1 //===- NeonEmitter.cpp - Generate arm_neon.h for use with clang -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend is responsible for emitting arm_neon.h, which includes 11 // a declaration and definition of each function specified by the ARM NEON 12 // compiler interface. See ARM document DUI0348B. 13 // 14 // Each NEON instruction is implemented in terms of 1 or more functions which 15 // are suffixed with the element type of the input vectors. Functions may be 16 // implemented in terms of generic vector operations such as +, *, -, etc. or 17 // by calling a __builtin_-prefixed function which will be handled by clang's 18 // CodeGen library. 19 // 20 // Additional validation code can be generated by this file when runHeader() is 21 // called, rather than the normal run() entry point. A complete set of tests 22 // for Neon intrinsics can be generated by calling the runTests() entry point. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "NeonEmitter.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include <string> 33 34 using namespace llvm; 35 36 /// ParseTypes - break down a string such as "fQf" into a vector of StringRefs, 37 /// which each StringRef representing a single type declared in the string. 38 /// for "fQf" we would end up with 2 StringRefs, "f", and "Qf", representing 39 /// 2xfloat and 4xfloat respectively. 40 static void ParseTypes(Record *r, std::string &s, 41 SmallVectorImpl<StringRef> &TV) { 42 const char *data = s.data(); 43 int len = 0; 44 45 for (unsigned i = 0, e = s.size(); i != e; ++i, ++len) { 46 if (data[len] == 'P' || data[len] == 'Q' || data[len] == 'U') 47 continue; 48 49 switch (data[len]) { 50 case 'c': 51 case 's': 52 case 'i': 53 case 'l': 54 case 'h': 55 case 'f': 56 break; 57 default: 58 throw TGError(r->getLoc(), 59 "Unexpected letter: " + std::string(data + len, 1)); 60 } 61 TV.push_back(StringRef(data, len + 1)); 62 data += len + 1; 63 len = -1; 64 } 65 } 66 67 /// Widen - Convert a type code into the next wider type. char -> short, 68 /// short -> int, etc. 69 static char Widen(const char t) { 70 switch (t) { 71 case 'c': 72 return 's'; 73 case 's': 74 return 'i'; 75 case 'i': 76 return 'l'; 77 case 'h': 78 return 'f'; 79 default: throw "unhandled type in widen!"; 80 } 81 } 82 83 /// Narrow - Convert a type code into the next smaller type. short -> char, 84 /// float -> half float, etc. 85 static char Narrow(const char t) { 86 switch (t) { 87 case 's': 88 return 'c'; 89 case 'i': 90 return 's'; 91 case 'l': 92 return 'i'; 93 case 'f': 94 return 'h'; 95 default: throw "unhandled type in narrow!"; 96 } 97 } 98 99 /// For a particular StringRef, return the base type code, and whether it has 100 /// the quad-vector, polynomial, or unsigned modifiers set. 101 static char ClassifyType(StringRef ty, bool &quad, bool &poly, bool &usgn) { 102 unsigned off = 0; 103 104 // remember quad. 105 if (ty[off] == 'Q') { 106 quad = true; 107 ++off; 108 } 109 110 // remember poly. 111 if (ty[off] == 'P') { 112 poly = true; 113 ++off; 114 } 115 116 // remember unsigned. 117 if (ty[off] == 'U') { 118 usgn = true; 119 ++off; 120 } 121 122 // base type to get the type string for. 123 return ty[off]; 124 } 125 126 /// ModType - Transform a type code and its modifiers based on a mod code. The 127 /// mod code definitions may be found at the top of arm_neon.td. 128 static char ModType(const char mod, char type, bool &quad, bool &poly, 129 bool &usgn, bool &scal, bool &cnst, bool &pntr) { 130 switch (mod) { 131 case 't': 132 if (poly) { 133 poly = false; 134 usgn = true; 135 } 136 break; 137 case 'u': 138 usgn = true; 139 poly = false; 140 if (type == 'f') 141 type = 'i'; 142 break; 143 case 'x': 144 usgn = false; 145 poly = false; 146 if (type == 'f') 147 type = 'i'; 148 break; 149 case 'f': 150 if (type == 'h') 151 quad = true; 152 type = 'f'; 153 usgn = false; 154 break; 155 case 'g': 156 quad = false; 157 break; 158 case 'w': 159 type = Widen(type); 160 quad = true; 161 break; 162 case 'n': 163 type = Widen(type); 164 break; 165 case 'i': 166 type = 'i'; 167 scal = true; 168 break; 169 case 'l': 170 type = 'l'; 171 scal = true; 172 usgn = true; 173 break; 174 case 's': 175 case 'a': 176 scal = true; 177 break; 178 case 'k': 179 quad = true; 180 break; 181 case 'c': 182 cnst = true; 183 case 'p': 184 pntr = true; 185 scal = true; 186 break; 187 case 'h': 188 type = Narrow(type); 189 if (type == 'h') 190 quad = false; 191 break; 192 case 'e': 193 type = Narrow(type); 194 usgn = true; 195 break; 196 default: 197 break; 198 } 199 return type; 200 } 201 202 /// TypeString - for a modifier and type, generate the name of the typedef for 203 /// that type. QUc -> uint8x8_t. 204 static std::string TypeString(const char mod, StringRef typestr) { 205 bool quad = false; 206 bool poly = false; 207 bool usgn = false; 208 bool scal = false; 209 bool cnst = false; 210 bool pntr = false; 211 212 if (mod == 'v') 213 return "void"; 214 if (mod == 'i') 215 return "int"; 216 217 // base type to get the type string for. 218 char type = ClassifyType(typestr, quad, poly, usgn); 219 220 // Based on the modifying character, change the type and width if necessary. 221 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 222 223 SmallString<128> s; 224 225 if (usgn) 226 s.push_back('u'); 227 228 switch (type) { 229 case 'c': 230 s += poly ? "poly8" : "int8"; 231 if (scal) 232 break; 233 s += quad ? "x16" : "x8"; 234 break; 235 case 's': 236 s += poly ? "poly16" : "int16"; 237 if (scal) 238 break; 239 s += quad ? "x8" : "x4"; 240 break; 241 case 'i': 242 s += "int32"; 243 if (scal) 244 break; 245 s += quad ? "x4" : "x2"; 246 break; 247 case 'l': 248 s += "int64"; 249 if (scal) 250 break; 251 s += quad ? "x2" : "x1"; 252 break; 253 case 'h': 254 s += "float16"; 255 if (scal) 256 break; 257 s += quad ? "x8" : "x4"; 258 break; 259 case 'f': 260 s += "float32"; 261 if (scal) 262 break; 263 s += quad ? "x4" : "x2"; 264 break; 265 default: 266 throw "unhandled type!"; 267 } 268 269 if (mod == '2') 270 s += "x2"; 271 if (mod == '3') 272 s += "x3"; 273 if (mod == '4') 274 s += "x4"; 275 276 // Append _t, finishing the type string typedef type. 277 s += "_t"; 278 279 if (cnst) 280 s += " const"; 281 282 if (pntr) 283 s += " *"; 284 285 return s.str(); 286 } 287 288 /// BuiltinTypeString - for a modifier and type, generate the clang 289 /// BuiltinsARM.def prototype code for the function. See the top of clang's 290 /// Builtins.def for a description of the type strings. 