.
   2539   ParseSpecifierQualifierList(DS);
   2540 
   2541   // If there are no declarators, this is a free-standing declaration
   2542   // specifier. Let the actions module cope with it.
   2543   if (Tok.is(tok::semi)) {
   2544     Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
   2545     return;
   2546   }
   2547 
   2548   // Read struct-declarators until we find the semicolon.
   2549   bool FirstDeclarator = true;
   2550   SourceLocation CommaLoc;
   2551   while (1) {
   2552     ParsingDeclRAIIObject PD(*this);
   2553     FieldDeclarator DeclaratorInfo(DS);
   2554     DeclaratorInfo.D.setCommaLoc(CommaLoc);
   2555 
   2556     // Attributes are only allowed here on successive declarators.
   2557     if (!FirstDeclarator)
   2558       MaybeParseGNUAttributes(DeclaratorInfo.D);
   2559 
   2560     /// struct-declarator: declarator
   2561     /// struct-declarator: declarator[opt] ':' constant-expression
   2562     if (Tok.isNot(tok::colon)) {
   2563       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
   2564       ColonProtectionRAIIObject X(*this);
   2565       ParseDeclarator(DeclaratorInfo.D);
   2566     }
   2567 
   2568     if (Tok.is(tok::colon)) {
   2569       ConsumeToken();
   2570       ExprResult Res(ParseConstantExpression());
   2571       if (Res.isInvalid())
   2572         SkipUntil(tok::semi, true, true);
   2573       else
   2574         DeclaratorInfo.BitfieldSize = Res.release();
   2575     }
   2576 
   2577     // If attributes exist after the declarator, parse them.
   2578     MaybeParseGNUAttributes(DeclaratorInfo.D);
   2579 
   2580     // We're done with this declarator;  invoke the callback.
   2581     Decl *D = Fields.invoke(DeclaratorInfo);
   2582     PD.complete(D);
   2583 
   2584     // If we don't have a comma, it is either the end of the list (a ';')
   2585     // or an error, bail out.
   2586     if (Tok.isNot(tok::comma))
   2587       return;
   2588 
   2589     // Consume the comma.
   2590     CommaLoc = ConsumeToken();
   2591 
   2592     FirstDeclarator = false;
   2593   }
   2594 }
   2595 
   2596 /// ParseStructUnionBody
   2597 ///       struct-contents:
   2598 ///         struct-declaration-list
   2599 /// [EXT]   empty
   2600 /// [GNU]   "struct-declaration-list" without terminatoring ';'
   2601 ///       struct-declaration-list:
   2602 ///         struct-declaration
   2603 ///         struct-declaration-list struct-declaration
   2604 /// [OBC]   '@' 'defs' '(' class-name ')'
   2605 ///
   2606 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
   2607                                   unsigned TagType, Decl *TagDecl) {
   2608   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
   2609                                       "parsing struct/union body");
   2610 
   2611   BalancedDelimiterTracker T(*this, tok::l_brace);
   2612   if (T.consumeOpen())
   2613     return;
   2614 
   2615   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
   2616   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
   2617 
   2618   // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
   2619   // C++.
   2620   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) {
   2621     Diag(Tok, diag::ext_empty_struct_union) << (TagType == TST_union);
   2622     Diag(Tok, diag::warn_empty_struct_union_compat) << (TagType == TST_union);
   2623   }
   2624 
   2625   SmallVector<Decl *, 32> FieldDecls;
   2626 
   2627   // While we still have something to read, read the declarations in the struct.
   2628   while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
   2629     // Each iteration of this loop reads one struct-declaration.
   2630 
   2631     // Check for extraneous top-level semicolon.
   2632     if (Tok.is(tok::semi)) {
   2633       Diag(Tok, diag::ext_extra_struct_semi)
   2634         << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
   2635         << FixItHint::CreateRemoval(Tok.getLocation());
   2636       ConsumeToken();
   2637       continue;
   2638     }
   2639 
   2640     // Parse all the comma separated declarators.
   2641     DeclSpec DS(AttrFactory);
   2642 
   2643     if (!Tok.is(tok::at)) {
   2644       struct CFieldCallback : FieldCallback {
   2645         Parser &P;
   2646         Decl *TagDecl;
   2647         SmallVectorImpl<Decl *> &FieldDecls;
   2648 
   2649         CFieldCallback(Parser &P, Decl *TagDecl,
   2650                        SmallVectorImpl<Decl *> &FieldDecls) :
   2651           P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
   2652 
   2653         virtual Decl *invoke(FieldDeclarator &FD) {
   2654           // Install the declarator into the current TagDecl.
   2655           Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
   2656                               FD.D.getDeclSpec().getSourceRange().getBegin(),
   2657                                                  FD.D, FD.BitfieldSize);
   2658           FieldDecls.push_back(Field);
   2659           return Field;
   2660         }
   2661       } Callback(*this, TagDecl, FieldDecls);
   2662 
   2663       ParseStructDeclaration(DS, Callback);
   2664     } else { // Handle @defs
   2665       ConsumeToken();
   2666       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
   2667         Diag(Tok, diag::err_unexpected_at);
   2668         SkipUntil(tok::semi, true);
   2669         continue;
   2670       }
   2671       ConsumeToken();
   2672       ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
   2673       if (!Tok.is(tok::identifier)) {
   2674         Diag(Tok, diag::err_expected_ident);
   2675         SkipUntil(tok::semi, true);
   2676         continue;
   2677       }
   2678       SmallVector<Decl *, 16> Fields;
   2679       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
   2680                         Tok.getIdentifierInfo(), Fields);
   2681       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
   2682       ConsumeToken();
   2683       ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
   2684     }
   2685 
   2686     if (Tok.is(tok::semi)) {
   2687       ConsumeToken();
   2688     } else if (Tok.is(tok::r_brace)) {
   2689       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
   2690       break;
   2691     } else {
   2692       ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
   2693       // Skip to end of block or statement to avoid ext-warning on extra ';'.
   2694       SkipUntil(tok::r_brace, true, true);
   2695       // If we stopped at a ';', eat it.
   2696       if (Tok.is(tok::semi)) ConsumeToken();
   2697     }
   2698   }
   2699 
   2700   T.consumeClose();
   2701 
   2702   ParsedAttributes attrs(AttrFactory);
   2703   // If attributes exist after struct contents, parse them.
   2704   MaybeParseGNUAttributes(attrs);
   2705 
   2706   Actions.ActOnFields(getCurScope(),
   2707                       RecordLoc, TagDecl, FieldDecls,
   2708                       T.getOpenLocation(), T.getCloseLocation(),
   2709                       attrs.getList());
   2710   StructScope.Exit();
   2711   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
   2712                                    T.getCloseLocation());
   2713 }
   2714 
   2715 /// ParseEnumSpecifier
   2716 ///       enum-specifier: [C99 6.7.2.2]
   2717 ///         'enum' identifier[opt] '{' enumerator-list '}'
   2718 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
   2719 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
   2720 ///                                                 '}' attributes[opt]
   2721 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
   2722 ///                                                 '}'
   2723 ///         'enum' identifier
   2724 /// [GNU]   'enum' attributes[opt] identifier
   2725 ///
   2726 /// [C++11] enum-head '{' enumerator-list[opt] '}'
   2727 /// [C++11] enum-head '{' enumerator-list ','  '}'
   2728 ///
   2729 ///       enum-head: [C++11]
   2730 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
   2731 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
   2732 ///             identifier enum-base[opt]
   2733 ///
   2734 ///       enum-key: [C++11]
   2735 ///         'enum'
   2736 ///         'enum' 'class'
   2737 ///         'enum' 'struct'
   2738 ///
   2739 ///       enum-base: [C++11]
   2740 ///         ':' type-specifier-seq
   2741 ///
   2742 /// [C++] elaborated-type-specifier:
   2743 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
   2744 ///
   2745 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
   2746                                 const ParsedTemplateInfo &TemplateInfo,
   2747                                 AccessSpecifier AS, DeclSpecContext DSC) {
   2748   // Parse the tag portion of this.
   2749   if (Tok.is(tok::code_completion)) {
   2750     // Code completion for an enum name.
   2751     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
   2752     return cutOffParsing();
   2753   }
   2754 
   2755   SourceLocation ScopedEnumKWLoc;
   2756   bool IsScopedUsingClassTag = false;
   2757 
   2758   if (getLangOpts().CPlusPlus0x &&
   2759       (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
   2760     Diag(Tok, diag::warn_cxx98_compat_scoped_enum);
   2761     IsScopedUsingClassTag = Tok.is(tok::kw_class);
   2762     ScopedEnumKWLoc = ConsumeToken();
   2763   }
   2764 
   2765   // C++11 [temp.explicit]p12: The usual access controls do not apply to names
   2766   // used to specify explicit instantiations. We extend this to also cover
   2767   // explicit specializations.
   2768   Sema::SuppressAccessChecksRAII SuppressAccess(Actions,
   2769     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
   2770     TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
   2771 
   2772   // If attributes exist after tag, parse them.
   2773   ParsedAttributes attrs(AttrFactory);
   2774   MaybeParseGNUAttributes(attrs);
   2775 
   2776   // If declspecs exist after tag, parse them.
   2777   while (Tok.is(tok::kw___declspec))
   2778     ParseMicrosoftDeclSpec(attrs);
   2779 
   2780   // Enum definitions should not be parsed in a trailing-return-type.
   2781   bool AllowDeclaration = DSC != DSC_trailing;
   2782 
   2783   bool AllowFixedUnderlyingType = AllowDeclaration &&
   2784     (getLangOpts().CPlusPlus0x || getLangOpts().MicrosoftExt ||
   2785      getLangOpts().ObjC2);
   2786 
   2787   CXXScopeSpec &SS = DS.getTypeSpecScope();
   2788   if (getLangOpts().CPlusPlus) {
   2789     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
   2790     // if a fixed underlying type is allowed.
   2791     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
   2792 
   2793     if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   2794                                        /*EnteringContext=*/false))
   2795       return;
   2796 
   2797     if (SS.isSet() && Tok.isNot(tok::identifier)) {
   2798       Diag(Tok, diag::err_expected_ident);
   2799       if (Tok.isNot(tok::l_brace)) {
   2800         // Has no name and is not a definition.
   2801         // Skip the rest of this declarator, up until the comma or semicolon.
   2802         SkipUntil(tok::comma, true);
   2803         return;
   2804       }
   2805     }
   2806   }
   2807 
   2808   // Must have either 'enum name' or 'enum {...}'.
   2809   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
   2810       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
   2811     Diag(Tok, diag::err_expected_ident_lbrace);
   2812 
   2813     // Skip the rest of this declarator, up until the comma or semicolon.
   2814     SkipUntil(tok::comma, true);
   2815     return;
   2816   }
   2817 
   2818   // If an identifier is present, consume and remember it.
   2819   IdentifierInfo *Name = 0;
   2820   SourceLocation NameLoc;
   2821   if (Tok.is(tok::identifier)) {
   2822     Name = Tok.getIdentifierInfo();
   2823     NameLoc = ConsumeToken();
   2824   }
   2825 
   2826   if (!Name && ScopedEnumKWLoc.isValid()) {
   2827     // C++0x 7.2p2: The optional identifier shall not be omitted in the
   2828     // declaration of a scoped enumeration.
   2829     Diag(Tok, diag::err_scoped_enum_missing_identifier);
   2830     ScopedEnumKWLoc = SourceLocation();
   2831     IsScopedUsingClassTag = false;
   2832   }
   2833 
   2834   // Stop suppressing access control now we've parsed the enum name.
