1 /* @(#)e_pow.c 1.5 04/04/22 SMI */ 2 /* 3 * ==================================================== 4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 5 * 6 * Permission to use, copy, modify, and distribute this 7 * software is freely granted, provided that this notice 8 * is preserved. 9 * ==================================================== 10 */ 11 12 #ifndef lint 13 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_pow.c,v 1.11 2005/02/04 18:26:06 das Exp $"; 14 #endif 15 16 /* __ieee754_pow(x,y) return x**y 17 * 18 * n 19 * Method: Let x = 2 * (1+f) 20 * 1. Compute and return log2(x) in two pieces: 21 * log2(x) = w1 + w2, 22 * where w1 has 53-24 = 29 bit trailing zeros. 23 * 2. Perform y*log2(x) = n+y' by simulating muti-precision 24 * arithmetic, where |y'|<=0.5. 25 * 3. Return x**y = 2**n*exp(y'*log2) 26 * 27 * Special cases: 28 * 1. (anything) ** 0 is 1 29 * 2. (anything) ** 1 is itself 30 * 3. (anything) ** NAN is NAN 31 * 4. NAN ** (anything except 0) is NAN 32 * 5. +-(|x| > 1) ** +INF is +INF 33 * 6. +-(|x| > 1) ** -INF is +0 34 * 7. +-(|x| < 1) ** +INF is +0 35 * 8. +-(|x| < 1) ** -INF is +INF 36 * 9. +-1 ** +-INF is NAN 37 * 10. +0 ** (+anything except 0, NAN) is +0 38 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 39 * 12. +0 ** (-anything except 0, NAN) is +INF 40 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF 41 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) 42 * 15. +INF ** (+anything except 0,NAN) is +INF 43 * 16. +INF ** (-anything except 0,NAN) is +0 44 * 17. -INF ** (anything) = -0 ** (-anything) 45 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 46 * 19. (-anything except 0 and inf) ** (non-integer) is NAN 47 * 48 * Accuracy: 49 * pow(x,y) returns x**y nearly rounded. In particular 50 * pow(integer,integer) 51 * always returns the correct integer provided it is 52 * representable. 53 * 54 * Constants : 55 * The hexadecimal values are the intended ones for the following 56 * constants. The decimal values may be used, provided that the 57 * compiler will convert from decimal to binary accurately enough 58 * to produce the hexadecimal values shown. 59 */ 60 61 #include "math.h" 62 #include "math_private.h" 63 64 static const double 65 bp[] = {1.0, 1.5,}, 66 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ 67 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ 68 zero = 0.0, 69 one = 1.0, 70 two = 2.0, 71 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ 72 huge = 1.0e300, 73 tiny = 1.0e-300, 74 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ 75 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ 76 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ 77 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ 78 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ 79 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ 80 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ 81 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 82 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 83 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 84 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 85 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ 86 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ 87 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ 88 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ 89 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ 90 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ 91 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ 92 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ 93 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ 94 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ 95 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ 96 97 double 98 __ieee754_pow(double x, double y) 99 { 100 double z,ax,z_h,z_l,p_h,p_l; 101 double y1,t1,t2,r,s,t,u,v,w; 102 int32_t i,j,k,yisint,n; 103 int32_t hx,hy,ix,iy; 104 u_int32_t lx,ly; 105 106 EXTRACT_WORDS(hx,lx,x); 107 EXTRACT_WORDS(hy,ly,y); 108 ix = hx&0x7fffffff; iy = hy&0x7fffffff; 109 110 /* y==zero: x**0 = 1 */ 111 if((iy|ly)==0) return one; 112 113 /* +-NaN return x+y */ 114 if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || 115 iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 116 return x+y; 117 118 /* determine if y is an odd int when x < 0 119 * yisint = 0 ... y is not an integer 120 * yisint = 1 ... y is an odd int 121 * yisint = 2 ... y is an even int 122 */ 123 yisint = 0; 124 if(hx<0) { 125 if(iy>=0x43400000) yisint = 2; /* even integer y */ 126 else if(iy>=0x3ff00000) { 127 k = (iy>>20)-0x3ff; /* exponent */ 128 if(k>20) { 129 j = ly>>(52-k); 130 if((j<<(52-k))==ly) yisint = 2-(j&1); 131 } else if(ly==0) { 132 j = iy>>(20-k); 133 if((j<<(20-k))==iy) yisint = 2-(j&1); 134 } 135 } 136 } 137 138 /* special value of y */ 139 if(ly==0) { 140 if (iy==0x7ff00000) { /* y is +-inf */ 141 if(((ix-0x3ff00000)|lx)==0) 142 return y - y; /* inf**+-1 is NaN */ 143 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ 144 return (hy>=0)? y: zero; 145 else /* (|x|<1)**-,+inf = inf,0 */ 146 return (hy<0)?