Home | History | Annotate | Download | only in IPO
      1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the mechanics required to implement inlining without
     11 // missing any calls and updating the call graph.  The decisions of which calls
     12 // are profitable to inline are implemented elsewhere.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "inline"
     17 #include "llvm/Module.h"
     18 #include "llvm/Instructions.h"
     19 #include "llvm/IntrinsicInst.h"
     20 #include "llvm/Analysis/CallGraph.h"
     21 #include "llvm/Analysis/InlineCost.h"
     22 #include "llvm/Target/TargetData.h"
     23 #include "llvm/Transforms/IPO/InlinerPass.h"
     24 #include "llvm/Transforms/Utils/Cloning.h"
     25 #include "llvm/Transforms/Utils/Local.h"
     26 #include "llvm/Support/CallSite.h"
     27 #include "llvm/Support/CommandLine.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/Statistic.h"
     32 using namespace llvm;
     33 
     34 STATISTIC(NumInlined, "Number of functions inlined");
     35 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
     36 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
     37 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
     38 
     39 // This weirdly named statistic tracks the number of times that, when attemting
     40 // to inline a function A into B, we analyze the callers of B in order to see
     41 // if those would be more profitable and blocked inline steps.
     42 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
     43 
     44 static cl::opt<int>
     45 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
     46         cl::desc("Control the amount of inlining to perform (default = 225)"));
     47 
     48 static cl::opt<int>
     49 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325),
     50               cl::desc("Threshold for inlining functions with inline hint"));
     51 
     52 // Threshold to use when optsize is specified (and there is no -inline-limit).
     53 const int OptSizeThreshold = 75;
     54 
     55 Inliner::Inliner(char &ID)
     56   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {}
     57 
     58 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime)
     59   : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ?
     60                                           InlineLimit : Threshold),
     61     InsertLifetime(InsertLifetime) {}
     62 
     63 /// getAnalysisUsage - For this class, we declare that we require and preserve
     64 /// the call graph.  If the derived class implements this method, it should
     65 /// always explicitly call the implementation here.
     66 void Inliner::getAnalysisUsage(AnalysisUsage &Info) const {
     67   CallGraphSCCPass::getAnalysisUsage(Info);
     68 }
     69 
     70 
     71 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> >
     72 InlinedArrayAllocasTy;
     73 
     74 /// InlineCallIfPossible - If it is possible to inline the specified call site,
     75 /// do so and update the CallGraph for this operation.
     76 ///
     77 /// This function also does some basic book-keeping to update the IR.  The
     78 /// InlinedArrayAllocas map keeps track of any allocas that are already
     79 /// available from other  functions inlined into the caller.  If we are able to
     80 /// inline this call site we attempt to reuse already available allocas or add
     81 /// any new allocas to the set if not possible.
     82 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI,
     83                                  InlinedArrayAllocasTy &InlinedArrayAllocas,
     84                                  int InlineHistory, bool InsertLifetime) {
     85   Function *Callee = CS.getCalledFunction();
     86   Function *Caller = CS.getCaller();
     87 
     88   // Try to inline the function.  Get the list of static allocas that were
     89   // inlined.
     90   if (!InlineFunction(CS, IFI, InsertLifetime))
     91     return false;
     92 
     93   // If the inlined function had a higher stack protection level than the
     94   // calling function, then bump up the caller's stack protection level.
     95   if (Callee->hasFnAttr(Attribute::StackProtectReq))
     96     Caller->addFnAttr(Attribute::StackProtectReq);
     97   else if (Callee->hasFnAttr(Attribute::StackProtect) &&
     98            !Caller->hasFnAttr(Attribute::StackProtectReq))
     99     Caller->addFnAttr(Attribute::StackProtect);
    100 
    101   // Look at all of the allocas that we inlined through this call site.  If we
    102   // have already inlined other allocas through other calls into this function,
    103   // then we know that they have disjoint lifetimes and that we can merge them.
    104   //
    105   // There are many heuristics possible for merging these allocas, and the
    106   // different options have different tradeoffs.  One thing that we *really*
    107   // don't want to hurt is SRoA: once inlining happens, often allocas are no
    108   // longer address taken and so they can be promoted.
    109   //
    110   // Our "solution" for that is to only merge allocas whose outermost type is an
    111   // array type.  These are usually not promoted because someone is using a
    112   // variable index into them.  These are also often the most important ones to
    113   // merge.
    114   //
    115   // A better solution would be to have real memory lifetime markers in the IR
    116   // and not have the inliner do any merging of allocas at all.  This would
    117   // allow the backend to do proper stack slot coloring of all allocas that
    118   // *actually make it to the backend*, which is really what we want.