291 static std::string BuiltinTypeString(const char mod, StringRef typestr, 292 ClassKind ck, bool ret) { 293 bool quad = false; 294 bool poly = false; 295 bool usgn = false; 296 bool scal = false; 297 bool cnst = false; 298 bool pntr = false; 299 300 if (mod == 'v') 301 return "v"; // void 302 if (mod == 'i') 303 return "i"; // int 304 305 // base type to get the type string for. 306 char type = ClassifyType(typestr, quad, poly, usgn); 307 308 // Based on the modifying character, change the type and width if necessary. 309 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 310 311 // All pointers are void* pointers. Change type to 'v' now. 312 if (pntr) { 313 usgn = false; 314 poly = false; 315 type = 'v'; 316 } 317 // Treat half-float ('h') types as unsigned short ('s') types. 318 if (type == 'h') { 319 type = 's'; 320 usgn = true; 321 } 322 usgn = usgn | poly | ((ck == ClassI || ck == ClassW) && scal && type != 'f'); 323 324 if (scal) { 325 SmallString<128> s; 326 327 if (usgn) 328 s.push_back('U'); 329 else if (type == 'c') 330 s.push_back('S'); // make chars explicitly signed 331 332 if (type == 'l') // 64-bit long 333 s += "LLi"; 334 else 335 s.push_back(type); 336 337 if (cnst) 338 s.push_back('C'); 339 if (pntr) 340 s.push_back('*'); 341 return s.str(); 342 } 343 344 // Since the return value must be one type, return a vector type of the 345 // appropriate width which we will bitcast. An exception is made for 346 // returning structs of 2, 3, or 4 vectors which are returned in a sret-like 347 // fashion, storing them to a pointer arg. 348 if (ret) { 349 if (mod >= '2' && mod <= '4') 350 return "vv*"; // void result with void* first argument 351 if (mod == 'f' || (ck != ClassB && type == 'f')) 352 return quad ? "V4f" : "V2f"; 353 if (ck != ClassB && type == 's') 354 return quad ? "V8s" : "V4s"; 355 if (ck != ClassB && type == 'i') 356 return quad ? "V4i" : "V2i"; 357 if (ck != ClassB && type == 'l') 358 return quad ? "V2LLi" : "V1LLi"; 359 360 return quad ? "V16Sc" : "V8Sc"; 361 } 362 363 // Non-return array types are passed as individual vectors. 364 if (mod == '2') 365 return quad ? "V16ScV16Sc" : "V8ScV8Sc"; 366 if (mod == '3') 367 return quad ? "V16ScV16ScV16Sc" : "V8ScV8ScV8Sc"; 368 if (mod == '4') 369 return quad ? "V16ScV16ScV16ScV16Sc" : "V8ScV8ScV8ScV8Sc"; 370 371 if (mod == 'f' || (ck != ClassB && type == 'f')) 372 return quad ? "V4f" : "V2f"; 373 if (ck != ClassB && type == 's') 374 return quad ? "V8s" : "V4s"; 375 if (ck != ClassB && type == 'i') 376 return quad ? "V4i" : "V2i"; 377 if (ck != ClassB && type == 'l') 378 return quad ? "V2LLi" : "V1LLi"; 379 380 return quad ? "V16Sc" : "V8Sc"; 381 } 382 383 /// MangleName - Append a type or width suffix to a base neon function name, 384 /// and insert a 'q' in the appropriate location if the operation works on 385 /// 128b rather than 64b. E.g. turn "vst2_lane" into "vst2q_lane_f32", etc. 386 static std::string MangleName(const std::string &name, StringRef typestr, 387 ClassKind ck) { 388 if (name == "vcvt_f32_f16") 389 return name; 390 391 bool quad = false; 392 bool poly = false; 393 bool usgn = false; 394 char type = ClassifyType(typestr, quad, poly, usgn); 395 396 std::string s = name; 397 398 switch (type) { 399 case 'c': 400 switch (ck) { 401 case ClassS: s += poly ? "_p8" : usgn ? "_u8" : "_s8"; break; 402 case ClassI: s += "_i8"; break; 403 case ClassW: s += "_8"; break; 404 default: break; 405 } 406 break; 407 case 's': 408 switch (ck) { 409 case ClassS: s += poly ? "_p16" : usgn ? "_u16" : "_s16"; break; 410 case ClassI: s += "_i16"; break; 411 case ClassW: s += "_16"; break; 412 default: break; 413 } 414 break; 415 case 'i': 416 switch (ck) { 417 case ClassS: s += usgn ? "_u32" : "_s32"; break; 418 case ClassI: s += "_i32"; break; 419 case ClassW: s += "_32"; break; 420 default: break; 421 } 422 break; 423 case 'l': 424 switch (ck) { 425 case ClassS: s += usgn ? "_u64" : "_s64"; break; 426 case ClassI: s += "_i64"; break; 427 case ClassW: s += "_64"; break; 428 default: break; 429 } 430 break; 431 case 'h': 432 switch (ck) { 433 case ClassS: 434 case ClassI: s += "_f16"; break; 435 case ClassW: s += "_16"; break; 436 default: break; 437 } 438 break; 439 case 'f': 440 switch (ck) { 441 case ClassS: 442 case ClassI: s += "_f32"; break; 443 case ClassW: s += "_32"; break; 444 default: break; 445 } 446 break; 447 default: 448 throw "unhandled type!"; 449 } 450 if (ck == ClassB) 451 s += "_v"; 452 453 // Insert a 'q' before the first '_' character so that it ends up before 454 // _lane or _n on vector-scalar operations. 455 if (quad) { 456 size_t pos = s.find('_'); 457 s = s.insert(pos, "q"); 458 } 459 return s; 460 } 461 462 /// UseMacro - Examine the prototype string to determine if the intrinsic 463 /// should be defined as a preprocessor macro instead of an inline function. 464 static bool UseMacro(const std::string &proto) { 465 // If this builtin takes an immediate argument, we need to #define it rather 466 // than use a standard declaration, so that SemaChecking can range check 467 // the immediate passed by the user. 468 if (proto.find('i') != std::string::npos) 469 return true; 470 471 // Pointer arguments need to use macros to avoid hiding aligned attributes 472 // from the pointer type. 473 if (proto.find('p') != std::string::npos || 474 proto.find('c') != std::string::npos) 475 return true; 476 477 return false; 478 } 479 480 /// MacroArgUsedDirectly - Return true if argument i for an intrinsic that is 481 /// defined as a macro should be accessed directly instead of being first 482 /// assigned to a local temporary. 