Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis member access expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 #include "clang/Sema/SemaInternal.h"
     14 #include "clang/Sema/Lookup.h"
     15 #include "clang/Sema/Scope.h"
     16 #include "clang/AST/DeclCXX.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/ExprCXX.h"
     20 #include "clang/AST/ExprObjC.h"
     21 #include "clang/Lex/Preprocessor.h"
     22 
     23 using namespace clang;
     24 using namespace sema;
     25 
     26 /// Determines if the given class is provably not derived from all of
     27 /// the prospective base classes.
     28 static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
     29                                      CXXRecordDecl *Record,
     30                             const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
     31   if (Bases.count(Record->getCanonicalDecl()))
     32     return false;
     33 
     34   RecordDecl *RD = Record->getDefinition();
     35   if (!RD) return false;
     36   Record = cast<CXXRecordDecl>(RD);
     37 
     38   for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
     39          E = Record->bases_end(); I != E; ++I) {
     40     CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
     41     CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
     42     if (!BaseRT) return false;
     43 
     44     CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
     45     if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
     46       return false;
     47   }
     48 
     49   return true;
     50 }
     51 
     52 enum IMAKind {
     53   /// The reference is definitely not an instance member access.
     54   IMA_Static,
     55 
     56   /// The reference may be an implicit instance member access.
     57   IMA_Mixed,
     58 
     59   /// The reference may be to an instance member, but it might be invalid if
     60   /// so, because the context is not an instance method.
     61   IMA_Mixed_StaticContext,
     62 
     63   /// The reference may be to an instance member, but it is invalid if
     64   /// so, because the context is from an unrelated class.
     65   IMA_Mixed_Unrelated,
     66 
     67   /// The reference is definitely an implicit instance member access.
     68   IMA_Instance,
     69 
     70   /// The reference may be to an unresolved using declaration.
     71   IMA_Unresolved,
     72 
     73   /// The reference may be to an unresolved using declaration and the
     74   /// context is not an instance method.
     75   IMA_Unresolved_StaticContext,
     76 
     77   // The reference refers to a field which is not a member of the containing
     78   // class, which is allowed because we're in C++11 mode and the context is
     79   // unevaluated.
     80   IMA_Field_Uneval_Context,
     81 
     82   /// All possible referrents are instance members and the current
     83   /// context is not an instance method.
     84   IMA_Error_StaticContext,
     85 
     86   /// All possible referrents are instance members of an unrelated
     87   /// class.
     88   IMA_Error_Unrelated
     89 };
     90 
     91 /// The given lookup names class member(s) and is not being used for
     92 /// an address-of-member expression.  Classify the type of access
     93 /// according to whether it's possible that this reference names an
     94 /// instance member.  This is best-effort in dependent contexts; it is okay to
     95 /// conservatively answer "yes", in which case some errors will simply
     96 /// not be caught until template-instantiation.
     97 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
     98                                             Scope *CurScope,
     99                                             const LookupResult &R) {
    100   assert(!R.empty() && (*R.begin())->isCXXClassMember());
    101 
    102   DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
    103 
    104   bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
    105     (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
    106 
    107   if (R.isUnresolvableResult())
    108     return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
    109 
    110   // Collect all the declaring classes of instance members we find.
    111   bool hasNonInstance = false;
    112   bool isField = false;
    113   llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
    114   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    115     NamedDecl *D = *I;
    116 
    117     if (D->isCXXInstanceMember()) {
    118       if (dyn_cast<FieldDecl>(D))
    119         isField = true;
    120 
    121       CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
    122       Classes.insert(R->getCanonicalDecl());
    123     }
    124     else
    125       hasNonInstance = true;
    126   }
    127 
    128   // If we didn't find any instance members, it can't be an implicit
    129   // member reference.
    130   if (Classes.empty())
    131     return IMA_Static;
    132 
    133   bool IsCXX11UnevaluatedField = false;
    134   if (SemaRef.getLangOpts().CPlusPlus0x && isField) {
    135     // C++11 [expr.prim.general]p12:
    136     //   An id-expression that denotes a non-static data member or non-static
    137     //   member function of a class can only be used:
    138     //   (...)
    139     //   - if that id-expression denotes a non-static data member and it
    140     //     appears in an unevaluated operand.
    141     const Sema::ExpressionEvaluationContextRecord& record
    142       = SemaRef.ExprEvalContexts.back();
    143     if (record.Context == Sema::Unevaluated)
    144       IsCXX11UnevaluatedField = true;
    145   }
    146 
    147   // If the current context is not an instance method, it can't be
    148   // an implicit member reference.
    149   if (isStaticContext) {
    150     if (hasNonInstance)
    151       return IMA_Mixed_StaticContext;
    152 
    153     return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
    154                                    : IMA_Error_StaticContext;
    155   }
    156 
    157   CXXRecordDecl *contextClass;
    158   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
    159     contextClass = MD->getParent()->getCanonicalDecl();
    160   else
    161     contextClass = cast<CXXRecordDecl>(DC);
    162 
    163   // [class.mfct.non-static]p3:
    164   // ...is used in the body of a non-static member function of class X,
    165   // if name lookup (3.4.1) resolves the name in the id-expression to a
    166   // non-static non-type member of some class C [...]
    167   // ...if C is not X or a base class of X, the class member access expression
    168   // is ill-formed.
    169   if (R.getNamingClass() &&
    170       contextClass->getCanonicalDecl() !=
    171         R.getNamingClass()->getCanonicalDecl() &&
    172       contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
    173     return hasNonInstance ? IMA_Mixed_Unrelated :
    174            IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
    175                                      IMA_Error_Unrelated;
    176 
    177   // If we can prove that the current context is unrelated to all the
    178   // declaring classes, it can't be an implicit member reference (in
    179   // which case it's an error if any of those members are selected).
    180   if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
    181     return hasNonInstance ? IMA_Mixed_Unrelated :
    182            IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
    183                                      IMA_Error_Unrelated;
    184 
    185   return (hasNonInstance ? IMA_Mixed : IMA_Instance);
    186 }
    187 
    188 /// Diagnose a reference to a field with no object available.
    189 static void diagnoseInstanceReference(Sema &SemaRef,
    190                                       const CXXScopeSpec &SS,
    191                                       NamedDecl *Rep,
    192                                       const DeclarationNameInfo &nameInfo) {
    193   SourceLocation Loc = nameInfo.getLoc();
    194   SourceRange Range(Loc);
    195   if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
    196 
    197   DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
    198   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
    199   CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
    200   CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
    201 
    202   bool InStaticMethod = Method && Method->isStatic();
    203   bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
    204 
    205   if (IsField && InStaticMethod)
    206     // "invalid use of member 'x' in static member function"
    207     SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
    208         << Range << nameInfo.getName();
    209   else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
    210            !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
    211     // Unqualified lookup in a non-static member function found a member of an
    212     // enclosing class.
    213     SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
    214       << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
    215   else if (IsField)
    216     SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
    217       << nameInfo.getName() << Range;
    218   else
    219     SemaRef.Diag(Loc, diag::err_member_call_without_object)
    220       << Range;
    221 }
    222 
    223 /// Builds an expression which might be an implicit member expression.
