Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder  ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Builder implementation for CGRecordLayout objects.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGRecordLayout.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/Attr.h"
     17 #include "clang/AST/CXXInheritance.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/RecordLayout.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "CodeGenTypes.h"
     23 #include "CGCXXABI.h"
     24 #include "llvm/DerivedTypes.h"
     25 #include "llvm/Type.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetData.h"
     29 using namespace clang;
     30 using namespace CodeGen;
     31 
     32 namespace {
     33 
     34 class CGRecordLayoutBuilder {
     35 public:
     36   /// FieldTypes - Holds the LLVM types that the struct is created from.
     37   ///
     38   SmallVector<llvm::Type *, 16> FieldTypes;
     39 
     40   /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
     41   /// of the struct. For example, consider:
     42   ///
     43   /// struct A { int i; };
     44   /// struct B { void *v; };
     45   /// struct C : virtual A, B { };
     46   ///
     47   /// The LLVM type of C will be
     48   /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
     49   ///
     50   /// And the LLVM type of the non-virtual base struct will be
     51   /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
     52   ///
     53   /// This only gets initialized if the base subobject type is
     54   /// different from the complete-object type.
     55   llvm::StructType *BaseSubobjectType;
     56 
     57   /// FieldInfo - Holds a field and its corresponding LLVM field number.
     58   llvm::DenseMap<const FieldDecl *, unsigned> Fields;
     59 
     60   /// BitFieldInfo - Holds location and size information about a bit field.
     61   llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
     62 
     63   llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
     64   llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
     65 
     66   /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
     67   /// primary base classes for some other direct or indirect base class.
     68   CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
     69 
     70   /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
     71   /// avoid laying out virtual bases more than once.
     72   llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
     73 
     74   /// IsZeroInitializable - Whether this struct can be C++
     75   /// zero-initialized with an LLVM zeroinitializer.
     76   bool IsZeroInitializable;
     77   bool IsZeroInitializableAsBase;
     78 
     79   /// Packed - Whether the resulting LLVM struct will be packed or not.
     80   bool Packed;
     81 
     82   /// IsMsStruct - Whether ms_struct is in effect or not
     83   bool IsMsStruct;
     84 
     85 private:
     86   CodeGenTypes &Types;
     87 
     88   /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
     89   /// last base laid out. Used so that we can replace the last laid out base
     90   /// type with an i8 array if needed.
     91   struct LastLaidOutBaseInfo {
     92     CharUnits Offset;
     93     CharUnits NonVirtualSize;
     94 
     95     bool isValid() const { return !NonVirtualSize.isZero(); }
     96     void invalidate() { NonVirtualSize = CharUnits::Zero(); }
     97 
     98   } LastLaidOutBase;
     99 
    100   /// Alignment - Contains the alignment of the RecordDecl.
    101   CharUnits Alignment;
    102 
    103   /// BitsAvailableInLastField - If a bit field spans only part of a LLVM field,
    104   /// this will have the number of bits still available in the field.
    105   char BitsAvailableInLastField;
    106 
    107   /// NextFieldOffset - Holds the next field offset.
    108   CharUnits NextFieldOffset;
    109 
    110   /// LayoutUnionField - Will layout a field in an union and return the type
    111   /// that the field will have.
    112   llvm::Type *LayoutUnionField(const FieldDecl *Field,
    113                                const ASTRecordLayout &Layout);
    114 
    115   /// LayoutUnion - Will layout a union RecordDecl.
    116   void LayoutUnion(const RecordDecl *D);
    117 
    118   /// LayoutField - try to layout all fields in the record decl.
    119   /// Returns false if the operation failed because the struct is not packed.
    120   bool LayoutFields(const RecordDecl *D);
    121 
    122   /// Layout a single base, virtual or non-virtual
    123   bool LayoutBase(const CXXRecordDecl *base,
    124                   const CGRecordLayout &baseLayout,
    125                   CharUnits baseOffset);
    126 
    127   /// LayoutVirtualBase - layout a single virtual base.
    128   bool LayoutVirtualBase(const CXXRecordDecl *base,
    129                          CharUnits baseOffset);
    130 
    131   /// LayoutVirtualBases - layout the virtual bases of a record decl.
    132   bool LayoutVirtualBases(const CXXRecordDecl *RD,
    133                           const ASTRecordLayout &Layout);
    134 
    135   /// MSLayoutVirtualBases - layout the virtual bases of a record decl,
    136   /// like MSVC.
    137   bool MSLayoutVirtualBases(const CXXRecordDecl *RD,
    138                             const ASTRecordLayout &Layout);
    139 
    140   /// LayoutNonVirtualBase - layout a single non-virtual base.
    141   bool LayoutNonVirtualBase(const CXXRecordDecl *base,
    142                             CharUnits baseOffset);
    143 
    144   /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
    145   bool LayoutNonVirtualBases(const CXXRecordDecl *RD,
    146                              const ASTRecordLayout &Layout);
    147 
    148   /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
    149   bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
    150 
    151   /// LayoutField - layout a single field. Returns false if the operation failed
    152   /// because the current struct is not packed.
    153   bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
    154 
    155   /// LayoutBitField - layout a single bit field.
    156   void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
    157 
    158   /// AppendField - Appends a field with the given offset and type.
