Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MachineRegisterInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
     15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
     16 
     17 #include "llvm/Target/TargetRegisterInfo.h"
     18 #include "llvm/CodeGen/MachineInstrBundle.h"
     19 #include "llvm/ADT/BitVector.h"
     20 #include "llvm/ADT/IndexedMap.h"
     21 #include <vector>
     22 
     23 namespace llvm {
     24 
     25 /// MachineRegisterInfo - Keep track of information for virtual and physical
     26 /// registers, including vreg register classes, use/def chains for registers,
     27 /// etc.
     28 class MachineRegisterInfo {
     29   const TargetRegisterInfo *const TRI;
     30 
     31   /// IsSSA - True when the machine function is in SSA form and virtual
     32   /// registers have a single def.
     33   bool IsSSA;
     34 
     35   /// TracksLiveness - True while register liveness is being tracked accurately.
     36   /// Basic block live-in lists, kill flags, and implicit defs may not be
     37   /// accurate when after this flag is cleared.
     38   bool TracksLiveness;
     39 
     40   /// VRegInfo - Information we keep for each virtual register.
     41   ///
     42   /// Each element in this list contains the register class of the vreg and the
     43   /// start of the use/def list for the register.
     44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
     45              VirtReg2IndexFunctor> VRegInfo;
     46 
     47   /// RegAllocHints - This vector records register allocation hints for virtual
     48   /// registers. For each virtual register, it keeps a register and hint type
     49   /// pair making up the allocation hint. Hint type is target specific except
     50   /// for the value 0 which means the second value of the pair is the preferred
     51   /// register for allocation. For example, if the hint is <0, 1024>, it means
     52   /// the allocator should prefer the physical register allocated to the virtual
     53   /// register of the hint.
     54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
     55 
     56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
     57   /// physical registers.
     58   MachineOperand **PhysRegUseDefLists;
     59 
     60   /// UsedPhysRegs - This is a bit vector that is computed and set by the
     61   /// register allocator, and must be kept up to date by passes that run after
     62   /// register allocation (though most don't modify this).  This is used
     63   /// so that the code generator knows which callee save registers to save and
     64   /// for other target specific uses.
     65   /// This vector only has bits set for registers explicitly used, not their
     66   /// aliases.
     67   BitVector UsedPhysRegs;
     68 
     69   /// UsedPhysRegMask - Additional used physregs, but including aliases.
     70   BitVector UsedPhysRegMask;
     71 
     72   /// ReservedRegs - This is a bit vector of reserved registers.  The target
     73   /// may change its mind about which registers should be reserved.  This
     74   /// vector is the frozen set of reserved registers when register allocation
     75   /// started.
     76   BitVector ReservedRegs;
     77 
     78   /// AllocatableRegs - From TRI->getAllocatableSet.
     79   mutable BitVector AllocatableRegs;
     80 
     81   /// LiveIns/LiveOuts - Keep track of the physical registers that are
     82   /// livein/liveout of the function.  Live in values are typically arguments in
     83   /// registers, live out values are typically return values in registers.
     84   /// LiveIn values are allowed to have virtual registers associated with them,
     85   /// stored in the second element.
     86   std::vector<std::pair<unsigned, unsigned> > LiveIns;
     87   std::vector<unsigned> LiveOuts;
     88 
     89   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
     90   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
     91 public:
     92   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
     93   ~MachineRegisterInfo();
     94 
     95   //===--------------------------------------------------------------------===//
     96   // Function State
     97   //===--------------------------------------------------------------------===//
     98 
     99   // isSSA - Returns true when the machine function is in SSA form. Early
    100   // passes require the machine function to be in SSA form where every virtual
    101   // register has a single defining instruction.
    102   //
    103   // The TwoAddressInstructionPass and PHIElimination passes take the machine
    104   // function out of SSA form when they introduce multiple defs per virtual
    105   // register.
    106   bool isSSA() const { return IsSSA; }
    107 
    108   // leaveSSA - Indicates that the machine function is no longer in SSA form.
