1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/IntrinsicInst.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/Target/TargetData.h" 18 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 19 #include "llvm/Transforms/Utils/Local.h" 20 #include "llvm/ADT/Statistic.h" 21 using namespace llvm; 22 23 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 24 25 // Try to kill dead allocas by walking through its uses until we see some use 26 // that could escape. This is a conservative analysis which tries to handle 27 // GEPs, bitcasts, stores, and no-op intrinsics. These tend to be the things 28 // left after inlining and SROA finish chewing on an alloca. 29 static Instruction *removeDeadAlloca(InstCombiner &IC, AllocaInst &AI) { 30 SmallVector<Instruction *, 4> Worklist, DeadStores; 31 Worklist.push_back(&AI); 32 do { 33 Instruction *PI = Worklist.pop_back_val(); 34 for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); 35 UI != UE; ++UI) { 36 Instruction *I = cast<Instruction>(*UI); 37 switch (I->getOpcode()) { 38 default: 39 // Give up the moment we see something we can't handle. 40 return 0; 41 42 case Instruction::GetElementPtr: 43 case Instruction::BitCast: 44 Worklist.push_back(I); 45 continue; 46 47 case Instruction::Call: 48 // We can handle a limited subset of calls to no-op intrinsics. 49 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 50 switch (II->getIntrinsicID()) { 51 case Intrinsic::dbg_declare: 52 case Intrinsic::dbg_value: 53 case Intrinsic::invariant_start: 54 case Intrinsic::invariant_end: 55 case Intrinsic::lifetime_start: 56 case Intrinsic::lifetime_end: 57 continue; 58 default: 59 return 0; 60 } 61 } 62 // Reject everything else. 63 return 0; 64 65 case Instruction::Store: { 66 // Stores into the alloca are only live if the alloca is live. 67 StoreInst *SI = cast<StoreInst>(I); 68 // We can eliminate atomic stores, but not volatile. 69 if (SI->isVolatile()) 70 return 0; 71 // The store is only trivially safe if the poniter is the destination 72 // as opposed to the value. We're conservative here and don't check for 73 // the case where we store the address of a dead alloca into a dead 74 // alloca. 75 if (SI->getPointerOperand() != PI) 76 return 0; 77 DeadStores.push_back(I); 78 continue; 79 } 80 } 81 } 82 } while (!Worklist.empty()); 83 84 // The alloca is dead. Kill off all the stores to it, and then replace it 85 // with undef. 86 while (!DeadStores.empty()) 87 IC.EraseInstFromFunction(*DeadStores.pop_back_val()); 88 return IC.ReplaceInstUsesWith(AI, UndefValue::get(AI.getType())); 89 } 90 91 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 92 // Ensure that the alloca array size argument has type intptr_t, so that 93 // any casting is exposed early. 94 if (TD) { 95 Type *IntPtrTy = TD->getIntPtrType(AI.getContext()); 96 if (AI.getArraySize()->getType() != IntPtrTy) { 97 Value *V = Builder->CreateIntCast(AI.getArraySize(), 98 IntPtrTy, false); 99 AI.setOperand(0, V); 100 return &AI; 101 } 102 } 103 104 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 105 if (AI.isArrayAllocation()) { // Check C != 1 106 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 107 Type *NewTy = 108 ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 109 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); 110 AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName()); 111 New->setAlignment(AI.getAlignment()); 112 113 // Scan to the end of the allocation instructions, to skip over a block of 114 // allocas if possible...also skip interleaved debug info 115 // 116 BasicBlock::iterator It = New; 117 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; 118 119 // Now that I is pointing to the first non-allocation-inst in the block, 120 // insert our getelementptr instruction... 121 // 122 Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext())); 123 Value *Idx[2]; 124 Idx[0] = NullIdx; 125 Idx[1] = NullIdx; 126 Instruction *GEP = 127 GetElementPtrInst::CreateInBounds(New, Idx, New->getName()+".sub"); 128 InsertNewInstBefore(GEP, *It); 129 130 // Now make everything use the getelementptr instead of the original 131 // allocation. 132 return ReplaceInstUsesWith(AI, GEP); 133 } else if (isa<UndefValue>(AI.getArraySize())) { 134 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 135 } 136 } 137 138 if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) { 139 // If alloca'ing a zero byte object, replace the alloca with a null pointer. 140 // Note that we only do this for alloca's, because malloc should allocate 141 // and return a unique pointer, even for a zero byte allocation. 142 if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) 143 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 144 145 // If the alignment is 0 (unspecified), assign it the preferred alignment. 