    224 ExprResult
    225 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
    226                                       SourceLocation TemplateKWLoc,
    227                                       LookupResult &R,
    228                                 const TemplateArgumentListInfo *TemplateArgs) {
    229   switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
    230   case IMA_Instance:
    231     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
    232 
    233   case IMA_Mixed:
    234   case IMA_Mixed_Unrelated:
    235   case IMA_Unresolved:
    236     return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
    237 
    238   case IMA_Field_Uneval_Context:
    239     Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
    240       << R.getLookupNameInfo().getName();
    241     // Fall through.
    242   case IMA_Static:
    243   case IMA_Mixed_StaticContext:
    244   case IMA_Unresolved_StaticContext:
    245     if (TemplateArgs || TemplateKWLoc.isValid())
    246       return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
    247     return BuildDeclarationNameExpr(SS, R, false);
    248 
    249   case IMA_Error_StaticContext:
    250   case IMA_Error_Unrelated:
    251     diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
    252                               R.getLookupNameInfo());
    253     return ExprError();
    254   }
    255 
    256   llvm_unreachable("unexpected instance member access kind");
    257 }
    258 
    259 /// Determine whether input char is from rgba component set.
    260 static bool
    261 IsRGBA(char c) {
    262   switch (c) {
    263   case 'r':
    264   case 'g':
    265   case 'b':
    266   case 'a':
    267     return true;
    268   default:
    269     return false;
    270   }
    271 }
    272 
    273 /// Check an ext-vector component access expression.
    274 ///
    275 /// VK should be set in advance to the value kind of the base
    276 /// expression.
    277 static QualType
    278 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
    279                         SourceLocation OpLoc, const IdentifierInfo *CompName,
    280                         SourceLocation CompLoc) {
    281   // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
    282   // see FIXME there.
    283   //
    284   // FIXME: This logic can be greatly simplified by splitting it along
    285   // halving/not halving and reworking the component checking.
    286   const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
    287 
    288   // The vector accessor can't exceed the number of elements.
    289   const char *compStr = CompName->getNameStart();
    290 
    291   // This flag determines whether or not the component is one of the four
    292   // special names that indicate a subset of exactly half the elements are
    293   // to be selected.
    294   bool HalvingSwizzle = false;
    295 
    296   // This flag determines whether or not CompName has an 's' char prefix,
    297   // indicating that it is a string of hex values to be used as vector indices.
    298   bool HexSwizzle = *compStr == 's' || *compStr == 'S';
    299 
    300   bool HasRepeated = false;
    301   bool HasIndex[16] = {};
    302 
    303   int Idx;
    304 
    305   // Check that we've found one of the special components, or that the component
    306   // names must come from the same set.
    307   if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
    308       !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
    309     HalvingSwizzle = true;
    310   } else if (!HexSwizzle &&
    311              (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
    312     bool HasRGBA = IsRGBA(*compStr);
    313     do {
    314       // If we mix/match rgba with xyzw, break to signal that we encountered
    315       // an illegal name.
    316       if (HasRGBA != IsRGBA(*compStr))
    317         break;
    318       if (HasIndex[Idx]) HasRepeated = true;
    319       HasIndex[Idx] = true;
    320       compStr++;
    321     } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
    322   } else {
    323     if (HexSwizzle) compStr++;
    324     while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
    325       if (HasIndex[Idx]) HasRepeated = true;
    326       HasIndex[Idx] = true;
    327       compStr++;
    328     }
    329   }
    330 
    331   if (!HalvingSwizzle && *compStr) {
    332     // We didn't get to the end of the string. This means the component names
    333     // didn't come from the same set *or* we encountered an illegal name.
    334     S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
    335       << StringRef(compStr, 1) << SourceRange(CompLoc);
    336     return QualType();
    337   }
    338 
    339   // Ensure no component accessor exceeds the width of the vector type it
    340   // operates on.
    341   if (!HalvingSwizzle) {
    342     compStr = CompName->getNameStart();
    343 
    344     if (HexSwizzle)
    345       compStr++;
    346 
    347     while (*compStr) {
    348       if (!vecType->isAccessorWithinNumElements(*compStr++)) {
    349         S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
    350           << baseType << SourceRange(CompLoc);
    351         return QualType();
    352       }
    353     }
    354   }
    355 
    356   // The component accessor looks fine - now we need to compute the actual type.
    357   // The vector type is implied by the component accessor. For example,
    358   // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
    359   // vec4.s0 is a float, vec4.s23 is a vec3, etc.
    360   // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
    361   unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
    362                                      : CompName->getLength();
    363   if (HexSwizzle)
    364     CompSize--;
    365 
    366   if (CompSize == 1)
    367     return vecType->getElementType();
    368 
    369   if (HasRepeated) VK = VK_RValue;
    370 
    371   QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
    372   // Now look up the TypeDefDecl from the vector type. Without this,
    373   // diagostics look bad. We want extended vector types to appear built-in.
    374   for (Sema::ExtVectorDeclsType::iterator
    375          I = S.ExtVectorDecls.begin(S.ExternalSource),
    376          E = S.ExtVectorDecls.end();
    377        I != E; ++I) {
    378     if ((*I)->getUnderlyingType() == VT)
    379       return S.Context.getTypedefType(*I);
    380   }
    381 
    382   return VT; // should never get here (a typedef type should always be found).
    383 }
    384 
    385 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
    386                                                 IdentifierInfo *Member,
    387                                                 const Selector &Sel,
    388                                                 ASTContext &Context) {
    389   if (Member)
    390     if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
    391       return PD;
    392   if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
    393     return OMD;
    394 
    395   for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
    396        E = PDecl->protocol_end(); I != E; ++I) {
    397     if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
    398                                                            Context))
    399       return D;
    400   }
    401   return 0;
    402 }
    403 
    404 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
    405                                       IdentifierInfo *Member,
    406                                       const Selector &Sel,
    407                                       ASTContext &Context) {
    408   // Check protocols on qualified interfaces.
    409   Decl *GDecl = 0;
    410   for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
    411        E = QIdTy->qual_end(); I != E; ++I) {
    412     if (Member)
    413       if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
    414         GDecl = PD;
    415         break;
    416       }
    417     // Also must look for a getter or setter name which uses property syntax.
    418     if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
    419       GDecl = OMD;
    420       break;
    421     }
    422   }
    423   if (!GDecl) {
    424     for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
    425          E = QIdTy->qual_end(); I != E; ++I) {
    426       // Search in the protocol-qualifier list of current protocol.
    427       GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
    428                                                        Context);
    429       if (GDecl)
    430         return GDecl;
    431     }
    432   }
    433   return GDecl;
    434 }
    435 
    436 ExprResult
    437 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
    438                                bool IsArrow, SourceLocation OpLoc,
    439                                const CXXScopeSpec &SS,
    440                                SourceLocation TemplateKWLoc,
    441                                NamedDecl *FirstQualifierInScope,
    442                                const DeclarationNameInfo &NameInfo,
    443                                const TemplateArgumentListInfo *TemplateArgs) {
    444   // Even in dependent contexts, try to diagnose base expressions with
    445   // obviously wrong types, e.g.:
    446   //
    447   // T* t;
    448   // t.f;
    449   //
    450   // In Obj-C++, however, the above expression is valid, since it could be
    451   // accessing the 'f' property if T is an Obj-C interface. The extra check
    452   // allows this, while still reporting an error if T is a struct pointer.