    109   void leaveSSA() { IsSSA = false; }
    110 
    111   /// tracksLiveness - Returns true when tracking register liveness accurately.
    112   ///
    113   /// While this flag is true, register liveness information in basic block
    114   /// live-in lists and machine instruction operands is accurate. This means it
    115   /// can be used to change the code in ways that affect the values in
    116   /// registers, for example by the register scavenger.
    117   ///
    118   /// When this flag is false, liveness is no longer reliable.
    119   bool tracksLiveness() const { return TracksLiveness; }
    120 
    121   /// invalidateLiveness - Indicates that register liveness is no longer being
    122   /// tracked accurately.
    123   ///
    124   /// This should be called by late passes that invalidate the liveness
    125   /// information.
    126   void invalidateLiveness() { TracksLiveness = false; }
    127 
    128   //===--------------------------------------------------------------------===//
    129   // Register Info
    130   //===--------------------------------------------------------------------===//
    131 
    132   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
    133   /// and uses of a register within the MachineFunction that corresponds to this
    134   /// MachineRegisterInfo object.
    135   template<bool Uses, bool Defs, bool SkipDebug>
    136   class defusechain_iterator;
    137 
    138   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
    139   /// register.
    140   typedef defusechain_iterator<true,true,false> reg_iterator;
    141   reg_iterator reg_begin(unsigned RegNo) const {
    142     return reg_iterator(getRegUseDefListHead(RegNo));
    143   }
    144   static reg_iterator reg_end() { return reg_iterator(0); }
    145 
    146   /// reg_empty - Return true if there are no instructions using or defining the
    147   /// specified register (it may be live-in).
    148   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
    149 
    150   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
    151   /// of the specified register, skipping those marked as Debug.
    152   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
    153   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
    154     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
    155   }
    156   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
    157 
    158   /// reg_nodbg_empty - Return true if the only instructions using or defining
    159   /// Reg are Debug instructions.
    160   bool reg_nodbg_empty(unsigned RegNo) const {
    161     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
    162   }
    163 
    164   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
    165   typedef defusechain_iterator<false,true,false> def_iterator;
    166   def_iterator def_begin(unsigned RegNo) const {
    167     return def_iterator(getRegUseDefListHead(RegNo));
    168   }
    169   static def_iterator def_end() { return def_iterator(0); }
    170 
    171   /// def_empty - Return true if there are no instructions defining the
    172   /// specified register (it may be live-in).
    173   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
    174 
    175   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
    176   typedef defusechain_iterator<true,false,false> use_iterator;
    177   use_iterator use_begin(unsigned RegNo) const {
    178     return use_iterator(getRegUseDefListHead(RegNo));
    179   }
    180   static use_iterator use_end() { return use_iterator(0); }
    181 
    182   /// use_empty - Return true if there are no instructions using the specified
    183   /// register.
    184   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
    185 
    186   /// hasOneUse - Return true if there is exactly one instruction using the
    187   /// specified register.
    188   bool hasOneUse(unsigned RegNo) const;
    189 
    190   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
    191   /// specified register, skipping those marked as Debug.
    192   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
    193   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
    194     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
    195   }
    196   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
    197 
    198   /// use_nodbg_empty - Return true if there are no non-Debug instructions
    199   /// using the specified register.
    200   bool use_nodbg_empty(unsigned RegNo) const {
    201     return use_nodbg_begin(RegNo) == use_nodbg_end();
    202   }
    203 
    204   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
    205   /// instruction using the specified register.
    206   bool hasOneNonDBGUse(unsigned RegNo) const;
    207 
    208   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
    209   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
    210   /// except that it also changes any definitions of the register as well.
    211   ///
    212   /// Note that it is usually necessary to first constrain ToReg's register
    213   /// class to match the FromReg constraints using:
    214   ///
    215   ///   constrainRegClass(ToReg, getRegClass(FromReg))
    216   ///
    217   /// That function will return NULL if the virtual registers have incompatible
    218   /// constraints.