    159   void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
    160 
    161   /// AppendPadding - Appends enough padding bytes so that the total
    162   /// struct size is a multiple of the field alignment.
    163   void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
    164 
    165   /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
    166   /// tail padding of a previous base. If this happens, the type of the previous
    167   /// base needs to be changed to an array of i8. Returns true if the last
    168   /// laid out base was resized.
    169   bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
    170 
    171   /// getByteArrayType - Returns a byte array type with the given number of
    172   /// elements.
    173   llvm::Type *getByteArrayType(CharUnits NumBytes);
    174 
    175   /// AppendBytes - Append a given number of bytes to the record.
    176   void AppendBytes(CharUnits numBytes);
    177 
    178   /// AppendTailPadding - Append enough tail padding so that the type will have
    179   /// the passed size.
    180   void AppendTailPadding(CharUnits RecordSize);
    181 
    182   CharUnits getTypeAlignment(llvm::Type *Ty) const;
    183 
    184   /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
    185   /// LLVM element types.
    186   CharUnits getAlignmentAsLLVMStruct() const;
    187 
    188   /// CheckZeroInitializable - Check if the given type contains a pointer
    189   /// to data member.
    190   void CheckZeroInitializable(QualType T);
    191 
    192 public:
    193   CGRecordLayoutBuilder(CodeGenTypes &Types)
    194     : BaseSubobjectType(0),
    195       IsZeroInitializable(true), IsZeroInitializableAsBase(true),
    196       Packed(false), IsMsStruct(false),
    197       Types(Types), BitsAvailableInLastField(0) { }
    198 
    199   /// Layout - Will layout a RecordDecl.
    200   void Layout(const RecordDecl *D);
    201 };
    202 
    203 }
    204 
    205 void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
    206   Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
    207   Packed = D->hasAttr<PackedAttr>();
    208 
    209   IsMsStruct = D->hasAttr<MsStructAttr>();
    210 
    211   if (D->isUnion()) {
    212     LayoutUnion(D);
    213     return;
    214   }
    215 
    216   if (LayoutFields(D))
    217     return;
    218 
    219   // We weren't able to layout the struct. Try again with a packed struct
    220   Packed = true;
    221   LastLaidOutBase.invalidate();
    222   NextFieldOffset = CharUnits::Zero();
    223   FieldTypes.clear();
    224   Fields.clear();
    225   BitFields.clear();
    226   NonVirtualBases.clear();
    227   VirtualBases.clear();
    228 
    229   LayoutFields(D);
    230 }
    231 
    232 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    233                                const FieldDecl *FD,
    234                                uint64_t FieldOffset,
    235                                uint64_t FieldSize,
    236                                uint64_t ContainingTypeSizeInBits,
    237                                unsigned ContainingTypeAlign) {
    238   llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
    239   CharUnits TypeSizeInBytes =
    240     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
    241   uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
    242 
    243   bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
    244 
    245   if (FieldSize > TypeSizeInBits) {
    246     // We have a wide bit-field. The extra bits are only used for padding, so
    247     // if we have a bitfield of type T, with size N:
    248     //
    249     // T t : N;
    250     //
    251     // We can just assume that it's:
    252     //
    253     // T t : sizeof(T);
    254     //
    255     FieldSize = TypeSizeInBits;
    256   }
    257 
    258   // in big-endian machines the first fields are in higher bit positions,
    259   // so revert the offset. The byte offsets are reversed(back) later.
    260   if (Types.getTargetData().isBigEndian()) {
    261     FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
    262   }
    263 
    264   // Compute the access components. The policy we use is to start by attempting
    265   // to access using the width of the bit-field type itself and to always access
    266   // at aligned indices of that type. If such an access would fail because it
    267   // extends past the bound of the type, then we reduce size to the next smaller
    268   // power of two and retry. The current algorithm assumes pow2 sized types,
    269   // although this is easy to fix.
    270   //
    271   assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
    272   CGBitFieldInfo::AccessInfo Components[3];
    273   unsigned NumComponents = 0;
    274   unsigned AccessedTargetBits = 0;       // The number of target bits accessed.
    275   unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
    276 
    277   // If requested, widen the initial bit-field access to be register sized. The
    278   // theory is that this is most likely to allow multiple accesses into the same
    279   // structure to be coalesced, and that the backend should be smart enough to
    280   // narrow the store if no coalescing is ever done.
    281   //
    282   // The subsequent code will handle align these access to common boundaries and
    283   // guaranteeing that we do not access past the end of the structure.
    284   if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
    285     if (AccessWidth < Types.getTarget().getRegisterWidth())
    286       AccessWidth = Types.getTarget().getRegisterWidth();
    287   }
    288 
    289   // Round down from the field offset to find the first access position that is
    290   // at an aligned offset of the initial access type.
    291   uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    292 
    293   // Adjust initial access size to fit within record.
    294   while (AccessWidth > Types.getTarget().getCharWidth() &&
    295          AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    296     AccessWidth >>= 1;
    297     AccessStart = FieldOffset - (FieldOffset % AccessWidth);
    298   }
    299 
    300   while (AccessedTargetBits < FieldSize) {
    301     // Check that we can access using a type of this size, without reading off
    302     // the end of the structure. This can occur with packed structures and
    303     // -fno-bitfield-type-align, for example.