483 static bool MacroArgUsedDirectly(const std::string &proto, unsigned i) { 484 // True for constant ints (i), pointers (p) and const pointers (c). 485 return (proto[i] == 'i' || proto[i] == 'p' || proto[i] == 'c'); 486 } 487 488 // Generate the string "(argtype a, argtype b, ...)" 489 static std::string GenArgs(const std::string &proto, StringRef typestr) { 490 bool define = UseMacro(proto); 491 char arg = 'a'; 492 493 std::string s; 494 s += "("; 495 496 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 497 if (define) { 498 // Some macro arguments are used directly instead of being assigned 499 // to local temporaries; prepend an underscore prefix to make their 500 // names consistent with the local temporaries. 501 if (MacroArgUsedDirectly(proto, i)) 502 s += "__"; 503 } else { 504 s += TypeString(proto[i], typestr) + " __"; 505 } 506 s.push_back(arg); 507 if ((i + 1) < e) 508 s += ", "; 509 } 510 511 s += ")"; 512 return s; 513 } 514 515 // Macro arguments are not type-checked like inline function arguments, so 516 // assign them to local temporaries to get the right type checking. 517 static std::string GenMacroLocals(const std::string &proto, StringRef typestr) { 518 char arg = 'a'; 519 std::string s; 520 bool generatedLocal = false; 521 522 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 523 // Do not create a temporary for an immediate argument. 524 // That would defeat the whole point of using a macro! 525 if (MacroArgUsedDirectly(proto, i)) 526 continue; 527 generatedLocal = true; 528 529 s += TypeString(proto[i], typestr) + " __"; 530 s.push_back(arg); 531 s += " = ("; 532 s.push_back(arg); 533 s += "); "; 534 } 535 536 if (generatedLocal) 537 s += "\\\n "; 538 return s; 539 } 540 541 // Use the vmovl builtin to sign-extend or zero-extend a vector. 542 static std::string Extend(StringRef typestr, const std::string &a) { 543 std::string s; 544 s = MangleName("vmovl", typestr, ClassS); 545 s += "(" + a + ")"; 546 return s; 547 } 548 549 static std::string Duplicate(unsigned nElts, StringRef typestr, 550 const std::string &a) { 551 std::string s; 552 553 s = "(" + TypeString('d', typestr) + "){ "; 554 for (unsigned i = 0; i != nElts; ++i) { 555 s += a; 556 if ((i + 1) < nElts) 557 s += ", "; 558 } 559 s += " }"; 560 561 return s; 562 } 563 564 static std::string SplatLane(unsigned nElts, const std::string &vec, 565 const std::string &lane) { 566 std::string s = "__builtin_shufflevector(" + vec + ", " + vec; 567 for (unsigned i = 0; i < nElts; ++i) 568 s += ", " + lane; 569 s += ")"; 570 return s; 571 } 572 573 static unsigned GetNumElements(StringRef typestr, bool &quad) { 574 quad = false; 575 bool dummy = false; 576 char type = ClassifyType(typestr, quad, dummy, dummy); 577 unsigned nElts = 0; 578 switch (type) { 579 case 'c': nElts = 8; break; 580 case 's': nElts = 4; break; 581 case 'i': nElts = 2; break; 582 case 'l': nElts = 1; break; 583 case 'h': nElts = 4; break; 584 case 'f': nElts = 2; break; 585 default: 586 throw "unhandled type!"; 587 } 588 if (quad) nElts <<= 1; 589 return nElts; 590 } 591 592 // Generate the definition for this intrinsic, e.g. "a + b" for OpAdd. 593 static std::string GenOpString(OpKind op, const std::string &proto, 594 StringRef typestr) { 595 bool quad; 596 unsigned nElts = GetNumElements(typestr, quad); 597 bool define = UseMacro(proto); 598 599 std::string ts = TypeString(proto[0], typestr); 600 std::string s; 601 if (!define) { 602 s = "return "; 603 } 604 605 switch(op) { 606 case OpAdd: 607 s += "__a + __b;"; 608 break; 609 case OpAddl: 610 s += Extend(typestr, "__a") + " + " + Extend(typestr, "__b") + ";"; 611 break; 612 case OpAddw: 613 s += "__a + " + Extend(typestr, "__b") + ";"; 614 break; 615 case OpSub: 616 s += "__a - __b;"; 617 break; 618 case OpSubl: 619 s += Extend(typestr, "__a") + " - " + Extend(typestr, "__b") + ";"; 620 break; 621 case OpSubw: 622 s += "__a - " + Extend(typestr, "__b") + ";"; 623 break; 624 case OpMulN: 625 s += "__a * " + Duplicate(nElts, typestr, "__b") + ";"; 626 break; 627 case OpMulLane: 628 s += "__a * " + SplatLane(nElts, "__b", "__c") + ";"; 629 break; 630 case OpMul: 631 s += "__a * __b;"; 632 break; 633 case OpMullLane: 634 s += MangleName("vmull", typestr, ClassS) + "(__a, " + 635 SplatLane(nElts, "__b", "__c") + ");"; 636 break; 637 case OpMlaN: 638 s += "__a + (__b * " + Duplicate(nElts, typestr, "__c") + ");"; 639 break; 640 case OpMlaLane: 641 s += "__a + (__b * " + SplatLane(nElts, "__c", "__d") + ");"; 642 break; 643 case OpMla: 644 s += "__a + (__b * __c);"; 645 break; 646 case OpMlalN: 647 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + 648 Duplicate(nElts, typestr, "__c") + ");"; 649 break; 650 case OpMlalLane: 651 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, " + 652 SplatLane(nElts, "__c", "__d") + ");"; 653 break; 654 case OpMlal: 655 s += "__a + " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; 656 break; 657 case OpMlsN: 658 s += "__a - (__b * " + Duplicate(nElts, typestr, "__c") + ");"; 659 break; 660 case OpMlsLane: 661 s += "__a - (__b * " + SplatLane(nElts, "__c", "__d") + ");"; 662 break; 663 case OpMls: 664 s += "__a - (__b * __c);"; 665 break; 666 case OpMlslN: 667 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + 668 Duplicate(nElts, typestr, "__c") + ");"; 669 break; 670 case OpMlslLane: 671 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, " + 672 SplatLane(nElts, "__c", "__d") + ");"; 673 break; 674 case OpMlsl: 675 s += "__a - " + MangleName("vmull", typestr, ClassS) + "(__b, __c);"; 