Home | History | Annotate | Download | only in Core
      1 //=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines the template classes ExplodedNode and ExplodedGraph,
     11 //  which represent a path-sensitive, intra-procedural "exploded graph."
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     17 #include "clang/AST/Stmt.h"
     18 #include "clang/AST/ParentMap.h"
     19 #include "llvm/ADT/DenseSet.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include <vector>
     23 
     24 using namespace clang;
     25 using namespace ento;
     26 
     27 //===----------------------------------------------------------------------===//
     28 // Node auditing.
     29 //===----------------------------------------------------------------------===//
     30 
     31 // An out of line virtual method to provide a home for the class vtable.
     32 ExplodedNode::Auditor::~Auditor() {}
     33 
     34 #ifndef NDEBUG
     35 static ExplodedNode::Auditor* NodeAuditor = 0;
     36 #endif
     37 
     38 void ExplodedNode::SetAuditor(ExplodedNode::Auditor* A) {
     39 #ifndef NDEBUG
     40   NodeAuditor = A;
     41 #endif
     42 }
     43 
     44 //===----------------------------------------------------------------------===//
     45 // Cleanup.
     46 //===----------------------------------------------------------------------===//
     47 
     48 static const unsigned CounterTop = 1000;
     49 
     50 ExplodedGraph::ExplodedGraph()
     51   : NumNodes(0), reclaimNodes(false), reclaimCounter(CounterTop) {}
     52 
     53 ExplodedGraph::~ExplodedGraph() {}
     54 
     55 //===----------------------------------------------------------------------===//
     56 // Node reclamation.
     57 //===----------------------------------------------------------------------===//
     58 
     59 bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
     60   // Reclaimn all nodes that match *all* the following criteria:
     61   //
     62   // (1) 1 predecessor (that has one successor)
     63   // (2) 1 successor (that has one predecessor)
     64   // (3) The ProgramPoint is for a PostStmt.
     65   // (4) There is no 'tag' for the ProgramPoint.
     66   // (5) The 'store' is the same as the predecessor.
     67   // (6) The 'GDM' is the same as the predecessor.
     68   // (7) The LocationContext is the same as the predecessor.
     69   // (8) The PostStmt is for a non-consumed Stmt or Expr.
     70 
     71   // Conditions 1 and 2.
     72   if (node->pred_size() != 1 || node->succ_size() != 1)
     73     return false;
     74 
     75   const ExplodedNode *pred = *(node->pred_begin());
     76   if (pred->succ_size() != 1)
     77     return false;
     78 
     79   const ExplodedNode *succ = *(node->succ_begin());
     80   if (succ->pred_size() != 1)
     81     return false;
     82 
     83   // Condition 3.
     84   ProgramPoint progPoint = node->getLocation();
     85   if (!isa<PostStmt>(progPoint) ||
     86       (isa<CallEnter>(progPoint) || isa<CallExit>(progPoint)))
     87     return false;
     88 
     89   // Condition 4.
     90   PostStmt ps = cast<PostStmt>(progPoint);
     91   if (ps.getTag())
     92     return false;
     93 
     94   if (isa<BinaryOperator>(ps.getStmt()))
     95     return false;
     96 
     97   // Conditions 5, 6, and 7.
     98   ProgramStateRef state = node->getState();
     99   ProgramStateRef pred_state = pred->getState();
    100   if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
    101       progPoint.getLocationContext() != pred->getLocationContext())
    102     return false;
    103 
    104   // Condition 8.
    105   if (const Expr *Ex = dyn_cast<Expr>(ps.getStmt())) {
    106     ParentMap &PM = progPoint.getLocationContext()->getParentMap();
    107     if (!PM.isConsumedExpr(Ex))
    108       return false;
    109   }
    110 
    111   return true;
    112 }
    113 
    114 void ExplodedGraph::collectNode(ExplodedNode *node) {
    115   // Removing a node means:
    116   // (a) changing the predecessors successor to the successor of this node
    117   // (b) changing the successors predecessor to the predecessor of this node
    118   // (c) Putting 'node' onto freeNodes.
    119   assert(node->pred_size() == 1 || node->succ_size() == 1);
    120   ExplodedNode *pred = *(node->pred_begin());
    121   ExplodedNode *succ = *(node->succ_begin());
    122   pred->replaceSuccessor(succ);
    123   succ->replacePredecessor(pred);
    124   FreeNodes.push_back(node);
    125   Nodes.RemoveNode(node);
    126   --NumNodes;
    127   node->~ExplodedNode();
    128 }
    129 
    130 void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
    131   if (ChangedNodes.empty())
    132     return;
    133 
    134   // Only periodically relcaim nodes so that we can build up a set of
    135   // nodes that meet the reclamation criteria.  Freshly created nodes
    136   // by definition have no successor, and thus cannot be reclaimed (see below).