    453   if (!IsArrow) {
    454     const PointerType *PT = BaseType->getAs<PointerType>();
    455     if (PT && (!getLangOpts().ObjC1 ||
    456                PT->getPointeeType()->isRecordType())) {
    457       assert(BaseExpr && "cannot happen with implicit member accesses");
    458       Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
    459         << BaseType << BaseExpr->getSourceRange();
    460       return ExprError();
    461     }
    462   }
    463 
    464   assert(BaseType->isDependentType() ||
    465          NameInfo.getName().isDependentName() ||
    466          isDependentScopeSpecifier(SS));
    467 
    468   // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
    469   // must have pointer type, and the accessed type is the pointee.
    470   return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
    471                                                    IsArrow, OpLoc,
    472                                                SS.getWithLocInContext(Context),
    473                                                    TemplateKWLoc,
    474                                                    FirstQualifierInScope,
    475                                                    NameInfo, TemplateArgs));
    476 }
    477 
    478 /// We know that the given qualified member reference points only to
    479 /// declarations which do not belong to the static type of the base
    480 /// expression.  Diagnose the problem.
    481 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
    482                                              Expr *BaseExpr,
    483                                              QualType BaseType,
    484                                              const CXXScopeSpec &SS,
    485                                              NamedDecl *rep,
    486                                        const DeclarationNameInfo &nameInfo) {
    487   // If this is an implicit member access, use a different set of
    488   // diagnostics.
    489   if (!BaseExpr)
    490     return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
    491 
    492   SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
    493     << SS.getRange() << rep << BaseType;
    494 }
    495 
    496 // Check whether the declarations we found through a nested-name
    497 // specifier in a member expression are actually members of the base
    498 // type.  The restriction here is:
    499 //
    500 //   C++ [expr.ref]p2:
    501 //     ... In these cases, the id-expression shall name a
    502 //     member of the class or of one of its base classes.
    503 //
    504 // So it's perfectly legitimate for the nested-name specifier to name
    505 // an unrelated class, and for us to find an overload set including
    506 // decls from classes which are not superclasses, as long as the decl
    507 // we actually pick through overload resolution is from a superclass.
    508 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
    509                                          QualType BaseType,
    510                                          const CXXScopeSpec &SS,
    511                                          const LookupResult &R) {
    512   const RecordType *BaseRT = BaseType->getAs<RecordType>();
    513   if (!BaseRT) {
    514     // We can't check this yet because the base type is still
    515     // dependent.
    516     assert(BaseType->isDependentType());
    517     return false;
    518   }
    519   CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
    520 
    521   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
    522     // If this is an implicit member reference and we find a
    523     // non-instance member, it's not an error.
    524     if (!BaseExpr && !(*I)->isCXXInstanceMember())
    525       return false;
    526 
    527     // Note that we use the DC of the decl, not the underlying decl.
    528     DeclContext *DC = (*I)->getDeclContext();
    529     while (DC->isTransparentContext())
    530       DC = DC->getParent();
    531 
    532     if (!DC->isRecord())
    533       continue;
    534 
    535     llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
    536     MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
    537 
    538     if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
    539       return false;
    540   }
    541 
    542   DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
    543                                    R.getRepresentativeDecl(),
    544                                    R.getLookupNameInfo());
    545   return true;
    546 }
    547 
    548 namespace {
    549 
    550 // Callback to only accept typo corrections that are either a ValueDecl or a
    551 // FunctionTemplateDecl.
    552 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
    553  public:
    554   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    555     NamedDecl *ND = candidate.getCorrectionDecl();
    556     return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
    557   }
    558 };
    559 
    560 }
    561 
    562 static bool
    563 LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
    564                          SourceRange BaseRange, const RecordType *RTy,
    565                          SourceLocation OpLoc, CXXScopeSpec &SS,
    566                          bool HasTemplateArgs) {
    567   RecordDecl *RDecl = RTy->getDecl();
    568   if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
    569       SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
    570                               SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
    571                                     << BaseRange))
    572     return true;
    573 
    574   if (HasTemplateArgs) {
    575     // LookupTemplateName doesn't expect these both to exist simultaneously.
    576     QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
    577 
    578     bool MOUS;
    579     SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
    580     return false;
    581   }
    582 
    583   DeclContext *DC = RDecl;
    584   if (SS.isSet()) {
    585     // If the member name was a qualified-id, look into the
    586     // nested-name-specifier.
    587     DC = SemaRef.computeDeclContext(SS, false);
    588 
    589     if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
    590       SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
    591         << SS.getRange() << DC;
    592       return true;
    593     }
    594 
    595     assert(DC && "Cannot handle non-computable dependent contexts in lookup");
    596 
    597     if (!isa<TypeDecl>(DC)) {
    598       SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
    599         << DC << SS.getRange();
    600       return true;
    601     }
    602   }
    603 
    604   // The record definition is complete, now look up the member.
    605   SemaRef.LookupQualifiedName(R, DC);
    606 
    607   if (!R.empty())
    608     return false;
    609 
    610   // We didn't find anything with the given name, so try to correct
    611   // for typos.
    612   DeclarationName Name = R.getLookupName();
    613   RecordMemberExprValidatorCCC Validator;
    614   TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
    615                                                  R.getLookupKind(), NULL,
    616                                                  &SS, Validator, DC);
    617   R.clear();
    618   if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
    619     std::string CorrectedStr(
    620         Corrected.getAsString(SemaRef.getLangOpts()));
    621     std::string CorrectedQuotedStr(
    622         Corrected.getQuoted(SemaRef.getLangOpts()));
    623     R.setLookupName(Corrected.getCorrection());
    624     R.addDecl(ND);
    625     SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
    626       << Name << DC << CorrectedQuotedStr << SS.getRange()
    627       << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
    628     SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
    629       << ND->getDeclName();
    630   }
    631 
    632   return false;
    633 }
    634 
    635 ExprResult
    636 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
    637                                SourceLocation OpLoc, bool IsArrow,
    638                                CXXScopeSpec &SS,
    639                                SourceLocation TemplateKWLoc,
    640                                NamedDecl *FirstQualifierInScope,
    641                                const DeclarationNameInfo &NameInfo,
    642                                const TemplateArgumentListInfo *TemplateArgs) {
    643   if (BaseType->isDependentType() ||
    644       (SS.isSet() && isDependentScopeSpecifier(SS)))
    645     return ActOnDependentMemberExpr(Base, BaseType,
    646                                     IsArrow, OpLoc,
    647                                     SS, TemplateKWLoc, FirstQualifierInScope,
    648                                     NameInfo, TemplateArgs);
    649 
    650   LookupResult R(*this, NameInfo, LookupMemberName);
    651 
    652   // Implicit member accesses.
    653   if (!Base) {
    654     QualType RecordTy = BaseType;
    655     if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
    656     if (LookupMemberExprInRecord(*this, R, SourceRange(),
    657                                  RecordTy->getAs<RecordType>(),
    658                                  OpLoc, SS, TemplateArgs != 0))
    659       return ExprError();
    660 
    661   // Explicit member accesses.