676 break; 677 case OpQDMullLane: 678 s += MangleName("vqdmull", typestr, ClassS) + "(__a, " + 679 SplatLane(nElts, "__b", "__c") + ");"; 680 break; 681 case OpQDMlalLane: 682 s += MangleName("vqdmlal", typestr, ClassS) + "(__a, __b, " + 683 SplatLane(nElts, "__c", "__d") + ");"; 684 break; 685 case OpQDMlslLane: 686 s += MangleName("vqdmlsl", typestr, ClassS) + "(__a, __b, " + 687 SplatLane(nElts, "__c", "__d") + ");"; 688 break; 689 case OpQDMulhLane: 690 s += MangleName("vqdmulh", typestr, ClassS) + "(__a, " + 691 SplatLane(nElts, "__b", "__c") + ");"; 692 break; 693 case OpQRDMulhLane: 694 s += MangleName("vqrdmulh", typestr, ClassS) + "(__a, " + 695 SplatLane(nElts, "__b", "__c") + ");"; 696 break; 697 case OpEq: 698 s += "(" + ts + ")(__a == __b);"; 699 break; 700 case OpGe: 701 s += "(" + ts + ")(__a >= __b);"; 702 break; 703 case OpLe: 704 s += "(" + ts + ")(__a <= __b);"; 705 break; 706 case OpGt: 707 s += "(" + ts + ")(__a > __b);"; 708 break; 709 case OpLt: 710 s += "(" + ts + ")(__a < __b);"; 711 break; 712 case OpNeg: 713 s += " -__a;"; 714 break; 715 case OpNot: 716 s += " ~__a;"; 717 break; 718 case OpAnd: 719 s += "__a & __b;"; 720 break; 721 case OpOr: 722 s += "__a | __b;"; 723 break; 724 case OpXor: 725 s += "__a ^ __b;"; 726 break; 727 case OpAndNot: 728 s += "__a & ~__b;"; 729 break; 730 case OpOrNot: 731 s += "__a | ~__b;"; 732 break; 733 case OpCast: 734 s += "(" + ts + ")__a;"; 735 break; 736 case OpConcat: 737 s += "(" + ts + ")__builtin_shufflevector((int64x1_t)__a"; 738 s += ", (int64x1_t)__b, 0, 1);"; 739 break; 740 case OpHi: 741 s += "(" + ts + 742 ")__builtin_shufflevector((int64x2_t)__a, (int64x2_t)__a, 1);"; 743 break; 744 case OpLo: 745 s += "(" + ts + 746 ")__builtin_shufflevector((int64x2_t)__a, (int64x2_t)__a, 0);"; 747 break; 748 case OpDup: 749 s += Duplicate(nElts, typestr, "__a") + ";"; 750 break; 751 case OpDupLane: 752 s += SplatLane(nElts, "__a", "__b") + ";"; 753 break; 754 case OpSelect: 755 // ((0 & 1) | (~0 & 2)) 756 s += "(" + ts + ")"; 757 ts = TypeString(proto[1], typestr); 758 s += "((__a & (" + ts + ")__b) | "; 759 s += "(~__a & (" + ts + ")__c));"; 760 break; 761 case OpRev16: 762 s += "__builtin_shufflevector(__a, __a"; 763 for (unsigned i = 2; i <= nElts; i += 2) 764 for (unsigned j = 0; j != 2; ++j) 765 s += ", " + utostr(i - j - 1); 766 s += ");"; 767 break; 768 case OpRev32: { 769 unsigned WordElts = nElts >> (1 + (int)quad); 770 s += "__builtin_shufflevector(__a, __a"; 771 for (unsigned i = WordElts; i <= nElts; i += WordElts) 772 for (unsigned j = 0; j != WordElts; ++j) 773 s += ", " + utostr(i - j - 1); 774 s += ");"; 775 break; 776 } 777 case OpRev64: { 778 unsigned DblWordElts = nElts >> (int)quad; 779 s += "__builtin_shufflevector(__a, __a"; 780 for (unsigned i = DblWordElts; i <= nElts; i += DblWordElts) 781 for (unsigned j = 0; j != DblWordElts; ++j) 782 s += ", " + utostr(i - j - 1); 783 s += ");"; 784 break; 785 } 786 case OpAbdl: { 787 std::string abd = MangleName("vabd", typestr, ClassS) + "(__a, __b)"; 788 if (typestr[0] != 'U') { 789 // vabd results are always unsigned and must be zero-extended. 790 std::string utype = "U" + typestr.str(); 791 s += "(" + TypeString(proto[0], typestr) + ")"; 792 abd = "(" + TypeString('d', utype) + ")" + abd; 793 s += Extend(utype, abd) + ";"; 794 } else { 795 s += Extend(typestr, abd) + ";"; 796 } 797 break; 798 } 799 case OpAba: 800 s += "__a + " + MangleName("vabd", typestr, ClassS) + "(__b, __c);"; 801 break; 802 case OpAbal: { 803 s += "__a + "; 804 std::string abd = MangleName("vabd", typestr, ClassS) + "(__b, __c)"; 805 if (typestr[0] != 'U') { 806 // vabd results are always unsigned and must be zero-extended. 807 std::string utype = "U" + typestr.str(); 808 s += "(" + TypeString(proto[0], typestr) + ")"; 809 abd = "(" + TypeString('d', utype) + ")" + abd; 810 s += Extend(utype, abd) + ";"; 811 } else { 812 s += Extend(typestr, abd) + ";"; 813 } 814 break; 815 } 816 default: 817 throw "unknown OpKind!"; 818 } 819 return s; 820 } 821 822 static unsigned GetNeonEnum(const std::string &proto, StringRef typestr) { 823 unsigned mod = proto[0]; 824 825 if (mod == 'v' || mod == 'f') 826 mod = proto[1]; 827 828 bool quad = false; 829 bool poly = false; 830 bool usgn = false; 831 bool scal = false; 832 bool cnst = false; 833 bool pntr = false; 834 835 // Base type to get the type string for. 836 char type = ClassifyType(typestr, quad, poly, usgn); 837 838 // Based on the modifying character, change the type and width if necessary. 839 type = ModType(mod, type, quad, poly, usgn, scal, cnst, pntr); 840 841 NeonTypeFlags::EltType ET; 842 switch (type) { 843 case 'c': 844 ET = poly ? NeonTypeFlags::Poly8 : NeonTypeFlags::Int8; 845 break; 846 case 's': 847 ET = poly ? NeonTypeFlags::Poly16 : NeonTypeFlags::Int16; 848 break; 849 case 'i': 850 ET = NeonTypeFlags::Int32; 851 break; 852 case 'l': 853 ET = NeonTypeFlags::Int64; 854 break; 855 case 'h': 856 ET = NeonTypeFlags::Float16; 857 break; 858 case 'f': 859 ET = NeonTypeFlags::Float32; 860 break; 861 default: 862 throw "unhandled type!"; 863 } 864 NeonTypeFlags Flags(ET, usgn, quad && proto[1] != 'g'); 865 return Flags.getFlags(); 866 } 867 868 // Generate the definition for this intrinsic, e.g. __builtin_neon_cls(a) 869 static std::string GenBuiltin(const std::string &name, const std::string &proto, 870 StringRef typestr, ClassKind ck) { 871 std::string s; 872 873 // If this builtin returns a struct 2, 3, or 4 vectors, pass it as an implicit 874 // sret-like argument. 875 bool sret = (proto[0] >= '2' && proto[0] <= '4'); 876 877 bool define = UseMacro(proto); 878 879 // Check if the prototype has a scalar operand with the type of the vector 880 // elements. If not, bitcasting the args will take care of arg checking. 881 // The actual signedness etc. will be taken care of with special enums. 