146 if (AI.getAlignment() == 0) 147 AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); 148 } 149 150 // Try to aggressively remove allocas which are only used for GEPs, lifetime 151 // markers, and stores. This happens when SROA iteratively promotes stores 152 // out of the alloca, and we need to cleanup after it. 153 return removeDeadAlloca(*this, AI); 154 } 155 156 157 /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. 158 static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, 159 const TargetData *TD) { 160 User *CI = cast<User>(LI.getOperand(0)); 161 Value *CastOp = CI->getOperand(0); 162 163 PointerType *DestTy = cast<PointerType>(CI->getType()); 164 Type *DestPTy = DestTy->getElementType(); 165 if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { 166 167 // If the address spaces don't match, don't eliminate the cast. 168 if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) 169 return 0; 170 171 Type *SrcPTy = SrcTy->getElementType(); 172 173 if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() || 174 DestPTy->isVectorTy()) { 175 // If the source is an array, the code below will not succeed. Check to 176 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for 177 // constants. 178 if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) 179 if (Constant *CSrc = dyn_cast<Constant>(CastOp)) 180 if (ASrcTy->getNumElements() != 0) { 181 Value *Idxs[2]; 182 Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext())); 183 Idxs[1] = Idxs[0]; 184 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs); 185 SrcTy = cast<PointerType>(CastOp->getType()); 186 SrcPTy = SrcTy->getElementType(); 187 } 188 189 if (IC.getTargetData() && 190 (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() || 191 SrcPTy->isVectorTy()) && 192 // Do not allow turning this into a load of an integer, which is then 193 // casted to a pointer, this pessimizes pointer analysis a lot. 194 (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) && 195 IC.getTargetData()->getTypeSizeInBits(SrcPTy) == 196 IC.getTargetData()->getTypeSizeInBits(DestPTy)) { 197 198 // Okay, we are casting from one integer or pointer type to another of 199 // the same size. Instead of casting the pointer before the load, cast 200 // the result of the loaded value. 201 LoadInst *NewLoad = 202 IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); 203 NewLoad->setAlignment(LI.getAlignment()); 204 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 205 // Now cast the result of the load. 206 return new BitCastInst(NewLoad, LI.getType()); 207 } 208 } 209 } 210 return 0; 211 } 212 213 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 214 Value *Op = LI.getOperand(0); 215 216 // Attempt to improve the alignment. 217 if (TD) { 218 unsigned KnownAlign = 219 getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD); 220 unsigned LoadAlign = LI.getAlignment(); 221 unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign : 222 TD->getABITypeAlignment(LI.getType()); 223 224 if (KnownAlign > EffectiveLoadAlign) 225 LI.setAlignment(KnownAlign); 226 else if (LoadAlign == 0) 227 LI.setAlignment(EffectiveLoadAlign); 228 } 229 230 // load (cast X) --> cast (load X) iff safe. 231 if (isa<CastInst>(Op)) 232 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) 233 return Res; 234 235 // None of the following transforms are legal for volatile/atomic loads. 236 // FIXME: Some of it is okay for atomic loads; needs refactoring. 237 if (!LI.isSimple()) return 0; 238 239 // Do really simple store-to-load forwarding and load CSE, to catch cases 240 // where there are several consecutive memory accesses to the same location, 241 // separated by a few arithmetic operations. 242 BasicBlock::iterator BBI = &LI; 243 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) 244 return ReplaceInstUsesWith(LI, AvailableVal); 245 246 // load(gep null, ...) -> unreachable 247 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 248 const Value *GEPI0 = GEPI->getOperand(0); 249 // TODO: Consider a target hook for valid address spaces for this xform. 250 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 251 // Insert a new store to null instruction before the load to indicate 252 // that this code is not reachable. We do this instead of inserting 253 // an unreachable instruction directly because we cannot modify the 254 // CFG. 255 new StoreInst(UndefValue::get(LI.getType()), 256 Constant::getNullValue(Op->getType()), &LI); 257 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 258 } 259 } 260 261 // load null/undef -> unreachable 262 // TODO: Consider a target hook for valid address spaces for this xform. 