    304     if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
    305       // If so, reduce access size to the next smaller power-of-two and retry.
    306       AccessWidth >>= 1;
    307       assert(AccessWidth >= Types.getTarget().getCharWidth()
    308              && "Cannot access under byte size!");
    309       continue;
    310     }
    311 
    312     // Otherwise, add an access component.
    313 
    314     // First, compute the bits inside this access which are part of the
    315     // target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
    316     // intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
    317     // in the target that we are reading.
    318     assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
    319     assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
    320     uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
    321     uint64_t AccessBitsInFieldSize =
    322       std::min(AccessWidth + AccessStart,
    323                FieldOffset + FieldSize) - AccessBitsInFieldStart;
    324 
    325     assert(NumComponents < 3 && "Unexpected number of components!");
    326     CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
    327     AI.FieldIndex = 0;
    328     // FIXME: We still follow the old access pattern of only using the field
    329     // byte offset. We should switch this once we fix the struct layout to be
    330     // pretty.
    331 
    332     // on big-endian machines we reverted the bit offset because first fields are
    333     // in higher bits. But this also reverts the bytes, so fix this here by reverting
    334     // the byte offset on big-endian machines.
    335     if (Types.getTargetData().isBigEndian()) {
    336       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(
    337           ContainingTypeSizeInBits - AccessStart - AccessWidth);
    338     } else {
    339       AI.FieldByteOffset = Types.getContext().toCharUnitsFromBits(AccessStart);
    340     }
    341     AI.FieldBitStart = AccessBitsInFieldStart - AccessStart;
    342     AI.AccessWidth = AccessWidth;
    343     AI.AccessAlignment = Types.getContext().toCharUnitsFromBits(
    344         llvm::MinAlign(ContainingTypeAlign, AccessStart));
    345     AI.TargetBitOffset = AccessedTargetBits;
    346     AI.TargetBitWidth = AccessBitsInFieldSize;
    347 
    348     AccessStart += AccessWidth;
    349     AccessedTargetBits += AI.TargetBitWidth;
    350   }
    351 
    352   assert(AccessedTargetBits == FieldSize && "Invalid bit-field access!");
    353   return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
    354 }
    355 
    356 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
    357                                         const FieldDecl *FD,
    358                                         uint64_t FieldOffset,
    359                                         uint64_t FieldSize) {
    360   const RecordDecl *RD = FD->getParent();
    361   const ASTRecordLayout &RL = Types.getContext().getASTRecordLayout(RD);
    362   uint64_t ContainingTypeSizeInBits = Types.getContext().toBits(RL.getSize());
    363   unsigned ContainingTypeAlign = Types.getContext().toBits(RL.getAlignment());
    364 
    365   return MakeInfo(Types, FD, FieldOffset, FieldSize, ContainingTypeSizeInBits,
    366                   ContainingTypeAlign);
    367 }
    368 
    369 void CGRecordLayoutBuilder::LayoutBitField(const FieldDecl *D,
    370                                            uint64_t fieldOffset) {
    371   uint64_t fieldSize = D->getBitWidthValue(Types.getContext());
    372 
    373   if (fieldSize == 0)
    374     return;
    375 
    376   uint64_t nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    377   CharUnits numBytesToAppend;
    378   unsigned charAlign = Types.getContext().getTargetInfo().getCharAlign();
    379 
    380   if (fieldOffset < nextFieldOffsetInBits && !BitsAvailableInLastField) {
    381     assert(fieldOffset % charAlign == 0 &&
    382            "Field offset not aligned correctly");
    383 
    384     CharUnits fieldOffsetInCharUnits =
    385       Types.getContext().toCharUnitsFromBits(fieldOffset);
    386 
    387     // Try to resize the last base field.
    388     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInCharUnits))
    389       nextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
    390   }
    391 
    392   if (fieldOffset < nextFieldOffsetInBits) {
    393     assert(BitsAvailableInLastField && "Bitfield size mismatch!");
    394     assert(!NextFieldOffset.isZero() && "Must have laid out at least one byte");
    395 
    396     // The bitfield begins in the previous bit-field.
    397     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    398       llvm::RoundUpToAlignment(fieldSize - BitsAvailableInLastField,
    399                                charAlign));
    400   } else {
    401     assert(fieldOffset % charAlign == 0 &&
    402            "Field offset not aligned correctly");
    403 
    404     // Append padding if necessary.
    405     AppendPadding(Types.getContext().toCharUnitsFromBits(fieldOffset),
    406                   CharUnits::One());
    407 
    408     numBytesToAppend = Types.getContext().toCharUnitsFromBits(
    409         llvm::RoundUpToAlignment(fieldSize, charAlign));
    410 
    411     assert(!numBytesToAppend.isZero() && "No bytes to append!");
    412   }
    413 
    414   // Add the bit field info.
    415   BitFields.insert(std::make_pair(D,
    416                    CGBitFieldInfo::MakeInfo(Types, D, fieldOffset, fieldSize)));
    417 
    418   AppendBytes(numBytesToAppend);
    419 
    420   BitsAvailableInLastField =
    421     Types.getContext().toBits(NextFieldOffset) - (fieldOffset + fieldSize);
    422 }
    423 
    424 bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
    425                                         uint64_t fieldOffset) {
    426   // If the field is packed, then we need a packed struct.