882 if (proto.find('s') == std::string::npos) 883 ck = ClassB; 884 885 if (proto[0] != 'v') { 886 std::string ts = TypeString(proto[0], typestr); 887 888 if (define) { 889 if (sret) 890 s += ts + " r; "; 891 else 892 s += "(" + ts + ")"; 893 } else if (sret) { 894 s += ts + " r; "; 895 } else { 896 s += "return (" + ts + ")"; 897 } 898 } 899 900 bool splat = proto.find('a') != std::string::npos; 901 902 s += "__builtin_neon_"; 903 if (splat) { 904 // Call the non-splat builtin: chop off the "_n" suffix from the name. 905 std::string vname(name, 0, name.size()-2); 906 s += MangleName(vname, typestr, ck); 907 } else { 908 s += MangleName(name, typestr, ck); 909 } 910 s += "("; 911 912 // Pass the address of the return variable as the first argument to sret-like 913 // builtins. 914 if (sret) 915 s += "&r, "; 916 917 char arg = 'a'; 918 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 919 std::string args = std::string(&arg, 1); 920 921 // Use the local temporaries instead of the macro arguments. 922 args = "__" + args; 923 924 bool argQuad = false; 925 bool argPoly = false; 926 bool argUsgn = false; 927 bool argScalar = false; 928 bool dummy = false; 929 char argType = ClassifyType(typestr, argQuad, argPoly, argUsgn); 930 argType = ModType(proto[i], argType, argQuad, argPoly, argUsgn, argScalar, 931 dummy, dummy); 932 933 // Handle multiple-vector values specially, emitting each subvector as an 934 // argument to the __builtin. 935 if (proto[i] >= '2' && proto[i] <= '4') { 936 // Check if an explicit cast is needed. 937 if (argType != 'c' || argPoly || argUsgn) 938 args = (argQuad ? "(int8x16_t)" : "(int8x8_t)") + args; 939 940 for (unsigned vi = 0, ve = proto[i] - '0'; vi != ve; ++vi) { 941 s += args + ".val[" + utostr(vi) + "]"; 942 if ((vi + 1) < ve) 943 s += ", "; 944 } 945 if ((i + 1) < e) 946 s += ", "; 947 948 continue; 949 } 950 951 if (splat && (i + 1) == e) 952 args = Duplicate(GetNumElements(typestr, argQuad), typestr, args); 953 954 // Check if an explicit cast is needed. 955 if ((splat || !argScalar) && 956 ((ck == ClassB && argType != 'c') || argPoly || argUsgn)) { 957 std::string argTypeStr = "c"; 958 if (ck != ClassB) 959 argTypeStr = argType; 960 if (argQuad) 961 argTypeStr = "Q" + argTypeStr; 962 args = "(" + TypeString('d', argTypeStr) + ")" + args; 963 } 964 965 s += args; 966 if ((i + 1) < e) 967 s += ", "; 968 } 969 970 // Extra constant integer to hold type class enum for this function, e.g. s8 971 if (ck == ClassB) 972 s += ", " + utostr(GetNeonEnum(proto, typestr)); 973 974 s += ");"; 975 976 if (proto[0] != 'v' && sret) { 977 if (define) 978 s += " r;"; 979 else 980 s += " return r;"; 981 } 982 return s; 983 } 984 985 static std::string GenBuiltinDef(const std::string &name, 986 const std::string &proto, 987 StringRef typestr, ClassKind ck) { 988 std::string s("BUILTIN(__builtin_neon_"); 989 990 // If all types are the same size, bitcasting the args will take care 991 // of arg checking. The actual signedness etc. will be taken care of with 992 // special enums. 993 if (proto.find('s') == std::string::npos) 994 ck = ClassB; 995 996 s += MangleName(name, typestr, ck); 997 s += ", \""; 998 999 for (unsigned i = 0, e = proto.size(); i != e; ++i) 1000 s += BuiltinTypeString(proto[i], typestr, ck, i == 0); 1001 1002 // Extra constant integer to hold type class enum for this function, e.g. s8 1003 if (ck == ClassB) 1004 s += "i"; 1005 1006 s += "\", \"n\")"; 1007 return s; 1008 } 1009 1010 static std::string GenIntrinsic(const std::string &name, 1011 const std::string &proto, 1012 StringRef outTypeStr, StringRef inTypeStr, 1013 OpKind kind, ClassKind classKind) { 1014 assert(!proto.empty() && ""); 1015 bool define = UseMacro(proto); 1016 std::string s; 1017 1018 // static always inline + return type 1019 if (define) 1020 s += "#define "; 1021 else 1022 s += "__ai " + TypeString(proto[0], outTypeStr) + " "; 1023 1024 // Function name with type suffix 1025 std::string mangledName = MangleName(name, outTypeStr, ClassS); 1026 if (outTypeStr != inTypeStr) { 1027 // If the input type is different (e.g., for vreinterpret), append a suffix 1028 // for the input type. String off a "Q" (quad) prefix so that MangleName 1029 // does not insert another "q" in the name. 1030 unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); 1031 StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); 1032 mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); 1033 } 1034 s += mangledName; 1035 1036 // Function arguments 1037 s += GenArgs(proto, inTypeStr); 1038 1039 // Definition. 1040 if (define) { 1041 s += " __extension__ ({ \\\n "; 1042 s += GenMacroLocals(proto, inTypeStr); 1043 } else { 1044 s += " { \\\n "; 1045 } 1046 1047 if (kind != OpNone) 1048 s += GenOpString(kind, proto, outTypeStr); 1049 else 1050 s += GenBuiltin(name, proto, outTypeStr, classKind); 1051 if (define) 1052 s += " })"; 1053 else 1054 s += " }"; 1055 s += "\n"; 1056 return s; 1057 } 1058 1059 /// run - Read the records in arm_neon.td and output arm_neon.h. arm_neon.h 1060 /// is comprised of type definitions and function declarations. 1061 void NeonEmitter::run(raw_ostream &OS) { 1062 OS << 1063 "/*===---- arm_neon.h - ARM Neon intrinsics ------------------------------" 1064 "---===\n" 1065 " *\n" 1066 " * Permission is hereby granted, free of charge, to any person obtaining " 1067 "a copy\n" 1068 " * of this software and associated documentation files (the \"Software\")," 1069 " to deal\n" 1070 " * in the Software without restriction, including without limitation the " 1071 "rights\n" 1072 " * to use, copy, modify, merge, publish, distribute, sublicense, " 1073 "and/or sell\n" 1074 " * copies of the Software, and to permit persons to whom the Software is\n" 1075 " * furnished to do so, subject to the following conditions:\n" 1076 " *\n" 1077 " * The above copyright notice and this permission notice shall be " 1078 "included in\n" 1079 " * all copies or substantial portions of the Software.