Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
      2           "http://www.w3.org/TR/html4/strict.dtd">
      3 <!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ -->
      4 <html>
      5 <head>
      6   <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
      7   <title>Clang Language Extensions</title>
      8   <link type="text/css" rel="stylesheet" href="../menu.css">
      9   <link type="text/css" rel="stylesheet" href="../content.css">
     10   <style type="text/css">
     11     td {
     12             vertical-align: top;
     13     }
     14     th { background-color: #ffddaa; }
     15   </style>
     16 </head>
     17 <body>
     18 
     19 <!--#include virtual="../menu.html.incl"-->
     20 
     21 <div id="content">
     22 
     23 <h1>Clang Language Extensions</h1>
     24 
     25 <ul>
     26 <li><a href="#intro">Introduction</a></li>
     27 <li><a href="#feature_check">Feature Checking Macros</a></li>
     28 <li><a href="#has_include">Include File Checking Macros</a></li>
     29 <li><a href="#builtinmacros">Builtin Macros</a></li>
     30 <li><a href="#vectors">Vectors and Extended Vectors</a></li>
     31 <li><a href="#deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> attributes</a></li>
     32 <li><a href="#attributes-on-enumerators">Attributes on enumerators</a></li>
     33 <li><a href="#user_specified_system_framework">'User-Specified' System Frameworks</a></li>
     34 <li><a href="#availability">Availability attribute</a></li>
     35 <li><a href="#checking_language_features">Checks for Standard Language Features</a>
     36   <ul>
     37   <li><a href="#cxx98">C++98</a>
     38     <ul>
     39     <li><a href="#cxx_exceptions">C++ exceptions</a></li>
     40     <li><a href="#cxx_rtti">C++ RTTI</a></li>
     41   </ul></li>
     42   <li><a href="#cxx11">C++11</a>
     43     <ul>
     44     <li><a href="#cxx_access_control_sfinae">C++11 SFINAE includes access control</a></li>
     45     <li><a href="#cxx_alias_templates">C++11 alias templates</a></li>
     46     <li><a href="#cxx_alignas">C++11 alignment specifiers</a></li>
     47     <li><a href="#cxx_attributes">C++11 attributes</a></li>
     48     <li><a href="#cxx_constexpr">C++11 generalized constant expressions</a></li>
     49     <li><a href="#cxx_decltype">C++11 <tt>decltype()</tt></a></li>
     50     <li><a href="#cxx_default_function_template_args">C++11 default template arguments in function templates</a></li>
     51     <li><a href="#cxx_defaulted_functions">C++11 defaulted functions</a></li>
     52     <li><a href="#cxx_delegating_constructor">C++11 delegating constructors</a></li>
     53     <li><a href="#cxx_deleted_functions">C++11 deleted functions</a></li>
     54     <li><a href="#cxx_explicit_conversions">C++11 explicit conversion functions</a></li>
     55     <li><a href="#cxx_generalized_initializers">C++11 generalized initializers</a></li>
     56     <li><a href="#cxx_implicit_moves">C++11 implicit move constructors/assignment operators</a></li>
     57     <li><a href="#cxx_inheriting_constructors">C++11 inheriting constructors</a></li>
     58     <li><a href="#cxx_inline_namespaces">C++11 inline namespaces</a></li>
     59     <li><a href="#cxx_lambdas">C++11 lambdas</a></li>
     60     <li><a href="#cxx_local_type_template_args">C++11 local and unnamed types as template arguments</a></li>
     61     <li><a href="#cxx_noexcept">C++11 noexcept specification</a></li>
     62     <li><a href="#cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</a></li>
     63     <li><a href="#cxx_nullptr">C++11 nullptr</a></li>
     64     <li><a href="#cxx_override_control">C++11 override control</a></li>
     65     <li><a href="#cxx_range_for">C++11 range-based for loop</a></li>
     66     <li><a href="#cxx_raw_string_literals">C++11 raw string literals</a></li>
     67     <li><a href="#cxx_rvalue_references">C++11 rvalue references</a></li>
     68     <li><a href="#cxx_reference_qualified_functions">C++11 reference-qualified functions</a></li>
     69     <li><a href="#cxx_static_assert">C++11 <tt>static_assert()</tt></a></li>
     70     <li><a href="#cxx_auto_type">C++11 type inference</a></li>
     71     <li><a href="#cxx_strong_enums">C++11 strongly-typed enumerations</a></li>
     72     <li><a href="#cxx_trailing_return">C++11 trailing return type</a></li>
     73     <li><a href="#cxx_unicode_literals">C++11 Unicode string literals</a></li>
     74     <li><a href="#cxx_unrestricted_unions">C++11 unrestricted unions</a></li>
     75     <li><a href="#cxx_user_literals">C++11 user-defined literals</a></li>
     76     <li><a href="#cxx_variadic_templates">C++11 variadic templates</a></li>
     77   </ul></li>
     78   <li><a href="#c11">C11</a>
     79     <ul>
     80     <li><a href="#c_alignas">C11 alignment specifiers</a></li>
     81     <li><a href="#c_atomic">C11 atomic operations</a></li>
     82     <li><a href="#c_generic_selections">C11 generic selections</a></li>
     83     <li><a href="#c_static_assert">C11 <tt>_Static_assert()</tt></a></li>
     84   </ul></li>
     85 </ul></li>
     86 <li><a href="#checking_type_traits">Checks for Type Traits</a></li>
     87 <li><a href="#blocks">Blocks</a></li>
     88 <li><a href="#objc_features">Objective-C Features</a>
     89   <ul>
     90     <li><a href="#objc_instancetype">Related result types</a></li>
     91     <li><a href="#objc_arc">Automatic reference counting</a></li>
     92     <li><a href="#objc_fixed_enum">Enumerations with a fixed underlying type</a></li>
     93     <li><a href="#objc_lambdas">Interoperability with C++11 lambdas</a></li>
     94     <li><a href="#objc_object_literals_subscripting">Object Literals and Subscripting</a></li>
     95   </ul>
     96 </li>
     97 <li><a href="#overloading-in-c">Function Overloading in C</a></li>
     98 <li><a href="#complex-list-init">Initializer lists for complex numbers in C</a></li>
     99 <li><a href="#builtins">Builtin Functions</a>
    100   <ul>
    101   <li><a href="#__builtin_shufflevector">__builtin_shufflevector</a></li>
    102   <li><a href="#__builtin_unreachable">__builtin_unreachable</a></li>
    103   <li><a href="#__sync_swap">__sync_swap</a></li>
    104  </ul>
    105 </li>
    106 <li><a href="#targetspecific">Target-Specific Extensions</a>
    107   <ul>
    108   <li><a href="#x86-specific">X86/X86-64 Language Extensions</a></li>
    109   </ul>
    110 </li>
    111 <li><a href="#analyzerspecific">Static Analysis-Specific Extensions</a></li>
    112 <li><a href="#dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</a>
    113   <ul>
    114   <li><a href="#address_sanitizer">AddressSanitizer</a></li>
    115   </ul>
    116 </li>
    117 <li><a href="#threadsafety">Thread Safety Annotation Checking</a>
    118     <ul>
    119     <li><a href="#ts_noanal"><tt>no_thread_safety_analysis</tt></a></li>   
    120     <li><a href="#ts_lockable"><tt>lockable</tt></a></li>  
    121     <li><a href="#ts_scopedlockable"><tt>scoped_lockable</tt></a></li>  
    122     <li><a href="#ts_guardedvar"><tt>guarded_var</tt></a></li>
    123     <li><a href="#ts_ptguardedvar"><tt>pt_guarded_var</tt></a></li>
    124     <li><a href="#ts_guardedby"><tt>guarded_by(l)</tt></a></li>
    125     <li><a href="#ts_ptguardedby"><tt>pt_guarded_by(l)</tt></a></li>  
    126     <li><a href="#ts_acquiredbefore"><tt>acquired_before(...)</tt></a></li>  
    127     <li><a href="#ts_acquiredafter"><tt>acquired_after(...)</tt></a></li>    
    128     <li><a href="#ts_elf"><tt>exclusive_lock_function(...)</tt></a></li>   
    129     <li><a href="#ts_slf"><tt>shared_lock_function(...)</tt></a></li>   
    130     <li><a href="#ts_etf"><tt>exclusive_trylock_function(...)</tt></a></li>   
    131     <li><a href="#ts_stf"><tt>shared_trylock_function(...)</tt></a></li>   
    132     <li><a href="#ts_uf"><tt>unlock_function(...)</tt></a></li>   
    133     <li><a href="#ts_lr"><tt>lock_returned(l)</tt></a></li>   
    134     <li><a href="#ts_le"><tt>locks_excluded(...)</tt></a></li>   
    135     <li><a href="#ts_elr"><tt>exclusive_locks_required(...)</tt></a></li>   
    136     <li><a href="#ts_slr"><tt>shared_locks_required(...)</tt></a></li>   
    137     </ul>
    138 </li>
    139 </ul>
    140 
    141 <!-- ======================================================================= -->
    142 <h2 id="intro">Introduction</h2>
    143 <!-- ======================================================================= -->
    144 
    145 <p>This document describes the language extensions provided by Clang.  In
    146 addition to the language extensions listed here, Clang aims to support a broad
    147 range of GCC extensions.  Please see the <a 
    148 href="http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html">GCC manual</a> for
    149 more information on these extensions.</p>
    150 
    151 <!-- ======================================================================= -->
    152 <h2 id="feature_check">Feature Checking Macros</h2>
    153 <!-- ======================================================================= -->
    154 
    155 <p>Language extensions can be very useful, but only if you know you can depend
    156 on them.  In order to allow fine-grain features checks, we support three builtin
    157 function-like macros.  This allows you to directly test for a feature in your
    158 code without having to resort to something like autoconf or fragile "compiler
    159 version checks".</p>
    160 
    161 <!-- ======================================================================= -->
    162 <h3><a name="__has_builtin">__has_builtin</a></h3>
    163 <!-- ======================================================================= -->
    164 
    165 <p>This function-like macro takes a single identifier argument that is the name
    166 of a builtin function.  It evaluates to 1 if the builtin is supported or 0 if
    167 not.  It can be used like this:</p>
    168 
    169 <blockquote>
    170 <pre>
    171 #ifndef __has_builtin         // Optional of course.
    172   #define __has_builtin(x) 0  // Compatibility with non-clang compilers.
    173 #endif
    174 
    175 ...
    176 #if __has_builtin(__builtin_trap)
    177   __builtin_trap();
    178 #else
    179   abort();
    180 #endif
    181 ...
    182 </pre>
    183 </blockquote>
    184 
    185 
    186 <!-- ======================================================================= -->
    187 <h3><a name="__has_feature_extension"> __has_feature and __has_extension</a></h3>
    188 <!-- ======================================================================= -->
    189 
    190 <p>These function-like macros take a single identifier argument that is the
    191 name of a feature.  <code>__has_feature</code> evaluates to 1 if the feature
    192 is both supported by Clang and standardized in the current language standard
    193 or 0 if not (but see <a href="#has_feature_back_compat">below</a>), while
    194 <code>__has_extension</code> evaluates to 1 if the feature is supported by
    195 Clang in the current language (either as a language extension or a standard
    196 language feature) or 0 if not.  They can be used like this:</p>
    197 
    198 <blockquote>
    199 <pre>
    200 #ifndef __has_feature         // Optional of course.