    662   } else {
    663     ExprResult BaseResult = Owned(Base);
    664     ExprResult Result =
    665       LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
    666                        SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
    667 
    668     if (BaseResult.isInvalid())
    669       return ExprError();
    670     Base = BaseResult.take();
    671 
    672     if (Result.isInvalid()) {
    673       Owned(Base);
    674       return ExprError();
    675     }
    676 
    677     if (Result.get())
    678       return move(Result);
    679 
    680     // LookupMemberExpr can modify Base, and thus change BaseType
    681     BaseType = Base->getType();
    682   }
    683 
    684   return BuildMemberReferenceExpr(Base, BaseType,
    685                                   OpLoc, IsArrow, SS, TemplateKWLoc,
    686                                   FirstQualifierInScope, R, TemplateArgs);
    687 }
    688 
    689 static ExprResult
    690 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
    691                         const CXXScopeSpec &SS, FieldDecl *Field,
    692                         DeclAccessPair FoundDecl,
    693                         const DeclarationNameInfo &MemberNameInfo);
    694 
    695 ExprResult
    696 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
    697                                                SourceLocation loc,
    698                                                IndirectFieldDecl *indirectField,
    699                                                Expr *baseObjectExpr,
    700                                                SourceLocation opLoc) {
    701   // First, build the expression that refers to the base object.
    702 
    703   bool baseObjectIsPointer = false;
    704   Qualifiers baseQuals;
    705 
    706   // Case 1:  the base of the indirect field is not a field.
    707   VarDecl *baseVariable = indirectField->getVarDecl();
    708   CXXScopeSpec EmptySS;
    709   if (baseVariable) {
    710     assert(baseVariable->getType()->isRecordType());
    711 
    712     // In principle we could have a member access expression that
    713     // accesses an anonymous struct/union that's a static member of
    714     // the base object's class.  However, under the current standard,
    715     // static data members cannot be anonymous structs or unions.
    716     // Supporting this is as easy as building a MemberExpr here.
    717     assert(!baseObjectExpr && "anonymous struct/union is static data member?");
    718 
    719     DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
    720 
    721     ExprResult result
    722       = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
    723     if (result.isInvalid()) return ExprError();
    724 
    725     baseObjectExpr = result.take();
    726     baseObjectIsPointer = false;
    727     baseQuals = baseObjectExpr->getType().getQualifiers();
    728 
    729     // Case 2: the base of the indirect field is a field and the user
    730     // wrote a member expression.
    731   } else if (baseObjectExpr) {
    732     // The caller provided the base object expression. Determine
    733     // whether its a pointer and whether it adds any qualifiers to the
    734     // anonymous struct/union fields we're looking into.
    735     QualType objectType = baseObjectExpr->getType();
    736 
    737     if (const PointerType *ptr = objectType->getAs<PointerType>()) {
    738       baseObjectIsPointer = true;
    739       objectType = ptr->getPointeeType();
    740     } else {
    741       baseObjectIsPointer = false;
    742     }
    743     baseQuals = objectType.getQualifiers();
    744 
    745     // Case 3: the base of the indirect field is a field and we should
    746     // build an implicit member access.
    747   } else {
    748     // We've found a member of an anonymous struct/union that is
    749     // inside a non-anonymous struct/union, so in a well-formed
    750     // program our base object expression is "this".
    751     QualType ThisTy = getCurrentThisType();
    752     if (ThisTy.isNull()) {
    753       Diag(loc, diag::err_invalid_member_use_in_static_method)
    754         << indirectField->getDeclName();
    755       return ExprError();
    756     }
    757 
    758     // Our base object expression is "this".
    759     CheckCXXThisCapture(loc);
    760     baseObjectExpr
    761       = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
    762     baseObjectIsPointer = true;
    763     baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
    764   }
    765 
    766   // Build the implicit member references to the field of the
    767   // anonymous struct/union.
    768   Expr *result = baseObjectExpr;
    769   IndirectFieldDecl::chain_iterator
    770   FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
    771 
    772   // Build the first member access in the chain with full information.
    773   if (!baseVariable) {
    774     FieldDecl *field = cast<FieldDecl>(*FI);
    775 
    776     // FIXME: use the real found-decl info!
    777     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    778 
    779     // Make a nameInfo that properly uses the anonymous name.
    780     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    781 
    782     result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
    783                                      EmptySS, field, foundDecl,
    784                                      memberNameInfo).take();
    785     baseObjectIsPointer = false;
    786 
    787     // FIXME: check qualified member access
    788   }
    789 
    790   // In all cases, we should now skip the first declaration in the chain.
    791   ++FI;
    792 
    793   while (FI != FEnd) {
    794     FieldDecl *field = cast<FieldDecl>(*FI++);
    795 
    796     // FIXME: these are somewhat meaningless
    797     DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
    798     DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
    799 
    800     result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
    801                                      (FI == FEnd? SS : EmptySS), field,
    802                                      foundDecl, memberNameInfo).take();
    803   }
    804 
    805   return Owned(result);
    806 }
    807 
    808 /// \brief Build a MemberExpr AST node.
    809 static MemberExpr *BuildMemberExpr(Sema &SemaRef,
    810                                    ASTContext &C, Expr *Base, bool isArrow,
    811                                    const CXXScopeSpec &SS,
    812                                    SourceLocation TemplateKWLoc,
    813                                    ValueDecl *Member,
    814                                    DeclAccessPair FoundDecl,
    815                                    const DeclarationNameInfo &MemberNameInfo,
    816                                    QualType Ty,
    817                                    ExprValueKind VK, ExprObjectKind OK,
    818                                    const TemplateArgumentListInfo *TemplateArgs = 0) {
    819   assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
    820   MemberExpr *E =
    821       MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
    822                          TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
    823                          TemplateArgs, Ty, VK, OK);
    824   SemaRef.MarkMemberReferenced(E);
    825   return E;
    826 }
    827 
    828 ExprResult
    829 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
    830                                SourceLocation OpLoc, bool IsArrow,
    831                                const CXXScopeSpec &SS,
    832                                SourceLocation TemplateKWLoc,
    833                                NamedDecl *FirstQualifierInScope,
    834                                LookupResult &R,
    835                          const TemplateArgumentListInfo *TemplateArgs,
    836                                bool SuppressQualifierCheck) {
    837   QualType BaseType = BaseExprType;
    838   if (IsArrow) {
    839     assert(BaseType->isPointerType());
    840     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
    841   }
    842   R.setBaseObjectType(BaseType);
    843 
    844   const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
    845   DeclarationName MemberName = MemberNameInfo.getName();
    846   SourceLocation MemberLoc = MemberNameInfo.getLoc();
    847 
    848   if (R.isAmbiguous())
    849     return ExprError();
    850 
    851   if (R.empty()) {
    852     // Rederive where we looked up.
    853     DeclContext *DC = (SS.isSet()
    854                        ? computeDeclContext(SS, false)
    855                        : BaseType->getAs<RecordType>()->getDecl());
    856 
    857     Diag(R.getNameLoc(), diag::err_no_member)
    858       << MemberName << DC
    859       << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
    860     return ExprError();
    861   }
    862 
    863   // Diagnose lookups that find only declarations from a non-base
    864   // type.  This is possible for either qualified lookups (which may
    865   // have been qualified with an unrelated type) or implicit member
    866   // expressions (which were found with unqualified lookup and thus
    867   // may have come from an enclosing scope).  Note that it's okay for
    868   // lookup to find declarations from a non-base type as long as those
    869   // aren't the ones picked by overload resolution.
    870   if ((SS.isSet() || !BaseExpr ||
    871        (isa<CXXThisExpr>(BaseExpr) &&
    872         cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
    873       !SuppressQualifierCheck &&
    874       CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
    875     return ExprError();
    876 
    877   // Construct an unresolved result if we in fact got an unresolved
    878   // result.
    879   if (R.isOverloadedResult() || R.isUnresolvableResult()) {
    880     // Suppress any lookup-related diagnostics; we'll do these when we
    881     // pick a member.