    119   //
    120   // Because we don't have this information, we do this simple and useful hack.
    121   //
    122   SmallPtrSet<AllocaInst*, 16> UsedAllocas;
    123 
    124   // When processing our SCC, check to see if CS was inlined from some other
    125   // call site.  For example, if we're processing "A" in this code:
    126   //   A() { B() }
    127   //   B() { x = alloca ... C() }
    128   //   C() { y = alloca ... }
    129   // Assume that C was not inlined into B initially, and so we're processing A
    130   // and decide to inline B into A.  Doing this makes an alloca available for
    131   // reuse and makes a callsite (C) available for inlining.  When we process
    132   // the C call site we don't want to do any alloca merging between X and Y
    133   // because their scopes are not disjoint.  We could make this smarter by
    134   // keeping track of the inline history for each alloca in the
    135   // InlinedArrayAllocas but this isn't likely to be a significant win.
    136   if (InlineHistory != -1)  // Only do merging for top-level call sites in SCC.
    137     return true;
    138 
    139   // Loop over all the allocas we have so far and see if they can be merged with
    140   // a previously inlined alloca.  If not, remember that we had it.
    141   for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size();
    142        AllocaNo != e; ++AllocaNo) {
    143     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
    144 
    145     // Don't bother trying to merge array allocations (they will usually be
    146     // canonicalized to be an allocation *of* an array), or allocations whose
    147     // type is not itself an array (because we're afraid of pessimizing SRoA).
    148     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
    149     if (ATy == 0 || AI->isArrayAllocation())
    150       continue;
    151 
    152     // Get the list of all available allocas for this array type.
    153     std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy];
    154 
    155     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
    156     // that we have to be careful not to reuse the same "available" alloca for
    157     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
    158     // set to keep track of which "available" allocas are being used by this
    159     // function.  Also, AllocasForType can be empty of course!
    160     bool MergedAwayAlloca = false;
    161     for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) {
    162       AllocaInst *AvailableAlloca = AllocasForType[i];
    163 
    164       // The available alloca has to be in the right function, not in some other
    165       // function in this SCC.
    166       if (AvailableAlloca->getParent() != AI->getParent())
    167         continue;
    168 
    169       // If the inlined function already uses this alloca then we can't reuse
    170       // it.
    171       if (!UsedAllocas.insert(AvailableAlloca))
    172         continue;
    173 
    174       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
    175       // success!
    176       DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: "
    177                    << *AvailableAlloca << '\n');
    178 
    179       AI->replaceAllUsesWith(AvailableAlloca);
    180       AI->eraseFromParent();
    181       MergedAwayAlloca = true;
    182       ++NumMergedAllocas;
    183       IFI.StaticAllocas[AllocaNo] = 0;
    184       break;
    185     }
    186 
    187     // If we already nuked the alloca, we're done with it.
    188     if (MergedAwayAlloca)
    189       continue;
    190 
    191     // If we were unable to merge away the alloca either because there are no
    192     // allocas of the right type available or because we reused them all
    193     // already, remember that this alloca came from an inlined function and mark
    194     // it used so we don't reuse it for other allocas from this inline
    195     // operation.
    196     AllocasForType.push_back(AI);
    197     UsedAllocas.insert(AI);
    198   }
    199 
    200   return true;
    201 }
    202 
    203 unsigned Inliner::getInlineThreshold(CallSite CS) const {
    204   int thres = InlineThreshold;
    205 
    206   // Listen to optsize when -inline-limit is not given.
    207   Function *Caller = CS.getCaller();
    208   if (Caller && !Caller->isDeclaration() &&
    209       Caller->hasFnAttr(Attribute::OptimizeForSize) &&
    210       InlineLimit.getNumOccurrences() == 0)
    211     thres = OptSizeThreshold;
    212 
    213   // Listen to inlinehint when it would increase the threshold.
    214   Function *Callee = CS.getCalledFunction();
    215   if (HintThreshold > thres && Callee && !Callee->isDeclaration() &&
    216       Callee->hasFnAttr(Attribute::InlineHint))
    217     thres = HintThreshold;
    218 
    219   return thres;
    220 }
    221 
    222 /// shouldInline - Return true if the inliner should attempt to inline
    223 /// at the given CallSite.