   2835   SuppressAccess.done();
   2836 
   2837   TypeResult BaseType;
   2838 
   2839   // Parse the fixed underlying type.
   2840   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
   2841     bool PossibleBitfield = false;
   2842     if (getCurScope()->getFlags() & Scope::ClassScope) {
   2843       // If we're in class scope, this can either be an enum declaration with
   2844       // an underlying type, or a declaration of a bitfield member. We try to
   2845       // use a simple disambiguation scheme first to catch the common cases
   2846       // (integer literal, sizeof); if it's still ambiguous, we then consider
   2847       // anything that's a simple-type-specifier followed by '(' as an
   2848       // expression. This suffices because function types are not valid
   2849       // underlying types anyway.
   2850       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
   2851       // If the next token starts an expression, we know we're parsing a
   2852       // bit-field. This is the common case.
   2853       if (TPR == TPResult::True())
   2854         PossibleBitfield = true;
   2855       // If the next token starts a type-specifier-seq, it may be either a
   2856       // a fixed underlying type or the start of a function-style cast in C++;
   2857       // lookahead one more token to see if it's obvious that we have a
   2858       // fixed underlying type.
   2859       else if (TPR == TPResult::False() &&
   2860                GetLookAheadToken(2).getKind() == tok::semi) {
   2861         // Consume the ':'.
   2862         ConsumeToken();
   2863       } else {
   2864         // We have the start of a type-specifier-seq, so we have to perform
   2865         // tentative parsing to determine whether we have an expression or a
   2866         // type.
   2867         TentativeParsingAction TPA(*this);
   2868 
   2869         // Consume the ':'.
   2870         ConsumeToken();
   2871 
   2872         // If we see a type specifier followed by an open-brace, we have an
   2873         // ambiguity between an underlying type and a C++11 braced
   2874         // function-style cast. Resolve this by always treating it as an
   2875         // underlying type.
   2876         // FIXME: The standard is not entirely clear on how to disambiguate in
   2877         // this case.
   2878         if ((getLangOpts().CPlusPlus &&
   2879              isCXXDeclarationSpecifier(TPResult::True()) != TPResult::True()) ||
   2880             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
   2881           // We'll parse this as a bitfield later.
   2882           PossibleBitfield = true;
   2883           TPA.Revert();
   2884         } else {
   2885           // We have a type-specifier-seq.
   2886           TPA.Commit();
   2887         }
   2888       }
   2889     } else {
   2890       // Consume the ':'.
   2891       ConsumeToken();
   2892     }
   2893 
   2894     if (!PossibleBitfield) {
   2895       SourceRange Range;
   2896       BaseType = ParseTypeName(&Range);
   2897 
   2898       if (!getLangOpts().CPlusPlus0x && !getLangOpts().ObjC2)
   2899         Diag(StartLoc, diag::ext_ms_enum_fixed_underlying_type)
   2900           << Range;
   2901       if (getLangOpts().CPlusPlus0x)
   2902         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
   2903     }
   2904   }
   2905 
   2906   // There are four options here.  If we have 'friend enum foo;' then this is a
   2907   // friend declaration, and cannot have an accompanying definition. If we have
   2908   // 'enum foo;', then this is a forward declaration.  If we have
   2909   // 'enum foo {...' then this is a definition. Otherwise we have something
   2910   // like 'enum foo xyz', a reference.
   2911   //
   2912   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
   2913   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
   2914   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
   2915   //
   2916   Sema::TagUseKind TUK;
   2917   if (DS.isFriendSpecified())
   2918     TUK = Sema::TUK_Friend;
   2919   else if (!AllowDeclaration)
   2920     TUK = Sema::TUK_Reference;
   2921   else if (Tok.is(tok::l_brace))
   2922     TUK = Sema::TUK_Definition;
   2923   else if (Tok.is(tok::semi) && DSC != DSC_type_specifier)
   2924     TUK = Sema::TUK_Declaration;
   2925   else
   2926     TUK = Sema::TUK_Reference;
   2927 
   2928   MultiTemplateParamsArg TParams;
   2929   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
   2930       TUK != Sema::TUK_Reference) {
   2931     if (!getLangOpts().CPlusPlus0x || !SS.isSet()) {
   2932       // Skip the rest of this declarator, up until the comma or semicolon.
   2933       Diag(Tok, diag::err_enum_template);
   2934       SkipUntil(tok::comma, true);
   2935       return;
   2936     }
   2937 
   2938     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
   2939       // Enumerations can't be explicitly instantiated.
   2940       DS.SetTypeSpecError();
   2941       Diag(StartLoc, diag::err_explicit_instantiation_enum);
   2942       return;
   2943     }
   2944 
   2945     assert(TemplateInfo.TemplateParams && "no template parameters");
   2946     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
   2947                                      TemplateInfo.TemplateParams->size());
   2948   }
   2949 
   2950   if (!Name && TUK != Sema::TUK_Definition) {
   2951     Diag(Tok, diag::err_enumerator_unnamed_no_def);
   2952 
   2953     // Skip the rest of this declarator, up until the comma or semicolon.
   2954     SkipUntil(tok::comma, true);
   2955     return;
   2956   }
   2957 
   2958   bool Owned = false;
   2959   bool IsDependent = false;
   2960   const char *PrevSpec = 0;
   2961   unsigned DiagID;
   2962   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
   2963                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
   2964                                    AS, DS.getModulePrivateSpecLoc(), TParams,
   2965                                    Owned, IsDependent, ScopedEnumKWLoc,
   2966                                    IsScopedUsingClassTag, BaseType);
   2967 
   2968   if (IsDependent) {
   2969     // This enum has a dependent nested-name-specifier. Handle it as a
   2970     // dependent tag.
   2971     if (!Name) {
   2972       DS.SetTypeSpecError();
   2973       Diag(Tok, diag::err_expected_type_name_after_typename);
   2974       return;
   2975     }
   2976 
   2977     TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
   2978                                                 TUK, SS, Name, StartLoc,
   2979                                                 NameLoc);
   2980     if (Type.isInvalid()) {
   2981       DS.SetTypeSpecError();
   2982       return;
   2983     }
   2984 
   2985     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
   2986                            NameLoc.isValid() ? NameLoc : StartLoc,
   2987                            PrevSpec, DiagID, Type.get()))
   2988       Diag(StartLoc, DiagID) << PrevSpec;
   2989 
   2990     return;
   2991   }
   2992 
   2993   if (!TagDecl) {
   2994     // The action failed to produce an enumeration tag. If this is a
   2995     // definition, consume the entire definition.
   2996     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
   2997       ConsumeBrace();
   2998       SkipUntil(tok::r_brace);
   2999     }
   3000 
   3001     DS.SetTypeSpecError();
   3002     return;
   3003   }
   3004 
   3005   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
   3006     if (TUK == Sema::TUK_Friend) {
   3007       Diag(Tok, diag::err_friend_decl_defines_type)
   3008         << SourceRange(DS.getFriendSpecLoc());
   3009       ConsumeBrace();
   3010       SkipUntil(tok::r_brace);
   3011     } else {
   3012       ParseEnumBody(StartLoc, TagDecl);
   3013     }
   3014   }
   3015 
   3016   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
   3017                          NameLoc.isValid() ? NameLoc : StartLoc,
   3018                          PrevSpec, DiagID, TagDecl, Owned))
   3019     Diag(StartLoc, DiagID) << PrevSpec;
   3020 }
   3021 
   3022 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
   3023 ///       enumerator-list:
   3024 ///         enumerator
   3025 ///         enumerator-list ',' enumerator
   3026 ///       enumerator:
   3027 ///         enumeration-constant
   3028 ///         enumeration-constant '=' constant-expression
   3029 ///       enumeration-constant:
   3030 ///         identifier
   3031 ///
   3032 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
   3033   // Enter the scope of the enum body and start the definition.
   3034   ParseScope EnumScope(this, Scope::DeclScope);
   3035   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
   3036 
   3037   BalancedDelimiterTracker T(*this, tok::l_brace);
   3038   T.consumeOpen();
   3039 
   3040   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
   3041   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
   3042     Diag(Tok, diag::error_empty_enum);
   3043 
   3044   SmallVector<Decl *, 32> EnumConstantDecls;
   3045 
   3046   Decl *LastEnumConstDecl = 0;
   3047 
   3048   // Parse the enumerator-list.
   3049   while (Tok.is(tok::identifier)) {
   3050     IdentifierInfo *Ident = Tok.getIdentifierInfo();
   3051     SourceLocation IdentLoc = ConsumeToken();
   3052 
   3053     // If attributes exist after the enumerator, parse them.
   3054     ParsedAttributes attrs(AttrFactory);
   3055     MaybeParseGNUAttributes(attrs);
   3056 
   3057     SourceLocation EqualLoc;
   3058     ExprResult AssignedVal;
   3059     ParsingDeclRAIIObject PD(*this);
   3060 
   3061     if (Tok.is(tok::equal)) {
   3062       EqualLoc = ConsumeToken();
   3063       AssignedVal = ParseConstantExpression();
   3064       if (AssignedVal.isInvalid())
   3065         SkipUntil(tok::comma, tok::r_brace, true, true);
   3066     }
   3067 
   3068     // Install the enumerator constant into EnumDecl.
   3069     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
   3070                                                     LastEnumConstDecl,
   3071                                                     IdentLoc, Ident,
   3072                                                     attrs.getList(), EqualLoc,
   3073                                                     AssignedVal.release());
   3074     PD.complete(EnumConstDecl);
   3075 
   3076     EnumConstantDecls.push_back(EnumConstDecl);
   3077     LastEnumConstDecl = EnumConstDecl;
   3078 
   3079     if (Tok.is(tok::identifier)) {
   3080       // We're missing a comma between enumerators.
   3081       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
   3082       Diag(Loc, diag::err_enumerator_list_missing_comma)
   3083         << FixItHint::CreateInsertion(Loc, ", ");
   3084       continue;
   3085     }
   3086 
   3087     if (Tok.isNot(tok::comma))
   3088       break;
   3089     SourceLocation CommaLoc = ConsumeToken();
   3090 
   3091     if (Tok.isNot(tok::identifier)) {
   3092       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus0x)
   3093         Diag(CommaLoc, diag::ext_enumerator_list_comma)
   3094           << getLangOpts().CPlusPlus
   3095           << FixItHint::CreateRemoval(CommaLoc);
   3096       else if (getLangOpts().CPlusPlus0x)
   3097         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
   3098           << FixItHint::CreateRemoval(CommaLoc);
   3099     }
   3100   }
   3101 
   3102   // Eat the }.
   3103   T.consumeClose();
   3104 
   3105   // If attributes exist after the identifier list, parse them.
   3106   ParsedAttributes attrs(AttrFactory);
   3107   MaybeParseGNUAttributes(attrs);
   3108 
   3109   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
   3110                         EnumDecl, EnumConstantDecls.data(),
   3111                         EnumConstantDecls.size(), getCurScope(),
   3112                         attrs.getList());
   3113 
   3114   EnumScope.Exit();
   3115   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
   3116                                    T.getCloseLocation());
   3117 }
   3118 
   3119 /// isTypeSpecifierQualifier - Return true if the current token could be the
   3120 /// start of a type-qualifier-list.
