1 dnl AC_NEED_BYTEORDER_H ( HEADER-TO-GENERATE ) 2 dnl Copyright 2001-2002 by Dan Fandrich <dan (a] coneharvesters.com> 3 dnl This file may be copied and used freely without restrictions. No warranty 4 dnl is expressed or implied. 5 dnl 6 dnl Create a header file that guarantees that byte swapping macros of the 7 dnl ntohl variety as well as the extended types included in OpenBSD and 8 dnl NetBSD such as le32toh are defined. If possible, the standard ntohl 9 dnl are overloaded as they are optimized for the given platform, but when 10 dnl this is not possible (e.g. on a big-endian machine) they are defined 11 dnl in this file. 12 13 dnl Look for a symbol in a header file 14 dnl AC_HAVE_SYMBOL ( IDENTIFIER, HEADER-FILE, ACTION-IF-FOUND, ACTION-IF-NOT-FOUND ) 15 AC_DEFUN([AC_HAVE_SYMBOL], 16 [ 17 AC_MSG_CHECKING(for $1 in $2) 18 AC_EGREP_CPP([symbol is present|\<$1\>],[ 19 #include <$2> 20 #ifdef $1 21 symbol is present 22 #endif 23 ], 24 [AC_MSG_RESULT(yes) 25 $3 26 ], 27 [AC_MSG_RESULT(no) 28 $4 29 ])]) 30 31 32 dnl Create a header file that defines extended byte swapping macros 33 AC_DEFUN([AC_NEED_BYTEORDER_H], 34 [ 35 ac_dir=`AS_DIRNAME(["$1"])` 36 if test "$ac_dir" != "$1" && test "$ac_dir" != .; then 37 # The file is in a subdirectory. 38 test ! -d "$ac_dir" && AS_MKDIR_P(["$ac_dir"]) 39 fi 40 41 # We're only interested in the target CPU, but it's not always set 42 effective_target="$target" 43 if test "x$effective_target" = xNONE -o "x$effective_target" = x ; then 44 effective_target="$host" 45 fi 46 AC_SUBST(effective_target) 47 48 cat > "$1" << EOF 49 /* This file is generated automatically by configure */ 50 /* It is valid only for the system type ${effective_target} */ 51 52 #ifndef __BYTEORDER_H 53 #define __BYTEORDER_H 54 55 EOF 56 57 dnl First, do an endian check 58 AC_C_BIGENDIAN 59 60 dnl Look for NetBSD-style extended byte swapping macros 61 AC_HAVE_SYMBOL(le32toh,machine/endian.h, 62 [HAVE_LE32TOH=1 63 cat >> "$1" << EOF 64 /* extended byte swapping macros are already available */ 65 #include <machine/endian.h> 66 67 EOF], 68 69 [ 70 71 dnl Look for standard byte swapping macros 72 AC_HAVE_SYMBOL(ntohl,arpa/inet.h, 73 [cat >> "$1" << EOF 74 /* ntohl and relatives live here */ 75 #include <arpa/inet.h> 76 77 EOF], 78 79 [AC_HAVE_SYMBOL(ntohl,netinet/in.h, 80 [cat >> "$1" << EOF 81 /* ntohl and relatives live here */ 82 #include <netinet/in.h> 83 84 EOF],true)]) 85 ]) 86 87 dnl Look for generic byte swapping macros 88 89 dnl OpenBSD 90 AC_HAVE_SYMBOL(swap32,machine/endian.h, 91 [cat >> "$1" << EOF 92 /* swap32 and swap16 are defined in machine/endian.h */ 93 94 EOF], 95 96 [ 97 dnl Linux GLIBC 98 AC_HAVE_SYMBOL(bswap_32,byteswap.h, 99 [cat >> "$1" << EOF 100 /* Define generic byte swapping functions */ 101 #include <byteswap.h> 102 #define swap16(x) bswap_16(x) 103 #define swap32(x) bswap_32(x) 104 #define swap64(x) bswap_64(x) 105 106 EOF], 107 108 [ 109 dnl NetBSD 110 AC_HAVE_SYMBOL(bswap32,machine/endian.h, 111 dnl We're already including machine/endian.h if this test succeeds 112 [cat >> "$1" << EOF 113 /* Define generic byte swapping functions */ 114 EOF 115 if test "$HAVE_LE32TOH" != "1"; then 116 echo '#include <machine/endian.h>'>> "$1" 117 fi 118 cat >> "$1" << EOF 119 #define swap16(x) bswap16(x) 120 #define swap32(x) bswap32(x) 