    201   #define __has_feature(x) 0  // Compatibility with non-clang compilers.
    202 #endif
    203 #ifndef __has_extension
    204   #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
    205 #endif
    206 
    207 ...
    208 #if __has_feature(cxx_rvalue_references)
    209 // This code will only be compiled with the -std=c++11 and -std=gnu++11
    210 // options, because rvalue references are only standardized in C++11.
    211 #endif
    212 
    213 #if __has_extension(cxx_rvalue_references)
    214 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
    215 // and -std=gnu++98 options, because rvalue references are supported as a
    216 // language extension in C++98.
    217 #endif
    218 </pre>
    219 </blockquote>
    220 
    221 <p id="has_feature_back_compat">For backwards compatibility reasons,
    222 <code>__has_feature</code> can also be used to test for support for
    223 non-standardized features, i.e. features not prefixed <code>c_</code>,
    224 <code>cxx_</code> or <code>objc_</code>.</p>
    225 
    226 <p id="has_feature_for_non_language_features">
    227 Another use of <code>__has_feature</code> is to check for compiler features
    228 not related to the language standard, such as e.g.
    229 <a href="AddressSanitizer.html">AddressSanitizer</a>.
    230 
    231 <p>If the <code>-pedantic-errors</code> option is given,
    232 <code>__has_extension</code> is equivalent to <code>__has_feature</code>.</p>
    233 
    234 <p>The feature tag is described along with the language feature below.</p>
    235 
    236 <p>The feature name or extension name can also be specified with a preceding and
    237 following <code>__</code> (double underscore) to avoid interference from a macro
    238 with the same name. For instance, <code>__cxx_rvalue_references__</code> can be
    239 used instead of <code>cxx_rvalue_references</code>.</p>
    240 
    241 <!-- ======================================================================= -->
    242 <h3><a name="__has_attribute">__has_attribute</a></h3>
    243 <!-- ======================================================================= -->
    244 
    245 <p>This function-like macro takes a single identifier argument that is the name
    246 of an attribute.  It evaluates to 1 if the attribute is supported or 0 if not.  It
    247 can be used like this:</p>
    248 
    249 <blockquote>
    250 <pre>
    251 #ifndef __has_attribute         // Optional of course.
    252   #define __has_attribute(x) 0  // Compatibility with non-clang compilers.
    253 #endif
    254 
    255 ...
    256 #if __has_attribute(always_inline)
    257 #define ALWAYS_INLINE __attribute__((always_inline))
    258 #else
    259 #define ALWAYS_INLINE
    260 #endif
    261 ...
    262 </pre>
    263 </blockquote>
    264 
    265 <p>The attribute name can also be specified with a preceding and
    266 following <code>__</code> (double underscore) to avoid interference from a macro
    267 with the same name. For instance, <code>__always_inline__</code> can be used
    268 instead of <code>always_inline</code>.</p>
    269 
    270 <!-- ======================================================================= -->
    271 <h2 id="has_include">Include File Checking Macros</h2>
    272 <!-- ======================================================================= -->
    273 
    274 <p>Not all developments systems have the same include files.
    275 The <a href="#__has_include">__has_include</a> and
    276 <a href="#__has_include_next">__has_include_next</a> macros allow you to
    277 check for the existence of an include file before doing
    278 a possibly failing #include directive.</p>
    279 
    280 <!-- ======================================================================= -->
    281 <h3><a name="__has_include">__has_include</a></h3>
    282 <!-- ======================================================================= -->
    283 
    284 <p>This function-like macro takes a single file name string argument that
    285 is the name of an include file.  It evaluates to 1 if the file can
    286 be found using the include paths, or 0 otherwise:</p>
    287 
    288 <blockquote>
    289 <pre>
    290 // Note the two possible file name string formats.
    291 #if __has_include("myinclude.h") &amp;&amp; __has_include(&lt;stdint.h&gt;)
    292 # include "myinclude.h"
    293 #endif
    294 
    295 // To avoid problem with non-clang compilers not having this macro.
    296 #if defined(__has_include) &amp;&amp; __has_include("myinclude.h")
    297 # include "myinclude.h"
    298 #endif
    299 </pre>
    300 </blockquote>
    301 
    302 <p>To test for this feature, use #if defined(__has_include).</p>
    303 
    304 <!-- ======================================================================= -->
    305 <h3><a name="__has_include_next">__has_include_next</a></h3>
    306 <!-- ======================================================================= -->
    307 
    308 <p>This function-like macro takes a single file name string argument that
    309 is the name of an include file.  It is like __has_include except that it
    310 looks for the second instance of the given file found in the include
    311 paths.  It evaluates to 1 if the second instance of the file can
    312 be found using the include paths, or 0 otherwise:</p>
    313 
    314 <blockquote>
    315 <pre>
    316 // Note the two possible file name string formats.
    317 #if __has_include_next("myinclude.h") &amp;&amp; __has_include_next(&lt;stdint.h&gt;)
    318 # include_next "myinclude.h"
    319 #endif
    320 
    321 // To avoid problem with non-clang compilers not having this macro.
    322 #if defined(__has_include_next) &amp;&amp; __has_include_next("myinclude.h")
    323 # include_next "myinclude.h"
    324 #endif
    325 </pre>
    326 </blockquote>
    327 
    328 <p>Note that __has_include_next, like the GNU extension
    329 #include_next directive, is intended for use in headers only,
    330 and will issue a warning if used in the top-level compilation
    331 file.  A warning will also be issued if an absolute path
    332 is used in the file argument.</p>
    333 
    334 
    335 <!-- ======================================================================= -->
    336 <h3><a name="__has_warning">__has_warning</a></h3>
    337 <!-- ======================================================================= -->
    338 
    339 <p>This function-like macro takes a string literal that represents a command
    340   line option for a warning and returns true if that is a valid warning
    341   option.</p>
    342   
    343 <blockquote>
    344 <pre>
    345 #if __has_warning("-Wformat")
    346 ...
    347 #endif
    348 </pre>
    349 </blockquote>
    350 
    351 <!-- ======================================================================= -->
    352 <h2 id="builtinmacros">Builtin Macros</h2>
    353 <!-- ======================================================================= -->
    354 
    355 <dl>
    356   <dt><code>__BASE_FILE__</code></dt>
    357   <dd>Defined to a string that contains the name of the main input
    358   file passed to Clang.</dd> 
    359 
    360   <dt><code>__COUNTER__</code></dt>
    361   <dd>Defined to an integer value that starts at zero and is
    362   incremented each time the <code>__COUNTER__</code> macro is
    363   expanded.</dd> 
    364     
    365   <dt><code>__INCLUDE_LEVEL__</code></dt>
    366   <dd>Defined to an integral value that is the include depth of the
    367   file currently being translated. For the main file, this value is
    368   zero.</dd> 
    369 
    370   <dt><code>__TIMESTAMP__</code></dt>
    371   <dd>Defined to the date and time of the last modification of the
    372   current source file.</dd> 
    373     
    374   <dt><code>__clang__</code></dt>
    375   <dd>Defined when compiling with Clang</dd>
    376 
    377   <dt><code>__clang_major__</code></dt>
    378   <dd>Defined to the major marketing version number of Clang (e.g., the 
    379   2 in 2.0.1).  Note that marketing version numbers should not be used to 
    380   check for language features, as different vendors use different numbering
    381   schemes.  Instead, use the <a href="#feature_check">feature checking
    382   macros</a>.</dd> 
    383 
    384   <dt><code>__clang_minor__</code></dt>
    385   <dd>Defined to the minor version number of Clang (e.g., the 0 in
    386   2.0.1).  Note that marketing version numbers should not be used to 
    387   check for language features, as different vendors use different numbering
    388   schemes.  Instead, use the <a href="#feature_check">feature checking
    389   macros</a>.</dd> 
    390 
    391   <dt><code>__clang_patchlevel__</code></dt>
    392   <dd>Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).</dd>
    393 
    394   <dt><code>__clang_version__</code></dt>
    395   <dd>Defined to a string that captures the Clang marketing version, including
    396   the Subversion tag or revision number, e.g., "1.5 (trunk 102332)".</dd> 
    397 </dl>
    398 
    399 <!-- ======================================================================= -->
    400 <h2 id="vectors">Vectors and Extended Vectors</h2>
    401 <!-- ======================================================================= -->
    402 
    403 <p>Supports the GCC, OpenCL, AltiVec and NEON vector extensions.</p>
    404 
    405 <p>OpenCL vector types are created using <tt>ext_vector_type</tt> attribute. It
    406 support for <tt>V.xyzw</tt> syntax and other tidbits as seen in OpenCL. An
    407 example is:</p>
    408 
    409 <blockquote>
    410 <pre>
    411 typedef float float4 <b>__attribute__((ext_vector_type(4)))</b>;
    412 typedef float float2 <b>__attribute__((ext_vector_type(2)))</b>;
    413 
    414 float4 foo(float2 a, float2 b) {
    415   float4 c;
    416   c.xz = a;
    417   c.yw = b;
    418   return c;
    419 }
    420 </pre>
    421 </blockquote>
    422 
    423 <p>Query for this feature with
    424 <tt>__has_extension(attribute_ext_vector_type)</tt>.</p>
    425 
    426 <p>Giving <tt>-faltivec</tt> option to clang enables support for AltiVec vector
    427 syntax and functions. For example:</p>
    428 
    429 <blockquote>
    430 <pre>
    431 vector float foo(vector int a) { 
    432   vector int b;
    433   b = vec_add(a, a) + a; 
    434   return (vector float)b;
    435 }
    436 </pre>
    437 </blockquote>
    438 
    439 <p>NEON vector types are created using <tt>neon_vector_type</tt> and 
    440 <tt>neon_polyvector_type</tt> attributes. For example:</p>
    441 
    442 <blockquote>
    443 <pre>
    444 typedef <b>__attribute__((neon_vector_type(8)))</b> int8_t int8x8_t;
    445 typedef <b>__attribute__((neon_polyvector_type(16)))</b> poly8_t poly8x16_t;
    446 
    447 int8x8_t foo(int8x8_t a) {
    448   int8x8_t v;
    449   v = a;
    450   return v;
    451 }
    452 </pre>
    453 </blockquote>
    454 
    455 <!-- ======================================================================= -->
    456 <h3><a name="vector_literals">Vector Literals</a></h3>
    457 <!-- ======================================================================= -->
    458 
    459 <p>Vector literals can be used to create vectors from a set of scalars, or 
    460 vectors. Either parentheses or braces form can be used. In the parentheses form 
    461 the number of literal values specified must be one, i.e. referring to a scalar 
    462 value, or must match the size of the vector type being created. If a single 
    463 scalar literal value is specified, the scalar literal value will be replicated 
    464 to all the components of the vector type. In the brackets form any number of 
    465 literals can be specified. For example:</p>
    466 
    467 <blockquote>
    468 <pre>
    469 typedef int v4si __attribute__((__vector_size__(16)));
    470 typedef float float4 __attribute__((ext_vector_type(4)));
    471 typedef float float2 __attribute__((ext_vector_type(2)));
    472 
    473 v4si vsi = (v4si){1, 2, 3, 4};
    474 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
    475 vector int vi1 = (vector int)(1);    // vi1 will be (1, 1, 1, 1).
    476 vector int vi2 = (vector int){1};    // vi2 will be (1, 0, 0, 0).