   3121 bool Parser::isTypeQualifier() const {
   3122   switch (Tok.getKind()) {
   3123   default: return false;
   3124 
   3125     // type-qualifier only in OpenCL
   3126   case tok::kw_private:
   3127     return getLangOpts().OpenCL;
   3128 
   3129     // type-qualifier
   3130   case tok::kw_const:
   3131   case tok::kw_volatile:
   3132   case tok::kw_restrict:
   3133   case tok::kw___private:
   3134   case tok::kw___local:
   3135   case tok::kw___global:
   3136   case tok::kw___constant:
   3137   case tok::kw___read_only:
   3138   case tok::kw___read_write:
   3139   case tok::kw___write_only:
   3140     return true;
   3141   }
   3142 }
   3143 
   3144 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
   3145 /// is definitely a type-specifier.  Return false if it isn't part of a type
   3146 /// specifier or if we're not sure.
   3147 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
   3148   switch (Tok.getKind()) {
   3149   default: return false;
   3150     // type-specifiers
   3151   case tok::kw_short:
   3152   case tok::kw_long:
   3153   case tok::kw___int64:
   3154   case tok::kw___int128:
   3155   case tok::kw_signed:
   3156   case tok::kw_unsigned:
   3157   case tok::kw__Complex:
   3158   case tok::kw__Imaginary:
   3159   case tok::kw_void:
   3160   case tok::kw_char:
   3161   case tok::kw_wchar_t:
   3162   case tok::kw_char16_t:
   3163   case tok::kw_char32_t:
   3164   case tok::kw_int:
   3165   case tok::kw_half:
   3166   case tok::kw_float:
   3167   case tok::kw_double:
   3168   case tok::kw_bool:
   3169   case tok::kw__Bool:
   3170   case tok::kw__Decimal32:
   3171   case tok::kw__Decimal64:
   3172   case tok::kw__Decimal128:
   3173   case tok::kw___vector:
   3174 
   3175     // struct-or-union-specifier (C99) or class-specifier (C++)
   3176   case tok::kw_class:
   3177   case tok::kw_struct:
   3178   case tok::kw_union:
   3179     // enum-specifier
   3180   case tok::kw_enum:
   3181 
   3182     // typedef-name
   3183   case tok::annot_typename:
   3184     return true;
   3185   }
   3186 }
   3187 
   3188 /// isTypeSpecifierQualifier - Return true if the current token could be the
   3189 /// start of a specifier-qualifier-list.
   3190 bool Parser::isTypeSpecifierQualifier() {
   3191   switch (Tok.getKind()) {
   3192   default: return false;
   3193 
   3194   case tok::identifier:   // foo::bar
   3195     if (TryAltiVecVectorToken())
   3196       return true;
   3197     // Fall through.
   3198   case tok::kw_typename:  // typename T::type
   3199     // Annotate typenames and C++ scope specifiers.  If we get one, just
   3200     // recurse to handle whatever we get.
   3201     if (TryAnnotateTypeOrScopeToken())
   3202       return true;
   3203     if (Tok.is(tok::identifier))
   3204       return false;
   3205     return isTypeSpecifierQualifier();
   3206 
   3207   case tok::coloncolon:   // ::foo::bar
   3208     if (NextToken().is(tok::kw_new) ||    // ::new
   3209         NextToken().is(tok::kw_delete))   // ::delete
   3210       return false;
   3211 
   3212     if (TryAnnotateTypeOrScopeToken())
   3213       return true;
   3214     return isTypeSpecifierQualifier();
   3215 
   3216     // GNU attributes support.
   3217   case tok::kw___attribute:
   3218     // GNU typeof support.
   3219   case tok::kw_typeof:
   3220 
   3221     // type-specifiers
   3222   case tok::kw_short:
   3223   case tok::kw_long:
   3224   case tok::kw___int64:
   3225   case tok::kw___int128:
   3226   case tok::kw_signed:
   3227   case tok::kw_unsigned:
   3228   case tok::kw__Complex:
   3229   case tok::kw__Imaginary:
   3230   case tok::kw_void:
   3231   case tok::kw_char:
   3232   case tok::kw_wchar_t:
   3233   case tok::kw_char16_t:
   3234   case tok::kw_char32_t:
   3235   case tok::kw_int:
   3236   case tok::kw_half:
   3237   case tok::kw_float:
   3238   case tok::kw_double:
   3239   case tok::kw_bool:
   3240   case tok::kw__Bool:
   3241   case tok::kw__Decimal32:
   3242   case tok::kw__Decimal64:
   3243   case tok::kw__Decimal128:
   3244   case tok::kw___vector:
   3245 
   3246     // struct-or-union-specifier (C99) or class-specifier (C++)
   3247   case tok::kw_class:
   3248   case tok::kw_struct:
   3249   case tok::kw_union:
   3250     // enum-specifier
   3251   case tok::kw_enum:
   3252 
   3253     // type-qualifier
   3254   case tok::kw_const:
   3255   case tok::kw_volatile:
   3256   case tok::kw_restrict:
   3257 
   3258     // typedef-name
   3259   case tok::annot_typename:
   3260     return true;
   3261 
   3262     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   3263   case tok::less:
   3264     return getLangOpts().ObjC1;
   3265 
   3266   case tok::kw___cdecl:
   3267   case tok::kw___stdcall:
   3268   case tok::kw___fastcall:
   3269   case tok::kw___thiscall:
   3270   case tok::kw___w64:
   3271   case tok::kw___ptr64:
   3272   case tok::kw___ptr32:
   3273   case tok::kw___pascal:
   3274   case tok::kw___unaligned:
   3275 
   3276   case tok::kw___private:
   3277   case tok::kw___local:
   3278   case tok::kw___global:
   3279   case tok::kw___constant:
   3280   case tok::kw___read_only:
   3281   case tok::kw___read_write:
   3282   case tok::kw___write_only:
   3283 
   3284     return true;
   3285 
   3286   case tok::kw_private:
   3287     return getLangOpts().OpenCL;
   3288 
   3289   // C11 _Atomic()
   3290   case tok::kw__Atomic:
   3291     return true;
   3292   }
   3293 }
   3294 
   3295 /// isDeclarationSpecifier() - Return true if the current token is part of a
   3296 /// declaration specifier.
   3297 ///
   3298 /// \param DisambiguatingWithExpression True to indicate that the purpose of
   3299 /// this check is to disambiguate between an expression and a declaration.
   3300 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
   3301   switch (Tok.getKind()) {
   3302   default: return false;
   3303 
   3304   case tok::kw_private:
   3305     return getLangOpts().OpenCL;
   3306 
   3307   case tok::identifier:   // foo::bar
   3308     // Unfortunate hack to support "Class.factoryMethod" notation.
   3309     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
   3310       return false;
   3311     if (TryAltiVecVectorToken())
   3312       return true;
   3313     // Fall through.
   3314   case tok::kw_decltype: // decltype(T())::type
   3315   case tok::kw_typename: // typename T::type
   3316     // Annotate typenames and C++ scope specifiers.  If we get one, just
   3317     // recurse to handle whatever we get.
   3318     if (TryAnnotateTypeOrScopeToken())
   3319       return true;
   3320     if (Tok.is(tok::identifier))
   3321       return false;
   3322 
   3323     // If we're in Objective-C and we have an Objective-C class type followed
   3324     // by an identifier and then either ':' or ']', in a place where an
   3325     // expression is permitted, then this is probably a class message send
   3326     // missing the initial '['. In this case, we won't consider this to be
   3327     // the start of a declaration.
   3328     if (DisambiguatingWithExpression &&
   3329         isStartOfObjCClassMessageMissingOpenBracket())
   3330       return false;
   3331 
   3332     return isDeclarationSpecifier();
   3333 
   3334   case tok::coloncolon:   // ::foo::bar
   3335     if (NextToken().is(tok::kw_new) ||    // ::new
   3336         NextToken().is(tok::kw_delete))   // ::delete
   3337       return false;
   3338 
   3339     // Annotate typenames and C++ scope specifiers.  If we get one, just
   3340     // recurse to handle whatever we get.
   3341     if (TryAnnotateTypeOrScopeToken())
   3342       return true;
   3343     return isDeclarationSpecifier();
   3344 
   3345     // storage-class-specifier
   3346   case tok::kw_typedef:
   3347   case tok::kw_extern:
   3348   case tok::kw___private_extern__:
   3349   case tok::kw_static:
   3350   case tok::kw_auto:
   3351   case tok::kw_register:
   3352   case tok::kw___thread:
   3353 
   3354     // Modules
   3355   case tok::kw___module_private__:
   3356 
   3357     // type-specifiers
   3358   case tok::kw_short:
   3359   case tok::kw_long:
   3360   case tok::kw___int64:
   3361   case tok::kw___int128:
   3362   case tok::kw_signed:
   3363   case tok::kw_unsigned:
   3364   case tok::kw__Complex:
   3365   case tok::kw__Imaginary:
   3366   case tok::kw_void:
   3367   case tok::kw_char:
   3368   case tok::kw_wchar_t:
   3369   case tok::kw_char16_t:
   3370   case tok::kw_char32_t:
   3371 
   3372   case tok::kw_int:
   3373   case tok::kw_half:
   3374   case tok::kw_float:
   3375   case tok::kw_double:
   3376   case tok::kw_bool:
   3377   case tok::kw__Bool:
   3378   case tok::kw__Decimal32:
   3379   case tok::kw__Decimal64:
   3380   case tok::kw__Decimal128:
   3381   case tok::kw___vector:
   3382 
   3383     // struct-or-union-specifier (C99) or class-specifier (C++)
   3384   case tok::kw_class:
   3385   case tok::kw_struct:
   3386   case tok::kw_union:
   3387     // enum-specifier
   3388   case tok::kw_enum:
   3389 
   3390     // type-qualifier
   3391   case tok::kw_const:
   3392   case tok::kw_volatile:
   3393   case tok::kw_restrict:
   3394 
   3395     // function-specifier
   3396   case tok::kw_inline:
   3397   case tok::kw_virtual:
   3398   case tok::kw_explicit:
   3399 
   3400     // static_assert-declaration
   3401   case tok::kw__Static_assert:
   3402 
   3403     // GNU typeof support.
   3404   case tok::kw_typeof:
   3405 
   3406     // GNU attributes.
   3407   case tok::kw___attribute:
   3408     return true;
   3409 
   3410     // C++0x decltype.
   3411   case tok::annot_decltype:
   3412     return true;
   3413 
   3414     // C11 _Atomic()
   3415   case tok::kw__Atomic:
   3416     return true;
   3417 
   3418     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   3419   case tok::less:
   3420     return getLangOpts().ObjC1;
   3421 
   3422     // typedef-name
   3423   case tok::annot_typename:
   3424     return !DisambiguatingWithExpression ||
   3425            !isStartOfObjCClassMessageMissingOpenBracket();
   3426 
   3427   case tok::kw___declspec:
   3428   case tok::kw___cdecl:
   3429   case tok::kw___stdcall:
   3430   case tok::kw___fastcall:
   3431   case tok::kw___thiscall:
   3432   case tok::kw___w64:
   3433   case tok::kw___ptr64:
   3434   case tok::kw___ptr32:
   3435   case tok::kw___forceinline:
   3436   case tok::kw___pascal:
   3437   case tok::kw___unaligned:
   3438 
   3439   case tok::kw___private:
   3440   case tok::kw___local:
   3441   case tok::kw___global:
   3442   case tok::kw___constant:
   3443   case tok::kw___read_only:
   3444   case tok::kw___read_write:
   3445   case tok::kw___write_only:
   3446 
   3447     return true;
   3448   }
   3449 }
   3450 
   3451 bool Parser::isConstructorDeclarator() {
   3452   TentativeParsingAction TPA(*this);
   3453 
   3454   // Parse the C++ scope specifier.