    427   if (!Packed && D->hasAttr<PackedAttr>())
    428     return false;
    429 
    430   if (D->isBitField()) {
    431     // We must use packed structs for unnamed bit fields since they
    432     // don't affect the struct alignment.
    433     if (!Packed && !D->getDeclName())
    434       return false;
    435 
    436     LayoutBitField(D, fieldOffset);
    437     return true;
    438   }
    439 
    440   CheckZeroInitializable(D->getType());
    441 
    442   assert(fieldOffset % Types.getTarget().getCharWidth() == 0
    443          && "field offset is not on a byte boundary!");
    444   CharUnits fieldOffsetInBytes
    445     = Types.getContext().toCharUnitsFromBits(fieldOffset);
    446 
    447   llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
    448   CharUnits typeAlignment = getTypeAlignment(Ty);
    449 
    450   // If the type alignment is larger then the struct alignment, we must use
    451   // a packed struct.
    452   if (typeAlignment > Alignment) {
    453     assert(!Packed && "Alignment is wrong even with packed struct!");
    454     return false;
    455   }
    456 
    457   if (!Packed) {
    458     if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
    459       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
    460       if (const MaxFieldAlignmentAttr *MFAA =
    461             RD->getAttr<MaxFieldAlignmentAttr>()) {
    462         if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
    463           return false;
    464       }
    465     }
    466   }
    467 
    468   // Round up the field offset to the alignment of the field type.
    469   CharUnits alignedNextFieldOffsetInBytes =
    470     NextFieldOffset.RoundUpToAlignment(typeAlignment);
    471 
    472   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    473     // Try to resize the last base field.
    474     if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
    475       alignedNextFieldOffsetInBytes =
    476         NextFieldOffset.RoundUpToAlignment(typeAlignment);
    477     }
    478   }
    479 
    480   if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
    481     assert(!Packed && "Could not place field even with packed struct!");
    482     return false;
    483   }
    484 
    485   AppendPadding(fieldOffsetInBytes, typeAlignment);
    486 
    487   // Now append the field.
    488   Fields[D] = FieldTypes.size();
    489   AppendField(fieldOffsetInBytes, Ty);
    490 
    491   LastLaidOutBase.invalidate();
    492   return true;
    493 }
    494 
    495 llvm::Type *
    496 CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
    497                                         const ASTRecordLayout &Layout) {
    498   if (Field->isBitField()) {
    499     uint64_t FieldSize = Field->getBitWidthValue(Types.getContext());
    500 
    501     // Ignore zero sized bit fields.
    502     if (FieldSize == 0)
    503       return 0;
    504 
    505     llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
    506     CharUnits NumBytesToAppend = Types.getContext().toCharUnitsFromBits(
    507       llvm::RoundUpToAlignment(FieldSize,
    508                                Types.getContext().getTargetInfo().getCharAlign()));
    509 
    510     if (NumBytesToAppend > CharUnits::One())
    511       FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
    512 
    513     // Add the bit field info.
    514     BitFields.insert(std::make_pair(Field,
    515                          CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize)));
    516     return FieldTy;
    517   }
    518 
    519   // This is a regular union field.
    520   Fields[Field] = 0;
    521   return Types.ConvertTypeForMem(Field->getType());
    522 }
    523 
    524 void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
    525   assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
    526 
    527   const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
    528 
    529   llvm::Type *unionType = 0;
    530   CharUnits unionSize = CharUnits::Zero();
    531   CharUnits unionAlign = CharUnits::Zero();
    532 
    533   bool hasOnlyZeroSizedBitFields = true;
    534   bool checkedFirstFieldZeroInit = false;
    535 
    536   unsigned fieldNo = 0;
    537   for (RecordDecl::field_iterator field = D->field_begin(),
    538        fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
    539     assert(layout.getFieldOffset(fieldNo) == 0 &&
    540           "Union field offset did not start at the beginning of record!");
    541     llvm::Type *fieldType = LayoutUnionField(*field, layout);
    542 
    543     if (!fieldType)
    544       continue;
    545 
    546     if (field->getDeclName() && !checkedFirstFieldZeroInit) {
    547       CheckZeroInitializable(field->getType());
    548       checkedFirstFieldZeroInit = true;
    549     }
    550 
    551     hasOnlyZeroSizedBitFields = false;
    552 
    553     CharUnits fieldAlign = CharUnits::fromQuantity(
    554                           Types.getTargetData().getABITypeAlignment(fieldType));
    555     CharUnits fieldSize = CharUnits::fromQuantity(
    556                              Types.getTargetData().getTypeAllocSize(fieldType));
    557 
    558     if (fieldAlign < unionAlign)
    559       continue;
    560 
    561     if (fieldAlign > unionAlign || fieldSize > unionSize) {
    562       unionType = fieldType;
    563       unionAlign = fieldAlign;
    564       unionSize = fieldSize;
    565     }
    566   }
    567 
    568   // Now add our field.
    569   if (unionType) {
    570     AppendField(CharUnits::Zero(), unionType);
    571 
    572     if (getTypeAlignment(unionType) > layout.getAlignment()) {
    573       // We need a packed struct.