    477 vector int vi3 = (vector int)(1, 2); // error
    478 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
    479 vector int vi5 = (vector int)(1, 2, 3, 4);
    480 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
    481 </pre>
    482 </blockquote>
    483 
    484 <!-- ======================================================================= -->
    485 <h3><a name="vector_operations">Vector Operations</a></h3>
    486 <!-- ======================================================================= -->
    487 
    488 <p>The table below shows the support for each operation by vector extension.
    489 A dash indicates that an operation is not accepted according to a corresponding 
    490 specification.</p>
    491 
    492 <table width="500" border="1" cellspacing="0">
    493  <tr>
    494     <th>Operator</th>
    495     <th>OpenCL</th>
    496     <th>AltiVec</th>
    497     <th>GCC</th>
    498     <th>NEON</th>
    499  </tr>
    500      <tr>
    501       <td>[]</td>
    502       <td align="center">yes</td>
    503       <td align="center">yes</td>
    504       <td align="center">yes</td>
    505       <td align="center">-</td>
    506     </tr>
    507     <tr>
    508       <td>unary operators +, -</td>
    509       <td align="center">yes</td>
    510       <td align="center">yes</td>
    511       <td align="center">yes</td>
    512       <td align="center">-</td>
    513     </tr>
    514     <tr>
    515       <td>++, --</td>
    516       <td align="center">yes</td>
    517       <td align="center">yes</td>
    518       <td align="center">-</td>
    519       <td align="center">-</td>
    520     </tr>
    521     <tr>
    522       <td>+, -, *, /, %</td>
    523       <td align="center">yes</td>
    524       <td align="center">yes</td>
    525       <td align="center">yes</td>
    526       <td align="center">-</td>
    527     </tr>
    528     <tr>
    529       <td>bitwise operators &, |, ^, ~</td>
    530       <td align="center">yes</td>
    531       <td align="center">yes</td>
    532       <td align="center">yes</td>
    533       <td align="center">-</td>
    534     </tr>
    535     <tr>
    536       <td>&gt&gt, &lt&lt</td>
    537       <td align="center">yes</td>
    538       <td align="center">yes</td>
    539       <td align="center">yes</td>
    540       <td align="center">-</td>
    541     </tr>
    542     <tr>
    543       <td>!, &&,||</td>
    544       <td align="center">no</td>
    545       <td align="center">-</td>
    546       <td align="center">-</td>
    547       <td align="center">-</td>
    548     </tr>
    549     <tr>
    550       <td>==,!=, >, <, >=, <=</td>
    551       <td align="center">yes</td>
    552       <td align="center">yes</td>
    553       <td align="center">-</td>
    554       <td align="center">-</td>
    555     </tr>
    556     <tr>
    557       <td>=</td>
    558       <td align="center">yes</td>
    559       <td align="center">yes</td>
    560       <td align="center">yes</td>
    561       <td align="center">yes</td>
    562     </tr>
    563     <tr>
    564       <td>:?</td>
    565       <td align="center">yes</td>
    566       <td align="center">-</td>
    567       <td align="center">-</td>
    568       <td align="center">-</td>
    569     </tr>
    570     <tr>
    571       <td>sizeof</td>
    572       <td align="center">yes</td>
    573       <td align="center">yes</td>
    574       <td align="center">yes</td>
    575       <td align="center">yes</td>
    576     </tr>
    577 </table>
    578 
    579 <p>See also <a href="#__builtin_shufflevector">__builtin_shufflevector</a>.</p>
    580 
    581 <!-- ======================================================================= -->
    582 <h2 id="deprecated">Messages on <tt>deprecated</tt> and <tt>unavailable</tt> Attributes</h2>
    583 <!-- ======================================================================= -->
    584 
    585 <p>An optional string message can be added to the <tt>deprecated</tt>
    586 and <tt>unavailable</tt> attributes.  For example:</p>
    587 
    588 <blockquote>
    589 <pre>void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));</pre>
    590 </blockquote>
    591 
    592 <p>If the deprecated or unavailable declaration is used, the message
    593 will be incorporated into the appropriate diagnostic:</p>
    594 
    595 <blockquote>
    596 <pre>harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
    597       [-Wdeprecated-declarations]
    598   explode();
    599   ^</pre>
    600 </blockquote>
    601 
    602 <p>Query for this feature
    603 with <tt>__has_extension(attribute_deprecated_with_message)</tt>
    604 and <tt>__has_extension(attribute_unavailable_with_message)</tt>.</p>
    605 
    606 <!-- ======================================================================= -->
    607 <h2 id="attributes-on-enumerators">Attributes on Enumerators</h2>
    608 <!-- ======================================================================= -->
    609 
    610 <p>Clang allows attributes to be written on individual enumerators.
    611 This allows enumerators to be deprecated, made unavailable, etc.  The
    612 attribute must appear after the enumerator name and before any
    613 initializer, like so:</p>
    614 
    615 <blockquote>
    616 <pre>enum OperationMode {
    617   OM_Invalid,
    618   OM_Normal,
    619   OM_Terrified __attribute__((deprecated)),
    620   OM_AbortOnError __attribute__((deprecated)) = 4
    621 };</pre>
    622 </blockquote>
    623 
    624 <p>Attributes on the <tt>enum</tt> declaration do not apply to
    625 individual enumerators.</p>
    626 
    627 <p>Query for this feature with <tt>__has_extension(enumerator_attributes)</tt>.</p>
    628 
    629 <!-- ======================================================================= -->
    630 <h2 id="user_specified_system_framework">'User-Specified' System Frameworks</h2>
    631 <!-- ======================================================================= -->
    632 
    633 <p>Clang provides a mechanism by which frameworks can be built in such a way
    634 that they will always be treated as being 'system frameworks', even if they are
    635 not present in a system framework directory. This can be useful to system
    636 framework developers who want to be able to test building other applications
    637 with development builds of their framework, including the manner in which the
    638 compiler changes warning behavior for system headers.</p>
    639 
    640 <p>Framework developers can opt-in to this mechanism by creating a
    641 '.system_framework' file at the top-level of their framework. That is, the
    642 framework should have contents like:</p>
    643 
    644 <pre>
    645  .../TestFramework.framework
    646  .../TestFramework.framework/.system_framework
    647  .../TestFramework.framework/Headers
    648  .../TestFramework.framework/Headers/TestFramework.h
    649  ...
    650 </pre>
    651 
    652 <p>Clang will treat the presence of this file as an indicator that the framework
    653 should be treated as a system framework, regardless of how it was found in the
    654 framework search path. For consistency, we recommend that such files never be
    655 included in installed versions of the framework.</p>
    656 
    657 <!-- ======================================================================= -->
    658 <h2 id="availability">Availability attribute</h2
    659 <!-- ======================================================================= -->
    660 
    661 <p>Clang introduces the <code>availability</code> attribute, which can
    662 be placed on declarations to describe the lifecycle of that
    663 declaration relative to operating system versions. Consider the function declaration for a hypothetical function <code>f</code>:</p>
    664 
    665 <pre>
    666 void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
    667 </pre>
    668 
    669 <p>The availability attribute states that <code>f</code> was introduced in Mac OS X 10.4, deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information is used by Clang to determine when it is safe to use <code>f</code>: for example, if Clang is instructed to compile code for Mac OS X 10.5, a call to <code>f()</code> succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call succeeds but Clang emits a warning specifying that the function is deprecated. Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call fails because <code>f()</code> is no longer available.</p>
    670 
    671 <p>The availablility attribute is a comma-separated list starting with the platform name and then including clauses specifying important milestones in the declaration's lifetime (in any order) along with additional information. Those clauses can be:</p>
    672 
    673 <dl>
    674   <dt>introduced=<i>version</i></dt>
    675   <dd>The first version in which this declaration was introduced.</dd>
    676 
    677   <dt>deprecated=<i>version</i></dt>
    678   <dd>The first version in which this declaration was deprecated, meaning that users should migrate away from this API.</dd>
    679 
    680   <dt>obsoleted=<i>version</i></dt>
    681   <dd>The first version in which this declaration was obsoleted, meaning that it was removed completely and can no longer be used.</dd>
    682 
    683   <dt>unavailable</dt>
    684   <dd>This declaration is never available on this platform.</dd>
    685 
    686   <dt>message=<i>string-literal</i></dt>
    687   <dd>Additional message text that Clang will provide when emitting a warning or error about use of a deprecated or obsoleted declaration. Useful to direct users to replacement APIs.</dd>
    688 </dl>
    689 
    690 <p>Multiple availability attributes can be placed on a declaration, which may correspond to different platforms. Only the availability attribute with the platform corresponding to the target platform will be used; any others will be ignored. If no availability attribute specifies availability for the current target platform, the availability attributes are ignored. Supported platforms are:</p>
    691 
    692 <dl>
    693   <dt>ios</dt>
    694   <dd>Apple's iOS operating system. The minimum deployment target is specified by the <code>-mios-version-min=<i>version</i></code> or <code>-miphoneos-version-min=<i>version</i></code> command-line arguments.</dd>
    695 
    696   <dt>macosx</dt>
    697   <dd>Apple's Mac OS X operating system. The minimum deployment target is specified by the <code>-mmacosx-version-min=<i>version</i></code> command-line argument.</dd>
    698 </dl>
    699 
    700 <p>A declaration can be used even when deploying back to a platform
    701 version prior to when the declaration was introduced. When this
    702 happens, the declaration is <a
    703  href="https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html">weakly
    704 linked</a>, as if the <code>weak_import</code> attribute were added to the declaration. A weakly-linked declaration may or may not be present a run-time, and a program can determine whether the declaration is present by checking whether the address of that declaration is non-NULL.</p>
    705 
    706 <!-- ======================================================================= -->
    707 <h2 id="checking_language_features">Checks for Standard Language Features</h2>
    708 <!-- ======================================================================= -->
    709 
    710 <p>The <tt>__has_feature</tt> macro can be used to query if certain standard
    711 language features are enabled.  The <tt>__has_extension</tt> macro can be used
    712 to query if language features are available as an extension when compiling for
    713 a standard which does not provide them. The features which can be tested are
    714 listed here.</p>
    715 
    716 <h3 id="cxx98">C++98</h3>
    717 
    718 <p>The features listed below are part of the C++98 standard. These features are
    719 enabled by default when compiling C++ code.</p>
    720 
    721 <h4 id="cxx_exceptions">C++ exceptions</h4>
    722 
    723 <p>Use <tt>__has_feature(cxx_exceptions)</tt> to determine if C++ exceptions have been enabled. For
    724 example, compiling code with <tt>-fno-exceptions</tt> disables C++ exceptions.</p>
    725 
    726 <h4 id="cxx_rtti">C++ RTTI</h4>
    727 
    728 <p>Use <tt>__has_feature(cxx_rtti)</tt> to determine if C++ RTTI has been enabled. For example,
    729 compiling code with <tt>-fno-rtti</tt> disables the use of RTTI.</p>
    730 
    731 <h3 id="cxx11">C++11</h3>
    732 
    733 <p>The features listed below are part of the C++11 standard. As a result, all
    734 these features are enabled with the <tt>-std=c++11</tt> or <tt>-std=gnu++11</tt>
    735 option when compiling C++ code.</p>
    736 
    737 <h4 id="cxx_access_control_sfinae">C++11 SFINAE includes access control</h4>
    738 
    739 <p>Use <tt>__has_feature(cxx_access_control_sfinae)</tt> or <tt>__has_extension(cxx_access_control_sfinae)</tt> to determine whether access-control errors (e.g., calling a private constructor) are considered to be template argument deduction errors (aka SFINAE errors), per <a href="http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170">C++ DR1170</a>.</p>
    740 
    741 <h4 id="cxx_alias_templates">C++11 alias templates</h4>
    742 
    743 <p>Use <tt>__has_feature(cxx_alias_templates)</tt> or
    744 <tt>__has_extension(cxx_alias_templates)</tt> to determine if support for
    745 C++11's alias declarations and alias templates is enabled.</p>
    746 
    747 <h4 id="cxx_alignas">C++11 alignment specifiers</h4>
    748 
    749 <p>Use <tt>__has_feature(cxx_alignas)</tt> or
    750 <tt>__has_extension(cxx_alignas)</tt> to determine if support for alignment
    751 specifiers using <tt>alignas</tt> is enabled.</p>
    752 
    753 <h4 id="cxx_attributes">C++11 attributes</h4>
    754 
    755 <p>Use <tt>__has_feature(cxx_attributes)</tt> or
    756 <tt>__has_extension(cxx_attributes)</tt> to determine if support for attribute
    757 parsing with C++11's square bracket notation is enabled.</p>
    758 
    759 <h4 id="cxx_constexpr">C++11 generalized constant expressions</h4>
    760 
    761 <p>Use <tt>__has_feature(cxx_constexpr)</tt> to determine if support
    762 for generalized constant expressions (e.g., <tt>constexpr</tt>) is
    763 enabled.</p>
    764 
    765 <h4 id="cxx_decltype">C++11 <tt>decltype()</tt></h4>
    766 
    767 <p>Use <tt>__has_feature(cxx_decltype)</tt> or
    768 <tt>__has_extension(cxx_decltype)</tt> to determine if support for the
    769 <tt>decltype()</tt> specifier is enabled. C++11's <tt>decltype</tt>
    770 does not require type-completeness of a function call expression.