263 if (isa<UndefValue>(Op) || 264 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 265 // Insert a new store to null instruction before the load to indicate that 266 // this code is not reachable. We do this instead of inserting an 267 // unreachable instruction directly because we cannot modify the CFG. 268 new StoreInst(UndefValue::get(LI.getType()), 269 Constant::getNullValue(Op->getType()), &LI); 270 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 271 } 272 273 // Instcombine load (constantexpr_cast global) -> cast (load global) 274 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) 275 if (CE->isCast()) 276 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) 277 return Res; 278 279 if (Op->hasOneUse()) { 280 // Change select and PHI nodes to select values instead of addresses: this 281 // helps alias analysis out a lot, allows many others simplifications, and 282 // exposes redundancy in the code. 283 // 284 // Note that we cannot do the transformation unless we know that the 285 // introduced loads cannot trap! Something like this is valid as long as 286 // the condition is always false: load (select bool %C, int* null, int* %G), 287 // but it would not be valid if we transformed it to load from null 288 // unconditionally. 289 // 290 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 291 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 292 unsigned Align = LI.getAlignment(); 293 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) && 294 isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) { 295 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 296 SI->getOperand(1)->getName()+".val"); 297 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 298 SI->getOperand(2)->getName()+".val"); 299 V1->setAlignment(Align); 300 V2->setAlignment(Align); 301 return SelectInst::Create(SI->getCondition(), V1, V2); 302 } 303 304 // load (select (cond, null, P)) -> load P 305 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) 306 if (C->isNullValue()) { 307 LI.setOperand(0, SI->getOperand(2)); 308 return &LI; 309 } 310 311 // load (select (cond, P, null)) -> load P 312 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) 313 if (C->isNullValue()) { 314 LI.setOperand(0, SI->getOperand(1)); 315 return &LI; 316 } 317 } 318 } 319 return 0; 320 } 321 322 /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P 323 /// when possible. This makes it generally easy to do alias analysis and/or 324 /// SROA/mem2reg of the memory object. 325 static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { 326 User *CI = cast<User>(SI.getOperand(1)); 327 Value *CastOp = CI->getOperand(0); 328 329 Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); 330 PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); 331 if (SrcTy == 0) return 0; 332 333 Type *SrcPTy = SrcTy->getElementType(); 334 335 if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy()) 336 return 0; 337 338 /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" 339 /// to its first element. This allows us to handle things like: 340 /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) 341 /// on 32-bit hosts. 342 SmallVector<Value*, 4> NewGEPIndices; 343 344 // If the source is an array, the code below will not succeed. Check to 345 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for 346 // constants. 347 if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) { 348 // Index through pointer. 349 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); 350 NewGEPIndices.push_back(Zero); 351 352 while (1) { 353 if (StructType *STy = dyn_cast<StructType>(SrcPTy)) { 354 if (!STy->getNumElements()) /* Struct can be empty {} */ 355 break; 356 NewGEPIndices.push_back(Zero); 357 SrcPTy = STy->getElementType(0); 358 } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { 359 NewGEPIndices.push_back(Zero); 360 SrcPTy = ATy->getElementType(); 361 } else { 362 break; 363 } 364 } 365 366 SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); 367 } 368 369 if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy()) 370 return 0; 371 372 // If the pointers point into different address spaces or if they point to 373 // values with different sizes, we can't do the transformation. 374 if (!IC.getTargetData() || 375 SrcTy->getAddressSpace() != 376 cast<PointerType>(CI->getType())->getAddressSpace() || 377 IC.getTargetData()->getTypeSizeInBits(SrcPTy) != 378 IC.getTargetData()->getTypeSizeInBits(DestPTy)) 379 return 0; 380 381 // Okay, we are casting from one integer or pointer type to another of 382 // the same size. Instead of casting the pointer before 383 // the store, cast the value to be stored. 384 Value *NewCast; 385 Value *SIOp0 = SI.getOperand(0); 386 Instruction::CastOps opcode = Instruction::BitCast; 387 Type* CastSrcTy = SIOp0->getType(); 388 Type* CastDstTy = SrcPTy; 389 if (CastDstTy->isPointerTy()) { 390 if (CastSrcTy->isIntegerTy()) 391 opcode = Instruction::IntToPtr; 392 } else if (CastDstTy->isIntegerTy()) { 393 if (SIOp0->getType()->isPointerTy()) 394 opcode = Instruction::PtrToInt; 395 } 396 397 // SIOp0 is a pointer to aggregate and this is a store to the first field, 398 // emit a GEP to index into its first field. 