    574       Packed = true;
    575       unionAlign = CharUnits::One();
    576     }
    577   }
    578   if (unionAlign.isZero()) {
    579     (void)hasOnlyZeroSizedBitFields;
    580     assert(hasOnlyZeroSizedBitFields &&
    581            "0-align record did not have all zero-sized bit-fields!");
    582     unionAlign = CharUnits::One();
    583   }
    584 
    585   // Append tail padding.
    586   CharUnits recordSize = layout.getSize();
    587   if (recordSize > unionSize)
    588     AppendPadding(recordSize, unionAlign);
    589 }
    590 
    591 bool CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
    592                                        const CGRecordLayout &baseLayout,
    593                                        CharUnits baseOffset) {
    594   ResizeLastBaseFieldIfNecessary(baseOffset);
    595 
    596   AppendPadding(baseOffset, CharUnits::One());
    597 
    598   const ASTRecordLayout &baseASTLayout
    599     = Types.getContext().getASTRecordLayout(base);
    600 
    601   LastLaidOutBase.Offset = NextFieldOffset;
    602   LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
    603 
    604   llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
    605   if (getTypeAlignment(subobjectType) > Alignment)
    606     return false;
    607 
    608   AppendField(baseOffset, subobjectType);
    609   return true;
    610 }
    611 
    612 bool CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
    613                                                  CharUnits baseOffset) {
    614   // Ignore empty bases.
    615   if (base->isEmpty()) return true;
    616 
    617   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    618   if (IsZeroInitializableAsBase) {
    619     assert(IsZeroInitializable &&
    620            "class zero-initializable as base but not as complete object");
    621 
    622     IsZeroInitializable = IsZeroInitializableAsBase =
    623       baseLayout.isZeroInitializableAsBase();
    624   }
    625 
    626   if (!LayoutBase(base, baseLayout, baseOffset))
    627     return false;
    628   NonVirtualBases[base] = (FieldTypes.size() - 1);
    629   return true;
    630 }
    631 
    632 bool
    633 CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
    634                                          CharUnits baseOffset) {
    635   // Ignore empty bases.
    636   if (base->isEmpty()) return true;
    637 
    638   const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
    639   if (IsZeroInitializable)
    640     IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
    641 
    642   if (!LayoutBase(base, baseLayout, baseOffset))
    643     return false;
    644   VirtualBases[base] = (FieldTypes.size() - 1);
    645   return true;
    646 }
    647 
    648 bool
    649 CGRecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD,
    650                                           const ASTRecordLayout &Layout) {
    651   if (!RD->getNumVBases())
    652     return true;
    653 
    654   // The vbases list is uniqued and ordered by a depth-first
    655   // traversal, which is what we need here.
    656   for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
    657         E = RD->vbases_end(); I != E; ++I) {
    658 
    659     const CXXRecordDecl *BaseDecl =
    660       cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
    661 
    662     CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
    663     if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
    664       return false;
    665   }
    666   return true;
    667 }
    668 
    669 /// LayoutVirtualBases - layout the non-virtual bases of a record decl.
    670 bool
    671 CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
    672                                           const ASTRecordLayout &Layout) {
    673   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    674        E = RD->bases_end(); I != E; ++I) {
    675     const CXXRecordDecl *BaseDecl =
    676       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    677 
    678     // We only want to lay out virtual bases that aren't indirect primary bases
    679     // of some other base.
    680     if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
    681       // Only lay out the base once.
    682       if (!LaidOutVirtualBases.insert(BaseDecl))
    683         continue;
    684 
    685       CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
    686       if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
    687         return false;
    688     }
    689 
    690     if (!BaseDecl->getNumVBases()) {
    691       // This base isn't interesting since it doesn't have any virtual bases.
    692       continue;
    693     }
    694 
    695     if (!LayoutVirtualBases(BaseDecl, Layout))
    696       return false;
    697   }
    698   return true;
    699 }
    700 
    701 bool
    702 CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
    703                                              const ASTRecordLayout &Layout) {
    704   const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
    705 
    706   // If we have a primary base, lay it out first.
    707   if (PrimaryBase) {
    708     if (!Layout.isPrimaryBaseVirtual()) {
    709       if (!LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero()))
    710         return false;
    711     } else {
    712       if (!LayoutVirtualBase(PrimaryBase, CharUnits::Zero()))
    713         return false;
    714     }
    715 
    716   // Otherwise, add a vtable / vf-table if the layout says to do so.
    717   } else if (Types.getContext().getTargetInfo().getCXXABI() == CXXABI_Microsoft
    718                ? Layout.getVFPtrOffset() != CharUnits::fromQuantity(-1)
    719                : RD->isDynamicClass()) {
    720     llvm::Type *FunctionType =
    721       llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
    722                               /*isVarArg=*/true);
    723     llvm::Type *VTableTy = FunctionType->getPointerTo();
    724 
    725     assert(NextFieldOffset.isZero() &&
    726            "VTable pointer must come first!");
    727     AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
    728   }
    729 
    730   // Layout the non-virtual bases.
    731   for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
    732        E = RD->bases_end(); I != E; ++I) {
    733     if (I->isVirtual())
    734       continue;
    735 
    736     const CXXRecordDecl *BaseDecl =
    737       cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
    738 
    739     // We've already laid out the primary base.