    882     R.suppressDiagnostics();
    883 
    884     UnresolvedMemberExpr *MemExpr
    885       = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
    886                                      BaseExpr, BaseExprType,
    887                                      IsArrow, OpLoc,
    888                                      SS.getWithLocInContext(Context),
    889                                      TemplateKWLoc, MemberNameInfo,
    890                                      TemplateArgs, R.begin(), R.end());
    891 
    892     return Owned(MemExpr);
    893   }
    894 
    895   assert(R.isSingleResult());
    896   DeclAccessPair FoundDecl = R.begin().getPair();
    897   NamedDecl *MemberDecl = R.getFoundDecl();
    898 
    899   // FIXME: diagnose the presence of template arguments now.
    900 
    901   // If the decl being referenced had an error, return an error for this
    902   // sub-expr without emitting another error, in order to avoid cascading
    903   // error cases.
    904   if (MemberDecl->isInvalidDecl())
    905     return ExprError();
    906 
    907   // Handle the implicit-member-access case.
    908   if (!BaseExpr) {
    909     // If this is not an instance member, convert to a non-member access.
    910     if (!MemberDecl->isCXXInstanceMember())
    911       return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
    912 
    913     SourceLocation Loc = R.getNameLoc();
    914     if (SS.getRange().isValid())
    915       Loc = SS.getRange().getBegin();
    916     CheckCXXThisCapture(Loc);
    917     BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
    918   }
    919 
    920   bool ShouldCheckUse = true;
    921   if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    922     // Don't diagnose the use of a virtual member function unless it's
    923     // explicitly qualified.
    924     if (MD->isVirtual() && !SS.isSet())
    925       ShouldCheckUse = false;
    926   }
    927 
    928   // Check the use of this member.
    929   if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
    930     Owned(BaseExpr);
    931     return ExprError();
    932   }
    933 
    934   if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
    935     return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
    936                                    SS, FD, FoundDecl, MemberNameInfo);
    937 
    938   if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
    939     // We may have found a field within an anonymous union or struct
    940     // (C++ [class.union]).
    941     return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
    942                                                     BaseExpr, OpLoc);
    943 
    944   if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
    945     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
    946                                  TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
    947                                  Var->getType().getNonReferenceType(),
    948                                  VK_LValue, OK_Ordinary));
    949   }
    950 
    951   if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
    952     ExprValueKind valueKind;
    953     QualType type;
    954     if (MemberFn->isInstance()) {
    955       valueKind = VK_RValue;
    956       type = Context.BoundMemberTy;
    957     } else {
    958       valueKind = VK_LValue;
    959       type = MemberFn->getType();
    960     }
    961 
    962     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
    963                                  TemplateKWLoc, MemberFn, FoundDecl,
    964                                  MemberNameInfo, type, valueKind,
    965                                  OK_Ordinary));
    966   }
    967   assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
    968 
    969   if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
    970     return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
    971                                  TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
    972                                  Enum->getType(), VK_RValue, OK_Ordinary));
    973   }
    974 
    975   Owned(BaseExpr);
    976 
    977   // We found something that we didn't expect. Complain.
    978   if (isa<TypeDecl>(MemberDecl))
    979     Diag(MemberLoc, diag::err_typecheck_member_reference_type)
    980       << MemberName << BaseType << int(IsArrow);
    981   else
    982     Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
    983       << MemberName << BaseType << int(IsArrow);
    984 
    985   Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
    986     << MemberName;
    987   R.suppressDiagnostics();
    988   return ExprError();
    989 }
    990 
    991 /// Given that normal member access failed on the given expression,
    992 /// and given that the expression's type involves builtin-id or
    993 /// builtin-Class, decide whether substituting in the redefinition
    994 /// types would be profitable.  The redefinition type is whatever
    995 /// this translation unit tried to typedef to id/Class;  we store
    996 /// it to the side and then re-use it in places like this.
    997 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
    998   const ObjCObjectPointerType *opty
    999     = base.get()->getType()->getAs<ObjCObjectPointerType>();
   1000   if (!opty) return false;
   1001 
   1002   const ObjCObjectType *ty = opty->getObjectType();
   1003 
   1004   QualType redef;
   1005   if (ty->isObjCId()) {
   1006     redef = S.Context.getObjCIdRedefinitionType();
   1007   } else if (ty->isObjCClass()) {
   1008     redef = S.Context.getObjCClassRedefinitionType();
   1009   } else {
   1010     return false;
   1011   }
   1012 
   1013   // Do the substitution as long as the redefinition type isn't just a
   1014   // possibly-qualified pointer to builtin-id or builtin-Class again.
   1015   opty = redef->getAs<ObjCObjectPointerType>();
   1016   if (opty && !opty->getObjectType()->getInterface() != 0)
   1017     return false;
   1018 
   1019   base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
   1020   return true;
   1021 }
   1022 
   1023 static bool isRecordType(QualType T) {
   1024   return T->isRecordType();
   1025 }
   1026 static bool isPointerToRecordType(QualType T) {
   1027   if (const PointerType *PT = T->getAs<PointerType>())
   1028     return PT->getPointeeType()->isRecordType();
   1029   return false;
   1030 }
   1031 
   1032 /// Perform conversions on the LHS of a member access expression.
   1033 ExprResult
   1034 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
   1035   if (IsArrow && !Base->getType()->isFunctionType())
   1036     return DefaultFunctionArrayLvalueConversion(Base);
   1037 
   1038   return CheckPlaceholderExpr(Base);
   1039 }
   1040 
   1041 /// Look up the given member of the given non-type-dependent
   1042 /// expression.  This can return in one of two ways:
   1043 ///  * If it returns a sentinel null-but-valid result, the caller will
   1044 ///    assume that lookup was performed and the results written into
   1045 ///    the provided structure.  It will take over from there.
   1046 ///  * Otherwise, the returned expression will be produced in place of
   1047 ///    an ordinary member expression.
   1048 ///
   1049 /// The ObjCImpDecl bit is a gross hack that will need to be properly
   1050 /// fixed for ObjC++.
   1051 ExprResult
   1052 Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
   1053                        bool &IsArrow, SourceLocation OpLoc,
   1054                        CXXScopeSpec &SS,
   1055                        Decl *ObjCImpDecl, bool HasTemplateArgs) {
   1056   assert(BaseExpr.get() && "no base expression");
   1057 
   1058   // Perform default conversions.
   1059   BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
   1060   if (BaseExpr.isInvalid())
   1061     return ExprError();
   1062 
   1063   QualType BaseType = BaseExpr.get()->getType();
   1064   assert(!BaseType->isDependentType());
   1065 
   1066   DeclarationName MemberName = R.getLookupName();
   1067   SourceLocation MemberLoc = R.getNameLoc();
   1068 
   1069   // For later type-checking purposes, turn arrow accesses into dot
   1070   // accesses.  The only access type we support that doesn't follow
   1071   // the C equivalence "a->b === (*a).b" is ObjC property accesses,
   1072   // and those never use arrows, so this is unaffected.
   1073   if (IsArrow) {
   1074     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
   1075       BaseType = Ptr->getPointeeType();
   1076     else if (const ObjCObjectPointerType *Ptr
   1077                = BaseType->getAs<ObjCObjectPointerType>())
   1078       BaseType = Ptr->getPointeeType();
   1079     else if (BaseType->isRecordType()) {
   1080       // Recover from arrow accesses to records, e.g.:
   1081       //   struct MyRecord foo;
   1082       //   foo->bar
   1083       // This is actually well-formed in C++ if MyRecord has an
   1084       // overloaded operator->, but that should have been dealt with
   1085       // by now.