    219   void replaceRegWith(unsigned FromReg, unsigned ToReg);
    220 
    221   /// getRegUseDefListHead - Return the head pointer for the register use/def
    222   /// list for the specified virtual or physical register.
    223   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
    224     if (TargetRegisterInfo::isVirtualRegister(RegNo))
    225       return VRegInfo[RegNo].second;
    226     return PhysRegUseDefLists[RegNo];
    227   }
    228 
    229   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
    230     if (TargetRegisterInfo::isVirtualRegister(RegNo))
    231       return VRegInfo[RegNo].second;
    232     return PhysRegUseDefLists[RegNo];
    233   }
    234 
    235   /// getVRegDef - Return the machine instr that defines the specified virtual
    236   /// register or null if none is found.  This assumes that the code is in SSA
    237   /// form, so there should only be one definition.
    238   MachineInstr *getVRegDef(unsigned Reg) const;
    239 
    240   /// clearKillFlags - Iterate over all the uses of the given register and
    241   /// clear the kill flag from the MachineOperand. This function is used by
    242   /// optimization passes which extend register lifetimes and need only
    243   /// preserve conservative kill flag information.
    244   void clearKillFlags(unsigned Reg) const;
    245 
    246 #ifndef NDEBUG
    247   void dumpUses(unsigned RegNo) const;
    248 #endif
    249 
    250   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
    251   /// throughout the function.  It is safe to move instructions that read such
    252   /// a physreg.
    253   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
    254 
    255   //===--------------------------------------------------------------------===//
    256   // Virtual Register Info
    257   //===--------------------------------------------------------------------===//
    258 
    259   /// getRegClass - Return the register class of the specified virtual register.
    260   ///
    261   const TargetRegisterClass *getRegClass(unsigned Reg) const {
    262     return VRegInfo[Reg].first;
    263   }
    264 
    265   /// setRegClass - Set the register class of the specified virtual register.
    266   ///
    267   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
    268 
    269   /// constrainRegClass - Constrain the register class of the specified virtual
    270   /// register to be a common subclass of RC and the current register class,
    271   /// but only if the new class has at least MinNumRegs registers.  Return the
    272   /// new register class, or NULL if no such class exists.
    273   /// This should only be used when the constraint is known to be trivial, like
    274   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
    275   ///
    276   const TargetRegisterClass *constrainRegClass(unsigned Reg,
    277                                                const TargetRegisterClass *RC,
    278                                                unsigned MinNumRegs = 0);
    279 
    280   /// recomputeRegClass - Try to find a legal super-class of Reg's register
    281   /// class that still satisfies the constraints from the instructions using
    282   /// Reg.  Returns true if Reg was upgraded.
    283   ///
    284   /// This method can be used after constraints have been removed from a
    285   /// virtual register, for example after removing instructions or splitting
    286   /// the live range.
    287   ///
    288   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
    289 
    290   /// createVirtualRegister - Create and return a new virtual register in the
    291   /// function with the specified register class.
    292   ///
    293   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
    294 
    295   /// getNumVirtRegs - Return the number of virtual registers created.
    296   ///
    297   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
    298 
    299   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
    300   void clearVirtRegs();
    301 
    302   /// setRegAllocationHint - Specify a register allocation hint for the
    303   /// specified virtual register.
    304   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
    305     RegAllocHints[Reg].first  = Type;
    306     RegAllocHints[Reg].second = PrefReg;
    307   }
    308 
    309   /// getRegAllocationHint - Return the register allocation hint for the
    310   /// specified virtual register.
    311   std::pair<unsigned, unsigned>
    312   getRegAllocationHint(unsigned Reg) const {
    313     return RegAllocHints[Reg];
    314   }
    315 
    316   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
    317   /// standard simple hint (Type == 0) is not set.
    318   unsigned getSimpleHint(unsigned Reg) const {
    319     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
    320     return Hint.first ? 0 : Hint.second;
    321   }
    322 
    323 
    324   //===--------------------------------------------------------------------===//
    325   // Physical Register Use Info
    326   //===--------------------------------------------------------------------===//
    327 
    328   /// isPhysRegUsed - Return true if the specified register is used in this
    329   /// function.  This only works after register allocation.