    740     if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
    741       continue;
    742 
    743     if (!LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl)))
    744       return false;
    745   }
    746 
    747   // Add a vb-table pointer if the layout insists.
    748   if (Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1)) {
    749     CharUnits VBPtrOffset = Layout.getVBPtrOffset();
    750     llvm::Type *Vbptr = llvm::Type::getInt32PtrTy(Types.getLLVMContext());
    751     AppendPadding(VBPtrOffset, getTypeAlignment(Vbptr));
    752     AppendField(VBPtrOffset, Vbptr);
    753   }
    754 
    755   return true;
    756 }
    757 
    758 bool
    759 CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
    760   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
    761 
    762   CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
    763   CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
    764   CharUnits AlignedNonVirtualTypeSize =
    765     NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
    766 
    767   // First check if we can use the same fields as for the complete class.
    768   CharUnits RecordSize = Layout.getSize();
    769   if (AlignedNonVirtualTypeSize == RecordSize)
    770     return true;
    771 
    772   // Check if we need padding.
    773   CharUnits AlignedNextFieldOffset =
    774     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    775 
    776   if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
    777     assert(!Packed && "cannot layout even as packed struct");
    778     return false; // Needs packing.
    779   }
    780 
    781   bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
    782   if (needsPadding) {
    783     CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
    784     FieldTypes.push_back(getByteArrayType(NumBytes));
    785   }
    786 
    787   BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(),
    788                                                FieldTypes, "", Packed);
    789   Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
    790 
    791   // Pull the padding back off.
    792   if (needsPadding)
    793     FieldTypes.pop_back();
    794 
    795   return true;
    796 }
    797 
    798 bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
    799   assert(!D->isUnion() && "Can't call LayoutFields on a union!");
    800   assert(!Alignment.isZero() && "Did not set alignment!");
    801 
    802   const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
    803 
    804   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
    805   if (RD)
    806     if (!LayoutNonVirtualBases(RD, Layout))
    807       return false;
    808 
    809   unsigned FieldNo = 0;
    810   const FieldDecl *LastFD = 0;
    811 
    812   for (RecordDecl::field_iterator Field = D->field_begin(),
    813        FieldEnd = D->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
    814     if (IsMsStruct) {
    815       // Zero-length bitfields following non-bitfield members are
    816       // ignored:
    817       const FieldDecl *FD =  (*Field);
    818       if (Types.getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
    819         --FieldNo;
    820         continue;
    821       }
    822       LastFD = FD;
    823     }
    824 
    825     if (!LayoutField(*Field, Layout.getFieldOffset(FieldNo))) {
    826       assert(!Packed &&
    827              "Could not layout fields even with a packed LLVM struct!");
    828       return false;
    829     }
    830   }
    831 
    832   if (RD) {
    833     // We've laid out the non-virtual bases and the fields, now compute the
    834     // non-virtual base field types.
    835     if (!ComputeNonVirtualBaseType(RD)) {
    836       assert(!Packed && "Could not layout even with a packed LLVM struct!");
    837       return false;
    838     }
    839 
    840     // Lay out the virtual bases.  The MS ABI uses a different
    841     // algorithm here due to the lack of primary virtual bases.
    842     if (Types.getContext().getTargetInfo().getCXXABI() != CXXABI_Microsoft) {
    843       RD->getIndirectPrimaryBases(IndirectPrimaryBases);
    844       if (Layout.isPrimaryBaseVirtual())
    845         IndirectPrimaryBases.insert(Layout.getPrimaryBase());
    846 
    847       if (!LayoutVirtualBases(RD, Layout))
    848         return false;
    849     } else {
    850       if (!MSLayoutVirtualBases(RD, Layout))
    851         return false;
    852     }
    853   }
    854 
    855   // Append tail padding if necessary.
    856   AppendTailPadding(Layout.getSize());
    857 
    858   return true;
    859 }
    860 
    861 void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
    862   ResizeLastBaseFieldIfNecessary(RecordSize);
    863 
    864   assert(NextFieldOffset <= RecordSize && "Size mismatch!");
    865 
    866   CharUnits AlignedNextFieldOffset =
    867     NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
    868 
    869   if (AlignedNextFieldOffset == RecordSize) {
    870     // We don't need any padding.
    871     return;
    872   }
    873 
    874   CharUnits NumPadBytes = RecordSize - NextFieldOffset;
    875   AppendBytes(NumPadBytes);
    876 }
    877 
    878 void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
    879                                         llvm::Type *fieldType) {
    880   CharUnits fieldSize =
    881     CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(fieldType));
    882 
    883   FieldTypes.push_back(fieldType);
    884 
    885   NextFieldOffset = fieldOffset + fieldSize;
    886   BitsAvailableInLastField = 0;
    887 }
    888 
    889 void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
    890                                           CharUnits fieldAlignment) {
    891   assert(NextFieldOffset <= fieldOffset &&
    892          "Incorrect field layout!");
    893 
    894   // Do nothing if we're already at the right offset.
    895   if (fieldOffset == NextFieldOffset) return;
    896 
    897   // If we're not emitting a packed LLVM type, try to avoid adding
    898   // unnecessary padding fields.