   3455   CXXScopeSpec SS;
   3456   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
   3457                                      /*EnteringContext=*/true)) {
   3458     TPA.Revert();
   3459     return false;
   3460   }
   3461 
   3462   // Parse the constructor name.
   3463   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
   3464     // We already know that we have a constructor name; just consume
   3465     // the token.
   3466     ConsumeToken();
   3467   } else {
   3468     TPA.Revert();
   3469     return false;
   3470   }
   3471 
   3472   // Current class name must be followed by a left parenthesis.
   3473   if (Tok.isNot(tok::l_paren)) {
   3474     TPA.Revert();
   3475     return false;
   3476   }
   3477   ConsumeParen();
   3478 
   3479   // A right parenthesis, or ellipsis followed by a right parenthesis signals
   3480   // that we have a constructor.
   3481   if (Tok.is(tok::r_paren) ||
   3482       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
   3483     TPA.Revert();
   3484     return true;
   3485   }
   3486 
   3487   // If we need to, enter the specified scope.
   3488   DeclaratorScopeObj DeclScopeObj(*this, SS);
   3489   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
   3490     DeclScopeObj.EnterDeclaratorScope();
   3491 
   3492   // Optionally skip Microsoft attributes.
   3493   ParsedAttributes Attrs(AttrFactory);
   3494   MaybeParseMicrosoftAttributes(Attrs);
   3495 
   3496   // Check whether the next token(s) are part of a declaration
   3497   // specifier, in which case we have the start of a parameter and,
   3498   // therefore, we know that this is a constructor.
   3499   bool IsConstructor = false;
   3500   if (isDeclarationSpecifier())
   3501     IsConstructor = true;
   3502   else if (Tok.is(tok::identifier) ||
   3503            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
   3504     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
   3505     // This might be a parenthesized member name, but is more likely to
   3506     // be a constructor declaration with an invalid argument type. Keep
   3507     // looking.
   3508     if (Tok.is(tok::annot_cxxscope))
   3509       ConsumeToken();
   3510     ConsumeToken();
   3511 
   3512     // If this is not a constructor, we must be parsing a declarator,
   3513     // which must have one of the following syntactic forms (see the
   3514     // grammar extract at the start of ParseDirectDeclarator):
   3515     switch (Tok.getKind()) {
   3516     case tok::l_paren:
   3517       // C(X   (   int));
   3518     case tok::l_square:
   3519       // C(X   [   5]);
   3520       // C(X   [   [attribute]]);
   3521     case tok::coloncolon:
   3522       // C(X   ::   Y);
   3523       // C(X   ::   *p);
   3524     case tok::r_paren:
   3525       // C(X   )
   3526       // Assume this isn't a constructor, rather than assuming it's a
   3527       // constructor with an unnamed parameter of an ill-formed type.
   3528       break;
   3529 
   3530     default:
   3531       IsConstructor = true;
   3532       break;
   3533     }
   3534   }
   3535 
   3536   TPA.Revert();
   3537   return IsConstructor;
   3538 }
   3539 
   3540 /// ParseTypeQualifierListOpt
   3541 ///          type-qualifier-list: [C99 6.7.5]
   3542 ///            type-qualifier
   3543 /// [vendor]   attributes
   3544 ///              [ only if VendorAttributesAllowed=true ]
   3545 ///            type-qualifier-list type-qualifier
   3546 /// [vendor]   type-qualifier-list attributes
   3547 ///              [ only if VendorAttributesAllowed=true ]
   3548 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
   3549 ///              [ only if CXX0XAttributesAllowed=true ]
   3550 /// Note: vendor can be GNU, MS, etc.
   3551 ///
   3552 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
   3553                                        bool VendorAttributesAllowed,
   3554                                        bool CXX11AttributesAllowed) {
   3555   if (getLangOpts().CPlusPlus0x && CXX11AttributesAllowed &&
   3556       isCXX11AttributeSpecifier()) {
   3557     ParsedAttributesWithRange attrs(AttrFactory);
   3558     ParseCXX11Attributes(attrs);
   3559     DS.takeAttributesFrom(attrs);
   3560   }
   3561 
   3562   SourceLocation EndLoc;
   3563 
   3564   while (1) {
   3565     bool isInvalid = false;
   3566     const char *PrevSpec = 0;
   3567     unsigned DiagID = 0;
   3568     SourceLocation Loc = Tok.getLocation();
   3569 
   3570     switch (Tok.getKind()) {
   3571     case tok::code_completion:
   3572       Actions.CodeCompleteTypeQualifiers(DS);
   3573       return cutOffParsing();
   3574 
   3575     case tok::kw_const:
   3576       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
   3577                                  getLangOpts());
   3578       break;
   3579     case tok::kw_volatile:
   3580       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   3581                                  getLangOpts());
   3582       break;
   3583     case tok::kw_restrict:
   3584       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   3585                                  getLangOpts());
   3586       break;
   3587 
   3588     // OpenCL qualifiers:
   3589     case tok::kw_private:
   3590       if (!getLangOpts().OpenCL)
   3591         goto DoneWithTypeQuals;
   3592     case tok::kw___private:
   3593     case tok::kw___global:
   3594     case tok::kw___local:
   3595     case tok::kw___constant:
   3596     case tok::kw___read_only:
   3597     case tok::kw___write_only:
   3598     case tok::kw___read_write:
   3599       ParseOpenCLQualifiers(DS);
   3600       break;
   3601 
   3602     case tok::kw___w64:
   3603     case tok::kw___ptr64:
   3604     case tok::kw___ptr32:
   3605     case tok::kw___cdecl:
   3606     case tok::kw___stdcall:
   3607     case tok::kw___fastcall:
   3608     case tok::kw___thiscall:
   3609     case tok::kw___unaligned:
   3610       if (VendorAttributesAllowed) {
   3611         ParseMicrosoftTypeAttributes(DS.getAttributes());
   3612         continue;
   3613       }
   3614       goto DoneWithTypeQuals;
   3615     case tok::kw___pascal:
   3616       if (VendorAttributesAllowed) {
   3617         ParseBorlandTypeAttributes(DS.getAttributes());
   3618         continue;
   3619       }
   3620       goto DoneWithTypeQuals;
   3621     case tok::kw___attribute:
   3622       if (VendorAttributesAllowed) {
   3623         ParseGNUAttributes(DS.getAttributes());
   3624         continue; // do *not* consume the next token!
   3625       }
   3626       // otherwise, FALL THROUGH!
   3627     default:
   3628       DoneWithTypeQuals:
   3629       // If this is not a type-qualifier token, we're done reading type
   3630       // qualifiers.  First verify that DeclSpec's are consistent.
   3631       DS.Finish(Diags, PP);
   3632       if (EndLoc.isValid())
   3633         DS.SetRangeEnd(EndLoc);
   3634       return;
   3635     }
   3636 
   3637     // If the specifier combination wasn't legal, issue a diagnostic.
   3638     if (isInvalid) {
   3639       assert(PrevSpec && "Method did not return previous specifier!");
   3640       Diag(Tok, DiagID) << PrevSpec;
   3641     }
   3642     EndLoc = ConsumeToken();
   3643   }
   3644 }
   3645 
   3646 
   3647 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
   3648 ///
   3649 void Parser::ParseDeclarator(Declarator &D) {
   3650   /// This implements the 'declarator' production in the C grammar, then checks
   3651   /// for well-formedness and issues diagnostics.
   3652   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   3653 }
   3654 
   3655 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang) {
   3656   if (Kind == tok::star || Kind == tok::caret)
   3657     return true;
   3658 
   3659   // We parse rvalue refs in C++03, because otherwise the errors are scary.
   3660   if (!Lang.CPlusPlus)
   3661     return false;
   3662 
   3663   return Kind == tok::amp || Kind == tok::ampamp;
   3664 }
   3665 
   3666 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
   3667 /// is parsed by the function passed to it. Pass null, and the direct-declarator
   3668 /// isn't parsed at all, making this function effectively parse the C++
   3669 /// ptr-operator production.
   3670 ///
   3671 /// If the grammar of this construct is extended, matching changes must also be
   3672 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
   3673 /// isConstructorDeclarator.
   3674 ///
   3675 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
   3676 /// [C]     pointer[opt] direct-declarator
   3677 /// [C++]   direct-declarator
   3678 /// [C++]   ptr-operator declarator
   3679 ///
   3680 ///       pointer: [C99 6.7.5]
   3681 ///         '*' type-qualifier-list[opt]
   3682 ///         '*' type-qualifier-list[opt] pointer
   3683 ///
   3684 ///       ptr-operator:
   3685 ///         '*' cv-qualifier-seq[opt]
   3686 ///         '&'
   3687 /// [C++0x] '&&'
   3688 /// [GNU]   '&' restrict[opt] attributes[opt]
   3689 /// [GNU?]  '&&' restrict[opt] attributes[opt]
   3690 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
   3691 void Parser::ParseDeclaratorInternal(Declarator &D,
   3692                                      DirectDeclParseFunction DirectDeclParser) {
   3693   if (Diags.hasAllExtensionsSilenced())
   3694     D.setExtension();
   3695 
   3696   // C++ member pointers start with a '::' or a nested-name.
   3697   // Member pointers get special handling, since there's no place for the
   3698   // scope spec in the generic path below.
   3699   if (getLangOpts().CPlusPlus &&
   3700       (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
   3701        Tok.is(tok::annot_cxxscope))) {
   3702     bool EnteringContext = D.getContext() == Declarator::FileContext ||
   3703                            D.getContext() == Declarator::MemberContext;
   3704     CXXScopeSpec SS;
   3705     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
   3706 
   3707     if (SS.isNotEmpty()) {
   3708       if (Tok.isNot(tok::star)) {
   3709         // The scope spec really belongs to the direct-declarator.
   3710         D.getCXXScopeSpec() = SS;
   3711         if (DirectDeclParser)
   3712           (this->*DirectDeclParser)(D);
   3713         return;
   3714       }
   3715 
   3716       SourceLocation Loc = ConsumeToken();
   3717       D.SetRangeEnd(Loc);
   3718       DeclSpec DS(AttrFactory);
   3719       ParseTypeQualifierListOpt(DS);
   3720       D.ExtendWithDeclSpec(DS);
   3721 
   3722       // Recurse to parse whatever is left.
   3723       ParseDeclaratorInternal(D, DirectDeclParser);
   3724 
   3725       // Sema will have to catch (syntactically invalid) pointers into global
   3726       // scope. It has to catch pointers into namespace scope anyway.
   3727       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
   3728                                                       Loc),
   3729                     DS.getAttributes(),
   3730                     /* Don't replace range end. */SourceLocation());
   3731       return;
   3732     }
   3733   }
   3734 
   3735   tok::TokenKind Kind = Tok.getKind();
   3736   // Not a pointer, C++ reference, or block.
   3737   if (!isPtrOperatorToken(Kind, getLangOpts())) {
   3738     if (DirectDeclParser)
   3739       (this->*DirectDeclParser)(D);
   3740     return;
   3741   }
   3742 
   3743   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
   3744   // '&&' -> rvalue reference
   3745   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
   3746   D.SetRangeEnd(Loc);
   3747 
   3748   if (Kind == tok::star || Kind == tok::caret) {
   3749     // Is a pointer.