    224 bool Inliner::shouldInline(CallSite CS) {
    225   InlineCost IC = getInlineCost(CS);
    226 
    227   if (IC.isAlways()) {
    228     DEBUG(dbgs() << "    Inlining: cost=always"
    229           << ", Call: " << *CS.getInstruction() << "\n");
    230     return true;
    231   }
    232 
    233   if (IC.isNever()) {
    234     DEBUG(dbgs() << "    NOT Inlining: cost=never"
    235           << ", Call: " << *CS.getInstruction() << "\n");
    236     return false;
    237   }
    238 
    239   Function *Caller = CS.getCaller();
    240   if (!IC) {
    241     DEBUG(dbgs() << "    NOT Inlining: cost=" << IC.getCost()
    242           << ", thres=" << (IC.getCostDelta() + IC.getCost())
    243           << ", Call: " << *CS.getInstruction() << "\n");
    244     return false;
    245   }
    246 
    247   // Try to detect the case where the current inlining candidate caller (call
    248   // it B) is a static or linkonce-ODR function and is an inlining candidate
    249   // elsewhere, and the current candidate callee (call it C) is large enough
    250   // that inlining it into B would make B too big to inline later. In these
    251   // circumstances it may be best not to inline C into B, but to inline B into
    252   // its callers.
    253   //
    254   // This only applies to static and linkonce-ODR functions because those are
    255   // expected to be available for inlining in the translation units where they
    256   // are used. Thus we will always have the opportunity to make local inlining
    257   // decisions. Importantly the linkonce-ODR linkage covers inline functions
    258   // and templates in C++.
    259   //
    260   // FIXME: All of this logic should be sunk into getInlineCost. It relies on
    261   // the internal implementation of the inline cost metrics rather than
    262   // treating them as truly abstract units etc.
    263   if (Caller->hasLocalLinkage() ||
    264       Caller->getLinkage() == GlobalValue::LinkOnceODRLinkage) {
    265     int TotalSecondaryCost = 0;
    266     // The candidate cost to be imposed upon the current function.
    267     int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1);
    268     // This bool tracks what happens if we do NOT inline C into B.
    269     bool callerWillBeRemoved = Caller->hasLocalLinkage();
    270     // This bool tracks what happens if we DO inline C into B.
    271     bool inliningPreventsSomeOuterInline = false;
    272     for (Value::use_iterator I = Caller->use_begin(), E =Caller->use_end();
    273          I != E; ++I) {
    274       CallSite CS2(*I);
    275 
    276       // If this isn't a call to Caller (it could be some other sort
    277       // of reference) skip it.  Such references will prevent the caller
    278       // from being removed.
    279       if (!CS2 || CS2.getCalledFunction() != Caller) {
    280         callerWillBeRemoved = false;
    281         continue;
    282       }
    283 
    284       InlineCost IC2 = getInlineCost(CS2);
    285       ++NumCallerCallersAnalyzed;
    286       if (!IC2) {
    287         callerWillBeRemoved = false;
    288         continue;
    289       }
    290       if (IC2.isAlways())
    291         continue;
    292 
    293       // See if inlining or original callsite would erase the cost delta of
    294       // this callsite. We subtract off the penalty for the call instruction,
    295       // which we would be deleting.
    296       if (IC2.getCostDelta() <= CandidateCost) {
    297         inliningPreventsSomeOuterInline = true;
    298         TotalSecondaryCost += IC2.getCost();
    299       }
    300     }
    301     // If all outer calls to Caller would get inlined, the cost for the last
    302     // one is set very low by getInlineCost, in anticipation that Caller will
    303     // be removed entirely.  We did not account for this above unless there
    304     // is only one caller of Caller.
    305     if (callerWillBeRemoved && Caller->use_begin() != Caller->use_end())
    306       TotalSecondaryCost += InlineConstants::LastCallToStaticBonus;
    307 
    308     if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) {
    309       DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction() <<
    310            " Cost = " << IC.getCost() <<
    311            ", outer Cost = " << TotalSecondaryCost << '\n');
    312       return false;
    313     }
    314   }
    315 
    316   DEBUG(dbgs() << "    Inlining: cost=" << IC.getCost()
    317         << ", thres=" << (IC.getCostDelta() + IC.getCost())
    318         << ", Call: " << *CS.getInstruction() << '\n');
    319   return true;
    320 }
    321 
    322 /// InlineHistoryIncludes - Return true if the specified inline history ID
    323 /// indicates an inline history that includes the specified function.