121 #define swap64(x) bswap64(x) 122 123 EOF], 124 125 [ 126 dnl FreeBSD 127 AC_HAVE_SYMBOL(__byte_swap_long,sys/types.h, 128 [cat >> "$1" << EOF 129 /* Define generic byte swapping functions */ 130 #include <sys/types.h> 131 #define swap16(x) __byte_swap_word(x) 132 #define swap32(x) __byte_swap_long(x) 133 /* No optimized 64 bit byte swapping macro is available */ 134 #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ 135 ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ 136 ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ 137 ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ 138 ((x) >> 8) & 0x00000000ff000000ULL | \\ 139 ((x) >> 24) & 0x0000000000ff0000ULL | \\ 140 ((x) >> 40) & 0x000000000000ff00ULL | \\ 141 ((x) >> 56) & 0x00000000000000ffULL)) 142 143 EOF], 144 145 [ 146 dnl OS X 147 AC_HAVE_SYMBOL(NXSwapLong,machine/byte_order.h, 148 [cat >> "$1" << EOF 149 /* Define generic byte swapping functions */ 150 #include <machine/byte_order.h> 151 #define swap16(x) NXSwapShort(x) 152 #define swap32(x) NXSwapLong(x) 153 #define swap64(x) NXSwapLongLong(x) 154 155 EOF], 156 [ 157 if test $ac_cv_c_bigendian = yes; then 158 cat >> "$1" << EOF 159 /* No other byte swapping functions are available on this big-endian system */ 160 #define swap16(x) ((uint16_t)(((x) << 8) | ((uint16_t)(x) >> 8))) 161 #define swap32(x) ((uint32_t)(((uint32_t)(x) << 24) & 0xff000000UL | \\ 162 ((uint32_t)(x) << 8) & 0x00ff0000UL | \\ 163 ((x) >> 8) & 0x0000ff00UL | \\ 164 ((x) >> 24) & 0x000000ffUL)) 165 #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ 166 ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ 167 ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ 168 ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ 169 ((x) >> 8) & 0x00000000ff000000ULL | \\ 170 ((x) >> 24) & 0x0000000000ff0000ULL | \\ 171 ((x) >> 40) & 0x000000000000ff00ULL | \\ 172 ((x) >> 56) & 0x00000000000000ffULL)) 173 174 EOF 175 else 176 cat >> "$1" << EOF 177 /* Use these as generic byteswapping macros on this little endian system */ 178 #define swap16(x) ntohs(x) 179 #define swap32(x) ntohl(x) 180 /* No optimized 64 bit byte swapping macro is available */ 181 #define swap64(x) ((uint64_t)(((uint64_t)(x) << 56) & 0xff00000000000000ULL | \\ 182 ((uint64_t)(x) << 40) & 0x00ff000000000000ULL | \\ 183 ((uint64_t)(x) << 24) & 0x0000ff0000000000ULL | \\ 184 ((uint64_t)(x) << 8) & 0x000000ff00000000ULL | \\ 185 ((x) >> 8) & 0x00000000ff000000ULL | \\ 186 ((x) >> 24) & 0x0000000000ff0000ULL | \\ 187 ((x) >> 40) & 0x000000000000ff00ULL | \\ 188 ((x) >> 56) & 0x00000000000000ffULL)) 189 190 EOF 191 fi 192 ]) 193 ]) 194 ]) 195 ]) 196 ]) 197 198 199 [ 200 if test "$HAVE_LE32TOH" != "1"; then 201 cat >> "$1" << EOF 202 /* The byte swapping macros have the form: */ 203 /* EENN[a]toh or htoEENN[a] where EE is be (big endian) or */ 204 /* le (little-endian), NN is 16 or 32 (number of bits) and a, */ 205 /* if present, indicates that the endian side is a pointer to an */ 206 /* array of uint8_t bytes instead of an integer of the specified length. */ 207 /* h refers to the host's ordering method. */ 208 209 /* So, to convert a 32-bit integer stored in a buffer in little-endian */ 210 /* format into a uint32_t usable on this machine, you could use: */ 211 /* uint32_t value = le32atoh(&buf[3]); */ 212 /* To put that value back into the buffer, you could use: */ 213 /* htole32a(&buf[3], value); */ 214 215 /* Define aliases for the standard byte swapping macros */ 216 /* Arguments to these macros must be properly aligned on natural word */ 217 /* boundaries in order to work properly on all architectures */ 218 #ifndef htobe16 219 # define htobe16(x) htons(x) 220 #endif 221 #ifndef htobe32 222 # define htobe32(x) htonl(x) 223 #endif 224 #ifndef be16toh 225 # define be16toh(x) ntohs(x) 226 #endif 227 #ifndef be32toh 228 # define be32toh(x) ntohl(x) 229 #endif 230 231 #define HTOBE16(x) (x) = htobe16(x) 232 #define HTOBE32(x) (x) = htobe32(x) 233 #define BE32TOH(x) (x) = be32toh(x) 234 #define BE16TOH(x) (x) = be16toh(x) 235 236 EOF 237 238 if test $ac_cv_c_bigendian = yes; then 239 cat >> "$1" << EOF 240 /* Define our own extended byte swapping macros for big-endian machines */ 241 #ifndef htole16 242 # define htole16(x) swap16(x) 243 #endif 244 #ifndef htole32 245 # define htole32(x) swap32(x) 246 #endif 247 #ifndef le16toh 248 # define le16toh(x) swap16(x) 249 #endif 250 #ifndef le32toh 251 # define le32toh(x) swap32(x) 252 #endif 253 #ifndef le64toh 254 # define le64toh(x) swap64(x) 255 #endif 256 257 #ifndef htobe64 258 # define htobe64(x) (x) 259 #endif 260 #ifndef be64toh 261 # define be64toh(x) (x) 262 #endif 263 264 #define HTOLE16(x) (x) = htole16(x) 265 #define HTOLE32(x) (x) = htole32(x) 266 #define LE16TOH(x) (x) = le16toh(x) 267 #define LE32TOH(x) (x) = le32toh(x) 268 #define LE64TOH(x) (x) = le64toh(x) 269 270 #define HTOBE64(x) (void) (x) 271 #define BE64TOH(x) (void) (x) 272 273 EOF 274 else 275 cat >> "$1" << EOF 276 /* On little endian machines, these macros are null */ 277 #ifndef htole16 278 # define htole16(x) (x) 279 #endif 280 #ifndef htole32 281 # define htole32(x) (x) 282 #endif 283 #ifndef htole64 284 # define htole64(x) (x) 285 #endif 286 #ifndef le16toh 287 # define le16toh(x) (x) 288 #endif 289 #ifndef le32toh 290 # define le32toh(x) (x) 291 #endif 292 #ifndef le64toh 293 # define le64toh(x) (x) 294 #endif 295 296 #define HTOLE16(x) (void) (x) 297 #define HTOLE32(x) (void) (x) 298 #define HTOLE64(x) (void) (x) 299 #define LE16TOH(x) (void) (x) 300 #define LE32TOH(x) (void) (x) 301 #define LE64TOH(x) (void) (x) 302 303 /* These don't have standard aliases */ 304 #ifndef htobe64 305 # define htobe64(x) swap64(x) 306 #endif 307 #ifndef be64toh 308 # define be64toh(x) swap64(x) 309 #endif 310 311 #define HTOBE64(x) (x) = htobe64(x) 312 #define BE64TOH(x) (x) = be64toh(x) 313 314 EOF 315 fi 316 fi 317 318 cat >> "$1" << EOF 319 /* Define the C99 standard length-specific integer types */ 320 #include <_stdint.h> 321 322 EOF 323 324 case "${effective_target}" in 325 i[3456]86-*) 326 cat >> "$1" << EOF 327 /* Here are some macros to create integers from a byte array */ 328 /* These are used to get and put integers from/into a uint8_t array */ 329 /* with a specific endianness. This is the most portable way to generate */ 330 /* and read messages to a network or serial device. Each member of a */ 331 /* packet structure must be handled separately. */ 332 333 /* The i386 and compatibles can handle unaligned memory access, */ 334 /* so use the optimized macros above to do this job */ 335 #ifndef be16atoh 