   3750     DeclSpec DS(AttrFactory);
   3751 
   3752     // FIXME: GNU attributes are not allowed here in a new-type-id.
   3753     ParseTypeQualifierListOpt(DS);
   3754     D.ExtendWithDeclSpec(DS);
   3755 
   3756     // Recursively parse the declarator.
   3757     ParseDeclaratorInternal(D, DirectDeclParser);
   3758     if (Kind == tok::star)
   3759       // Remember that we parsed a pointer type, and remember the type-quals.
   3760       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
   3761                                                 DS.getConstSpecLoc(),
   3762                                                 DS.getVolatileSpecLoc(),
   3763                                                 DS.getRestrictSpecLoc()),
   3764                     DS.getAttributes(),
   3765                     SourceLocation());
   3766     else
   3767       // Remember that we parsed a Block type, and remember the type-quals.
   3768       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
   3769                                                      Loc),
   3770                     DS.getAttributes(),
   3771                     SourceLocation());
   3772   } else {
   3773     // Is a reference
   3774     DeclSpec DS(AttrFactory);
   3775 
   3776     // Complain about rvalue references in C++03, but then go on and build
   3777     // the declarator.
   3778     if (Kind == tok::ampamp)
   3779       Diag(Loc, getLangOpts().CPlusPlus0x ?
   3780            diag::warn_cxx98_compat_rvalue_reference :
   3781            diag::ext_rvalue_reference);
   3782 
   3783     // GNU-style and C++11 attributes are allowed here, as is restrict.
   3784     ParseTypeQualifierListOpt(DS);
   3785     D.ExtendWithDeclSpec(DS);
   3786 
   3787     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
   3788     // cv-qualifiers are introduced through the use of a typedef or of a
   3789     // template type argument, in which case the cv-qualifiers are ignored.
   3790     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
   3791       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   3792         Diag(DS.getConstSpecLoc(),
   3793              diag::err_invalid_reference_qualifier_application) << "const";
   3794       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   3795         Diag(DS.getVolatileSpecLoc(),
   3796              diag::err_invalid_reference_qualifier_application) << "volatile";
   3797     }
   3798 
   3799     // Recursively parse the declarator.
   3800     ParseDeclaratorInternal(D, DirectDeclParser);
   3801 
   3802     if (D.getNumTypeObjects() > 0) {
   3803       // C++ [dcl.ref]p4: There shall be no references to references.
   3804       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
   3805       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
   3806         if (const IdentifierInfo *II = D.getIdentifier())
   3807           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   3808            << II;
   3809         else
   3810           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   3811             << "type name";
   3812 
   3813         // Once we've complained about the reference-to-reference, we
   3814         // can go ahead and build the (technically ill-formed)
   3815         // declarator: reference collapsing will take care of it.
   3816       }
   3817     }
   3818 
   3819     // Remember that we parsed a reference type. It doesn't have type-quals.
   3820     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
   3821                                                 Kind == tok::amp),
   3822                   DS.getAttributes(),
   3823                   SourceLocation());
   3824   }
   3825 }
   3826 
   3827 static void diagnoseMisplacedEllipsis(Parser &P, Declarator &D,
   3828                                       SourceLocation EllipsisLoc) {
   3829   if (EllipsisLoc.isValid()) {
   3830     FixItHint Insertion;
   3831     if (!D.getEllipsisLoc().isValid()) {
   3832       Insertion = FixItHint::CreateInsertion(D.getIdentifierLoc(), "...");
   3833       D.setEllipsisLoc(EllipsisLoc);
   3834     }
   3835     P.Diag(EllipsisLoc, diag::err_misplaced_ellipsis_in_declaration)
   3836       << FixItHint::CreateRemoval(EllipsisLoc) << Insertion << !D.hasName();
   3837   }
   3838 }
   3839 
   3840 /// ParseDirectDeclarator
   3841 ///       direct-declarator: [C99 6.7.5]
   3842 /// [C99]   identifier
   3843 ///         '(' declarator ')'
   3844 /// [GNU]   '(' attributes declarator ')'
   3845 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   3846 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   3847 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   3848 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   3849 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   3850 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   3851 ///                    attribute-specifier-seq[opt]
   3852 ///         direct-declarator '(' parameter-type-list ')'
   3853 ///         direct-declarator '(' identifier-list[opt] ')'
   3854 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   3855 ///                    parameter-type-list[opt] ')'
   3856 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
   3857 ///                    cv-qualifier-seq[opt] exception-specification[opt]
   3858 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
   3859 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
   3860 ///                    ref-qualifier[opt] exception-specification[opt]
   3861 /// [C++]   declarator-id
   3862 /// [C++11] declarator-id attribute-specifier-seq[opt]
   3863 ///
   3864 ///       declarator-id: [C++ 8]
   3865 ///         '...'[opt] id-expression
   3866 ///         '::'[opt] nested-name-specifier[opt] type-name
   3867 ///
   3868 ///       id-expression: [C++ 5.1]
   3869 ///         unqualified-id
   3870 ///         qualified-id
   3871 ///
   3872 ///       unqualified-id: [C++ 5.1]
   3873 ///         identifier
   3874 ///         operator-function-id
   3875 ///         conversion-function-id
   3876 ///          '~' class-name
   3877 ///         template-id
   3878 ///
   3879 /// Note, any additional constructs added here may need corresponding changes
   3880 /// in isConstructorDeclarator.
   3881 void Parser::ParseDirectDeclarator(Declarator &D) {
   3882   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
   3883 
   3884   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
   3885     // ParseDeclaratorInternal might already have parsed the scope.
   3886     if (D.getCXXScopeSpec().isEmpty()) {
   3887       bool EnteringContext = D.getContext() == Declarator::FileContext ||
   3888                              D.getContext() == Declarator::MemberContext;
   3889       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
   3890                                      EnteringContext);
   3891     }
   3892 
   3893     if (D.getCXXScopeSpec().isValid()) {
   3894       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
   3895         // Change the declaration context for name lookup, until this function
   3896         // is exited (and the declarator has been parsed).
   3897         DeclScopeObj.EnterDeclaratorScope();
   3898     }
   3899 
   3900     // C++0x [dcl.fct]p14:
   3901     //   There is a syntactic ambiguity when an ellipsis occurs at the end
   3902     //   of a parameter-declaration-clause without a preceding comma. In
   3903     //   this case, the ellipsis is parsed as part of the
   3904     //   abstract-declarator if the type of the parameter names a template
   3905     //   parameter pack that has not been expanded; otherwise, it is parsed
   3906     //   as part of the parameter-declaration-clause.
   3907     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
   3908         !((D.getContext() == Declarator::PrototypeContext ||
   3909            D.getContext() == Declarator::BlockLiteralContext) &&
   3910           NextToken().is(tok::r_paren) &&
   3911           !Actions.containsUnexpandedParameterPacks(D))) {
   3912       SourceLocation EllipsisLoc = ConsumeToken();
   3913       if (isPtrOperatorToken(Tok.getKind(), getLangOpts())) {
   3914         // The ellipsis was put in the wrong place. Recover, and explain to
   3915         // the user what they should have done.
   3916         ParseDeclarator(D);
   3917         diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
   3918         return;
   3919       } else
   3920         D.setEllipsisLoc(EllipsisLoc);
   3921 
   3922       // The ellipsis can't be followed by a parenthesized declarator. We
   3923       // check for that in ParseParenDeclarator, after we have disambiguated
   3924       // the l_paren token.
   3925     }
   3926 
   3927     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
   3928         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
   3929       // We found something that indicates the start of an unqualified-id.
   3930       // Parse that unqualified-id.
   3931       bool AllowConstructorName;
   3932       if (D.getDeclSpec().hasTypeSpecifier())
   3933         AllowConstructorName = false;
   3934       else if (D.getCXXScopeSpec().isSet())
   3935         AllowConstructorName =
   3936           (D.getContext() == Declarator::FileContext ||
   3937            (D.getContext() == Declarator::MemberContext &&
   3938             D.getDeclSpec().isFriendSpecified()));
   3939       else
   3940         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
   3941 
   3942       SourceLocation TemplateKWLoc;
   3943       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
   3944                              /*EnteringContext=*/true,
   3945                              /*AllowDestructorName=*/true,
   3946                              AllowConstructorName,
   3947                              ParsedType(),
   3948                              TemplateKWLoc,
   3949                              D.getName()) ||
   3950           // Once we're past the identifier, if the scope was bad, mark the
   3951           // whole declarator bad.
   3952           D.getCXXScopeSpec().isInvalid()) {
   3953         D.SetIdentifier(0, Tok.getLocation());
   3954         D.setInvalidType(true);
   3955       } else {
   3956         // Parsed the unqualified-id; update range information and move along.
   3957         if (D.getSourceRange().getBegin().isInvalid())
   3958           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
   3959         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
   3960       }
   3961       goto PastIdentifier;
   3962     }
   3963   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
   3964     assert(!getLangOpts().CPlusPlus &&
   3965            "There's a C++-specific check for tok::identifier above");
   3966     assert(Tok.getIdentifierInfo() && "Not an identifier?");
   3967     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
   3968     ConsumeToken();
   3969     goto PastIdentifier;
   3970   }
   3971 
   3972   if (Tok.is(tok::l_paren)) {
   3973     // direct-declarator: '(' declarator ')'
   3974     // direct-declarator: '(' attributes declarator ')'
   3975     // Example: 'char (*X)'   or 'int (*XX)(void)'
   3976     ParseParenDeclarator(D);
   3977 
   3978     // If the declarator was parenthesized, we entered the declarator
   3979     // scope when parsing the parenthesized declarator, then exited
   3980     // the scope already. Re-enter the scope, if we need to.
   3981     if (D.getCXXScopeSpec().isSet()) {
   3982       // If there was an error parsing parenthesized declarator, declarator
   3983       // scope may have been entered before. Don't do it again.
   3984       if (!D.isInvalidType() &&
   3985           Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
   3986         // Change the declaration context for name lookup, until this function
   3987         // is exited (and the declarator has been parsed).
   3988         DeclScopeObj.EnterDeclaratorScope();
   3989     }
   3990   } else if (D.mayOmitIdentifier()) {
   3991     // This could be something simple like "int" (in which case the declarator
   3992     // portion is empty), if an abstract-declarator is allowed.
   3993     D.SetIdentifier(0, Tok.getLocation());
   3994   } else {
   3995     if (D.getContext() == Declarator::MemberContext)
   3996       Diag(Tok, diag::err_expected_member_name_or_semi)
   3997         << D.getDeclSpec().getSourceRange();
   3998     else if (getLangOpts().CPlusPlus)
   3999       Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
   4000     else
   4001       Diag(Tok, diag::err_expected_ident_lparen);
   4002     D.SetIdentifier(0, Tok.getLocation());
   4003     D.setInvalidType(true);
   4004   }
   4005 
   4006  PastIdentifier:
   4007   assert(D.isPastIdentifier() &&
   4008          "Haven't past the location of the identifier yet?");
   4009 
   4010   // Don't parse attributes unless we have parsed an unparenthesized name.
   4011   if (D.hasName() && !D.getNumTypeObjects())
   4012     MaybeParseCXX0XAttributes(D);
   4013 
   4014   while (1) {
   4015     if (Tok.is(tok::l_paren)) {
   4016       // Enter function-declaration scope, limiting any declarators to the
   4017       // function prototype scope, including parameter declarators.