    330   bool isPhysRegUsed(unsigned Reg) const {
    331     return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
    332   }
    333 
    334   /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
    335   /// is used in this function.
    336   bool isPhysRegOrOverlapUsed(unsigned Reg) const {
    337     if (UsedPhysRegMask.test(Reg))
    338       return true;
    339     for (const uint16_t *AI = TRI->getOverlaps(Reg); *AI; ++AI)
    340       if (UsedPhysRegs.test(*AI))
    341         return true;
    342     return false;
    343   }
    344 
    345   /// setPhysRegUsed - Mark the specified register used in this function.
    346   /// This should only be called during and after register allocation.
    347   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
    348 
    349   /// addPhysRegsUsed - Mark the specified registers used in this function.
    350   /// This should only be called during and after register allocation.
    351   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
    352 
    353   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
    354   /// This corresponds to the bit mask attached to register mask operands.
    355   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
    356     UsedPhysRegMask.setBitsNotInMask(RegMask);
    357   }
    358 
    359   /// setPhysRegUnused - Mark the specified register unused in this function.
    360   /// This should only be called during and after register allocation.
    361   void setPhysRegUnused(unsigned Reg) {
    362     UsedPhysRegs.reset(Reg);
    363     UsedPhysRegMask.reset(Reg);
    364   }
    365 
    366 
    367   //===--------------------------------------------------------------------===//
    368   // Reserved Register Info
    369   //===--------------------------------------------------------------------===//
    370   //
    371   // The set of reserved registers must be invariant during register
    372   // allocation.  For example, the target cannot suddenly decide it needs a
    373   // frame pointer when the register allocator has already used the frame
    374   // pointer register for something else.
    375   //
    376   // These methods can be used by target hooks like hasFP() to avoid changing
    377   // the reserved register set during register allocation.
    378 
    379   /// freezeReservedRegs - Called by the register allocator to freeze the set
    380   /// of reserved registers before allocation begins.
    381   void freezeReservedRegs(const MachineFunction&);
    382 
    383   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
    384   /// to ensure the set of reserved registers stays constant.
    385   bool reservedRegsFrozen() const {
    386     return !ReservedRegs.empty();
    387   }
    388 
    389   /// canReserveReg - Returns true if PhysReg can be used as a reserved
    390   /// register.  Any register can be reserved before freezeReservedRegs() is
    391   /// called.
    392   bool canReserveReg(unsigned PhysReg) const {
    393     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
    394   }
    395 
    396 
    397   //===--------------------------------------------------------------------===//
    398   // LiveIn/LiveOut Management
    399   //===--------------------------------------------------------------------===//
    400 
    401   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
    402   /// is an error to add the same register to the same set more than once.
    403   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
    404     LiveIns.push_back(std::make_pair(Reg, vreg));
    405   }
    406   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
    407 
    408   // Iteration support for live in/out sets.  These sets are kept in sorted
    409   // order by their register number.
    410   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
    411   livein_iterator;
    412   typedef std::vector<unsigned>::const_iterator liveout_iterator;
    413   livein_iterator livein_begin() const { return LiveIns.begin(); }
    414   livein_iterator livein_end()   const { return LiveIns.end(); }
    415   bool            livein_empty() const { return LiveIns.empty(); }
    416   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
    417   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
    418   bool             liveout_empty() const { return LiveOuts.empty(); }
    419 
    420   bool isLiveIn(unsigned Reg) const;
    421   bool isLiveOut(unsigned Reg) const;
    422 
    423   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
    424   /// corresponding live-in physical register.
    425   unsigned getLiveInPhysReg(unsigned VReg) const;
    426 
    427   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
    428   /// corresponding live-in physical register.
    429   unsigned getLiveInVirtReg(unsigned PReg) const;
    430 
    431   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
    432   /// into the given entry block.