336 # define be16atoh(x) be16toh(*(uint16_t*)(x)) 337 #endif 338 #ifndef be32atoh 339 # define be32atoh(x) be32toh(*(uint32_t*)(x)) 340 #endif 341 #ifndef be64atoh 342 # define be64atoh(x) be64toh(*(uint64_t*)(x)) 343 #endif 344 #ifndef le16atoh 345 # define le16atoh(x) le16toh(*(uint16_t*)(x)) 346 #endif 347 #ifndef le32atoh 348 # define le32atoh(x) le32toh(*(uint32_t*)(x)) 349 #endif 350 #ifndef le64atoh 351 # define le64atoh(x) le64toh(*(uint64_t*)(x)) 352 #endif 353 354 #ifndef htob16a 355 # define htobe16a(a,x) *(uint16_t*)(a) = htobe16(x) 356 #endif 357 #ifndef htobe32a 358 # define htobe32a(a,x) *(uint32_t*)(a) = htobe32(x) 359 #endif 360 #ifndef htobe64a 361 # define htobe64a(a,x) *(uint64_t*)(a) = htobe64(x) 362 #endif 363 #ifndef htole16a 364 # define htole16a(a,x) *(uint16_t*)(a) = htole16(x) 365 #endif 366 #ifndef htole32a 367 # define htole32a(a,x) *(uint32_t*)(a) = htole32(x) 368 #endif 369 #ifndef htole64a 370 # define htole64a(a,x) *(uint64_t*)(a) = htole64(x) 371 #endif 372 373 EOF 374 ;; 375 376 *) 377 cat >> "$1" << EOF 378 /* Here are some macros to create integers from a byte array */ 379 /* These are used to get and put integers from/into a uint8_t array */ 380 /* with a specific endianness. This is the most portable way to generate */ 381 /* and read messages to a network or serial device. Each member of a */ 382 /* packet structure must be handled separately. */ 383 384 /* Non-optimized but portable macros */ 385 #define be16atoh(x) ((uint16_t)(((x)[0]<<8)|(x)[1])) 386 #define be32atoh(x) ((uint32_t)(((x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])) 387 #define be64atoh_x(x,off,shift) (((uint64_t)((x)[off]))<<shift) 388 #define be64atoh(x) ((uint64_t)(be64atoh_x(x,0,56)|be64atoh_x(x,1,48)|be64atoh_x(x,2,40)| \\ 389 be64atoh_x(x,3,32)|be64atoh_x(x,4,24)|be64atoh_x(x,5,16)|be64atoh_x(x,6,8)|((x)[7]))) 390 #define le16atoh(x) ((uint16_t)(((x)[1]<<8)|(x)[0])) 391 #define le32atoh(x) ((uint32_t)(((x)[3]<<24)|((x)[2]<<16)|((x)[1]<<8)|(x)[0])) 392 #define le64atoh_x(x,off,shift) (((uint64_t)(x)[off])<<shift) 393 #define le64atoh(x) ((uint64_t)(le64atoh_x(x,7,56)|le64atoh_x(x,6,48)|le64atoh_x(x,5,40)| \\ 394 le64atoh_x(x,4,32)|le64atoh_x(x,3,24)|le64atoh_x(x,2,16)|le64atoh_x(x,1,8)|((x)[0]))) 395 396 #define htobe16a(a,x) (a)[0]=(uint8_t)((x)>>8), (a)[1]=(uint8_t)(x) 397 #define htobe32a(a,x) (a)[0]=(uint8_t)((x)>>24), (a)[1]=(uint8_t)((x)>>16), \\ 398 (a)[2]=(uint8_t)((x)>>8), (a)[3]=(uint8_t)(x) 399 #define htobe64a(a,x) (a)[0]=(uint8_t)((x)>>56), (a)[1]=(uint8_t)((x)>>48), \\ 400 (a)[2]=(uint8_t)((x)>>40), (a)[3]=(uint8_t)((x)>>32), \\ 401 (a)[4]=(uint8_t)((x)>>24), (a)[5]=(uint8_t)((x)>>16), \\ 402 (a)[6]=(uint8_t)((x)>>8), (a)[7]=(uint8_t)(x) 403 #define htole16a(a,x) (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 404 #define htole32a(a,x) (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\ 405 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 406 #define htole64a(a,x) (a)[7]=(uint8_t)((x)>>56), (a)[6]=(uint8_t)((x)>>48), \\ 407 (a)[5]=(uint8_t)((x)>>40), (a)[4]=(uint8_t)((x)>>32), \\ 408 (a)[3]=(uint8_t)((x)>>24), (a)[2]=(uint8_t)((x)>>16), \\ 409 (a)[1]=(uint8_t)((x)>>8), (a)[0]=(uint8_t)(x) 410 411 EOF 412 ;; 413 esac 414 ] 415 416 cat >> "$1" << EOF 417 #endif /*__BYTEORDER_H*/ 418 EOF]) 419