   4018       ParseScope PrototypeScope(this,
   4019                                 Scope::FunctionPrototypeScope|Scope::DeclScope);
   4020       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
   4021       // In such a case, check if we actually have a function declarator; if it
   4022       // is not, the declarator has been fully parsed.
   4023       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
   4024         // When not in file scope, warn for ambiguous function declarators, just
   4025         // in case the author intended it as a variable definition.
   4026         bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
   4027         if (!isCXXFunctionDeclarator(warnIfAmbiguous))
   4028           break;
   4029       }
   4030       ParsedAttributes attrs(AttrFactory);
   4031       BalancedDelimiterTracker T(*this, tok::l_paren);
   4032       T.consumeOpen();
   4033       ParseFunctionDeclarator(D, attrs, T);
   4034       PrototypeScope.Exit();
   4035     } else if (Tok.is(tok::l_square)) {
   4036       ParseBracketDeclarator(D);
   4037     } else {
   4038       break;
   4039     }
   4040   }
   4041 }
   4042 
   4043 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
   4044 /// only called before the identifier, so these are most likely just grouping
   4045 /// parens for precedence.  If we find that these are actually function
   4046 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
   4047 ///
   4048 ///       direct-declarator:
   4049 ///         '(' declarator ')'
   4050 /// [GNU]   '(' attributes declarator ')'
   4051 ///         direct-declarator '(' parameter-type-list ')'
   4052 ///         direct-declarator '(' identifier-list[opt] ')'
   4053 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   4054 ///                    parameter-type-list[opt] ')'
   4055 ///
   4056 void Parser::ParseParenDeclarator(Declarator &D) {
   4057   BalancedDelimiterTracker T(*this, tok::l_paren);
   4058   T.consumeOpen();
   4059 
   4060   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
   4061 
   4062   // Eat any attributes before we look at whether this is a grouping or function
   4063   // declarator paren.  If this is a grouping paren, the attribute applies to
   4064   // the type being built up, for example:
   4065   //     int (__attribute__(()) *x)(long y)
   4066   // If this ends up not being a grouping paren, the attribute applies to the
   4067   // first argument, for example:
   4068   //     int (__attribute__(()) int x)
   4069   // In either case, we need to eat any attributes to be able to determine what
   4070   // sort of paren this is.
   4071   //
   4072   ParsedAttributes attrs(AttrFactory);
   4073   bool RequiresArg = false;
   4074   if (Tok.is(tok::kw___attribute)) {
   4075     ParseGNUAttributes(attrs);
   4076 
   4077     // We require that the argument list (if this is a non-grouping paren) be
   4078     // present even if the attribute list was empty.
   4079     RequiresArg = true;
   4080   }
   4081   // Eat any Microsoft extensions.
   4082   if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
   4083        Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
   4084        Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64) ||
   4085        Tok.is(tok::kw___ptr32) || Tok.is(tok::kw___unaligned)) {
   4086     ParseMicrosoftTypeAttributes(attrs);
   4087   }
   4088   // Eat any Borland extensions.
   4089   if  (Tok.is(tok::kw___pascal))
   4090     ParseBorlandTypeAttributes(attrs);
   4091 
   4092   // If we haven't past the identifier yet (or where the identifier would be
   4093   // stored, if this is an abstract declarator), then this is probably just
   4094   // grouping parens. However, if this could be an abstract-declarator, then
   4095   // this could also be the start of function arguments (consider 'void()').
   4096   bool isGrouping;
   4097 
   4098   if (!D.mayOmitIdentifier()) {
   4099     // If this can't be an abstract-declarator, this *must* be a grouping
   4100     // paren, because we haven't seen the identifier yet.
   4101     isGrouping = true;
   4102   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
   4103              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
   4104               NextToken().is(tok::r_paren)) || // C++ int(...)
   4105              isDeclarationSpecifier() ||       // 'int(int)' is a function.
   4106              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
   4107     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
   4108     // considered to be a type, not a K&R identifier-list.
   4109     isGrouping = false;
   4110   } else {
   4111     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
   4112     isGrouping = true;
   4113   }
   4114 
   4115   // If this is a grouping paren, handle:
   4116   // direct-declarator: '(' declarator ')'
   4117   // direct-declarator: '(' attributes declarator ')'
   4118   if (isGrouping) {
   4119     SourceLocation EllipsisLoc = D.getEllipsisLoc();
   4120     D.setEllipsisLoc(SourceLocation());
   4121 
   4122     bool hadGroupingParens = D.hasGroupingParens();
   4123     D.setGroupingParens(true);
   4124     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   4125     // Match the ')'.
   4126     T.consumeClose();
   4127     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
   4128                                             T.getCloseLocation()),
   4129                   attrs, T.getCloseLocation());
   4130 
   4131     D.setGroupingParens(hadGroupingParens);
   4132 
   4133     // An ellipsis cannot be placed outside parentheses.
   4134     if (EllipsisLoc.isValid())
   4135       diagnoseMisplacedEllipsis(*this, D, EllipsisLoc);
   4136 
   4137     return;
   4138   }
   4139 
   4140   // Okay, if this wasn't a grouping paren, it must be the start of a function
   4141   // argument list.  Recognize that this declarator will never have an
   4142   // identifier (and remember where it would have been), then call into
   4143   // ParseFunctionDeclarator to handle of argument list.
   4144   D.SetIdentifier(0, Tok.getLocation());
   4145 
   4146   // Enter function-declaration scope, limiting any declarators to the
   4147   // function prototype scope, including parameter declarators.
   4148   ParseScope PrototypeScope(this,
   4149                             Scope::FunctionPrototypeScope|Scope::DeclScope);
   4150   ParseFunctionDeclarator(D, attrs, T, RequiresArg);
   4151   PrototypeScope.Exit();
   4152 }
   4153 
   4154 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
   4155 /// declarator D up to a paren, which indicates that we are parsing function
   4156 /// arguments.
   4157 ///
   4158 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
   4159 /// immediately after the open paren - they should be considered to be the
   4160 /// first argument of a parameter.
   4161 ///
   4162 /// If RequiresArg is true, then the first argument of the function is required
   4163 /// to be present and required to not be an identifier list.
   4164 ///
   4165 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
   4166 /// (C++11) ref-qualifier[opt], exception-specification[opt],
   4167 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
   4168 ///
   4169 /// [C++11] exception-specification:
   4170 ///           dynamic-exception-specification
   4171 ///           noexcept-specification
   4172 ///
   4173 void Parser::ParseFunctionDeclarator(Declarator &D,
   4174                                      ParsedAttributes &FirstArgAttrs,
   4175                                      BalancedDelimiterTracker &Tracker,
   4176                                      bool RequiresArg) {
   4177   assert(getCurScope()->isFunctionPrototypeScope() &&
   4178          "Should call from a Function scope");
   4179   // lparen is already consumed!
   4180   assert(D.isPastIdentifier() && "Should not call before identifier!");
   4181 
   4182   // This should be true when the function has typed arguments.
   4183   // Otherwise, it is treated as a K&R-style function.
   4184   bool HasProto = false;
   4185   // Build up an array of information about the parsed arguments.
   4186   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
   4187   // Remember where we see an ellipsis, if any.
   4188   SourceLocation EllipsisLoc;
   4189 
   4190   DeclSpec DS(AttrFactory);
   4191   bool RefQualifierIsLValueRef = true;
   4192   SourceLocation RefQualifierLoc;
   4193   SourceLocation ConstQualifierLoc;
   4194   SourceLocation VolatileQualifierLoc;
   4195   ExceptionSpecificationType ESpecType = EST_None;
   4196   SourceRange ESpecRange;
   4197   SmallVector<ParsedType, 2> DynamicExceptions;
   4198   SmallVector<SourceRange, 2> DynamicExceptionRanges;
   4199   ExprResult NoexceptExpr;
   4200   CachedTokens *ExceptionSpecTokens = 0;
   4201   ParsedAttributes FnAttrs(AttrFactory);
   4202   ParsedType TrailingReturnType;
   4203 
   4204   Actions.ActOnStartFunctionDeclarator();
   4205 
   4206   SourceLocation EndLoc;
   4207   if (isFunctionDeclaratorIdentifierList()) {
   4208     if (RequiresArg)
   4209       Diag(Tok, diag::err_argument_required_after_attribute);
   4210 
   4211     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
   4212 
   4213     Tracker.consumeClose();
   4214     EndLoc = Tracker.getCloseLocation();
   4215   } else {
   4216     if (Tok.isNot(tok::r_paren))
   4217       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
   4218     else if (RequiresArg)
   4219       Diag(Tok, diag::err_argument_required_after_attribute);
   4220 
   4221     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
   4222 
   4223     // If we have the closing ')', eat it.
   4224     Tracker.consumeClose();
   4225     EndLoc = Tracker.getCloseLocation();
   4226 
   4227     if (getLangOpts().CPlusPlus) {
   4228       // FIXME: Accept these components in any order, and produce fixits to
   4229       // correct the order if the user gets it wrong. Ideally we should deal
   4230       // with the virt-specifier-seq and pure-specifier in the same way.
   4231 
   4232       // Parse cv-qualifier-seq[opt].
   4233       ParseTypeQualifierListOpt(DS, false /*no attributes*/, false);
   4234       if (!DS.getSourceRange().getEnd().isInvalid()) {
   4235         EndLoc = DS.getSourceRange().getEnd();
   4236         ConstQualifierLoc = DS.getConstSpecLoc();
   4237         VolatileQualifierLoc = DS.getVolatileSpecLoc();
   4238       }
   4239 
   4240       // Parse ref-qualifier[opt].
   4241       if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
   4242         Diag(Tok, getLangOpts().CPlusPlus0x ?
   4243              diag::warn_cxx98_compat_ref_qualifier :
   4244              diag::ext_ref_qualifier);
   4245 
   4246         RefQualifierIsLValueRef = Tok.is(tok::amp);
   4247         RefQualifierLoc = ConsumeToken();
   4248         EndLoc = RefQualifierLoc;
   4249       }
   4250 
   4251       // C++11 [expr.prim.general]p3:
   4252       //   If a declaration declares a member function or member function
   4253       //   template of a class X, the expression this is a prvalue of type
   4254       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   4255       //   and the end of the function-definition, member-declarator, or
   4256       //   declarator.
   4257       bool IsCXX11MemberFunction =
   4258         getLangOpts().CPlusPlus0x &&
   4259         (D.getContext() == Declarator::MemberContext ||
   4260          (D.getContext() == Declarator::FileContext &&
   4261           D.getCXXScopeSpec().isValid() &&
   4262           Actions.CurContext->isRecord()));
   4263       Sema::CXXThisScopeRAII ThisScope(Actions,
   4264                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
   4265                                DS.getTypeQualifiers(),
   4266                                IsCXX11MemberFunction);
   4267 
   4268       // Parse exception-specification[opt].
   4269       bool Delayed = (D.getContext() == Declarator::MemberContext &&
   4270                       D.getDeclSpec().getStorageClassSpec()
   4271                         != DeclSpec::SCS_typedef &&
   4272                       !D.getDeclSpec().isFriendSpecified());
   4273       ESpecType = tryParseExceptionSpecification(Delayed,
   4274                                                  ESpecRange,
   4275                                                  DynamicExceptions,
   4276                                                  DynamicExceptionRanges,
   4277                                                  NoexceptExpr,
   4278                                                  ExceptionSpecTokens);
   4279       if (ESpecType != EST_None)
   4280         EndLoc = ESpecRange.getEnd();
   4281 
   4282       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
   4283       // after the exception-specification.