    324 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID,
    325             const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) {
    326   while (InlineHistoryID != -1) {
    327     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
    328            "Invalid inline history ID");
    329     if (InlineHistory[InlineHistoryID].first == F)
    330       return true;
    331     InlineHistoryID = InlineHistory[InlineHistoryID].second;
    332   }
    333   return false;
    334 }
    335 
    336 bool Inliner::runOnSCC(CallGraphSCC &SCC) {
    337   CallGraph &CG = getAnalysis<CallGraph>();
    338   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
    339 
    340   SmallPtrSet<Function*, 8> SCCFunctions;
    341   DEBUG(dbgs() << "Inliner visiting SCC:");
    342   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    343     Function *F = (*I)->getFunction();
    344     if (F) SCCFunctions.insert(F);
    345     DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
    346   }
    347 
    348   // Scan through and identify all call sites ahead of time so that we only
    349   // inline call sites in the original functions, not call sites that result
    350   // from inlining other functions.
    351   SmallVector<std::pair<CallSite, int>, 16> CallSites;
    352 
    353   // When inlining a callee produces new call sites, we want to keep track of
    354   // the fact that they were inlined from the callee.  This allows us to avoid
    355   // infinite inlining in some obscure cases.  To represent this, we use an
    356   // index into the InlineHistory vector.
    357   SmallVector<std::pair<Function*, int>, 8> InlineHistory;
    358 
    359   for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
    360     Function *F = (*I)->getFunction();
    361     if (!F) continue;
    362 
    363     for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    364       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
    365         CallSite CS(cast<Value>(I));
    366         // If this isn't a call, or it is a call to an intrinsic, it can
    367         // never be inlined.
    368         if (!CS || isa<IntrinsicInst>(I))
    369           continue;
    370 
    371         // If this is a direct call to an external function, we can never inline
    372         // it.  If it is an indirect call, inlining may resolve it to be a
    373         // direct call, so we keep it.
    374         if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration())
    375           continue;
    376 
    377         CallSites.push_back(std::make_pair(CS, -1));
    378       }
    379   }
    380 
    381   DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
    382 
    383   // If there are no calls in this function, exit early.
    384   if (CallSites.empty())
    385     return false;
    386 
    387   // Now that we have all of the call sites, move the ones to functions in the
    388   // current SCC to the end of the list.
    389   unsigned FirstCallInSCC = CallSites.size();
    390   for (unsigned i = 0; i < FirstCallInSCC; ++i)
    391     if (Function *F = CallSites[i].first.getCalledFunction())
    392       if (SCCFunctions.count(F))
    393         std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
    394 
    395 
    396   InlinedArrayAllocasTy InlinedArrayAllocas;
    397   InlineFunctionInfo InlineInfo(&CG, TD);
    398 
    399   // Now that we have all of the call sites, loop over them and inline them if
    400   // it looks profitable to do so.
    401   bool Changed = false;
    402   bool LocalChange;
    403   do {
    404     LocalChange = false;
    405     // Iterate over the outer loop because inlining functions can cause indirect
    406     // calls to become direct calls.
    407     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
    408       CallSite CS = CallSites[CSi].first;
    409 
    410       Function *Caller = CS.getCaller();
    411       Function *Callee = CS.getCalledFunction();
    412 
    413       // If this call site is dead and it is to a readonly function, we should
    414       // just delete the call instead of trying to inline it, regardless of
    415       // size.  This happens because IPSCCP propagates the result out of the
    416       // call and then we're left with the dead call.
    417       if (isInstructionTriviallyDead(CS.getInstruction())) {
    418         DEBUG(dbgs() << "    -> Deleting dead call: "
    419                      << *CS.getInstruction() << "\n");
    420         // Update the call graph by deleting the edge from Callee to Caller.
    421         CG[Caller]->removeCallEdgeFor(CS);
    422         CS.getInstruction()->eraseFromParent();
    423         ++NumCallsDeleted;
    424       } else {
    425         // We can only inline direct calls to non-declarations.
    426         if (Callee == 0 || Callee->isDeclaration()) continue;
    427 
    428         // If this call site was obtained by inlining another function, verify
    429         // that the include path for the function did not include the callee
    430         // itself.  If so, we'd be recursively inlining the same function,
    431         // which would provide the same callsites, which would cause us to
    432         // infinitely inline.
    433         int InlineHistoryID = CallSites[CSi].second;
    434         if (InlineHistoryID != -1 &&
    435             InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory))
    436           continue;
    437 
    438 
    439         // If the policy determines that we should inline this function,
    440         // try to do so.
    441         if (!shouldInline(CS))
    442           continue;
    443 
    444         // Attempt to inline the function.
    445         if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas,
    446                                   InlineHistoryID, InsertLifetime))
    447           continue;
    448         ++NumInlined;
    449 
    450         // If inlining this function gave us any new call sites, throw them
    451         // onto our worklist to process.  They are useful inline candidates.