   1086       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1087         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1088         << FixItHint::CreateReplacement(OpLoc, ".");
   1089       IsArrow = false;
   1090     } else if (BaseType->isFunctionType()) {
   1091       goto fail;
   1092     } else {
   1093       Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
   1094         << BaseType << BaseExpr.get()->getSourceRange();
   1095       return ExprError();
   1096     }
   1097   }
   1098 
   1099   // Handle field access to simple records.
   1100   if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
   1101     if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
   1102                                  RTy, OpLoc, SS, HasTemplateArgs))
   1103       return ExprError();
   1104 
   1105     // Returning valid-but-null is how we indicate to the caller that
   1106     // the lookup result was filled in.
   1107     return Owned((Expr*) 0);
   1108   }
   1109 
   1110   // Handle ivar access to Objective-C objects.
   1111   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
   1112     if (!SS.isEmpty() && !SS.isInvalid()) {
   1113       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1114         << 1 << SS.getScopeRep()
   1115         << FixItHint::CreateRemoval(SS.getRange());
   1116       SS.clear();
   1117     }
   1118 
   1119     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1120 
   1121     // There are three cases for the base type:
   1122     //   - builtin id (qualified or unqualified)
   1123     //   - builtin Class (qualified or unqualified)
   1124     //   - an interface
   1125     ObjCInterfaceDecl *IDecl = OTy->getInterface();
   1126     if (!IDecl) {
   1127       if (getLangOpts().ObjCAutoRefCount &&
   1128           (OTy->isObjCId() || OTy->isObjCClass()))
   1129         goto fail;
   1130       // There's an implicit 'isa' ivar on all objects.
   1131       // But we only actually find it this way on objects of type 'id',
   1132       // apparently.ghjg
   1133       if (OTy->isObjCId() && Member->isStr("isa")) {
   1134         Diag(MemberLoc, diag::warn_objc_isa_use);
   1135         return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
   1136                                                Context.getObjCClassType()));
   1137       }
   1138 
   1139       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1140         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1141                                 ObjCImpDecl, HasTemplateArgs);
   1142       goto fail;
   1143     }
   1144 
   1145     if (RequireCompleteType(OpLoc, BaseType,
   1146                             PDiag(diag::err_typecheck_incomplete_tag)
   1147                               << BaseExpr.get()->getSourceRange()))
   1148       return ExprError();
   1149 
   1150     ObjCInterfaceDecl *ClassDeclared = 0;
   1151     ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
   1152 
   1153     if (!IV) {
   1154       // Attempt to correct for typos in ivar names.
   1155       DeclFilterCCC<ObjCIvarDecl> Validator;
   1156       Validator.IsObjCIvarLookup = IsArrow;
   1157       if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
   1158                                                  LookupMemberName, NULL, NULL,
   1159                                                  Validator, IDecl)) {
   1160         IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
   1161         Diag(R.getNameLoc(),
   1162              diag::err_typecheck_member_reference_ivar_suggest)
   1163           << IDecl->getDeclName() << MemberName << IV->getDeclName()
   1164           << FixItHint::CreateReplacement(R.getNameLoc(),
   1165                                           IV->getNameAsString());
   1166         Diag(IV->getLocation(), diag::note_previous_decl)
   1167           << IV->getDeclName();
   1168 
   1169         // Figure out the class that declares the ivar.
   1170         assert(!ClassDeclared);
   1171         Decl *D = cast<Decl>(IV->getDeclContext());
   1172         if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
   1173           D = CAT->getClassInterface();
   1174         ClassDeclared = cast<ObjCInterfaceDecl>(D);
   1175       } else {
   1176         if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
   1177           Diag(MemberLoc,
   1178           diag::err_property_found_suggest)
   1179           << Member << BaseExpr.get()->getType()
   1180           << FixItHint::CreateReplacement(OpLoc, ".");
   1181           return ExprError();
   1182         }
   1183 
   1184         Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
   1185           << IDecl->getDeclName() << MemberName
   1186           << BaseExpr.get()->getSourceRange();
   1187         return ExprError();
   1188       }
   1189     }
   1190 
   1191     assert(ClassDeclared);
   1192 
   1193     // If the decl being referenced had an error, return an error for this
   1194     // sub-expr without emitting another error, in order to avoid cascading
   1195     // error cases.
   1196     if (IV->isInvalidDecl())
   1197       return ExprError();
   1198 
   1199     // Check whether we can reference this field.
   1200     if (DiagnoseUseOfDecl(IV, MemberLoc))
   1201       return ExprError();
   1202     if (IV->getAccessControl() != ObjCIvarDecl::Public &&
   1203         IV->getAccessControl() != ObjCIvarDecl::Package) {
   1204       ObjCInterfaceDecl *ClassOfMethodDecl = 0;
   1205       if (ObjCMethodDecl *MD = getCurMethodDecl())
   1206         ClassOfMethodDecl =  MD->getClassInterface();
   1207       else if (ObjCImpDecl && getCurFunctionDecl()) {
   1208         // Case of a c-function declared inside an objc implementation.
   1209         // FIXME: For a c-style function nested inside an objc implementation
   1210         // class, there is no implementation context available, so we pass
   1211         // down the context as argument to this routine. Ideally, this context
   1212         // need be passed down in the AST node and somehow calculated from the
   1213         // AST for a function decl.
   1214         if (ObjCImplementationDecl *IMPD =
   1215               dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
   1216           ClassOfMethodDecl = IMPD->getClassInterface();
   1217         else if (ObjCCategoryImplDecl* CatImplClass =
   1218                    dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
   1219           ClassOfMethodDecl = CatImplClass->getClassInterface();
   1220       }
   1221       if (!getLangOpts().DebuggerSupport) {
   1222         if (IV->getAccessControl() == ObjCIvarDecl::Private) {
   1223           if (!declaresSameEntity(ClassDeclared, IDecl) ||
   1224               !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
   1225             Diag(MemberLoc, diag::error_private_ivar_access)
   1226               << IV->getDeclName();
   1227         } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
   1228           // @protected
   1229           Diag(MemberLoc, diag::error_protected_ivar_access)
   1230             << IV->getDeclName();
   1231       }
   1232     }
   1233     if (getLangOpts().ObjCAutoRefCount) {
   1234       Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
   1235       if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
   1236         if (UO->getOpcode() == UO_Deref)
   1237           BaseExp = UO->getSubExpr()->IgnoreParenCasts();
   1238 
   1239       if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
   1240         if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
   1241           Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
   1242     }
   1243 
   1244     return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
   1245                                                MemberLoc, BaseExpr.take(),
   1246                                                IsArrow));
   1247   }
   1248 
   1249   // Objective-C property access.
   1250   const ObjCObjectPointerType *OPT;
   1251   if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
   1252     if (!SS.isEmpty() && !SS.isInvalid()) {
   1253       Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
   1254         << 0 << SS.getScopeRep()
   1255         << FixItHint::CreateRemoval(SS.getRange());
   1256       SS.clear();
   1257     }
   1258 
   1259     // This actually uses the base as an r-value.
   1260     BaseExpr = DefaultLvalueConversion(BaseExpr.take());
   1261     if (BaseExpr.isInvalid())
   1262       return ExprError();
   1263 
   1264     assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
   1265 
   1266     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1267 
   1268     const ObjCObjectType *OT = OPT->getObjectType();
   1269 
   1270     // id, with and without qualifiers.