    771 Use <tt>__has_feature(cxx_decltype_incomplete_return_types)</tt>
    772 or <tt>__has_extension(cxx_decltype_incomplete_return_types)</tt>
    773 to determine if support for this feature is enabled.</p>
    774 
    775 <h4 id="cxx_default_function_template_args">C++11 default template arguments in function templates</h4>
    776 
    777 <p>Use <tt>__has_feature(cxx_default_function_template_args)</tt> or
    778 <tt>__has_extension(cxx_default_function_template_args)</tt> to determine
    779 if support for default template arguments in function templates is enabled.</p>
    780 
    781 <h4 id="cxx_defaulted_functions">C++11 <tt>default</tt>ed functions</h4>
    782 
    783 <p>Use <tt>__has_feature(cxx_defaulted_functions)</tt> or
    784 <tt>__has_extension(cxx_defaulted_functions)</tt> to determine if support for
    785 defaulted function definitions (with <tt>= default</tt>) is enabled.</p>
    786 
    787 <h4 id="cxx_delegating_constructors">C++11 delegating constructors</h4>
    788 
    789 <p>Use <tt>__has_feature(cxx_delegating_constructors)</tt> to determine if
    790 support for delegating constructors is enabled.</p>
    791 
    792 <h4 id="cxx_deleted_functions">C++11 <tt>delete</tt>d functions</h4>
    793 
    794 <p>Use <tt>__has_feature(cxx_deleted_functions)</tt> or
    795 <tt>__has_extension(cxx_deleted_functions)</tt> to determine if support for
    796 deleted function definitions (with <tt>= delete</tt>) is enabled.</p>
    797 
    798 <h4 id="cxx_explicit_conversions">C++11 explicit conversion functions</h4>
    799 <p>Use <tt>__has_feature(cxx_explicit_conversions)</tt> to determine if support for <tt>explicit</tt> conversion functions is enabled.</p>
    800 
    801 <h4 id="cxx_generalized_initializers">C++11 generalized initializers</h4>
    802 
    803 <p>Use <tt>__has_feature(cxx_generalized_initializers)</tt> to determine if
    804 support for generalized initializers (using braced lists and
    805 <tt>std::initializer_list</tt>) is enabled.</p>
    806 
    807 <h4 id="cxx_implicit_moves">C++11 implicit move constructors/assignment operators</h4>
    808 
    809 <p>Use <tt>__has_feature(cxx_implicit_moves)</tt> to determine if Clang will
    810 implicitly generate move constructors and move assignment operators where needed.</p>
    811 
    812 <h4 id="cxx_inheriting_constructors">C++11 inheriting constructors</h4>
    813 
    814 <p>Use <tt>__has_feature(cxx_inheriting_constructors)</tt> to determine if support for inheriting constructors is enabled. Clang does not currently implement this feature.</p>
    815 
    816 <h4 id="cxx_inline_namespaces">C++11 inline namespaces</h4>
    817 
    818 <p>Use <tt>__has_feature(cxx_inline_namespaces)</tt> or
    819 <tt>__has_extension(cxx_inline_namespaces)</tt> to determine if support for
    820 inline namespaces is enabled.</p>
    821 
    822 <h4 id="cxx_lambdas">C++11 lambdas</h4>
    823 
    824 <p>Use <tt>__has_feature(cxx_lambdas)</tt> or
    825 <tt>__has_extension(cxx_lambdas)</tt> to determine if support for lambdas
    826 is enabled. </p>
    827 
    828 <h4 id="cxx_local_type_template_args">C++11 local and unnamed types as template arguments</h4>
    829 
    830 <p>Use <tt>__has_feature(cxx_local_type_template_args)</tt> or
    831 <tt>__has_extension(cxx_local_type_template_args)</tt> to determine if
    832 support for local and unnamed types as template arguments is enabled.</p>
    833 
    834 <h4 id="cxx_noexcept">C++11 noexcept</h4>
    835 
    836 <p>Use <tt>__has_feature(cxx_noexcept)</tt> or
    837 <tt>__has_extension(cxx_noexcept)</tt> to determine if support for noexcept
    838 exception specifications is enabled.</p>
    839 
    840 <h4 id="cxx_nonstatic_member_init">C++11 in-class non-static data member initialization</h4>
    841 
    842 <p>Use <tt>__has_feature(cxx_nonstatic_member_init)</tt> to determine whether in-class initialization of non-static data members is enabled.</p>
    843 
    844 <h4 id="cxx_nullptr">C++11 <tt>nullptr</tt></h4>
    845 
    846 <p>Use <tt>__has_feature(cxx_nullptr)</tt> or
    847 <tt>__has_extension(cxx_nullptr)</tt> to determine if support for
    848 <tt>nullptr</tt> is enabled.</p>
    849 
    850 <h4 id="cxx_override_control">C++11 <tt>override control</tt></h4>
    851 
    852 <p>Use <tt>__has_feature(cxx_override_control)</tt> or
    853 <tt>__has_extension(cxx_override_control)</tt> to determine if support for
    854 the override control keywords is enabled.</p>
    855 
    856 <h4 id="cxx_reference_qualified_functions">C++11 reference-qualified functions</h4>
    857 <p>Use <tt>__has_feature(cxx_reference_qualified_functions)</tt> or
    858 <tt>__has_extension(cxx_reference_qualified_functions)</tt> to determine
    859 if support for reference-qualified functions (e.g., member functions with
    860 <code>&amp;</code> or <code>&amp;&amp;</code> applied to <code>*this</code>)
    861 is enabled.</p>
    862 
    863 <h4 id="cxx_range_for">C++11 range-based <tt>for</tt> loop</h4>
    864 
    865 <p>Use <tt>__has_feature(cxx_range_for)</tt> or
    866 <tt>__has_extension(cxx_range_for)</tt> to determine if support for the
    867 range-based for loop is enabled. </p>
    868 
    869 <h4 id="cxx_raw_string_literals">C++11 raw string literals</h4>
    870 <p>Use <tt>__has_feature(cxx_raw_string_literals)</tt> to determine if support
    871 for raw string literals (e.g., <tt>R"x(foo\bar)x"</tt>) is enabled.</p>
    872 
    873 <h4 id="cxx_rvalue_references">C++11 rvalue references</h4>
    874 
    875 <p>Use <tt>__has_feature(cxx_rvalue_references)</tt> or
    876 <tt>__has_extension(cxx_rvalue_references)</tt> to determine if support for
    877 rvalue references is enabled. </p>
    878 
    879 <h4 id="cxx_static_assert">C++11 <tt>static_assert()</tt></h4>
    880 
    881 <p>Use <tt>__has_feature(cxx_static_assert)</tt> or
    882 <tt>__has_extension(cxx_static_assert)</tt> to determine if support for
    883 compile-time assertions using <tt>static_assert</tt> is enabled.</p>
    884 
    885 <h4 id="cxx_auto_type">C++11 type inference</h4>
    886 
    887 <p>Use <tt>__has_feature(cxx_auto_type)</tt> or
    888 <tt>__has_extension(cxx_auto_type)</tt> to determine C++11 type inference is
    889 supported using the <tt>auto</tt> specifier. If this is disabled, <tt>auto</tt>
    890 will instead be a storage class specifier, as in C or C++98.</p>
    891 
    892 <h4 id="cxx_strong_enums">C++11 strongly typed enumerations</h4>
    893 
    894 <p>Use <tt>__has_feature(cxx_strong_enums)</tt> or
    895 <tt>__has_extension(cxx_strong_enums)</tt> to determine if support for
    896 strongly typed, scoped enumerations is enabled.</p>
    897 
    898 <h4 id="cxx_trailing_return">C++11 trailing return type</h4>
    899 
    900 <p>Use <tt>__has_feature(cxx_trailing_return)</tt> or
    901 <tt>__has_extension(cxx_trailing_return)</tt> to determine if support for the
    902 alternate function declaration syntax with trailing return type is enabled.</p>
    903 
    904 <h4 id="cxx_unicode_literals">C++11 Unicode string literals</h4>
    905 <p>Use <tt>__has_feature(cxx_unicode_literals)</tt> to determine if
    906 support for Unicode string literals is enabled.</p>
    907 
    908 <h4 id="cxx_unrestricted_unions">C++11 unrestricted unions</h4>
    909 
    910 <p>Use <tt>__has_feature(cxx_unrestricted_unions)</tt> to determine if support for unrestricted unions is enabled.</p>
    911 
    912 <h4 id="cxx_user_literals">C++11 user-defined literals</h4>
    913 
    914 <p>Use <tt>__has_feature(cxx_user_literals)</tt> to determine if support for user-defined literals is enabled.</p>
    915 
    916 <h4 id="cxx_variadic_templates">C++11 variadic templates</h4>
    917 
    918 <p>Use <tt>__has_feature(cxx_variadic_templates)</tt> or
    919 <tt>__has_extension(cxx_variadic_templates)</tt> to determine if support
    920 for variadic templates is enabled.</p>
    921 
    922 <h3 id="c11">C11</h3>
    923 
    924 <p>The features listed below are part of the C11 standard. As a result, all
    925 these features are enabled with the <tt>-std=c11</tt> or <tt>-std=gnu11</tt>
    926 option when compiling C code. Additionally, because these features are all
    927 backward-compatible, they are available as extensions in all language modes.</p>
    928 
    929 <h4 id="c_alignas">C11 alignment specifiers</h4>
    930 
    931 <p>Use <tt>__has_feature(c_alignas)</tt> or <tt>__has_extension(c_alignas)</tt>
    932 to determine if support for alignment specifiers using <tt>_Alignas</tt>
    933 is enabled.</p>
    934 
    935 <h4 id="c_atomic">C11 atomic operations</h4>
    936 
    937 <p>Use <tt>__has_feature(c_atomic)</tt> or <tt>__has_extension(c_atomic)</tt>
    938 to determine if support for atomic types using <tt>_Atomic</tt> is enabled.