    452         if (!InlineInfo.InlinedCalls.empty()) {
    453           // Create a new inline history entry for this, so that we remember
    454           // that these new callsites came about due to inlining Callee.
    455           int NewHistoryID = InlineHistory.size();
    456           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
    457 
    458           for (unsigned i = 0, e = InlineInfo.InlinedCalls.size();
    459                i != e; ++i) {
    460             Value *Ptr = InlineInfo.InlinedCalls[i];
    461             CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
    462           }
    463         }
    464       }
    465 
    466       // If we inlined or deleted the last possible call site to the function,
    467       // delete the function body now.
    468       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
    469           // TODO: Can remove if in SCC now.
    470           !SCCFunctions.count(Callee) &&
    471 
    472           // The function may be apparently dead, but if there are indirect
    473           // callgraph references to the node, we cannot delete it yet, this
    474           // could invalidate the CGSCC iterator.
    475           CG[Callee]->getNumReferences() == 0) {
    476         DEBUG(dbgs() << "    -> Deleting dead function: "
    477               << Callee->getName() << "\n");
    478         CallGraphNode *CalleeNode = CG[Callee];
    479 
    480         // Remove any call graph edges from the callee to its callees.
    481         CalleeNode->removeAllCalledFunctions();
    482 
    483         // Removing the node for callee from the call graph and delete it.
    484         delete CG.removeFunctionFromModule(CalleeNode);
    485         ++NumDeleted;
    486       }
    487 
    488       // Remove this call site from the list.  If possible, use
    489       // swap/pop_back for efficiency, but do not use it if doing so would
    490       // move a call site to a function in this SCC before the
    491       // 'FirstCallInSCC' barrier.
    492       if (SCC.isSingular()) {
    493         CallSites[CSi] = CallSites.back();
    494         CallSites.pop_back();
    495       } else {
    496         CallSites.erase(CallSites.begin()+CSi);
    497       }
    498       --CSi;
    499 
    500       Changed = true;
    501       LocalChange = true;
    502     }
    503   } while (LocalChange);
    504 
    505   return Changed;
    506 }
    507 
    508 // doFinalization - Remove now-dead linkonce functions at the end of
    509 // processing to avoid breaking the SCC traversal.
    510 bool Inliner::doFinalization(CallGraph &CG) {
    511   return removeDeadFunctions(CG);
    512 }
    513 
    514 /// removeDeadFunctions - Remove dead functions that are not included in
    515 /// DNR (Do Not Remove) list.
    516 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) {
    517   SmallVector<CallGraphNode*, 16> FunctionsToRemove;
    518 
    519   // Scan for all of the functions, looking for ones that should now be removed
    520   // from the program.  Insert the dead ones in the FunctionsToRemove set.
    521   for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) {
    522     CallGraphNode *CGN = I->second;
    523     Function *F = CGN->getFunction();
    524     if (!F || F->isDeclaration())
    525       continue;
    526 
    527     // Handle the case when this function is called and we only want to care
    528     // about always-inline functions. This is a bit of a hack to share code
    529     // between here and the InlineAlways pass.
    530     if (AlwaysInlineOnly && !F->hasFnAttr(Attribute::AlwaysInline))
    531       continue;
    532 
    533     // If the only remaining users of the function are dead constants, remove
    534     // them.
    535     F->removeDeadConstantUsers();
    536 
    537     if (!F->isDefTriviallyDead())
    538       continue;
    539 
    540     // Remove any call graph edges from the function to its callees.
    541     CGN->removeAllCalledFunctions();
    542 
    543     // Remove any edges from the external node to the function's call graph
    544     // node.  These edges might have been made irrelegant due to
    545     // optimization of the program.
    546     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
    547 
    548     // Removing the node for callee from the call graph and delete it.
    549     FunctionsToRemove.push_back(CGN);
    550   }
    551   if (FunctionsToRemove.empty())
    552     return false;
    553 
    554   // Now that we know which functions to delete, do so.  We didn't want to do
    555   // this inline, because that would invalidate our CallGraph::iterator
    556   // objects. :(
    557   //
    558   // Note that it doesn't matter that we are iterating over a non-stable order
    559   // here to do this, it doesn't matter which order the functions are deleted
    560   // in.
    561   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
    562   FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(),
    563                                       FunctionsToRemove.end()),
    564                           FunctionsToRemove.end());
    565   for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(),
    566                                                   E = FunctionsToRemove.end();
    567        I != E; ++I) {
    568     delete CG.removeFunctionFromModule(*I);
    569     ++NumDeleted;
    570   }
    571   return true;
    572 }
    573