   1271     if (OT->isObjCId()) {
   1272       // Check protocols on qualified interfaces.
   1273       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
   1274       if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
   1275         if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
   1276           // Check the use of this declaration
   1277           if (DiagnoseUseOfDecl(PD, MemberLoc))
   1278             return ExprError();
   1279 
   1280           return Owned(new (Context) ObjCPropertyRefExpr(PD,
   1281                                                          Context.PseudoObjectTy,
   1282                                                          VK_LValue,
   1283                                                          OK_ObjCProperty,
   1284                                                          MemberLoc,
   1285                                                          BaseExpr.take()));
   1286         }
   1287 
   1288         if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
   1289           // Check the use of this method.
   1290           if (DiagnoseUseOfDecl(OMD, MemberLoc))
   1291             return ExprError();
   1292           Selector SetterSel =
   1293             SelectorTable::constructSetterName(PP.getIdentifierTable(),
   1294                                                PP.getSelectorTable(), Member);
   1295           ObjCMethodDecl *SMD = 0;
   1296           if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
   1297                                                      SetterSel, Context))
   1298             SMD = dyn_cast<ObjCMethodDecl>(SDecl);
   1299 
   1300           return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
   1301                                                          Context.PseudoObjectTy,
   1302                                                          VK_LValue, OK_ObjCProperty,
   1303                                                          MemberLoc, BaseExpr.take()));
   1304         }
   1305       }
   1306       // Use of id.member can only be for a property reference. Do not
   1307       // use the 'id' redefinition in this case.
   1308       if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1309         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1310                                 ObjCImpDecl, HasTemplateArgs);
   1311 
   1312       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
   1313                          << MemberName << BaseType);
   1314     }
   1315 
   1316     // 'Class', unqualified only.
   1317     if (OT->isObjCClass()) {
   1318       // Only works in a method declaration (??!).
   1319       ObjCMethodDecl *MD = getCurMethodDecl();
   1320       if (!MD) {
   1321         if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1322           return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1323                                   ObjCImpDecl, HasTemplateArgs);
   1324 
   1325         goto fail;
   1326       }
   1327 
   1328       // Also must look for a getter name which uses property syntax.
   1329       Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
   1330       ObjCInterfaceDecl *IFace = MD->getClassInterface();
   1331       ObjCMethodDecl *Getter;
   1332       if ((Getter = IFace->lookupClassMethod(Sel))) {
   1333         // Check the use of this method.
   1334         if (DiagnoseUseOfDecl(Getter, MemberLoc))
   1335           return ExprError();
   1336       } else
   1337         Getter = IFace->lookupPrivateMethod(Sel, false);
   1338       // If we found a getter then this may be a valid dot-reference, we
   1339       // will look for the matching setter, in case it is needed.
   1340       Selector SetterSel =
   1341         SelectorTable::constructSetterName(PP.getIdentifierTable(),
   1342                                            PP.getSelectorTable(), Member);
   1343       ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
   1344       if (!Setter) {
   1345         // If this reference is in an @implementation, also check for 'private'
   1346         // methods.
   1347         Setter = IFace->lookupPrivateMethod(SetterSel, false);
   1348       }
   1349       // Look through local category implementations associated with the class.
   1350       if (!Setter)
   1351         Setter = IFace->getCategoryClassMethod(SetterSel);
   1352 
   1353       if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
   1354         return ExprError();
   1355 
   1356       if (Getter || Setter) {
   1357         return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
   1358                                                        Context.PseudoObjectTy,
   1359                                                        VK_LValue, OK_ObjCProperty,
   1360                                                        MemberLoc, BaseExpr.take()));
   1361       }
   1362 
   1363       if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
   1364         return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1365                                 ObjCImpDecl, HasTemplateArgs);
   1366 
   1367       return ExprError(Diag(MemberLoc, diag::err_property_not_found)
   1368                          << MemberName << BaseType);
   1369     }
   1370 
   1371     // Normal property access.
   1372     return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
   1373                                      MemberName, MemberLoc,
   1374                                      SourceLocation(), QualType(), false);
   1375   }
   1376 
   1377   // Handle 'field access' to vectors, such as 'V.xx'.
   1378   if (BaseType->isExtVectorType()) {
   1379     // FIXME: this expr should store IsArrow.
   1380     IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
   1381     ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
   1382     QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
   1383                                            Member, MemberLoc);
   1384     if (ret.isNull())
   1385       return ExprError();
   1386 
   1387     return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
   1388                                                     *Member, MemberLoc));
   1389   }
   1390 
   1391   // Adjust builtin-sel to the appropriate redefinition type if that's
   1392   // not just a pointer to builtin-sel again.
   1393   if (IsArrow &&
   1394       BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
   1395       !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
   1396     BaseExpr = ImpCastExprToType(BaseExpr.take(),
   1397                                  Context.getObjCSelRedefinitionType(),
   1398                                  CK_BitCast);
   1399     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1400                             ObjCImpDecl, HasTemplateArgs);
   1401   }
   1402 
   1403   // Failure cases.
   1404  fail:
   1405 
   1406   // Recover from dot accesses to pointers, e.g.:
   1407   //   type *foo;
   1408   //   foo.bar
   1409   // This is actually well-formed in two cases:
   1410   //   - 'type' is an Objective C type
   1411   //   - 'bar' is a pseudo-destructor name which happens to refer to
   1412   //     the appropriate pointer type
   1413   if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
   1414     if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
   1415         MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
   1416       Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
   1417         << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
   1418           << FixItHint::CreateReplacement(OpLoc, "->");
   1419 
   1420       // Recurse as an -> access.
   1421       IsArrow = true;
   1422       return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1423                               ObjCImpDecl, HasTemplateArgs);
   1424     }
   1425   }
   1426 
   1427   // If the user is trying to apply -> or . to a function name, it's probably
   1428   // because they forgot parentheses to call that function.
   1429   if (tryToRecoverWithCall(BaseExpr,
   1430                            PDiag(diag::err_member_reference_needs_call),
   1431                            /*complain*/ false,
   1432                            IsArrow ? &isPointerToRecordType : &isRecordType)) {
   1433     if (BaseExpr.isInvalid())
   1434       return ExprError();
   1435     BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
   1436     return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
   1437                             ObjCImpDecl, HasTemplateArgs);
   1438   }
   1439 
   1440   Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
   1441     << BaseType << BaseExpr.get()->getSourceRange();
   1442 
   1443   return ExprError();
   1444 }
   1445 
   1446 /// The main callback when the parser finds something like
   1447 ///   expression . [nested-name-specifier] identifier
   1448 ///   expression -> [nested-name-specifier] identifier
   1449 /// where 'identifier' encompasses a fairly broad spectrum of
   1450 /// possibilities, including destructor and operator references.
   1451 ///
   1452 /// \param OpKind either tok::arrow or tok::period
   1453 /// \param HasTrailingLParen whether the next token is '(', which
   1454 ///   is used to diagnose mis-uses of special members that can
   1455 ///   only be called
   1456 /// \param ObjCImpDecl the current ObjC @implementation decl;
   1457 ///   this is an ugly hack around the fact that ObjC @implementations
   1458 ///   aren't properly put in the context chain
   1459 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
   1460                                        SourceLocation OpLoc,
   1461                                        tok::TokenKind OpKind,
   1462                                        CXXScopeSpec &SS,
   1463                                        SourceLocation TemplateKWLoc,
   1464                                        UnqualifiedId &Id,
   1465                                        Decl *ObjCImpDecl,
   1466                                        bool HasTrailingLParen) {
   1467   if (SS.isSet() && SS.isInvalid())
   1468     return ExprError();
   1469 
   1470   // Warn about the explicit constructor calls Microsoft extension.