399 if (!NewGEPIndices.empty()) 400 CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices); 401 402 NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, 403 SIOp0->getName()+".c"); 404 SI.setOperand(0, NewCast); 405 SI.setOperand(1, CastOp); 406 return &SI; 407 } 408 409 /// equivalentAddressValues - Test if A and B will obviously have the same 410 /// value. This includes recognizing that %t0 and %t1 will have the same 411 /// value in code like this: 412 /// %t0 = getelementptr \@a, 0, 3 413 /// store i32 0, i32* %t0 414 /// %t1 = getelementptr \@a, 0, 3 415 /// %t2 = load i32* %t1 416 /// 417 static bool equivalentAddressValues(Value *A, Value *B) { 418 // Test if the values are trivially equivalent. 419 if (A == B) return true; 420 421 // Test if the values come form identical arithmetic instructions. 422 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 423 // its only used to compare two uses within the same basic block, which 424 // means that they'll always either have the same value or one of them 425 // will have an undefined value. 426 if (isa<BinaryOperator>(A) || 427 isa<CastInst>(A) || 428 isa<PHINode>(A) || 429 isa<GetElementPtrInst>(A)) 430 if (Instruction *BI = dyn_cast<Instruction>(B)) 431 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 432 return true; 433 434 // Otherwise they may not be equivalent. 435 return false; 436 } 437 438 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 439 Value *Val = SI.getOperand(0); 440 Value *Ptr = SI.getOperand(1); 441 442 // Attempt to improve the alignment. 443 if (TD) { 444 unsigned KnownAlign = 445 getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()), 446 TD); 447 unsigned StoreAlign = SI.getAlignment(); 448 unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign : 449 TD->getABITypeAlignment(Val->getType()); 450 451 if (KnownAlign > EffectiveStoreAlign) 452 SI.setAlignment(KnownAlign); 453 else if (StoreAlign == 0) 454 SI.setAlignment(EffectiveStoreAlign); 455 } 456 457 // Don't hack volatile/atomic stores. 458 // FIXME: Some bits are legal for atomic stores; needs refactoring. 459 if (!SI.isSimple()) return 0; 460 461 // If the RHS is an alloca with a single use, zapify the store, making the 462 // alloca dead. 463 if (Ptr->hasOneUse()) { 464 if (isa<AllocaInst>(Ptr)) 465 return EraseInstFromFunction(SI); 466 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 467 if (isa<AllocaInst>(GEP->getOperand(0))) { 468 if (GEP->getOperand(0)->hasOneUse()) 469 return EraseInstFromFunction(SI); 470 } 471 } 472 } 473 474 // Do really simple DSE, to catch cases where there are several consecutive 475 // stores to the same location, separated by a few arithmetic operations. This 476 // situation often occurs with bitfield accesses. 477 BasicBlock::iterator BBI = &SI; 478 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 479 --ScanInsts) { 480 --BBI; 481 // Don't count debug info directives, lest they affect codegen, 482 // and we skip pointer-to-pointer bitcasts, which are NOPs. 483 if (isa<DbgInfoIntrinsic>(BBI) || 484 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 485 ScanInsts++; 486 continue; 487 } 488 489 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 490 // Prev store isn't volatile, and stores to the same location? 491 if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1), 492 SI.getOperand(1))) { 493 ++NumDeadStore; 494 ++BBI; 495 EraseInstFromFunction(*PrevSI); 496 continue; 497 } 498 break; 499 } 500 501 // If this is a load, we have to stop. However, if the loaded value is from 502 // the pointer we're loading and is producing the pointer we're storing, 503 // then *this* store is dead (X = load P; store X -> P). 504 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 505 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && 506 LI->isSimple()) 507 return EraseInstFromFunction(SI); 508 509 // Otherwise, this is a load from some other location. Stores before it 510 // may not be dead. 511 break; 512 } 513 514 // Don't skip over loads or things that can modify memory. 515 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 516 break; 517 } 518 519 // store X, null -> turns into 'unreachable' in SimplifyCFG 520 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 521 if (!isa<UndefValue>(Val)) { 522 SI.setOperand(0, UndefValue::get(Val->getType())); 523 if (Instruction *U = dyn_cast<Instruction>(Val)) 524 Worklist.Add(U); // Dropped a use. 525 } 526 return 0; // Do not modify these! 527 } 528 529 // store undef, Ptr -> noop 530 if (isa<UndefValue>(Val)) 531 return EraseInstFromFunction(SI); 532 533 // If the pointer destination is a cast, see if we can fold the cast into the 534 // source instead. 535 if (isa<CastInst>(Ptr)) 536 if (Instruction *Res = InstCombineStoreToCast(*this, SI)) 537 return Res; 538 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) 539 if (CE->isCast()) 540 if (Instruction *Res = InstCombineStoreToCast(*this, SI)) 541 return Res; 542 543 544 // If this store is the last instruction in the basic block (possibly 545 // excepting debug info instructions), and if the block ends with an 546 // unconditional branch, try to move it to the successor block. 