   4284       MaybeParseCXX0XAttributes(FnAttrs);
   4285 
   4286       // Parse trailing-return-type[opt].
   4287       if (getLangOpts().CPlusPlus0x && Tok.is(tok::arrow)) {
   4288         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
   4289         SourceRange Range;
   4290         TrailingReturnType = ParseTrailingReturnType(Range).get();
   4291         if (Range.getEnd().isValid())
   4292           EndLoc = Range.getEnd();
   4293       }
   4294     }
   4295   }
   4296 
   4297   // Remember that we parsed a function type, and remember the attributes.
   4298   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
   4299                                              /*isVariadic=*/EllipsisLoc.isValid(),
   4300                                              EllipsisLoc,
   4301                                              ParamInfo.data(), ParamInfo.size(),
   4302                                              DS.getTypeQualifiers(),
   4303                                              RefQualifierIsLValueRef,
   4304                                              RefQualifierLoc, ConstQualifierLoc,
   4305                                              VolatileQualifierLoc,
   4306                                              /*MutableLoc=*/SourceLocation(),
   4307                                              ESpecType, ESpecRange.getBegin(),
   4308                                              DynamicExceptions.data(),
   4309                                              DynamicExceptionRanges.data(),
   4310                                              DynamicExceptions.size(),
   4311                                              NoexceptExpr.isUsable() ?
   4312                                                NoexceptExpr.get() : 0,
   4313                                              ExceptionSpecTokens,
   4314                                              Tracker.getOpenLocation(),
   4315                                              EndLoc, D,
   4316                                              TrailingReturnType),
   4317                 FnAttrs, EndLoc);
   4318 
   4319   Actions.ActOnEndFunctionDeclarator();
   4320 }
   4321 
   4322 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
   4323 /// identifier list form for a K&R-style function:  void foo(a,b,c)
   4324 ///
   4325 /// Note that identifier-lists are only allowed for normal declarators, not for
   4326 /// abstract-declarators.
   4327 bool Parser::isFunctionDeclaratorIdentifierList() {
   4328   return !getLangOpts().CPlusPlus
   4329          && Tok.is(tok::identifier)
   4330          && !TryAltiVecVectorToken()
   4331          // K&R identifier lists can't have typedefs as identifiers, per C99
   4332          // 6.7.5.3p11.
   4333          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
   4334          // Identifier lists follow a really simple grammar: the identifiers can
   4335          // be followed *only* by a ", identifier" or ")".  However, K&R
   4336          // identifier lists are really rare in the brave new modern world, and
   4337          // it is very common for someone to typo a type in a non-K&R style
   4338          // list.  If we are presented with something like: "void foo(intptr x,
   4339          // float y)", we don't want to start parsing the function declarator as
   4340          // though it is a K&R style declarator just because intptr is an
   4341          // invalid type.
   4342          //
   4343          // To handle this, we check to see if the token after the first
   4344          // identifier is a "," or ")".  Only then do we parse it as an
   4345          // identifier list.
   4346          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
   4347 }
   4348 
   4349 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
   4350 /// we found a K&R-style identifier list instead of a typed parameter list.
   4351 ///
   4352 /// After returning, ParamInfo will hold the parsed parameters.
   4353 ///
   4354 ///       identifier-list: [C99 6.7.5]
   4355 ///         identifier
   4356 ///         identifier-list ',' identifier
   4357 ///
   4358 void Parser::ParseFunctionDeclaratorIdentifierList(
   4359        Declarator &D,
   4360        SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo) {
   4361   // If there was no identifier specified for the declarator, either we are in
   4362   // an abstract-declarator, or we are in a parameter declarator which was found
   4363   // to be abstract.  In abstract-declarators, identifier lists are not valid:
   4364   // diagnose this.
   4365   if (!D.getIdentifier())
   4366     Diag(Tok, diag::ext_ident_list_in_param);
   4367 
   4368   // Maintain an efficient lookup of params we have seen so far.
   4369   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
   4370 
   4371   while (1) {
   4372     // If this isn't an identifier, report the error and skip until ')'.
   4373     if (Tok.isNot(tok::identifier)) {
   4374       Diag(Tok, diag::err_expected_ident);
   4375       SkipUntil(tok::r_paren, /*StopAtSemi=*/true, /*DontConsume=*/true);
   4376       // Forget we parsed anything.
   4377       ParamInfo.clear();
   4378       return;
   4379     }
   4380 
   4381     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
   4382 
   4383     // Reject 'typedef int y; int test(x, y)', but continue parsing.
   4384     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
   4385       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
   4386 
   4387     // Verify that the argument identifier has not already been mentioned.
   4388     if (!ParamsSoFar.insert(ParmII)) {
   4389       Diag(Tok, diag::err_param_redefinition) << ParmII;
   4390     } else {
   4391       // Remember this identifier in ParamInfo.
   4392       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   4393                                                      Tok.getLocation(),
   4394                                                      0));
   4395     }
   4396 
   4397     // Eat the identifier.
   4398     ConsumeToken();
   4399 
   4400     // The list continues if we see a comma.
   4401     if (Tok.isNot(tok::comma))
   4402       break;
   4403     ConsumeToken();
   4404   }
   4405 }
   4406 
   4407 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
   4408 /// after the opening parenthesis. This function will not parse a K&R-style
   4409 /// identifier list.
   4410 ///
   4411 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
   4412 /// caller parsed those arguments immediately after the open paren - they should
   4413 /// be considered to be part of the first parameter.
   4414 ///
   4415 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
   4416 /// be the location of the ellipsis, if any was parsed.
   4417 ///
   4418 ///       parameter-type-list: [C99 6.7.5]
   4419 ///         parameter-list
   4420 ///         parameter-list ',' '...'
   4421 /// [C++]   parameter-list '...'
   4422 ///
   4423 ///       parameter-list: [C99 6.7.5]
   4424 ///         parameter-declaration
   4425 ///         parameter-list ',' parameter-declaration
   4426 ///
   4427 ///       parameter-declaration: [C99 6.7.5]
   4428 ///         declaration-specifiers declarator
   4429 /// [C++]   declaration-specifiers declarator '=' assignment-expression
   4430 /// [C++11]                                       initializer-clause
   4431 /// [GNU]   declaration-specifiers declarator attributes
   4432 ///         declaration-specifiers abstract-declarator[opt]
   4433 /// [C++]   declaration-specifiers abstract-declarator[opt]
   4434 ///           '=' assignment-expression
   4435 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
   4436 /// [C++11] attribute-specifier-seq parameter-declaration
   4437 ///
   4438 void Parser::ParseParameterDeclarationClause(
   4439        Declarator &D,
   4440        ParsedAttributes &FirstArgAttrs,
   4441        SmallVector<DeclaratorChunk::ParamInfo, 16> &ParamInfo,
   4442        SourceLocation &EllipsisLoc) {
   4443 
   4444   while (1) {
   4445     if (Tok.is(tok::ellipsis)) {
   4446       // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
   4447       // before deciding this was a parameter-declaration-clause.
   4448       EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
   4449       break;
   4450     }
   4451 
   4452     // Parse the declaration-specifiers.
   4453     // Just use the ParsingDeclaration "scope" of the declarator.
   4454     DeclSpec DS(AttrFactory);
   4455 
   4456     // Parse any C++11 attributes.
   4457     MaybeParseCXX0XAttributes(DS.getAttributes());
   4458 
   4459     // Skip any Microsoft attributes before a param.
   4460     if (getLangOpts().MicrosoftExt && Tok.is(tok::l_square))
   4461       ParseMicrosoftAttributes(DS.getAttributes());
   4462 
   4463     SourceLocation DSStart = Tok.getLocation();
   4464 
   4465     // If the caller parsed attributes for the first argument, add them now.
   4466     // Take them so that we only apply the attributes to the first parameter.
   4467     // FIXME: If we can leave the attributes in the token stream somehow, we can
   4468     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
   4469     // too much hassle.
   4470     DS.takeAttributesFrom(FirstArgAttrs);
   4471 
   4472     ParseDeclarationSpecifiers(DS);
   4473 
   4474     // Parse the declarator.  This is "PrototypeContext", because we must
   4475     // accept either 'declarator' or 'abstract-declarator' here.
   4476     Declarator ParmDecl(DS, Declarator::PrototypeContext);
   4477     ParseDeclarator(ParmDecl);
   4478 
   4479     // Parse GNU attributes, if present.
   4480     MaybeParseGNUAttributes(ParmDecl);
   4481 
   4482     // Remember this parsed parameter in ParamInfo.
   4483     IdentifierInfo *ParmII = ParmDecl.getIdentifier();
   4484 
   4485     // DefArgToks is used when the parsing of default arguments needs
   4486     // to be delayed.
   4487     CachedTokens *DefArgToks = 0;
   4488 
   4489     // If no parameter was specified, verify that *something* was specified,
   4490     // otherwise we have a missing type and identifier.
   4491     if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
   4492         ParmDecl.getNumTypeObjects() == 0) {
   4493       // Completely missing, emit error.
   4494       Diag(DSStart, diag::err_missing_param);
   4495     } else {
   4496       // Otherwise, we have something.  Add it and let semantic analysis try
   4497       // to grok it and add the result to the ParamInfo we are building.
   4498 
   4499       // Inform the actions module about the parameter declarator, so it gets
   4500       // added to the current scope.
   4501       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
   4502 
   4503       // Parse the default argument, if any. We parse the default
   4504       // arguments in all dialects; the semantic analysis in
   4505       // ActOnParamDefaultArgument will reject the default argument in
   4506       // C.
   4507       if (Tok.is(tok::equal)) {
   4508         SourceLocation EqualLoc = Tok.getLocation();
   4509 
   4510         // Parse the default argument
   4511         if (D.getContext() == Declarator::MemberContext) {
   4512           // If we're inside a class definition, cache the tokens
   4513           // corresponding to the default argument. We'll actually parse
   4514           // them when we see the end of the class definition.
   4515           // FIXME: Can we use a smart pointer for Toks?
   4516           DefArgToks = new CachedTokens;
   4517 
   4518           if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
   4519                                     /*StopAtSemi=*/true,
   4520                                     /*ConsumeFinalToken=*/false)) {
   4521             delete DefArgToks;
   4522             DefArgToks = 0;
   4523             Actions.ActOnParamDefaultArgumentError(Param);
   4524           } else {
   4525             // Mark the end of the default argument so that we know when to
   4526             // stop when we parse it later on.
   4527             Token DefArgEnd;
   4528             DefArgEnd.startToken();
   4529             DefArgEnd.setKind(tok::cxx_defaultarg_end);
   4530             DefArgEnd.setLocation(Tok.getLocation());
   4531             DefArgToks->push_back(DefArgEnd);
   4532             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
   4533                                                 (*DefArgToks)[1].getLocation());
   4534           }
   4535         } else {
   4536           // Consume the '='.
   4537           ConsumeToken();
   4538 
   4539           // The argument isn't actually potentially evaluated unless it is
   4540           // used.