\n" 1080 " *\n" 1081 " * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, " 1082 "EXPRESS OR\n" 1083 " * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF " 1084 "MERCHANTABILITY,\n" 1085 " * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT " 1086 "SHALL THE\n" 1087 " * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR " 1088 "OTHER\n" 1089 " * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, " 1090 "ARISING FROM,\n" 1091 " * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER " 1092 "DEALINGS IN\n" 1093 " * THE SOFTWARE.\n" 1094 " *\n" 1095 " *===--------------------------------------------------------------------" 1096 "---===\n" 1097 " */\n\n"; 1098 1099 OS << "#ifndef __ARM_NEON_H\n"; 1100 OS << "#define __ARM_NEON_H\n\n"; 1101 1102 OS << "#ifndef __ARM_NEON__\n"; 1103 OS << "#error \"NEON support not enabled\"\n"; 1104 OS << "#endif\n\n"; 1105 1106 OS << "#include <stdint.h>\n\n"; 1107 1108 // Emit NEON-specific scalar typedefs. 1109 OS << "typedef float float32_t;\n"; 1110 OS << "typedef int8_t poly8_t;\n"; 1111 OS << "typedef int16_t poly16_t;\n"; 1112 OS << "typedef uint16_t float16_t;\n"; 1113 1114 // Emit Neon vector typedefs. 1115 std::string TypedefTypes("cQcsQsiQilQlUcQUcUsQUsUiQUiUlQUlhQhfQfPcQPcPsQPs"); 1116 SmallVector<StringRef, 24> TDTypeVec; 1117 ParseTypes(0, TypedefTypes, TDTypeVec); 1118 1119 // Emit vector typedefs. 1120 for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { 1121 bool dummy, quad = false, poly = false; 1122 (void) ClassifyType(TDTypeVec[i], quad, poly, dummy); 1123 if (poly) 1124 OS << "typedef __attribute__((neon_polyvector_type("; 1125 else 1126 OS << "typedef __attribute__((neon_vector_type("; 1127 1128 unsigned nElts = GetNumElements(TDTypeVec[i], quad); 1129 OS << utostr(nElts) << "))) "; 1130 if (nElts < 10) 1131 OS << " "; 1132 1133 OS << TypeString('s', TDTypeVec[i]); 1134 OS << " " << TypeString('d', TDTypeVec[i]) << ";\n"; 1135 } 1136 OS << "\n"; 1137 1138 // Emit struct typedefs. 1139 for (unsigned vi = 2; vi != 5; ++vi) { 1140 for (unsigned i = 0, e = TDTypeVec.size(); i != e; ++i) { 1141 std::string ts = TypeString('d', TDTypeVec[i]); 1142 std::string vs = TypeString('0' + vi, TDTypeVec[i]); 1143 OS << "typedef struct " << vs << " {\n"; 1144 OS << " " << ts << " val"; 1145 OS << "[" << utostr(vi) << "]"; 1146 OS << ";\n} "; 1147 OS << vs << ";\n\n"; 1148 } 1149 } 1150 1151 OS<<"#define __ai static __attribute__((__always_inline__, __nodebug__))\n\n"; 1152 1153 std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst"); 1154 1155 // Emit vmovl, vmull and vabd intrinsics first so they can be used by other 1156 // intrinsics. (Some of the saturating multiply instructions are also 1157 // used to implement the corresponding "_lane" variants, but tablegen 1158 // sorts the records into alphabetical order so that the "_lane" variants 1159 // come after the intrinsics they use.) 1160 emitIntrinsic(OS, Records.getDef("VMOVL")); 1161 emitIntrinsic(OS, Records.getDef("VMULL")); 1162 emitIntrinsic(OS, Records.getDef("VABD")); 1163 1164 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1165 Record *R = RV[i]; 1166 if (R->getName() != "VMOVL" && 1167 R->getName() != "VMULL" && 1168 R->getName() != "VABD") 1169 emitIntrinsic(OS, R); 1170 } 1171 1172 OS << "#undef __ai\n\n"; 1173 OS << "#endif /* __ARM_NEON_H */\n"; 1174 } 1175 1176 /// emitIntrinsic - Write out the arm_neon.h header file definitions for the 1177 /// intrinsics specified by record R. 1178 void NeonEmitter::emitIntrinsic(raw_ostream &OS, Record *R) { 1179 std::string name = R->getValueAsString("Name"); 1180 std::string Proto = R->getValueAsString("Prototype"); 1181 std::string Types = R->getValueAsString("Types"); 1182 1183 SmallVector<StringRef, 16> TypeVec; 1184 ParseTypes(R, Types, TypeVec); 1185 1186 OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; 1187 1188 ClassKind classKind = ClassNone; 1189 if (R->getSuperClasses().size() >= 2) 1190 classKind = ClassMap[R->getSuperClasses()[1]]; 1191 if (classKind == ClassNone && kind == OpNone) 1192 throw TGError(R->getLoc(), "Builtin has no class kind"); 1193 1194 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 1195 if (kind == OpReinterpret) { 1196 bool outQuad = false; 1197 bool dummy = false; 1198 (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); 1199 for (unsigned srcti = 0, srcte = TypeVec.size(); 1200 srcti != srcte; ++srcti) { 1201 bool inQuad = false; 1202 (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); 1203 if (srcti == ti || inQuad != outQuad) 1204 continue; 1205 OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[srcti], 1206 OpCast, ClassS); 1207 } 1208 } else { 1209 OS << GenIntrinsic(name, Proto, TypeVec[ti], TypeVec[ti], 1210 kind, classKind); 1211 } 1212 } 1213 OS << "\n"; 1214 } 1215 1216 static unsigned RangeFromType(const char mod, StringRef typestr) { 1217 // base type to get the type string for. 1218 bool quad = false, dummy = false; 1219 char type = ClassifyType(typestr, quad, dummy, dummy); 1220 type = ModType(mod, type, quad, dummy, dummy, dummy, dummy, dummy); 1221 1222 switch (type) { 1223 case 'c': 1224 return (8 << (int)quad) - 1; 1225 case 'h': 1226 case 's': 1227 return (4 << (int)quad) - 1; 1228 case 'f': 1229 case 'i': 1230 return (2 << (int)quad) - 1; 1231 case 'l': 1232 return (1 << (int)quad) - 1; 1233 default: 1234 throw "unhandled type!"; 1235 } 1236 } 1237 1238 /// runHeader - Emit a file with sections defining: 1239 /// 1. the NEON section of BuiltinsARM.def. 1240 /// 2. the SemaChecking code for the type overload checking. 1241 /// 3. the SemaChecking code for validation of intrinsic immedate arguments. 