    939 Clang also provides <a href="#__c11_atomic">a set of builtins</a> which can be
    940 used to implement the <tt>&lt;stdatomic.h&gt;</tt> operations on _Atomic
    941 types.</p>
    942 
    943 <h4 id="c_generic_selections">C11 generic selections</h4>
    944 
    945 <p>Use <tt>__has_feature(c_generic_selections)</tt> or
    946 <tt>__has_extension(c_generic_selections)</tt> to determine if support for
    947 generic selections is enabled.</p>
    948 
    949 <p>As an extension, the C11 generic selection expression is available in all
    950 languages supported by Clang.  The syntax is the same as that given in the
    951 C11 standard.</p>
    952 
    953 <p>In C, type compatibility is decided according to the rules given in the
    954 appropriate standard, but in C++, which lacks the type compatibility rules
    955 used in C, types are considered compatible only if they are equivalent.</p>
    956 
    957 <h4 id="c_static_assert">C11 <tt>_Static_assert()</tt></h4>
    958 
    959 <p>Use <tt>__has_feature(c_static_assert)</tt> or
    960 <tt>__has_extension(c_static_assert)</tt> to determine if support for
    961 compile-time assertions using <tt>_Static_assert</tt> is enabled.</p>
    962 
    963 <!-- ======================================================================= -->
    964 <h2 id="checking_type_traits">Checks for Type Traits</h2>
    965 <!-- ======================================================================= -->
    966 
    967 <p>Clang supports the <a href="http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html">GNU C++ type traits</a> and a subset of the <a href="http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx">Microsoft Visual C++ Type traits</a>. For each supported type trait <code>__X</code>, <code>__has_extension(X)</code> indicates the presence of the type trait. For example:
    968 <blockquote>
    969 <pre>
    970 #if __has_extension(is_convertible_to)
    971 template&lt;typename From, typename To&gt;
    972 struct is_convertible_to {
    973   static const bool value = __is_convertible_to(From, To);
    974 };
    975 #else
    976 // Emulate type trait
    977 #endif
    978 </pre>
    979 </blockquote>
    980 
    981 <p>The following type traits are supported by Clang:</p>
    982 <ul>
    983   <li><code>__has_nothrow_assign</code> (GNU, Microsoft)</li>
    984   <li><code>__has_nothrow_copy</code> (GNU, Microsoft)</li>
    985   <li><code>__has_nothrow_constructor</code> (GNU, Microsoft)</li>
    986   <li><code>__has_trivial_assign</code> (GNU, Microsoft)</li>
    987   <li><code>__has_trivial_copy</code> (GNU, Microsoft)</li>
    988   <li><code>__has_trivial_constructor</code> (GNU, Microsoft)</li>
    989   <li><code>__has_trivial_destructor</code> (GNU, Microsoft)</li>
    990   <li><code>__has_virtual_destructor</code> (GNU, Microsoft)</li>
    991   <li><code>__is_abstract</code> (GNU, Microsoft)</li>
    992   <li><code>__is_base_of</code> (GNU, Microsoft)</li>
    993   <li><code>__is_class</code> (GNU, Microsoft)</li>
    994   <li><code>__is_convertible_to</code> (Microsoft)</li>
    995   <li><code>__is_empty</code> (GNU, Microsoft)</li>
    996   <li><code>__is_enum</code> (GNU, Microsoft)</li>
    997   <li><code>__is_pod</code> (GNU, Microsoft)</li>
    998   <li><code>__is_polymorphic</code> (GNU, Microsoft)</li>
    999   <li><code>__is_union</code> (GNU, Microsoft)</li>
   1000   <li><code>__is_literal(type)</code>: Determines whether the given type is a literal type</li>
   1001   <li><code>__is_final</code>: Determines whether the given type is declared with a <code>final</code> class-virt-specifier.</li>
   1002   <li><code>__underlying_type(type)</code>: Retrieves the underlying type for a given <code>enum</code> type. This trait is required to implement the C++11 standard library.</li>
   1003   <li><code>__is_trivially_assignable(totype, fromtype)</code>: Determines whether a value of type <tt>totype</tt> can be assigned to from a value of type <tt>fromtype</tt> such that no non-trivial functions are called as part of that assignment. This trait is required to implement the C++11 standard library.</li>
   1004   <li><code>__is_trivially_constructible(type, argtypes...)</code>: Determines whether a value of type <tt>type</tt> can be direct-initialized with arguments of types <tt>argtypes...</tt> such that no non-trivial functions are called as part of that initialization. This trait is required to implement the C++11 standard library.</li>
   1005 </ul>
   1006 
   1007 <!-- ======================================================================= -->
   1008 <h2 id="blocks">Blocks</h2>
   1009 <!-- ======================================================================= -->
   1010 
   1011 <p>The syntax and high level language feature description is in <a
   1012 href="BlockLanguageSpec.txt">BlockLanguageSpec.txt</a>.  Implementation and ABI
   1013 details for the clang implementation are in <a 
   1014 href="Block-ABI-Apple.txt">Block-ABI-Apple.txt</a>.</p>
   1015 
   1016 
   1017 <p>Query for this feature with __has_extension(blocks).</p>
   1018 
   1019 <!-- ======================================================================= -->
   1020 <h2 id="objc_features">Objective-C Features</h2>
   1021 <!-- ======================================================================= -->
   1022 
   1023 <h3 id="objc_instancetype">Related result types</h3>
   1024 
   1025 <p>According to Cocoa conventions, Objective-C methods with certain names ("init", "alloc", etc.) always return objects that are an instance of the receiving class's type. Such methods are said to have a "related result type", meaning that a message send to one of these methods will have the same static type as an instance of the receiver class. For example, given the following classes:</p>
   1026 
   1027 <blockquote>
   1028 <pre>
   1029 @interface NSObject
   1030 + (id)alloc;
   1031 - (id)init;
   1032 @end
   1033 
   1034 @interface NSArray : NSObject
   1035 @end
   1036 </pre>
   1037 </blockquote>
   1038 
   1039 <p>and this common initialization pattern</p>
   1040 
   1041 <blockquote>
   1042 <pre>
   1043 NSArray *array = [[NSArray alloc] init];
   1044 </pre>
   1045 </blockquote>
   1046 
   1047 <p>the type of the expression <code>[NSArray alloc]</code> is
   1048 <code>NSArray*</code> because <code>alloc</code> implicitly has a
   1049 related result type. Similarly, the type of the expression
   1050 <code>[[NSArray alloc] init]</code> is <code>NSArray*</code>, since
   1051 <code>init</code> has a related result type and its receiver is known
   1052 to have the type <code>NSArray *</code>. If neither <code>alloc</code> nor <code>init</code> had a related result type, the expressions would have had type <code>id</code>, as declared in the method signature.</p>
   1053 
   1054 <p>A method with a related result type can be declared by using the
   1055 type <tt>instancetype</tt> as its result type. <tt>instancetype</tt>
   1056 is a contextual keyword that is only permitted in the result type of
   1057 an Objective-C method, e.g.</p>
   1058 
   1059 <pre>
   1060 @interface A
   1061 + (<b>instancetype</b>)constructAnA;
   1062 @end
   1063 </pre>
   1064 
   1065 <p>The related result type can also be inferred for some methods.
   1066 To determine whether a method has an inferred related result type, the first
   1067 word in the camel-case selector (e.g., "init" in "initWithObjects") is
   1068 considered, and the method will have a related result type if its return
   1069 type is compatible with the type of its class and if</p>
   1070 
   1071 <ul>
   1072   
   1073   <li>the first word is "alloc" or "new", and the method is a class
   1074   method, or</li>
   1075   
   1076   <li>the first word is "autorelease", "init", "retain", or "self",
   1077   and the method is an instance method.</li>
   1078   
   1079 </ul>
   1080 
   1081 <p>If a method with a related result type is overridden by a subclass
   1082 method, the subclass method must also return a type that is compatible
   1083 with the subclass type. For example:</p>
   1084 
   1085 <blockquote>
   1086 <pre>
   1087 @interface NSString : NSObject
   1088 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
   1089 @end
   1090 </pre>
   1091 </blockquote>
   1092 
   1093 <p>Related result types only affect the type of a message send or
   1094 property access via the given method. In all other respects, a method
   1095 with a related result type is treated the same way as method that
   1096 returns <tt>id</tt>.</p>
   1097 
   1098 <p>Use <tt>__has_feature(objc_instancetype)</tt> to determine whether
   1099 the <tt>instancetype</tt> contextual keyword is available.</p>
   1100 
   1101 <!-- ======================================================================= -->
   1102 <h2 id="objc_arc">Automatic reference counting </h2>
   1103 <!-- ======================================================================= -->
   1104 
   1105 <p>Clang provides support for <a href="AutomaticReferenceCounting.html">automated reference counting</a> in Objective-C, which eliminates the need for manual retain/release/autorelease message sends. There are two feature macros associated with automatic reference counting: <code>__has_feature(objc_arc)</code> indicates the availability of automated reference counting in general, while <code>__has_feature(objc_arc_weak)</code> indicates that automated reference counting also includes support for <code>__weak</code> pointers to Objective-C objects.</p>
   1106 
   1107 <!-- ======================================================================= -->
   1108 <h2 id="objc_fixed_enum">Enumerations with a fixed underlying type</h2>
   1109 <!-- ======================================================================= -->
   1110 
   1111 <p>Clang provides support for C++11 enumerations with a fixed
   1112 underlying type within Objective-C. For example, one can write an
   1113 enumeration type as:</p>
   1114 
   1115 <pre>
   1116 typedef enum : unsigned char { Red, Green, Blue } Color;
   1117 </pre>
   1118 
   1119 <p>This specifies that the underlying type, which is used to store the
   1120 enumeration value, is <tt>unsigned char</tt>.</p>
   1121 
   1122 <p>Use <tt>__has_feature(objc_fixed_enum)</tt> to determine whether
   1123 support for fixed underlying types is available in Objective-C.</p>
   1124 
   1125 <!-- ======================================================================= -->
   1126 <h2 id="objc_lambdas">Interoperability with C++11 lambdas</h2>
   1127 <!-- ======================================================================= -->
   1128 
   1129 <p>Clang provides interoperability between C++11 lambdas and
   1130 blocks-based APIs, by permitting a lambda to be implicitly converted
   1131 to a block pointer with the corresponding signature. For example,
   1132 consider an API such as <code>NSArray</code>'s array-sorting
   1133 method:</p>
   1134 
   1135 <pre> - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr; </pre>
   1136 
   1137 <p><code>NSComparator</code> is simply a typedef for the block pointer
   1138 <code>NSComparisonResult (^)(id, id)</code>, and parameters of this
   1139 type are generally provided with block literals as arguments. However,
   1140 one can also use a C++11 lambda so long as it provides the same
   1141 signature (in this case, accepting two parameters of type
   1142 <code>id</code> and returning an <code>NSComparisonResult</code>):</p>
   1143 
   1144 <pre>
   1145   NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