   4541           EnterExpressionEvaluationContext Eval(Actions,
   4542                                               Sema::PotentiallyEvaluatedIfUsed,
   4543                                                 Param);
   4544 
   4545           ExprResult DefArgResult;
   4546           if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
   4547             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   4548             DefArgResult = ParseBraceInitializer();
   4549           } else
   4550             DefArgResult = ParseAssignmentExpression();
   4551           if (DefArgResult.isInvalid()) {
   4552             Actions.ActOnParamDefaultArgumentError(Param);
   4553             SkipUntil(tok::comma, tok::r_paren, true, true);
   4554           } else {
   4555             // Inform the actions module about the default argument
   4556             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
   4557                                               DefArgResult.take());
   4558           }
   4559         }
   4560       }
   4561 
   4562       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   4563                                           ParmDecl.getIdentifierLoc(), Param,
   4564                                           DefArgToks));
   4565     }
   4566 
   4567     // If the next token is a comma, consume it and keep reading arguments.
   4568     if (Tok.isNot(tok::comma)) {
   4569       if (Tok.is(tok::ellipsis)) {
   4570         EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
   4571 
   4572         if (!getLangOpts().CPlusPlus) {
   4573           // We have ellipsis without a preceding ',', which is ill-formed
   4574           // in C. Complain and provide the fix.
   4575           Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
   4576             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
   4577         }
   4578       }
   4579 
   4580       break;
   4581     }
   4582 
   4583     // Consume the comma.
   4584     ConsumeToken();
   4585   }
   4586 
   4587 }
   4588 
   4589 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   4590 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   4591 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   4592 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   4593 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   4594 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   4595 ///                           attribute-specifier-seq[opt]
   4596 void Parser::ParseBracketDeclarator(Declarator &D) {
   4597   if (CheckProhibitedCXX11Attribute())
   4598     return;
   4599 
   4600   BalancedDelimiterTracker T(*this, tok::l_square);
   4601   T.consumeOpen();
   4602 
   4603   // C array syntax has many features, but by-far the most common is [] and [4].
   4604   // This code does a fast path to handle some of the most obvious cases.
   4605   if (Tok.getKind() == tok::r_square) {
   4606     T.consumeClose();
   4607     ParsedAttributes attrs(AttrFactory);
   4608     MaybeParseCXX0XAttributes(attrs);
   4609 
   4610     // Remember that we parsed the empty array type.
   4611     ExprResult NumElements;
   4612     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
   4613                                             T.getOpenLocation(),
   4614                                             T.getCloseLocation()),
   4615                   attrs, T.getCloseLocation());
   4616     return;
   4617   } else if (Tok.getKind() == tok::numeric_constant &&
   4618              GetLookAheadToken(1).is(tok::r_square)) {
   4619     // [4] is very common.  Parse the numeric constant expression.
   4620     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
   4621     ConsumeToken();
   4622 
   4623     T.consumeClose();
   4624     ParsedAttributes attrs(AttrFactory);
   4625     MaybeParseCXX0XAttributes(attrs);
   4626 
   4627     // Remember that we parsed a array type, and remember its features.
   4628     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
   4629                                             ExprRes.release(),
   4630                                             T.getOpenLocation(),
   4631                                             T.getCloseLocation()),
   4632                   attrs, T.getCloseLocation());
   4633     return;
   4634   }
   4635 
   4636   // If valid, this location is the position where we read the 'static' keyword.
   4637   SourceLocation StaticLoc;
   4638   if (Tok.is(tok::kw_static))
   4639     StaticLoc = ConsumeToken();
   4640 
   4641   // If there is a type-qualifier-list, read it now.
   4642   // Type qualifiers in an array subscript are a C99 feature.
   4643   DeclSpec DS(AttrFactory);
   4644   ParseTypeQualifierListOpt(DS, false /*no attributes*/);
   4645 
   4646   // If we haven't already read 'static', check to see if there is one after the
   4647   // type-qualifier-list.
   4648   if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
   4649     StaticLoc = ConsumeToken();
   4650 
   4651   // Handle "direct-declarator [ type-qual-list[opt] * ]".
   4652   bool isStar = false;
   4653   ExprResult NumElements;
   4654 
   4655   // Handle the case where we have '[*]' as the array size.  However, a leading
   4656   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
   4657   // the the token after the star is a ']'.  Since stars in arrays are
   4658   // infrequent, use of lookahead is not costly here.
   4659   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
   4660     ConsumeToken();  // Eat the '*'.
   4661 
   4662     if (StaticLoc.isValid()) {
   4663       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
   4664       StaticLoc = SourceLocation();  // Drop the static.
   4665     }
   4666     isStar = true;
   4667   } else if (Tok.isNot(tok::r_square)) {
   4668     // Note, in C89, this production uses the constant-expr production instead
   4669     // of assignment-expr.  The only difference is that assignment-expr allows
   4670     // things like '=' and '*='.  Sema rejects these in C89 mode because they
   4671     // are not i-c-e's, so we don't need to distinguish between the two here.
   4672 
   4673     // Parse the constant-expression or assignment-expression now (depending
   4674     // on dialect).
   4675     if (getLangOpts().CPlusPlus) {
   4676       NumElements = ParseConstantExpression();
   4677     } else {
   4678       EnterExpressionEvaluationContext Unevaluated(Actions,
   4679                                                    Sema::ConstantEvaluated);
   4680       NumElements = ParseAssignmentExpression();
   4681     }
   4682   }
   4683 
   4684   // If there was an error parsing the assignment-expression, recover.
   4685   if (NumElements.isInvalid()) {
   4686     D.setInvalidType(true);
   4687     // If the expression was invalid, skip it.
   4688     SkipUntil(tok::r_square);
   4689     return;
   4690   }
   4691 
   4692   T.consumeClose();
   4693 
   4694   ParsedAttributes attrs(AttrFactory);
   4695   MaybeParseCXX0XAttributes(attrs);
   4696 
   4697   // Remember that we parsed a array type, and remember its features.
   4698   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
   4699                                           StaticLoc.isValid(), isStar,
   4700                                           NumElements.release(),
   4701                                           T.getOpenLocation(),
   4702                                           T.getCloseLocation()),
   4703                 attrs, T.getCloseLocation());
   4704 }
   4705 
   4706 /// [GNU]   typeof-specifier:
   4707 ///           typeof ( expressions )
   4708 ///           typeof ( type-name )
   4709 /// [GNU/C++] typeof unary-expression
   4710 ///
   4711 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
   4712   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
   4713   Token OpTok = Tok;
   4714   SourceLocation StartLoc = ConsumeToken();
   4715 
   4716   const bool hasParens = Tok.is(tok::l_paren);
   4717 
   4718   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
   4719 
   4720   bool isCastExpr;
   4721   ParsedType CastTy;
   4722   SourceRange CastRange;
   4723   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr,
   4724                                                           CastTy, CastRange);
   4725   if (hasParens)
   4726     DS.setTypeofParensRange(CastRange);
   4727 
   4728   if (CastRange.getEnd().isInvalid())
   4729     // FIXME: Not accurate, the range gets one token more than it should.
   4730     DS.SetRangeEnd(Tok.getLocation());
   4731   else
   4732     DS.SetRangeEnd(CastRange.getEnd());
   4733 
   4734   if (isCastExpr) {
   4735     if (!CastTy) {
   4736       DS.SetTypeSpecError();
   4737       return;
   4738     }
   4739 
   4740     const char *PrevSpec = 0;
   4741     unsigned DiagID;
   4742     // Check for duplicate type specifiers (e.g. "int typeof(int)").
   4743     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
   4744                            DiagID, CastTy))
   4745       Diag(StartLoc, DiagID) << PrevSpec;
   4746     return;
   4747   }
   4748 
   4749   // If we get here, the operand to the typeof was an expresion.
   4750   if (Operand.isInvalid()) {
   4751     DS.SetTypeSpecError();
   4752     return;
   4753   }
   4754 
   4755   // We might need to transform the operand if it is potentially evaluated.
   4756   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
   4757   if (Operand.isInvalid()) {
   4758     DS.SetTypeSpecError();
   4759     return;
   4760   }
   4761 
   4762   const char *PrevSpec = 0;
   4763   unsigned DiagID;
   4764   // Check for duplicate type specifiers (e.g. "int typeof(int)").
   4765   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
   4766                          DiagID, Operand.get()))
   4767     Diag(StartLoc, DiagID) << PrevSpec;
   4768 }
   4769 
   4770 /// [C11]   atomic-specifier:
   4771 ///           _Atomic ( type-name )
   4772 ///
   4773 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
   4774   assert(Tok.is(tok::kw__Atomic) && "Not an atomic specifier");
   4775 
   4776   SourceLocation StartLoc = ConsumeToken();
   4777   BalancedDelimiterTracker T(*this, tok::l_paren);
   4778   if (T.expectAndConsume(diag::err_expected_lparen_after, "_Atomic")) {
   4779     SkipUntil(tok::r_paren);
   4780     return;
   4781   }
   4782 
   4783   TypeResult Result = ParseTypeName();
   4784   if (Result.isInvalid()) {
   4785     SkipUntil(tok::r_paren);
   4786     return;
   4787   }
   4788 
   4789   // Match the ')'
   4790   T.consumeClose();
   4791 
   4792   if (T.getCloseLocation().isInvalid())
   4793     return;
   4794 
   4795   DS.setTypeofParensRange(T.getRange());
   4796   DS.SetRangeEnd(T.getCloseLocation());
   4797 
   4798   const char *PrevSpec = 0;
   4799   unsigned DiagID;
   4800   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
   4801                          DiagID, Result.release()))
   4802     Diag(StartLoc, DiagID) << PrevSpec;
   4803 }
   4804 
   4805 
   4806 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
   4807 /// from TryAltiVecVectorToken.
   4808 bool Parser::TryAltiVecVectorTokenOutOfLine() {
   4809   Token Next = NextToken();
   4810   switch (Next.getKind()) {
   4811   default: return false;
   4812   case tok::kw_short:
   4813   case tok::kw_long:
   4814   case tok::kw_signed:
   4815   case tok::kw_unsigned:
   4816   case tok::kw_void:
   4817   case tok::kw_char:
   4818   case tok::kw_int:
   4819   case tok::kw_float:
   4820   case tok::kw_double:
   4821   case tok::kw_bool:
   4822   case tok::kw___pixel:
   4823     Tok.setKind(tok::kw___vector);
   4824     return true;
   4825   case tok::identifier:
   4826     if (Next.getIdentifierInfo() == Ident_pixel) {
   4827       Tok.setKind(tok::kw___vector);
   4828       return true;
   4829     }
   4830     return false;
   4831   }
   4832 }
   4833 
   4834 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
   4835                                       const char *&PrevSpec, unsigned &DiagID,
   4836                                       bool &isInvalid) {
   4837   if (Tok.getIdentifierInfo() == Ident_vector) {
   4838     Token Next = NextToken();
   4839     switch (Next.getKind()) {
   4840     case tok::kw_short:
   4841     case tok::kw_long:
   4842     case tok::kw_signed:
   4843     case tok::kw_unsigned:
   4844     case tok::kw_void:
   4845     case tok::kw_char:
   4846     case tok::kw_int:
   4847     case tok::kw_float:
   4848     case tok::kw_double:
   4849     case tok::kw_bool:
   4850     case tok::kw___pixel:
   4851       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
   4852       return true;
   4853     case tok::identifier:
   4854       if (Next.getIdentifierInfo() == Ident_pixel) {
   4855         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
   4856         return true;
   4857       }
   4858       break;
   4859     default:
   4860       break;
   4861     }
   4862   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
   4863              DS.isTypeAltiVecVector()) {
   4864     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
   4865     return true;
   4866   }
   4867   return false;
   4868 }
   4869