1242 void NeonEmitter::runHeader(raw_ostream &OS) { 1243 std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst"); 1244 1245 StringMap<OpKind> EmittedMap; 1246 1247 // Generate BuiltinsARM.def for NEON 1248 OS << "#ifdef GET_NEON_BUILTINS\n"; 1249 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1250 Record *R = RV[i]; 1251 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 1252 if (k != OpNone) 1253 continue; 1254 1255 std::string Proto = R->getValueAsString("Prototype"); 1256 1257 // Functions with 'a' (the splat code) in the type prototype should not get 1258 // their own builtin as they use the non-splat variant. 1259 if (Proto.find('a') != std::string::npos) 1260 continue; 1261 1262 std::string Types = R->getValueAsString("Types"); 1263 SmallVector<StringRef, 16> TypeVec; 1264 ParseTypes(R, Types, TypeVec); 1265 1266 if (R->getSuperClasses().size() < 2) 1267 throw TGError(R->getLoc(), "Builtin has no class kind"); 1268 1269 std::string name = R->getValueAsString("Name"); 1270 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 1271 1272 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 1273 // Generate the BuiltinsARM.def declaration for this builtin, ensuring 1274 // that each unique BUILTIN() macro appears only once in the output 1275 // stream. 1276 std::string bd = GenBuiltinDef(name, Proto, TypeVec[ti], ck); 1277 if (EmittedMap.count(bd)) 1278 continue; 1279 1280 EmittedMap[bd] = OpNone; 1281 OS << bd << "\n"; 1282 } 1283 } 1284 OS << "#endif\n\n"; 1285 1286 // Generate the overloaded type checking code for SemaChecking.cpp 1287 OS << "#ifdef GET_NEON_OVERLOAD_CHECK\n"; 1288 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1289 Record *R = RV[i]; 1290 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 1291 if (k != OpNone) 1292 continue; 1293 1294 std::string Proto = R->getValueAsString("Prototype"); 1295 std::string Types = R->getValueAsString("Types"); 1296 std::string name = R->getValueAsString("Name"); 1297 1298 // Functions with 'a' (the splat code) in the type prototype should not get 1299 // their own builtin as they use the non-splat variant. 1300 if (Proto.find('a') != std::string::npos) 1301 continue; 1302 1303 // Functions which have a scalar argument cannot be overloaded, no need to 1304 // check them if we are emitting the type checking code. 1305 if (Proto.find('s') != std::string::npos) 1306 continue; 1307 1308 SmallVector<StringRef, 16> TypeVec; 1309 ParseTypes(R, Types, TypeVec); 1310 1311 if (R->getSuperClasses().size() < 2) 1312 throw TGError(R->getLoc(), "Builtin has no class kind"); 1313 1314 int si = -1, qi = -1; 1315 unsigned mask = 0, qmask = 0; 1316 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 1317 // Generate the switch case(s) for this builtin for the type validation. 1318 bool quad = false, poly = false, usgn = false; 1319 (void) ClassifyType(TypeVec[ti], quad, poly, usgn); 1320 1321 if (quad) { 1322 qi = ti; 1323 qmask |= 1 << GetNeonEnum(Proto, TypeVec[ti]); 1324 } else { 1325 si = ti; 1326 mask |= 1 << GetNeonEnum(Proto, TypeVec[ti]); 1327 } 1328 } 1329 1330 // Check if the builtin function has a pointer or const pointer argument. 1331 int PtrArgNum = -1; 1332 bool HasConstPtr = false; 1333 for (unsigned arg = 1, arge = Proto.size(); arg != arge; ++arg) { 1334 char ArgType = Proto[arg]; 1335 if (ArgType == 'c') { 1336 HasConstPtr = true; 1337 PtrArgNum = arg - 1; 1338 break; 1339 } 1340 if (ArgType == 'p') { 1341 PtrArgNum = arg - 1; 1342 break; 1343 } 1344 } 1345 // For sret builtins, adjust the pointer argument index. 1346 if (PtrArgNum >= 0 && (Proto[0] >= '2' && Proto[0] <= '4')) 1347 PtrArgNum += 1; 1348 1349 // Omit type checking for the pointer arguments of vld1_lane, vld1_dup, 1350 // and vst1_lane intrinsics. Using a pointer to the vector element 1351 // type with one of those operations causes codegen to select an aligned 1352 // load/store instruction. If you want an unaligned operation, 1353 // the pointer argument needs to have less alignment than element type, 1354 // so just accept any pointer type. 1355 if (name == "vld1_lane" || name == "vld1_dup" || name == "vst1_lane") { 1356 PtrArgNum = -1; 1357 HasConstPtr = false; 1358 } 1359 1360 if (mask) { 1361 OS << "case ARM::BI__builtin_neon_" 1362 << MangleName(name, TypeVec[si], ClassB) 1363 << ": mask = " << "0x" << utohexstr(mask); 1364 if (PtrArgNum >= 0) 1365 OS << "; PtrArgNum = " << PtrArgNum; 1366 if (HasConstPtr) 1367 OS << "; HasConstPtr = true"; 1368 OS << "; break;\n"; 1369 } 1370 if (qmask) { 1371 OS << "case ARM::BI__builtin_neon_" 1372 << MangleName(name, TypeVec[qi], ClassB) 1373 << ": mask = " << "0x" << utohexstr(qmask); 1374 if (PtrArgNum >= 0) 1375 OS << "; PtrArgNum = " << PtrArgNum; 1376 if (HasConstPtr) 1377 OS << "; HasConstPtr = true"; 1378 OS << "; break;\n"; 1379 } 1380 } 1381 OS << "#endif\n\n"; 1382 1383 // Generate the intrinsic range checking code for shift/lane immediates. 1384 OS << "#ifdef GET_NEON_IMMEDIATE_CHECK\n"; 1385 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1386 Record *R = RV[i]; 1387 1388 OpKind k = OpMap[R->getValueAsDef("Operand")->getName()]; 1389 if (k != OpNone) 1390 continue; 1391 1392 std::string name = R->getValueAsString("Name"); 1393 std::string Proto = R->getValueAsString("Prototype"); 1394 std::string Types = R->getValueAsString("Types"); 1395 1396 // Functions with 'a' (the splat code) in the type prototype should not get 1397 // their own builtin as they use the non-splat variant. 1398 if (Proto.find('a') != std::string::npos) 1399 continue; 1400 1401 // Functions which do not have an immediate do not need to have range 1402 // checking code emitted. 1403 size_t immPos = Proto.find('i'); 1404 if (immPos == std::string::npos) 1405 continue; 1406 1407 SmallVector<StringRef, 16> TypeVec; 1408 ParseTypes(R, Types, TypeVec); 1409 1410 if (R->getSuperClasses().size() < 2) 1411 throw TGError(R->getLoc(), "Builtin has no class kind"); 1412 1413 ClassKind ck = ClassMap[R->getSuperClasses()[1]]; 1414 1415 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 1416 std::string namestr, shiftstr, rangestr; 1417 1418 if (R->getValueAsBit("isVCVT_N")) { 1419 // VCVT between floating- and fixed-point values takes an immediate 1420 // in the range 1 to 32. 