547 BBI = &SI; 548 do { 549 ++BBI; 550 } while (isa<DbgInfoIntrinsic>(BBI) || 551 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 552 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 553 if (BI->isUnconditional()) 554 if (SimplifyStoreAtEndOfBlock(SI)) 555 return 0; // xform done! 556 557 return 0; 558 } 559 560 /// SimplifyStoreAtEndOfBlock - Turn things like: 561 /// if () { *P = v1; } else { *P = v2 } 562 /// into a phi node with a store in the successor. 563 /// 564 /// Simplify things like: 565 /// *P = v1; if () { *P = v2; } 566 /// into a phi node with a store in the successor. 567 /// 568 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 569 BasicBlock *StoreBB = SI.getParent(); 570 571 // Check to see if the successor block has exactly two incoming edges. If 572 // so, see if the other predecessor contains a store to the same location. 573 // if so, insert a PHI node (if needed) and move the stores down. 574 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 575 576 // Determine whether Dest has exactly two predecessors and, if so, compute 577 // the other predecessor. 578 pred_iterator PI = pred_begin(DestBB); 579 BasicBlock *P = *PI; 580 BasicBlock *OtherBB = 0; 581 582 if (P != StoreBB) 583 OtherBB = P; 584 585 if (++PI == pred_end(DestBB)) 586 return false; 587 588 P = *PI; 589 if (P != StoreBB) { 590 if (OtherBB) 591 return false; 592 OtherBB = P; 593 } 594 if (++PI != pred_end(DestBB)) 595 return false; 596 597 // Bail out if all the relevant blocks aren't distinct (this can happen, 598 // for example, if SI is in an infinite loop) 599 if (StoreBB == DestBB || OtherBB == DestBB) 600 return false; 601 602 // Verify that the other block ends in a branch and is not otherwise empty. 603 BasicBlock::iterator BBI = OtherBB->getTerminator(); 604 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 605 if (!OtherBr || BBI == OtherBB->begin()) 606 return false; 607 608 // If the other block ends in an unconditional branch, check for the 'if then 609 // else' case. there is an instruction before the branch. 610 StoreInst *OtherStore = 0; 611 if (OtherBr->isUnconditional()) { 612 --BBI; 613 // Skip over debugging info. 614 while (isa<DbgInfoIntrinsic>(BBI) || 615 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 616 if (BBI==OtherBB->begin()) 617 return false; 618 --BBI; 619 } 620 // If this isn't a store, isn't a store to the same location, or is not the 621 // right kind of store, bail out. 622 OtherStore = dyn_cast<StoreInst>(BBI); 623 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 624 !SI.isSameOperationAs(OtherStore)) 625 return false; 626 } else { 627 // Otherwise, the other block ended with a conditional branch. If one of the 628 // destinations is StoreBB, then we have the if/then case. 629 if (OtherBr->getSuccessor(0) != StoreBB && 630 OtherBr->getSuccessor(1) != StoreBB) 631 return false; 632 633 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 634 // if/then triangle. See if there is a store to the same ptr as SI that 635 // lives in OtherBB. 636 for (;; --BBI) { 637 // Check to see if we find the matching store. 638 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 639 if (OtherStore->getOperand(1) != SI.getOperand(1) || 640 !SI.isSameOperationAs(OtherStore)) 641 return false; 642 break; 643 } 644 // If we find something that may be using or overwriting the stored 645 // value, or if we run out of instructions, we can't do the xform. 646 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 647 BBI == OtherBB->begin()) 648 return false; 649 } 650 651 // In order to eliminate the store in OtherBr, we have to 652 // make sure nothing reads or overwrites the stored value in 653 // StoreBB. 654 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 655 // FIXME: This should really be AA driven. 656 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 657 return false; 658 } 659 } 660 661 // Insert a PHI node now if we need it. 662 Value *MergedVal = OtherStore->getOperand(0); 663 if (MergedVal != SI.getOperand(0)) { 664 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 665 PN->addIncoming(SI.getOperand(0), SI.getParent()); 666 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 667 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 668 } 669 670 // Advance to a place where it is safe to insert the new store and 671 // insert it. 672 BBI = DestBB->getFirstInsertionPt(); 673 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 674 SI.isVolatile(), 675 SI.getAlignment(), 676 SI.getOrdering(), 677 SI.getSynchScope()); 678 InsertNewInstBefore(NewSI, *BBI); 679 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 680 681 // Nuke the old stores. 682 EraseInstFromFunction(SI); 683 EraseInstFromFunction(*OtherStore); 684 return true; 685 } 686