    899   if (!Packed) {
    900     // Round up the field offset to the alignment of the field type.
    901     CharUnits alignedNextFieldOffset =
    902       NextFieldOffset.RoundUpToAlignment(fieldAlignment);
    903     assert(alignedNextFieldOffset <= fieldOffset);
    904 
    905     // If that's the right offset, we're done.
    906     if (alignedNextFieldOffset == fieldOffset) return;
    907   }
    908 
    909   // Otherwise we need explicit padding.
    910   CharUnits padding = fieldOffset - NextFieldOffset;
    911   AppendBytes(padding);
    912 }
    913 
    914 bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
    915   // Check if we have a base to resize.
    916   if (!LastLaidOutBase.isValid())
    917     return false;
    918 
    919   // This offset does not overlap with the tail padding.
    920   if (offset >= NextFieldOffset)
    921     return false;
    922 
    923   // Restore the field offset and append an i8 array instead.
    924   FieldTypes.pop_back();
    925   NextFieldOffset = LastLaidOutBase.Offset;
    926   AppendBytes(LastLaidOutBase.NonVirtualSize);
    927   LastLaidOutBase.invalidate();
    928 
    929   return true;
    930 }
    931 
    932 llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
    933   assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
    934 
    935   llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
    936   if (numBytes > CharUnits::One())
    937     Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
    938 
    939   return Ty;
    940 }
    941 
    942 void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
    943   if (numBytes.isZero())
    944     return;
    945 
    946   // Append the padding field
    947   AppendField(NextFieldOffset, getByteArrayType(numBytes));
    948 }
    949 
    950 CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const {
    951   if (Packed)
    952     return CharUnits::One();
    953 
    954   return CharUnits::fromQuantity(Types.getTargetData().getABITypeAlignment(Ty));
    955 }
    956 
    957 CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
    958   if (Packed)
    959     return CharUnits::One();
    960 
    961   CharUnits maxAlignment = CharUnits::One();
    962   for (size_t i = 0; i != FieldTypes.size(); ++i)
    963     maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
    964 
    965   return maxAlignment;
    966 }
    967 
    968 /// Merge in whether a field of the given type is zero-initializable.
    969 void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
    970   // This record already contains a member pointer.
    971   if (!IsZeroInitializableAsBase)
    972     return;
    973 
    974   // Can only have member pointers if we're compiling C++.
    975   if (!Types.getContext().getLangOpts().CPlusPlus)
    976     return;
    977 
    978   const Type *elementType = T->getBaseElementTypeUnsafe();
    979 
    980   if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
    981     if (!Types.getCXXABI().isZeroInitializable(MPT))
    982       IsZeroInitializable = IsZeroInitializableAsBase = false;
    983   } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
    984     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    985     const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
    986     if (!Layout.isZeroInitializable())
    987       IsZeroInitializable = IsZeroInitializableAsBase = false;
    988   }
    989 }
    990 
    991 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
    992                                                   llvm::StructType *Ty) {
    993   CGRecordLayoutBuilder Builder(*this);
    994 
    995   Builder.Layout(D);
    996 
    997   Ty->setBody(Builder.FieldTypes, Builder.Packed);
    998 
    999   // If we're in C++, compute the base subobject type.
   1000   llvm::StructType *BaseTy = 0;
   1001   if (isa<CXXRecordDecl>(D) && !D->isUnion()) {
   1002     BaseTy = Builder.BaseSubobjectType;
   1003     if (!BaseTy) BaseTy = Ty;
   1004   }
   1005 
   1006   CGRecordLayout *RL =
   1007     new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
   1008                        Builder.IsZeroInitializableAsBase);
   1009 
   1010   RL->NonVirtualBases.swap(Builder.NonVirtualBases);
   1011   RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
   1012 
   1013   // Add all the field numbers.
   1014   RL->FieldInfo.swap(Builder.Fields);
   1015 
   1016   // Add bitfield info.
   1017   RL->BitFields.swap(Builder.BitFields);
   1018 
   1019   // Dump the layout, if requested.
   1020   if (getContext().getLangOpts().DumpRecordLayouts) {
   1021     llvm::errs() << "\n*** Dumping IRgen Record Layout\n";
   1022     llvm::errs() << "Record: ";
   1023     D->dump();
   1024     llvm::errs() << "\nLayout: ";
   1025     RL->dump();
   1026   }
   1027 
   1028 #ifndef NDEBUG
   1029   // Verify that the computed LLVM struct size matches the AST layout size.
   1030   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
   1031 
   1032   uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
   1033   assert(TypeSizeInBits == getTargetData().getTypeAllocSizeInBits(Ty) &&
   1034          "Type size mismatch!");
   1035 
   1036   if (BaseTy) {
   1037     CharUnits NonVirtualSize  = Layout.getNonVirtualSize();
   1038     CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
   1039     CharUnits AlignedNonVirtualTypeSize =
   1040       NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
   1041 
   1042     uint64_t AlignedNonVirtualTypeSizeInBits =
   1043       getContext().toBits(AlignedNonVirtualTypeSize);
   1044 
   1045     assert(AlignedNonVirtualTypeSizeInBits ==
   1046            getTargetData().getTypeAllocSizeInBits(BaseTy) &&
   1047            "Type size mismatch!");
   1048   }
   1049 
   1050   // Verify that the LLVM and AST field offsets agree.