   1146                      @"String 02"];
   1147   const NSStringCompareOptions comparisonOptions
   1148     = NSCaseInsensitiveSearch | NSNumericSearch |
   1149       NSWidthInsensitiveSearch | NSForcedOrderingSearch;
   1150   NSLocale *currentLocale = [NSLocale currentLocale];
   1151   NSArray *sorted 
   1152     = [array sortedArrayUsingComparator:<b>[=](id s1, id s2) -&gt; NSComparisonResult {
   1153                NSRange string1Range = NSMakeRange(0, [s1 length]);
   1154                return [s1 compare:s2 options:comparisonOptions 
   1155                           range:string1Range locale:currentLocale];
   1156        }</b>];
   1157   NSLog(@"sorted: %@", sorted);
   1158 </pre>
   1159 
   1160 <p>This code relies on an implicit conversion from the type of the
   1161 lambda expression (an unnamed, local class type called the <i>closure
   1162 type</i>) to the corresponding block pointer type. The conversion
   1163 itself is expressed by a conversion operator in that closure type
   1164 that produces a block pointer with the same signature as the lambda
   1165 itself, e.g.,</p>
   1166 
   1167 <pre>
   1168   operator NSComparisonResult (^)(id, id)() const;
   1169 </pre>
   1170 
   1171 <p>This conversion function returns a new block that simply forwards
   1172 the two parameters to the lambda object (which it captures by copy),
   1173 then returns the result. The returned block is first copied (with
   1174 <tt>Block_copy</tt>) and then autoreleased. As an optimization, if a
   1175 lambda expression is immediately converted to a block pointer (as in
   1176 the first example, above), then the block is not copied and
   1177 autoreleased: rather, it is given the same lifetime as a block literal
   1178 written at that point in the program, which avoids the overhead of
   1179 copying a block to the heap in the common case.</p>
   1180 
   1181 <p>The conversion from a lambda to a block pointer is only available
   1182 in Objective-C++, and not in C++ with blocks, due to its use of
   1183 Objective-C memory management (autorelease).</p>
   1184 
   1185 <!-- ======================================================================= -->
   1186 <h2 id="objc_object_literals_subscripting">Object Literals and Subscripting</h2>
   1187 <!-- ======================================================================= -->
   1188 
   1189 <p>Clang provides support for <a href="ObjectiveCLiterals.html">Object Literals 
   1190 and Subscripting</a> in Objective-C, which simplifies common Objective-C
   1191 programming patterns, makes programs more concise, and improves the safety of
   1192 container creation. There are several feature macros associated with object
   1193 literals and subscripting: <code>__has_feature(objc_array_literals)</code>
   1194 tests the availability of array literals;
   1195 <code>__has_feature(objc_dictionary_literals)</code> tests the availability of
   1196 dictionary literals; <code>__has_feature(objc_subscripting)</code> tests the
   1197 availability of object subscripting.</p>
   1198 
   1199 <!-- ======================================================================= -->
   1200 <h2 id="overloading-in-c">Function Overloading in C</h2>
   1201 <!-- ======================================================================= -->
   1202 
   1203 <p>Clang provides support for C++ function overloading in C. Function
   1204 overloading in C is introduced using the <tt>overloadable</tt> attribute. For
   1205 example, one might provide several overloaded versions of a <tt>tgsin</tt>
   1206 function that invokes the appropriate standard function computing the sine of a
   1207 value with <tt>float</tt>, <tt>double</tt>, or <tt>long double</tt>
   1208 precision:</p>
   1209 
   1210 <blockquote>
   1211 <pre>
   1212 #include &lt;math.h&gt;
   1213 float <b>__attribute__((overloadable))</b> tgsin(float x) { return sinf(x); }
   1214 double <b>__attribute__((overloadable))</b> tgsin(double x) { return sin(x); }
   1215 long double <b>__attribute__((overloadable))</b> tgsin(long double x) { return sinl(x); }
   1216 </pre>
   1217 </blockquote>
   1218 
   1219 <p>Given these declarations, one can call <tt>tgsin</tt> with a
   1220 <tt>float</tt> value to receive a <tt>float</tt> result, with a
   1221 <tt>double</tt> to receive a <tt>double</tt> result, etc. Function
   1222 overloading in C follows the rules of C++ function overloading to pick
   1223 the best overload given the call arguments, with a few C-specific
   1224 semantics:</p>
   1225 <ul>
   1226   <li>Conversion from <tt>float</tt> or <tt>double</tt> to <tt>long
   1227   double</tt> is ranked as a floating-point promotion (per C99) rather
   1228   than as a floating-point conversion (as in C++).</li>
   1229   
   1230   <li>A conversion from a pointer of type <tt>T*</tt> to a pointer of type
   1231   <tt>U*</tt> is considered a pointer conversion (with conversion
   1232   rank) if <tt>T</tt> and <tt>U</tt> are compatible types.</li>
   1233 
   1234   <li>A conversion from type <tt>T</tt> to a value of type <tt>U</tt>
   1235   is permitted if <tt>T</tt> and <tt>U</tt> are compatible types. This
   1236   conversion is given "conversion" rank.</li>
   1237 </ul>
   1238 
   1239 <p>The declaration of <tt>overloadable</tt> functions is restricted to
   1240 function declarations and definitions. Most importantly, if any
   1241 function with a given name is given the <tt>overloadable</tt>
   1242 attribute, then all function declarations and definitions with that
   1243 name (and in that scope) must have the <tt>overloadable</tt>
   1244 attribute. This rule even applies to redeclarations of functions whose original
   1245 declaration had the <tt>overloadable</tt> attribute, e.g.,</p>
   1246 
   1247 <blockquote>
   1248 <pre>
   1249 int f(int) __attribute__((overloadable));
   1250 float f(float); <i>// error: declaration of "f" must have the "overloadable" attribute</i>
   1251 
   1252 int g(int) __attribute__((overloadable));
   1253 int g(int) { } <i>// error: redeclaration of "g" must also have the "overloadable" attribute</i>
   1254 </pre>
   1255 </blockquote>
   1256 
   1257 <p>Functions marked <tt>overloadable</tt> must have
   1258 prototypes. Therefore, the following code is ill-formed:</p>
   1259 
   1260 <blockquote>
   1261 <pre>
   1262 int h() __attribute__((overloadable)); <i>// error: h does not have a prototype</i>
   1263 </pre>
   1264 </blockquote>
   1265 
   1266 <p>However, <tt>overloadable</tt> functions are allowed to use a
   1267 ellipsis even if there are no named parameters (as is permitted in C++). This feature is particularly useful when combined with the <tt>unavailable</tt> attribute:</p>
   1268 
   1269 <blockquote>
   1270 <pre>
   1271 void honeypot(...) __attribute__((overloadable, unavailable)); <i>// calling me is an error</i>
   1272 </pre>
   1273 </blockquote>
   1274 
   1275 <p>Functions declared with the <tt>overloadable</tt> attribute have
   1276 their names mangled according to the same rules as C++ function
   1277 names. For example, the three <tt>tgsin</tt> functions in our
   1278 motivating example get the mangled names <tt>_Z5tgsinf</tt>,
   1279 <tt>_Z5tgsind</tt>, and <tt>_Z5tgsine</tt>, respectively. There are two
   1280 caveats to this use of name mangling:</p>
   1281 
   1282 <ul>
   1283   
   1284   <li>Future versions of Clang may change the name mangling of
   1285   functions overloaded in C, so you should not depend on an specific
   1286   mangling. To be completely safe, we strongly urge the use of
   1287   <tt>static inline</tt> with <tt>overloadable</tt> functions.</li>
   1288 
   1289   <li>The <tt>overloadable</tt> attribute has almost no meaning when
   1290   used in C++, because names will already be mangled and functions are
   1291   already overloadable. However, when an <tt>overloadable</tt>
   1292   function occurs within an <tt>extern "C"</tt> linkage specification,
   1293   it's name <i>will</i> be mangled in the same way as it would in
   1294   C.</li>
   1295 </ul>
   1296 
   1297 <p>Query for this feature with __has_extension(attribute_overloadable).</p>
   1298 
   1299 <!-- ======================================================================= -->
   1300 <h2 id="complex-list-init">Initializer lists for complex numbers in C</h2>
   1301 <!-- ======================================================================= -->
   1302 
   1303 <p>clang supports an extension which allows the following in C:</p>
   1304 
   1305 <blockquote>
   1306 <pre>
   1307 #include &lt;math.h&gt;
   1308 #include &lt;complex.h&gt;
   1309 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
   1310 </pre>
   1311 </blockquote>
   1312 
   1313 <p>This construct is useful because there is no way to separately
   1314 initialize the real and imaginary parts of a complex variable in
   1315 standard C, given that clang does not support <code>_Imaginary</code>.
   1316 (clang also supports the <code>__real__</code> and <code>__imag__</code>
   1317 extensions from gcc, which help in some cases, but are not usable in
   1318 static initializers.)
   1319 
   1320 <p>Note that this extension does not allow eliding the braces; the
   1321 meaning of the following two lines is different:</p>
   1322 
   1323 <blockquote>
   1324 <pre>
   1325 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
   1326 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
   1327 </pre>
   1328 </blockquote>
   1329 
   1330 <p>This extension also works in C++ mode, as far as that goes, but does not
   1331     apply to the C++ <code>std::complex</code>.  (In C++11, list
   1332     initialization allows the same syntax to be used with
   1333     <code>std::complex</code> with the same meaning.)
   1334 
   1335 <!-- ======================================================================= -->
   1336 <h2 id="builtins">Builtin Functions</h2>
   1337 <!-- ======================================================================= -->
   1338 
   1339 <p>Clang supports a number of builtin library functions with the same syntax as
   1340 GCC, including things like <tt>__builtin_nan</tt>,
   1341 <tt>__builtin_constant_p</tt>, <tt>__builtin_choose_expr</tt>, 
   1342 <tt>__builtin_types_compatible_p</tt>, <tt>__sync_fetch_and_add</tt>, etc.  In
   1343 addition to the GCC builtins, Clang supports a number of builtins that GCC does
   1344 not, which are listed here.</p>
   1345 
   1346 <p>Please note that Clang does not and will not support all of the GCC builtins
   1347 for vector operations.  Instead of using builtins, you should use the functions
   1348 defined in target-specific header files like <tt>&lt;xmmintrin.h&gt;</tt>, which
   1349 define portable wrappers for these.  Many of the Clang versions of these
   1350 functions are implemented directly in terms of <a href="#vectors">extended
   1351 vector support</a> instead of builtins, in order to reduce the number of
   1352 builtins that we need to implement.</p>
   1353 
   1354 <!-- ======================================================================= -->
   1355 <h3><a name="__builtin_shufflevector">__builtin_shufflevector</a></h3>
   1356 <!-- ======================================================================= -->
   1357 
   1358 <p><tt>__builtin_shufflevector</tt> is used to express generic vector
   1359 permutation/shuffle/swizzle operations. This builtin is also very important for
   1360 the implementation of various target-specific header files like
   1361 <tt>&lt;xmmintrin.h&gt;</tt>.