-y: zero; 147 } 148 if(iy==0x3ff00000) { /* y is +-1 */ 149 if(hy<0) return one/x; else return x; 150 } 151 if(hy==0x40000000) return x*x; /* y is 2 */ 152 if(hy==0x3fe00000) { /* y is 0.5 */ 153 if(hx>=0) /* x >= +0 */ 154 return sqrt(x); 155 } 156 } 157 158 ax = fabs(x); 159 /* special value of x */ 160 if(lx==0) { 161 if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ 162 z = ax; /*x is +-0,+-inf,+-1*/ 163 if(hy<0) z = one/z; /* z = (1/|x|) */ 164 if(hx<0) { 165 if(((ix-0x3ff00000)|yisint)==0) { 166 z = (z-z)/(z-z); /* (-1)**non-int is NaN */ 167 } else if(yisint==1) 168 z = -z; /* (x<0)**odd = -(|x|**odd) */ 169 } 170 return z; 171 } 172 } 173 174 /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be 175 n = (hx>>31)+1; 176 but ANSI C says a right shift of a signed negative quantity is 177 implementation defined. */ 178 n = ((u_int32_t)hx>>31)-1; 179 180 /* (x<0)**(non-int) is NaN */ 181 if((n|yisint)==0) return (x-x)/(x-x); 182 183 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ 184 if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ 185 186 /* |y| is huge */ 187 if(iy>0x41e00000) { /* if |y| > 2**31 */ 188 if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ 189 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; 190 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; 191 } 192 /* over/underflow if x is not close to one */ 193 if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; 194 if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; 195 /* now |1-x| is tiny <= 2**-20, suffice to compute 196 log(x) by x-x^2/2+x^3/3-x^4/4 */ 197 t = ax-one; /* t has 20 trailing zeros */ 198 w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); 199 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ 200 v = t*ivln2_l-w*ivln2; 201 t1 = u+v; 202 SET_LOW_WORD(t1,0); 203 t2 = v-(t1-u); 204 } else { 205 double ss,s2,s_h,s_l,t_h,t_l; 206 n = 0; 207 /* take care subnormal number */ 208 if(ix<0x00100000) 209 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } 210 n += ((ix)>>20)-0x3ff; 211 j = ix&0x000fffff; 212 /* determine interval */ 213 ix = j|0x3ff00000; /* normalize ix */ 214 if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ 215 else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ 216 else {k=0;n+=1;ix -= 0x00100000;} 217 SET_HIGH_WORD(ax,ix); 218 219 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 220 u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ 221 v = one/(ax+bp[k]); 222 ss = u*v; 223 s_h = ss; 224 SET_LOW_WORD(s_h,0); 225 /* t_h=ax+bp[k] High */ 226 t_h = zero; 227 SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); 228 t_l = ax - (t_h-bp[k]); 229 s_l = v*((u-s_h*t_h)-s_h*t_l); 230 /* compute log(ax) */ 231 s2 = ss*ss; 232 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); 233 r += s_l*(s_h+ss); 234 s2 = s_h*s_h; 235 t_h = 3.0+s2+r; 236 SET_LOW_WORD(t_h,0); 237 t_l = r-((t_h-3.0)-s2); 238 /* u+v = ss*(1+...) */ 239 u = s_h*t_h; 240 v = s_l*t_h+t_l*ss; 241 /* 2/(3log2)*(ss+...) */ 242 p_h = u+v; 243 SET_LOW_WORD(p_h,0); 244 p_l = v-(p_h-u); 245 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ 246 z_l = cp_l*p_h+p_l*cp+dp_l[k]; 247 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 248 t = (double)n; 249 t1 = (((z_h+z_l)+dp_h[k])+t); 250 SET_LOW_WORD(t1,0); 251 t2 = z_l-(((t1-t)-dp_h[k])-z_h); 252 } 253 254 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 255 y1 = y; 256 SET_LOW_WORD(y1,0); 257 p_l = (y-y1)*t1+y*t2; 258 p_h = y1*t1; 259 z = p_l+p_h; 260 EXTRACT_WORDS(j,i,z); 261 if (j>=0x40900000) { /* z >= 1024 */ 262 if(((j-0x40900000)|i)!=0) /* if z > 1024 */ 263 return s*huge*huge; /* overflow */ 264 else { 265 if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ 266 } 267 } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ 268 if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ 269 return s*tiny*tiny; /* underflow */ 270 else { 271 if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ 272 } 273 } 274 /* 275 * compute 2**(p_h+p_l) 276 */ 277 i = j&0x7fffffff; 278 k = (i>>20)-0x3ff; 279 n = 0; 280 if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ 281 n = j+(0x00100000>>(k+1)); 282 k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ 283 t = zero; 284 SET_HIGH_WORD(t,n&~(0x000fffff>>k)); 285 n = ((n&0x000fffff)|0x00100000)>>(20-k); 286 if(j<0) n = -n; 287 p_h -= t; 288 } 289 t = p_l+p_h; 290 SET_LOW_WORD(t,0); 291 u = t*lg2_h; 292 v = (p_l-(t-p_h))*lg2+t*lg2_l; 293 z = u+v; 294 w = v-(z-u); 295 t = z*z; 296 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); 297 r = (z*t1)/(t1-two)-(w+z*w); 298 z = one-(r-z); 299 GET_HIGH_WORD(j,z); 300 j += (n<<20); 301 if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ 302 else SET_HIGH_WORD(z,j); 303 return s*z; 304 } 305