    137   assert(reclaimCounter > 0);
    138   if (--reclaimCounter != 0)
    139     return;
    140   reclaimCounter = CounterTop;
    141 
    142   for (NodeVector::iterator it = ChangedNodes.begin(), et = ChangedNodes.end();
    143        it != et; ++it) {
    144     ExplodedNode *node = *it;
    145     if (shouldCollect(node))
    146       collectNode(node);
    147   }
    148   ChangedNodes.clear();
    149 }
    150 
    151 //===----------------------------------------------------------------------===//
    152 // ExplodedNode.
    153 //===----------------------------------------------------------------------===//
    154 
    155 static inline BumpVector<ExplodedNode*>& getVector(void *P) {
    156   return *reinterpret_cast<BumpVector<ExplodedNode*>*>(P);
    157 }
    158 
    159 void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
    160   assert (!V->isSink());
    161   Preds.addNode(V, G);
    162   V->Succs.addNode(this, G);
    163 #ifndef NDEBUG
    164   if (NodeAuditor) NodeAuditor->AddEdge(V, this);
    165 #endif
    166 }
    167 
    168 void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
    169   assert(getKind() == Size1);
    170   P = reinterpret_cast<uintptr_t>(node);
    171   assert(getKind() == Size1);
    172 }
    173 
    174 void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
    175   assert((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
    176   assert(!getFlag());
    177 
    178   if (getKind() == Size1) {
    179     if (ExplodedNode *NOld = getNode()) {
    180       BumpVectorContext &Ctx = G.getNodeAllocator();
    181       BumpVector<ExplodedNode*> *V =
    182         G.getAllocator().Allocate<BumpVector<ExplodedNode*> >();
    183       new (V) BumpVector<ExplodedNode*>(Ctx, 4);
    184 
    185       assert((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
    186       V->push_back(NOld, Ctx);
    187       V->push_back(N, Ctx);
    188       P = reinterpret_cast<uintptr_t>(V) | SizeOther;
    189       assert(getPtr() == (void*) V);
    190       assert(getKind() == SizeOther);
    191     }
    192     else {
    193       P = reinterpret_cast<uintptr_t>(N);
    194       assert(getKind() == Size1);
    195     }
    196   }
    197   else {
    198     assert(getKind() == SizeOther);
    199     getVector(getPtr()).push_back(N, G.getNodeAllocator());
    200   }
    201 }
    202 
    203 unsigned ExplodedNode::NodeGroup::size() const {
    204   if (getFlag())
    205     return 0;
    206 
    207   if (getKind() == Size1)
    208     return getNode() ? 1 : 0;
    209   else
    210     return getVector(getPtr()).size();
    211 }
    212 
    213 ExplodedNode **ExplodedNode::NodeGroup::begin() const {
    214   if (getFlag())
    215     return NULL;
    216 
    217   if (getKind() == Size1)
    218     return (ExplodedNode**) (getPtr() ? &P : NULL);
    219   else
    220     return const_cast<ExplodedNode**>(&*(getVector(getPtr()).begin()));
    221 }
    222 
    223 ExplodedNode** ExplodedNode::NodeGroup::end() const {
    224   if (getFlag())
    225     return NULL;
    226 
    227   if (getKind() == Size1)
    228     return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
    229   else {
    230     // Dereferencing end() is undefined behaviour. The vector is not empty, so
    231     // we can dereference the last elem and then add 1 to the result.
    232     return const_cast<ExplodedNode**>(getVector(getPtr()).end());
    233   }
    234 }
    235 
    236 ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
    237                                      ProgramStateRef State,
    238                                      bool IsSink,
    239                                      bool* IsNew) {
    240   // Profile 'State' to determine if we already have an existing node.
    241   llvm::FoldingSetNodeID profile;
    242   void *InsertPos = 0;
    243 
    244   NodeTy::Profile(profile, L, State, IsSink);
    245   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
    246 
    247   if (!V) {
    248     if (!FreeNodes.empty()) {
    249       V = FreeNodes.back();
    250       FreeNodes.pop_back();
    251     }
    252     else {
    253       // Allocate a new node.
    254       V = (NodeTy*) getAllocator().Allocate<NodeTy>();
    255     }
    256 
    257     new (V) NodeTy(L, State, IsSink);
    258 
    259     if (reclaimNodes)
    260       ChangedNodes.push_back(V);
    261 
    262     // Insert the node into the node set and return it.