   1362 </p>
   1363 
   1364 <p><b>Syntax:</b></p>
   1365 
   1366 <pre>
   1367 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
   1368 </pre>
   1369 
   1370 <p><b>Examples:</b></p>
   1371 
   1372 <pre>
   1373   // Identity operation - return 4-element vector V1.
   1374   __builtin_shufflevector(V1, V1, 0, 1, 2, 3)
   1375 
   1376   // "Splat" element 0 of V1 into a 4-element result.
   1377   __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
   1378 
   1379   // Reverse 4-element vector V1.
   1380   __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
   1381 
   1382   // Concatenate every other element of 4-element vectors V1 and V2.
   1383   __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
   1384 
   1385   // Concatenate every other element of 8-element vectors V1 and V2.
   1386   __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
   1387 </pre>
   1388 
   1389 <p><b>Description:</b></p>
   1390 
   1391 <p>The first two arguments to __builtin_shufflevector are vectors that have the
   1392 same element type.  The remaining arguments are a list of integers that specify
   1393 the elements indices of the first two vectors that should be extracted and
   1394 returned in a new vector.  These element indices are numbered sequentially
   1395 starting with the first vector, continuing into the second vector.  Thus, if
   1396 vec1 is a 4-element vector, index 5 would refer to the second element of vec2.
   1397 </p>
   1398 
   1399 <p>The result of __builtin_shufflevector is a vector
   1400 with the same element type as vec1/vec2 but that has an element count equal to
   1401 the number of indices specified.
   1402 </p>
   1403 
   1404 <p>Query for this feature with __has_builtin(__builtin_shufflevector).</p>
   1405 
   1406 <!-- ======================================================================= -->
   1407 <h3><a name="__builtin_unreachable">__builtin_unreachable</a></h3>
   1408 <!-- ======================================================================= -->
   1409 
   1410 <p><tt>__builtin_unreachable</tt> is used to indicate that a specific point in
   1411 the program cannot be reached, even if the compiler might otherwise think it
   1412 can.  This is useful to improve optimization and eliminates certain warnings.
   1413 For example, without the <tt>__builtin_unreachable</tt> in the example below,
   1414 the compiler assumes that the inline asm can fall through and prints a "function
   1415 declared 'noreturn' should not return" warning.
   1416 </p>
   1417 
   1418 <p><b>Syntax:</b></p>
   1419 
   1420 <pre>
   1421 __builtin_unreachable()
   1422 </pre>
   1423 
   1424 <p><b>Example of Use:</b></p>
   1425 
   1426 <pre>
   1427 void myabort(void) __attribute__((noreturn));
   1428 void myabort(void) {
   1429     asm("int3");
   1430     __builtin_unreachable();
   1431 }
   1432 </pre>
   1433 
   1434 <p><b>Description:</b></p>
   1435 
   1436 <p>The __builtin_unreachable() builtin has completely undefined behavior.  Since
   1437 it has undefined behavior, it is a statement that it is never reached and the
   1438 optimizer can take advantage of this to produce better code.  This builtin takes
   1439 no arguments and produces a void result.
   1440 </p>
   1441 
   1442 <p>Query for this feature with __has_builtin(__builtin_unreachable).</p>
   1443 
   1444 <!-- ======================================================================= -->
   1445 <h3><a name="__sync_swap">__sync_swap</a></h3>
   1446 <!-- ======================================================================= -->
   1447 
   1448 <p><tt>__sync_swap</tt> is used to atomically swap integers or pointers in
   1449 memory.
   1450 </p>
   1451 
   1452 <p><b>Syntax:</b></p>
   1453 
   1454 <pre>
   1455 <i>type</i> __sync_swap(<i>type</i> *ptr, <i>type</i> value, ...)
   1456 </pre>
   1457 
   1458 <p><b>Example of Use:</b></p>
   1459 
   1460 <pre>
   1461 int old_value = __sync_swap(&amp;value, new_value);
   1462 </pre>
   1463 
   1464 <p><b>Description:</b></p>
   1465 
   1466 <p>The __sync_swap() builtin extends the existing __sync_*() family of atomic
   1467 intrinsics to allow code to atomically swap the current value with the new
   1468 value.  More importantly, it helps developers write more efficient and correct
   1469 code by avoiding expensive loops around __sync_bool_compare_and_swap() or
   1470 relying on the platform specific implementation details of
   1471 __sync_lock_test_and_set(). The __sync_swap() builtin is a full barrier.
   1472 </p>
   1473 
   1474 <!-- ======================================================================= -->
   1475 <h3><a name="__c11_atomic">__c11_atomic builtins</a></h3>
   1476 <!-- ======================================================================= -->
   1477 
   1478 <p>Clang provides a set of builtins which are intended to be used to implement
   1479 C11's <tt>&lt;stdatomic.h&gt;</tt> header. These builtins provide the semantics
   1480 of the <tt>_explicit</tt> form of the corresponding C11 operation, and are named
   1481 with a <tt>__c11_</tt> prefix. The supported operations are:</p>
   1482 
   1483 <ul>
   1484   <li><tt>__c11_atomic_init</tt></li>
   1485   <li><tt>__c11_atomic_thread_fence</tt></li>
   1486   <li><tt>__c11_atomic_signal_fence</tt></li>
   1487   <li><tt>__c11_atomic_is_lock_free</tt></li>
   1488   <li><tt>__c11_atomic_store</tt></li>
   1489   <li><tt>__c11_atomic_load</tt></li>
   1490   <li><tt>__c11_atomic_exchange</tt></li>
   1491   <li><tt>__c11_atomic_compare_exchange_strong</tt></li>
   1492   <li><tt>__c11_atomic_compare_exchange_weak</tt></li>
   1493   <li><tt>__c11_atomic_fetch_add</tt></li>
   1494   <li><tt>__c11_atomic_fetch_sub</tt></li>
   1495   <li><tt>__c11_atomic_fetch_and</tt></li>
   1496   <li><tt>__c11_atomic_fetch_or</tt></li>
   1497   <li><tt>__c11_atomic_fetch_xor</tt></li>
   1498 </ul>
   1499 
   1500 
   1501 <!-- ======================================================================= -->
   1502 <h2 id="targetspecific">Target-Specific Extensions</h2>
   1503 <!-- ======================================================================= -->
   1504 
   1505 <p>Clang supports some language features conditionally on some targets.</p>
   1506 
   1507 <!-- ======================================================================= -->
   1508 <h3 id="x86-specific">X86/X86-64 Language Extensions</h3>
   1509 <!-- ======================================================================= -->
   1510 
   1511 <p>The X86 backend has these language extensions:</p>
   1512 
   1513 <!-- ======================================================================= -->
   1514 <h4 id="x86-gs-segment">Memory references off the GS segment</h4>
   1515 <!-- ======================================================================= -->
   1516 
   1517 <p>Annotating a pointer with address space #256 causes it to  be code generated
   1518 relative to the X86 GS segment register, and address space #257 causes it to be
   1519 relative to the X86 FS segment.  Note that this is a very very low-level
   1520 feature that should only be used if you know what you're doing (for example in
   1521 an OS kernel).</p>
   1522 
   1523 <p>Here is an example:</p>
   1524 
   1525 <pre>
   1526 #define GS_RELATIVE __attribute__((address_space(256)))
   1527 int foo(int GS_RELATIVE *P) {
   1528   return *P;
   1529 }
   1530 </pre>
   1531 
   1532 <p>Which compiles to (on X86-32):</p>
   1533 
   1534 <pre>
   1535 _foo:
   1536 	movl	4(%esp), %eax
   1537 	movl	%gs:(%eax), %eax
   1538 	ret
   1539 </pre>
   1540 
   1541 <!-- ======================================================================= -->
   1542 <h2 id="analyzerspecific">Static Analysis-Specific Extensions</h2>
   1543 <!-- ======================================================================= -->
   1544 
   1545 <p>Clang supports additional attributes that are useful for documenting program
   1546 invariants and rules for static analysis tools. The extensions documented here
   1547 are used by the <a
   1548 href="http://clang.llvm.org/StaticAnalysis.html">path-sensitive static analyzer
   1549 engine</a> that is part of Clang's Analysis library.</p>
   1550 
   1551 <h3 id="attr_analyzer_noreturn">The <tt>analyzer_noreturn</tt> attribute</h3>
   1552 
   1553 <p>Clang's static analysis engine understands the standard <tt>noreturn</tt>
   1554 attribute. This attribute, which is typically affixed to a function prototype,
   1555 indicates that a call to a given function never returns. Function prototypes for
   1556 common functions like <tt>exit</tt> are typically annotated with this attribute,
   1557 as well as a variety of common assertion handlers. Users can educate the static
   1558 analyzer about their own custom assertion handles (thus cutting down on false
   1559 positives due to false paths) by marking their own &quot;panic&quot; functions
   1560 with this attribute.</p>
   1561 
   1562 <p>While useful, <tt>noreturn</tt> is not applicable in all cases. Sometimes
   1563 there are special functions that for all intents and purposes should be
   1564 considered panic functions (i.e., they are only called when an internal program
   1565 error occurs) but may actually return so that the program can fail gracefully.
   1566 The <tt>analyzer_noreturn</tt> attribute allows one to annotate such functions
   1567 as being interpreted as &quot;no return&quot; functions by the analyzer (thus
   1568 pruning bogus paths) but will not affect compilation (as in the case of
   1569 <tt>noreturn</tt>).</p>
   1570 
   1571 <p><b>Usage</b>: The <tt>analyzer_noreturn</tt> attribute can be placed in the
   1572 same places where the <tt>noreturn</tt> attribute can be placed. It is commonly
   1573 placed at the end of function prototypes:</p>
   1574 
   1575 <pre>
   1576   void foo() <b>__attribute__((analyzer_noreturn))</b>;
   1577 </pre>
   1578 
   1579 <p>Query for this feature with
   1580 <tt>__has_attribute(analyzer_noreturn)</tt>.</p>
   1581 
   1582 <h3 id="attr_method_family">The <tt>objc_method_family</tt> attribute</h3>
   1583 
   1584 <p>Many methods in Objective-C have conventional meanings determined
   1585 by their selectors.  For the purposes of static analysis, it is
   1586 sometimes useful to be able to mark a method as having a particular
   1587 conventional meaning despite not having the right selector, or as not
   1588 having the conventional meaning that its selector would suggest.