   1471   if (getLangOpts().MicrosoftExt &&
   1472       Id.getKind() == UnqualifiedId::IK_ConstructorName)
   1473     Diag(Id.getSourceRange().getBegin(),
   1474          diag::ext_ms_explicit_constructor_call);
   1475 
   1476   TemplateArgumentListInfo TemplateArgsBuffer;
   1477 
   1478   // Decompose the name into its component parts.
   1479   DeclarationNameInfo NameInfo;
   1480   const TemplateArgumentListInfo *TemplateArgs;
   1481   DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
   1482                          NameInfo, TemplateArgs);
   1483 
   1484   DeclarationName Name = NameInfo.getName();
   1485   bool IsArrow = (OpKind == tok::arrow);
   1486 
   1487   NamedDecl *FirstQualifierInScope
   1488     = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
   1489                        static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
   1490 
   1491   // This is a postfix expression, so get rid of ParenListExprs.
   1492   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
   1493   if (Result.isInvalid()) return ExprError();
   1494   Base = Result.take();
   1495 
   1496   if (Base->getType()->isDependentType() || Name.isDependentName() ||
   1497       isDependentScopeSpecifier(SS)) {
   1498     Result = ActOnDependentMemberExpr(Base, Base->getType(),
   1499                                       IsArrow, OpLoc,
   1500                                       SS, TemplateKWLoc, FirstQualifierInScope,
   1501                                       NameInfo, TemplateArgs);
   1502   } else {
   1503     LookupResult R(*this, NameInfo, LookupMemberName);
   1504     ExprResult BaseResult = Owned(Base);
   1505     Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
   1506                               SS, ObjCImpDecl, TemplateArgs != 0);
   1507     if (BaseResult.isInvalid())
   1508       return ExprError();
   1509     Base = BaseResult.take();
   1510 
   1511     if (Result.isInvalid()) {
   1512       Owned(Base);
   1513       return ExprError();
   1514     }
   1515 
   1516     if (Result.get()) {
   1517       // The only way a reference to a destructor can be used is to
   1518       // immediately call it, which falls into this case.  If the
   1519       // next token is not a '(', produce a diagnostic and build the
   1520       // call now.
   1521       if (!HasTrailingLParen &&
   1522           Id.getKind() == UnqualifiedId::IK_DestructorName)
   1523         return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
   1524 
   1525       return move(Result);
   1526     }
   1527 
   1528     Result = BuildMemberReferenceExpr(Base, Base->getType(),
   1529                                       OpLoc, IsArrow, SS, TemplateKWLoc,
   1530                                       FirstQualifierInScope, R, TemplateArgs);
   1531   }
   1532 
   1533   return move(Result);
   1534 }
   1535 
   1536 static ExprResult
   1537 BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
   1538                         const CXXScopeSpec &SS, FieldDecl *Field,
   1539                         DeclAccessPair FoundDecl,
   1540                         const DeclarationNameInfo &MemberNameInfo) {
   1541   // x.a is an l-value if 'a' has a reference type. Otherwise:
   1542   // x.a is an l-value/x-value/pr-value if the base is (and note
   1543   //   that *x is always an l-value), except that if the base isn't
   1544   //   an ordinary object then we must have an rvalue.
   1545   ExprValueKind VK = VK_LValue;
   1546   ExprObjectKind OK = OK_Ordinary;
   1547   if (!IsArrow) {
   1548     if (BaseExpr->getObjectKind() == OK_Ordinary)
   1549       VK = BaseExpr->getValueKind();
   1550     else
   1551       VK = VK_RValue;
   1552   }
   1553   if (VK != VK_RValue && Field->isBitField())
   1554     OK = OK_BitField;
   1555 
   1556   // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
   1557   QualType MemberType = Field->getType();
   1558   if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
   1559     MemberType = Ref->getPointeeType();
   1560     VK = VK_LValue;
   1561   } else {
   1562     QualType BaseType = BaseExpr->getType();
   1563     if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
   1564 
   1565     Qualifiers BaseQuals = BaseType.getQualifiers();
   1566 
   1567     // GC attributes are never picked up by members.
   1568     BaseQuals.removeObjCGCAttr();
   1569 
   1570     // CVR attributes from the base are picked up by members,
   1571     // except that 'mutable' members don't pick up 'const'.
   1572     if (Field->isMutable()) BaseQuals.removeConst();
   1573 
   1574     Qualifiers MemberQuals
   1575     = S.Context.getCanonicalType(MemberType).getQualifiers();
   1576 
   1577     // TR 18037 does not allow fields to be declared with address spaces.
   1578     assert(!MemberQuals.hasAddressSpace());
   1579 
   1580     Qualifiers Combined = BaseQuals + MemberQuals;
   1581     if (Combined != MemberQuals)
   1582       MemberType = S.Context.getQualifiedType(MemberType, Combined);
   1583   }
   1584 
   1585   ExprResult Base =
   1586   S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
   1587                                   FoundDecl, Field);
   1588   if (Base.isInvalid())
   1589     return ExprError();
   1590   return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
   1591                                  /*TemplateKWLoc=*/SourceLocation(),
   1592                                  Field, FoundDecl, MemberNameInfo,
   1593                                  MemberType, VK, OK));
   1594 }
   1595 
   1596 /// Builds an implicit member access expression.  The current context
   1597 /// is known to be an instance method, and the given unqualified lookup
   1598 /// set is known to contain only instance members, at least one of which
   1599 /// is from an appropriate type.
   1600 ExprResult
   1601 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
   1602                               SourceLocation TemplateKWLoc,
   1603                               LookupResult &R,
   1604                               const TemplateArgumentListInfo *TemplateArgs,
   1605                               bool IsKnownInstance) {
   1606   assert(!R.empty() && !R.isAmbiguous());
   1607 
   1608   SourceLocation loc = R.getNameLoc();
   1609 
   1610   // We may have found a field within an anonymous union or struct
   1611   // (C++ [class.union]).
   1612   // FIXME: template-ids inside anonymous structs?
   1613   if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
   1614     return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
   1615 
   1616   // If this is known to be an instance access, go ahead and build an
   1617   // implicit 'this' expression now.
   1618   // 'this' expression now.
   1619   QualType ThisTy = getCurrentThisType();
   1620   assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
   1621 
   1622   Expr *baseExpr = 0; // null signifies implicit access
   1623   if (IsKnownInstance) {
   1624     SourceLocation Loc = R.getNameLoc();
   1625     if (SS.getRange().isValid())
   1626       Loc = SS.getRange().getBegin();
   1627     CheckCXXThisCapture(Loc);
   1628     baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
   1629   }
   1630 
   1631   return BuildMemberReferenceExpr(baseExpr, ThisTy,
   1632                                   /*OpLoc*/ SourceLocation(),
   1633                                   /*IsArrow*/ true,
   1634                                   SS, TemplateKWLoc,
   1635                                   /*FirstQualifierInScope*/ 0,
   1636                                   R, TemplateArgs);
   1637 }
   1638