   1051   llvm::StructType *ST =
   1052     dyn_cast<llvm::StructType>(RL->getLLVMType());
   1053   const llvm::StructLayout *SL = getTargetData().getStructLayout(ST);
   1054 
   1055   const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
   1056   RecordDecl::field_iterator it = D->field_begin();
   1057   const FieldDecl *LastFD = 0;
   1058   bool IsMsStruct = D->hasAttr<MsStructAttr>();
   1059   for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
   1060     const FieldDecl *FD = *it;
   1061 
   1062     // For non-bit-fields, just check that the LLVM struct offset matches the
   1063     // AST offset.
   1064     if (!FD->isBitField()) {
   1065       unsigned FieldNo = RL->getLLVMFieldNo(FD);
   1066       assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
   1067              "Invalid field offset!");
   1068       LastFD = FD;
   1069       continue;
   1070     }
   1071 
   1072     if (IsMsStruct) {
   1073       // Zero-length bitfields following non-bitfield members are
   1074       // ignored:
   1075       if (getContext().ZeroBitfieldFollowsNonBitfield(FD, LastFD)) {
   1076         --i;
   1077         continue;
   1078       }
   1079       LastFD = FD;
   1080     }
   1081 
   1082     // Ignore unnamed bit-fields.
   1083     if (!FD->getDeclName()) {
   1084       LastFD = FD;
   1085       continue;
   1086     }
   1087 
   1088     const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
   1089     for (unsigned i = 0, e = Info.getNumComponents(); i != e; ++i) {
   1090       const CGBitFieldInfo::AccessInfo &AI = Info.getComponent(i);
   1091 
   1092       // Verify that every component access is within the structure.
   1093       uint64_t FieldOffset = SL->getElementOffsetInBits(AI.FieldIndex);
   1094       uint64_t AccessBitOffset = FieldOffset +
   1095         getContext().toBits(AI.FieldByteOffset);
   1096       assert(AccessBitOffset + AI.AccessWidth <= TypeSizeInBits &&
   1097              "Invalid bit-field access (out of range)!");
   1098     }
   1099   }
   1100 #endif
   1101 
   1102   return RL;
   1103 }
   1104 
   1105 void CGRecordLayout::print(raw_ostream &OS) const {
   1106   OS << "<CGRecordLayout\n";
   1107   OS << "  LLVMType:" << *CompleteObjectType << "\n";
   1108   if (BaseSubobjectType)
   1109     OS << "  NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
   1110   OS << "  IsZeroInitializable:" << IsZeroInitializable << "\n";
   1111   OS << "  BitFields:[\n";
   1112 
   1113   // Print bit-field infos in declaration order.
   1114   std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
   1115   for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
   1116          it = BitFields.begin(), ie = BitFields.end();
   1117        it != ie; ++it) {
   1118     const RecordDecl *RD = it->first->getParent();
   1119     unsigned Index = 0;
   1120     for (RecordDecl::field_iterator
   1121            it2 = RD->field_begin(); *it2 != it->first; ++it2)
   1122       ++Index;
   1123     BFIs.push_back(std::make_pair(Index, &it->second));
   1124   }
   1125   llvm::array_pod_sort(BFIs.begin(), BFIs.end());
   1126   for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
   1127     OS.indent(4);
   1128     BFIs[i].second->print(OS);
   1129     OS << "\n";
   1130   }
   1131 
   1132   OS << "]>\n";
   1133 }
   1134 
   1135 void CGRecordLayout::dump() const {
   1136   print(llvm::errs());
   1137 }
   1138 
   1139 void CGBitFieldInfo::print(raw_ostream &OS) const {
   1140   OS << "<CGBitFieldInfo";
   1141   OS << " Size:" << Size;
   1142   OS << " IsSigned:" << IsSigned << "\n";
   1143 
   1144   OS.indent(4 + strlen("<CGBitFieldInfo"));
   1145   OS << " NumComponents:" << getNumComponents();
   1146   OS << " Components: [";
   1147   if (getNumComponents()) {
   1148     OS << "\n";
   1149     for (unsigned i = 0, e = getNumComponents(); i != e; ++i) {
   1150       const AccessInfo &AI = getComponent(i);
   1151       OS.indent(8);
   1152       OS << "<AccessInfo"
   1153          << " FieldIndex:" << AI.FieldIndex
   1154          << " FieldByteOffset:" << AI.FieldByteOffset.getQuantity()
   1155          << " FieldBitStart:" << AI.FieldBitStart
   1156          << " AccessWidth:" << AI.AccessWidth << "\n";
   1157       OS.indent(8 + strlen("<AccessInfo"));
   1158       OS << " AccessAlignment:" << AI.AccessAlignment.getQuantity()
   1159          << " TargetBitOffset:" << AI.TargetBitOffset
   1160          << " TargetBitWidth:" << AI.TargetBitWidth
   1161          << ">\n";
   1162     }
   1163     OS.indent(4);
   1164   }
   1165   OS << "]>";
   1166 }
   1167 
   1168 void CGBitFieldInfo::dump() const {
   1169   print(llvm::errs());
   1170 }
   1171