   1589 For these use cases, we provide an attribute to specifically describe
   1590 the <q>method family</q> that a method belongs to.</p>
   1591 
   1592 <p><b>Usage</b>: <tt>__attribute__((objc_method_family(X)))</tt>,
   1593 where <tt>X</tt> is one of <tt>none</tt>, <tt>alloc</tt>, <tt>copy</tt>,
   1594 <tt>init</tt>, <tt>mutableCopy</tt>, or <tt>new</tt>.  This attribute
   1595 can only be placed at the end of a method declaration:</p>
   1596 
   1597 <pre>
   1598   - (NSString*) initMyStringValue <b>__attribute__((objc_method_family(none)))</b>;
   1599 </pre>
   1600 
   1601 <p>Users who do not wish to change the conventional meaning of a
   1602 method, and who merely want to document its non-standard retain and
   1603 release semantics, should use the
   1604 <a href="#attr_retain_release">retaining behavior attributes</a>
   1605 described below.</p>
   1606 
   1607 <p>Query for this feature with
   1608 <tt>__has_attribute(objc_method_family)</tt>.</p>
   1609 
   1610 <h3 id="attr_retain_release">Objective-C retaining behavior attributes</h3>
   1611 
   1612 <p>In Objective-C, functions and methods are generally assumed to take
   1613 and return objects with +0 retain counts, with some exceptions for
   1614 special methods like <tt>+alloc</tt> and <tt>init</tt>.  However,
   1615 there are exceptions, and so Clang provides attributes to allow these
   1616 exceptions to be documented, which helps the analyzer find leaks (and
   1617 ignore non-leaks).  Some exceptions may be better described using
   1618 the <a href="#attr_method_family"><tt>objc_method_family</tt></a>
   1619 attribute instead.</p>
   1620 
   1621 <p><b>Usage</b>: The <tt>ns_returns_retained</tt>, <tt>ns_returns_not_retained</tt>,
   1622 <tt>ns_returns_autoreleased</tt>, <tt>cf_returns_retained</tt>,
   1623 and <tt>cf_returns_not_retained</tt> attributes can be placed on
   1624 methods and functions that return Objective-C or CoreFoundation
   1625 objects.  They are commonly placed at the end of a function prototype
   1626 or method declaration:</p>
   1627 
   1628 <pre>
   1629   id foo() <b>__attribute__((ns_returns_retained))</b>;
   1630 
   1631   - (NSString*) bar: (int) x <b>__attribute__((ns_returns_retained))</b>;
   1632 </pre>
   1633 
   1634 <p>The <tt>*_returns_retained</tt> attributes specify that the
   1635 returned object has a +1 retain count.
   1636 The <tt>*_returns_not_retained</tt> attributes specify that the return
   1637 object has a +0 retain count, even if the normal convention for its
   1638 selector would be +1.  <tt>ns_returns_autoreleased</tt> specifies that the
   1639 returned object is +0, but is guaranteed to live at least as long as the
   1640 next flush of an autorelease pool.</p>
   1641 
   1642 <p><b>Usage</b>: The <tt>ns_consumed</tt> and <tt>cf_consumed</tt>
   1643 attributes can be placed on an parameter declaration; they specify
   1644 that the argument is expected to have a +1 retain count, which will be
   1645 balanced in some way by the function or method.
   1646 The <tt>ns_consumes_self</tt> attribute can only be placed on an
   1647 Objective-C method; it specifies that the method expects
   1648 its <tt>self</tt> parameter to have a +1 retain count, which it will
   1649 balance in some way.</p>
   1650 
   1651 <pre>
   1652   void <b>foo(__attribute__((ns_consumed))</b> NSString *string);
   1653 
   1654   - (void) bar <b>__attribute__((ns_consumes_self))</b>;
   1655   - (void) baz: (id) <b>__attribute__((ns_consumed))</b> x;
   1656 </pre>
   1657 
   1658 <p>Query for these features with <tt>__has_attribute(ns_consumed)</tt>,
   1659 <tt>__has_attribute(ns_returns_retained)</tt>, etc.</p>
   1660 
   1661 <!-- ======================================================================= -->
   1662 <h2 id="dynamicanalyzerspecific">Dynamic Analysis-Specific Extensions</h2>
   1663 <!-- ======================================================================= -->
   1664 <h3 id="address_sanitizer">AddressSanitizer</h3>
   1665 <p> Use <code>__has_feature(address_sanitizer)</code>
   1666 to check if the code is being built with <a
   1667   href="AddressSanitizer.html">AddressSanitizer</a>.
   1668 </p>
   1669 <p>Use <tt>__attribute__((no_address_safety_analysis))</tt> on a function
   1670 declaration to specify that address safety instrumentation (e.g.
   1671 AddressSanitizer) should not be applied to that function.
   1672 </p>
   1673 
   1674 <!-- ======================================================================= -->
   1675 <h2 id="threadsafety">Thread-Safety Annotation Checking</h2>
   1676 <!-- ======================================================================= -->
   1677 
   1678 <p>Clang supports additional attributes for checking basic locking policies in 
   1679 multithreaded programs.
   1680 Clang currently parses the following list of attributes, although 
   1681 <b>the implementation for these annotations is currently in development.</b> 
   1682 For more details, see the
   1683 <a href="http://gcc.gnu.org/wiki/ThreadSafetyAnnotation">GCC implementation</a>.
   1684 </p>
   1685 
   1686 <h4 id="ts_noanal">no_thread_safety_analysis</h4>
   1687 
   1688 <p>Use <tt>__attribute__((no_thread_safety_analysis))</tt> on a function 
   1689 declaration to specify that the thread safety analysis should not be run on that 
   1690 function. This attribute provides an escape hatch (e.g. for situations when it
   1691 is difficult to annotate the locking policy). </p> 
   1692 
   1693 <h4 id="ts_lockable">lockable</h4>
   1694 
   1695 <p>Use <tt>__attribute__((lockable))</tt> on a class definition to specify 
   1696 that it has a lockable type (e.g. a Mutex class). This annotation is primarily 
   1697 used to check consistency.</p> 
   1698 
   1699 <h4 id="ts_scopedlockable">scoped_lockable</h4>
   1700 
   1701 <p>Use <tt>__attribute__((scoped_lockable))</tt> on a class definition to 
   1702 specify that it has a "scoped" lockable type. Objects of this type will acquire 
   1703 the lock upon construction and release it upon going out of scope.
   1704  This annotation is primarily used to check 
   1705 consistency.</p> 
   1706 
   1707 <h4 id="ts_guardedvar">guarded_var</h4>
   1708 
   1709 <p>Use <tt>__attribute__((guarded_var))</tt> on a variable declaration to 
   1710 specify that the variable must be accessed while holding some lock.</p>
   1711 
   1712 <h4 id="ts_ptguardedvar">pt_guarded_var</h4>
   1713 
   1714 <p>Use <tt>__attribute__((pt_guarded_var))</tt> on a pointer declaration to 
   1715 specify that the pointer must be dereferenced while holding some lock.</p>
   1716 
   1717 <h4 id="ts_guardedby">guarded_by(l)</h4>
   1718 
   1719 <p>Use <tt>__attribute__((guarded_by(l)))</tt> on a variable declaration to 
   1720 specify that the variable must be accessed while holding lock <tt>l</tt>.</p>
   1721 
   1722 <h4 id="ts_ptguardedby">pt_guarded_by(l)</h4>
   1723 
   1724 <p>Use <tt>__attribute__((pt_guarded_by(l)))</tt> on a pointer declaration to 
   1725 specify that the pointer must be dereferenced while holding lock <tt>l</tt>.</p>
   1726 
   1727 <h4 id="ts_acquiredbefore">acquired_before(...)</h4>
   1728 
   1729 <p>Use <tt>__attribute__((acquired_before(...)))</tt> on a declaration 
   1730 of a lockable variable to specify that the lock must be acquired before all 
   1731 attribute arguments. Arguments must be lockable type, and there must be at 
   1732 least one argument.</p> 
   1733 
   1734 <h4 id="ts_acquiredafter">acquired_after(...)</h4>
   1735 
   1736 <p>Use <tt>__attribute__((acquired_after(...)))</tt> on a declaration 
   1737 of a lockable variable to specify that the lock must be acquired after all 
   1738 attribute arguments. Arguments must be lockable type, and there must be at 
   1739 least one argument.</p> 
   1740 
   1741 <h4 id="ts_elf">exclusive_lock_function(...)</h4>
   1742 
   1743 <p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function 
   1744 declaration to specify that the function acquires all listed locks 
   1745 exclusively. This attribute takes zero or more arguments: either of lockable 
   1746 type or integers indexing into function parameters of lockable type. If no 
   1747 arguments are given, the acquired lock is implicitly <tt>this</tt> of the 
   1748 enclosing object.</p>
   1749 
   1750 <h4 id="ts_slf">shared_lock_function(...)</h4>
   1751 
   1752 <p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function 
   1753 declaration to specify that the function acquires all listed locks, although
   1754  the locks may be shared (e.g. read locks). This attribute takes zero or more 
   1755 arguments: either of lockable type or integers indexing into function 
   1756 parameters of lockable type. If no arguments are given, the acquired lock is 
   1757 implicitly <tt>this</tt> of the enclosing object.</p>
   1758 
   1759 <h4 id="ts_etf">exclusive_trylock_function(...)</h4>
   1760 
   1761 <p>Use <tt>__attribute__((exclusive_lock_function(...)))</tt> on a function 
   1762 declaration to specify that the function will try (without blocking) to acquire
   1763 all listed locks exclusively. This attribute takes one or more arguments. The 
   1764 first argument is an integer or boolean value specifying the return value of a 
   1765 successful lock acquisition. The remaining arugments are either of lockable type 
   1766 or integers indexing into function parameters of lockable type. If only one 
   1767 argument is given, the acquired lock is implicitly <tt>this</tt> of the 
   1768 enclosing object.</p>
   1769 
   1770 <h4 id="ts_stf">shared_trylock_function(...)</h4>
   1771 
   1772 <p>Use <tt>__attribute__((shared_lock_function(...)))</tt> on a function 
   1773 declaration to specify that the function will try (without blocking) to acquire
   1774 all listed locks, although the locks may be shared (e.g. read locks). This 
   1775 attribute takes one or more arguments. The first argument is an integer or 
   1776 boolean value specifying the return value of a successful lock acquisition. The 
   1777 remaining arugments are either of lockable type or integers indexing into 
   1778 function parameters of lockable type. If only one argument is given, the 
   1779 acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
   1780 
   1781 <h4 id="ts_uf">unlock_function(...)</h4>
   1782 
   1783 <p>Use <tt>__attribute__((unlock_function(...)))</tt> on a function 
   1784 declaration to specify that the function release all listed locks. This 
   1785 attribute takes zero or more arguments: either of lockable type or integers 
   1786 indexing into function parameters of lockable type. If no arguments are given, 
   1787 the acquired lock is implicitly <tt>this</tt> of the enclosing object.</p>
   1788 
   1789 <h4 id="ts_lr">lock_returned(l)</h4>
   1790 
   1791 <p>Use <tt>__attribute__((lock_returned(l)))</tt> on a function 
   1792 declaration to specify that the function returns lock <tt>l</tt> (<tt>l</tt> 
   1793 must be of lockable type). This annotation is used to aid in resolving lock 
   1794 expressions.</p>
   1795 
   1796 <h4 id="ts_le">locks_excluded(...)</h4>
   1797 
   1798 <p>Use <tt>__attribute__((locks_excluded(...)))</tt> on a function declaration 
   1799 to specify that the function must not be called with the listed locks. Arguments 
   1800 must be lockable type, and there must be at least one argument.</p>
   1801 
   1802 <h4 id="ts_elr">exclusive_locks_required(...)</h4>
   1803 
   1804 <p>Use <tt>__attribute__((exclusive_locks_required(...)))</tt> on a function 
   1805 declaration to specify that the function must be called while holding the listed
   1806 exclusive locks. Arguments must be lockable type, and there must be at 
   1807 least one argument.</p> 
   1808 
   1809 <h4 id="ts_slr">shared_locks_required(...)</h4>
   1810 
   1811 <p>Use <tt>__attribute__((shared_locks_required(...)))</tt> on a function 
   1812 declaration to specify that the function must be called while holding the listed 
   1813 shared locks. Arguments must be lockable type, and there must be at 
   1814 least one argument.</p> 
   1815 
   1816 </div>
   1817 </body>
   1818 </html>
   1819