1421 ck = ClassB; 1422 rangestr = "l = 1; u = 31"; // upper bound = l + u 1423 } else if (Proto.find('s') == std::string::npos) { 1424 // Builtins which are overloaded by type will need to have their upper 1425 // bound computed at Sema time based on the type constant. 1426 ck = ClassB; 1427 if (R->getValueAsBit("isShift")) { 1428 shiftstr = ", true"; 1429 1430 // Right shifts have an 'r' in the name, left shifts do not. 1431 if (name.find('r') != std::string::npos) 1432 rangestr = "l = 1; "; 1433 } 1434 rangestr += "u = RFT(TV" + shiftstr + ")"; 1435 } else { 1436 // The immediate generally refers to a lane in the preceding argument. 1437 assert(immPos > 0 && "unexpected immediate operand"); 1438 rangestr = "u = " + utostr(RangeFromType(Proto[immPos-1], TypeVec[ti])); 1439 } 1440 // Make sure cases appear only once by uniquing them in a string map. 1441 namestr = MangleName(name, TypeVec[ti], ck); 1442 if (EmittedMap.count(namestr)) 1443 continue; 1444 EmittedMap[namestr] = OpNone; 1445 1446 // Calculate the index of the immediate that should be range checked. 1447 unsigned immidx = 0; 1448 1449 // Builtins that return a struct of multiple vectors have an extra 1450 // leading arg for the struct return. 1451 if (Proto[0] >= '2' && Proto[0] <= '4') 1452 ++immidx; 1453 1454 // Add one to the index for each argument until we reach the immediate 1455 // to be checked. Structs of vectors are passed as multiple arguments. 1456 for (unsigned ii = 1, ie = Proto.size(); ii != ie; ++ii) { 1457 switch (Proto[ii]) { 1458 default: immidx += 1; break; 1459 case '2': immidx += 2; break; 1460 case '3': immidx += 3; break; 1461 case '4': immidx += 4; break; 1462 case 'i': ie = ii + 1; break; 1463 } 1464 } 1465 OS << "case ARM::BI__builtin_neon_" << MangleName(name, TypeVec[ti], ck) 1466 << ": i = " << immidx << "; " << rangestr << "; break;\n"; 1467 } 1468 } 1469 OS << "#endif\n\n"; 1470 } 1471 1472 /// GenTest - Write out a test for the intrinsic specified by the name and 1473 /// type strings, including the embedded patterns for FileCheck to match. 1474 static std::string GenTest(const std::string &name, 1475 const std::string &proto, 1476 StringRef outTypeStr, StringRef inTypeStr, 1477 bool isShift) { 1478 assert(!proto.empty() && ""); 1479 std::string s; 1480 1481 // Function name with type suffix 1482 std::string mangledName = MangleName(name, outTypeStr, ClassS); 1483 if (outTypeStr != inTypeStr) { 1484 // If the input type is different (e.g., for vreinterpret), append a suffix 1485 // for the input type. String off a "Q" (quad) prefix so that MangleName 1486 // does not insert another "q" in the name. 1487 unsigned typeStrOff = (inTypeStr[0] == 'Q' ? 1 : 0); 1488 StringRef inTypeNoQuad = inTypeStr.substr(typeStrOff); 1489 mangledName = MangleName(mangledName, inTypeNoQuad, ClassS); 1490 } 1491 1492 // Emit the FileCheck patterns. 1493 s += "// CHECK: test_" + mangledName + "\n"; 1494 // s += "// CHECK: \n"; // FIXME: + expected instruction opcode. 1495 1496 // Emit the start of the test function. 1497 s += TypeString(proto[0], outTypeStr) + " test_" + mangledName + "("; 1498 char arg = 'a'; 1499 std::string comma; 1500 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 1501 // Do not create arguments for values that must be immediate constants. 1502 if (proto[i] == 'i') 1503 continue; 1504 s += comma + TypeString(proto[i], inTypeStr) + " "; 1505 s.push_back(arg); 1506 comma = ", "; 1507 } 1508 s += ") { \\\n "; 1509 1510 if (proto[0] != 'v') 1511 s += "return "; 1512 s += mangledName + "("; 1513 arg = 'a'; 1514 for (unsigned i = 1, e = proto.size(); i != e; ++i, ++arg) { 1515 if (proto[i] == 'i') { 1516 // For immediate operands, test the maximum value. 1517 if (isShift) 1518 s += "1"; // FIXME 1519 else 1520 // The immediate generally refers to a lane in the preceding argument. 1521 s += utostr(RangeFromType(proto[i-1], inTypeStr)); 1522 } else { 1523 s.push_back(arg); 1524 } 1525 if ((i + 1) < e) 1526 s += ", "; 1527 } 1528 s += ");\n}\n\n"; 1529 return s; 1530 } 1531 1532 /// runTests - Write out a complete set of tests for all of the Neon 1533 /// intrinsics. 1534 void NeonEmitter::runTests(raw_ostream &OS) { 1535 OS << 1536 "// RUN: %clang_cc1 -triple thumbv7-apple-darwin \\\n" 1537 "// RUN: -target-cpu cortex-a9 -ffreestanding -S -o - %s | FileCheck %s\n" 1538 "\n" 1539 "#include <arm_neon.h>\n" 1540 "\n"; 1541 1542 std::vector<Record*> RV = Records.getAllDerivedDefinitions("Inst"); 1543 for (unsigned i = 0, e = RV.size(); i != e; ++i) { 1544 Record *R = RV[i]; 1545 std::string name = R->getValueAsString("Name"); 1546 std::string Proto = R->getValueAsString("Prototype"); 1547 std::string Types = R->getValueAsString("Types"); 1548 bool isShift = R->getValueAsBit("isShift"); 1549 1550 SmallVector<StringRef, 16> TypeVec; 1551 ParseTypes(R, Types, TypeVec); 1552 1553 OpKind kind = OpMap[R->getValueAsDef("Operand")->getName()]; 1554 for (unsigned ti = 0, te = TypeVec.size(); ti != te; ++ti) { 1555 if (kind == OpReinterpret) { 1556 bool outQuad = false; 1557 bool dummy = false; 1558 (void)ClassifyType(TypeVec[ti], outQuad, dummy, dummy); 1559 for (unsigned srcti = 0, srcte = TypeVec.size(); 1560 srcti != srcte; ++srcti) { 1561 bool inQuad = false; 1562 (void)ClassifyType(TypeVec[srcti], inQuad, dummy, dummy); 1563 if (srcti == ti || inQuad != outQuad) 1564 continue; 1565 OS << GenTest(name, Proto, TypeVec[ti], TypeVec[srcti], isShift); 1566 } 1567 } else { 1568 OS << GenTest(name, Proto, TypeVec[ti], TypeVec[ti], isShift); 1569 } 1570 } 1571 OS << "\n"; 1572 } 1573 } 1574 1575