    263     Nodes.InsertNode(V, InsertPos);
    264     ++NumNodes;
    265 
    266     if (IsNew) *IsNew = true;
    267   }
    268   else
    269     if (IsNew) *IsNew = false;
    270 
    271   return V;
    272 }
    273 
    274 std::pair<ExplodedGraph*, InterExplodedGraphMap*>
    275 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
    276                llvm::DenseMap<const void*, const void*> *InverseMap) const {
    277 
    278   if (NBeg == NEnd)
    279     return std::make_pair((ExplodedGraph*) 0,
    280                           (InterExplodedGraphMap*) 0);
    281 
    282   assert (NBeg < NEnd);
    283 
    284   OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
    285 
    286   ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
    287 
    288   return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
    289 }
    290 
    291 ExplodedGraph*
    292 ExplodedGraph::TrimInternal(const ExplodedNode* const* BeginSources,
    293                             const ExplodedNode* const* EndSources,
    294                             InterExplodedGraphMap* M,
    295                    llvm::DenseMap<const void*, const void*> *InverseMap) const {
    296 
    297   typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
    298   Pass1Ty Pass1;
    299 
    300   typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
    301   Pass2Ty& Pass2 = M->M;
    302 
    303   SmallVector<const ExplodedNode*, 10> WL1, WL2;
    304 
    305   // ===- Pass 1 (reverse DFS) -===
    306   for (const ExplodedNode* const* I = BeginSources; I != EndSources; ++I) {
    307     assert(*I);
    308     WL1.push_back(*I);
    309   }
    310 
    311   // Process the first worklist until it is empty.  Because it is a std::list
    312   // it acts like a FIFO queue.
    313   while (!WL1.empty()) {
    314     const ExplodedNode *N = WL1.back();
    315     WL1.pop_back();
    316 
    317     // Have we already visited this node?  If so, continue to the next one.
    318     if (Pass1.count(N))
    319       continue;
    320 
    321     // Otherwise, mark this node as visited.
    322     Pass1.insert(N);
    323 
    324     // If this is a root enqueue it to the second worklist.
    325     if (N->Preds.empty()) {
    326       WL2.push_back(N);
    327       continue;
    328     }
    329 
    330     // Visit our predecessors and enqueue them.
    331     for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
    332       WL1.push_back(*I);
    333   }
    334 
    335   // We didn't hit a root? Return with a null pointer for the new graph.
    336   if (WL2.empty())
    337     return 0;
    338 
    339   // Create an empty graph.
    340   ExplodedGraph* G = MakeEmptyGraph();
    341 
    342   // ===- Pass 2 (forward DFS to construct the new graph) -===
    343   while (!WL2.empty()) {
    344     const ExplodedNode *N = WL2.back();
    345     WL2.pop_back();
    346 
    347     // Skip this node if we have already processed it.
    348     if (Pass2.find(N) != Pass2.end())
    349       continue;
    350 
    351     // Create the corresponding node in the new graph and record the mapping
    352     // from the old node to the new node.
    353     ExplodedNode *NewN = G->getNode(N->getLocation(), N->State, N->isSink(), 0);
    354     Pass2[N] = NewN;
    355 
    356     // Also record the reverse mapping from the new node to the old node.
    357     if (InverseMap) (*InverseMap)[NewN] = N;
    358 
    359     // If this node is a root, designate it as such in the graph.
    360     if (N->Preds.empty())
    361       G->addRoot(NewN);
    362 
    363     // In the case that some of the intended predecessors of NewN have already
    364     // been created, we should hook them up as predecessors.
    365 
    366     // Walk through the predecessors of 'N' and hook up their corresponding
    367     // nodes in the new graph (if any) to the freshly created node.
    368     for (ExplodedNode **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
    369       Pass2Ty::iterator PI = Pass2.find(*I);
    370       if (PI == Pass2.end())
    371         continue;
    372 
    373       NewN->addPredecessor(PI->second, *G);
    374     }
    375 
    376     // In the case that some of the intended successors of NewN have already
    377     // been created, we should hook them up as successors.  Otherwise, enqueue
    378     // the new nodes from the original graph that should have nodes created
    379     // in the new graph.
    380     for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
    381       Pass2Ty::iterator PI = Pass2.find(*I);
    382       if (PI != Pass2.end()) {
    383         PI->second->addPredecessor(NewN, *G);
    384         continue;
    385       }
    386 
    387       // Enqueue nodes to the worklist that were marked during pass 1.
    388       if (Pass1.count(*I))
    389         WL2.push_back(*I);
    390     }
    391   }
    392 
    393   return G;
    394 }
    395 
    396 void InterExplodedGraphMap::anchor() { }
    397 
    398 ExplodedNode*
    399 InterExplodedGraphMap::getMappedNode(const ExplodedNode *N) const {
    400   llvm::DenseMap<const ExplodedNode*, ExplodedNode*>::const_iterator I =
    401     M.find(N);
    402 
    403   return I == M.end() ? 0 : I->second;
    404 }
    405 
    406