    433   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
    434                         const TargetRegisterInfo &TRI,
    435                         const TargetInstrInfo &TII);
    436 
    437 private:
    438   void HandleVRegListReallocation();
    439 
    440 public:
    441   /// defusechain_iterator - This class provides iterator support for machine
    442   /// operands in the function that use or define a specific register.  If
    443   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
    444   /// returns defs.  If neither are true then you are silly and it always
    445   /// returns end().  If SkipDebug is true it skips uses marked Debug
    446   /// when incrementing.
    447   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
    448   class defusechain_iterator
    449     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
    450     MachineOperand *Op;
    451     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
    452       // If the first node isn't one we're interested in, advance to one that
    453       // we are interested in.
    454       if (op) {
    455         if ((!ReturnUses && op->isUse()) ||
    456             (!ReturnDefs && op->isDef()) ||
    457             (SkipDebug && op->isDebug()))
    458           ++*this;
    459       }
    460     }
    461     friend class MachineRegisterInfo;
    462   public:
    463     typedef std::iterator<std::forward_iterator_tag,
    464                           MachineInstr, ptrdiff_t>::reference reference;
    465     typedef std::iterator<std::forward_iterator_tag,
    466                           MachineInstr, ptrdiff_t>::pointer pointer;
    467 
    468     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
    469     defusechain_iterator() : Op(0) {}
    470 
    471     bool operator==(const defusechain_iterator &x) const {
    472       return Op == x.Op;
    473     }
    474     bool operator!=(const defusechain_iterator &x) const {
    475       return !operator==(x);
    476     }
    477 
    478     /// atEnd - return true if this iterator is equal to reg_end() on the value.
    479     bool atEnd() const { return Op == 0; }
    480 
    481     // Iterator traversal: forward iteration only
    482     defusechain_iterator &operator++() {          // Preincrement
    483       assert(Op && "Cannot increment end iterator!");
    484       Op = Op->getNextOperandForReg();
    485 
    486       // If this is an operand we don't care about, skip it.
    487       while (Op && ((!ReturnUses && Op->isUse()) ||
    488                     (!ReturnDefs && Op->isDef()) ||
    489                     (SkipDebug && Op->isDebug())))
    490         Op = Op->getNextOperandForReg();
    491 
    492       return *this;
    493     }
    494     defusechain_iterator operator++(int) {        // Postincrement
    495       defusechain_iterator tmp = *this; ++*this; return tmp;
    496     }
    497 
    498     /// skipInstruction - move forward until reaching a different instruction.
    499     /// Return the skipped instruction that is no longer pointed to, or NULL if
    500     /// already pointing to end().
    501     MachineInstr *skipInstruction() {
    502       if (!Op) return 0;
    503       MachineInstr *MI = Op->getParent();
    504       do ++*this;
    505       while (Op && Op->getParent() == MI);
    506       return MI;
    507     }
    508 
    509     MachineInstr *skipBundle() {
    510       if (!Op) return 0;
    511       MachineInstr *MI = getBundleStart(Op->getParent());
    512       do ++*this;
    513       while (Op && getBundleStart(Op->getParent()) == MI);
    514       return MI;
    515     }
    516 
    517     MachineOperand &getOperand() const {
    518       assert(Op && "Cannot dereference end iterator!");
    519       return *Op;
    520     }
    521 
    522     /// getOperandNo - Return the operand # of this MachineOperand in its
    523     /// MachineInstr.
    524     unsigned getOperandNo() const {
    525       assert(Op && "Cannot dereference end iterator!");
    526       return Op - &Op->getParent()->getOperand(0);
    527     }
    528 
    529     // Retrieve a reference to the current operand.
    530     MachineInstr &operator*() const {
    531       assert(Op && "Cannot dereference end iterator!");
    532       return *Op->getParent();
    533     }
    534 
    535     MachineInstr *operator->() const {
    536       assert(Op && "Cannot dereference end iterator!");
    537       return Op->getParent();
    538     }
    539   };
    540 
    541 };
    542 
    543 } // End llvm namespace
    544 
    545 #endif
    546