Home | History | Annotate | Download | only in libxml2
      1 /*
      2  * regexp.c: generic and extensible Regular Expression engine
      3  *
      4  * Basically designed with the purpose of compiling regexps for
      5  * the variety of validation/shemas mechanisms now available in
      6  * XML related specifications these include:
      7  *    - XML-1.0 DTD validation
      8  *    - XML Schemas structure part 1
      9  *    - XML Schemas Datatypes part 2 especially Appendix F
     10  *    - RELAX-NG/TREX i.e. the counter proposal
     11  *
     12  * See Copyright for the status of this software.
     13  *
     14  * Daniel Veillard <veillard (at) redhat.com>
     15  */
     16 
     17 #define IN_LIBXML
     18 #include "libxml.h"
     19 
     20 #ifdef LIBXML_REGEXP_ENABLED
     21 
     22 /* #define DEBUG_ERR */
     23 
     24 #include <stdio.h>
     25 #include <string.h>
     26 #ifdef HAVE_LIMITS_H
     27 #include <limits.h>
     28 #endif
     29 
     30 #include <libxml/tree.h>
     31 #include <libxml/parserInternals.h>
     32 #include <libxml/xmlregexp.h>
     33 #include <libxml/xmlautomata.h>
     34 #include <libxml/xmlunicode.h>
     35 
     36 #ifndef INT_MAX
     37 #define INT_MAX 123456789 /* easy to flag and big enough for our needs */
     38 #endif
     39 
     40 /* #define DEBUG_REGEXP_GRAPH */
     41 /* #define DEBUG_REGEXP_EXEC */
     42 /* #define DEBUG_PUSH */
     43 /* #define DEBUG_COMPACTION */
     44 
     45 #define MAX_PUSH 10000000
     46 
     47 #define ERROR(str)							\
     48     ctxt->error = XML_REGEXP_COMPILE_ERROR;				\
     49     xmlRegexpErrCompile(ctxt, str);
     50 #define NEXT ctxt->cur++
     51 #define CUR (*(ctxt->cur))
     52 #define NXT(index) (ctxt->cur[index])
     53 
     54 #define CUR_SCHAR(s, l) xmlStringCurrentChar(NULL, s, &l)
     55 #define NEXTL(l) ctxt->cur += l;
     56 #define XML_REG_STRING_SEPARATOR '|'
     57 /*
     58  * Need PREV to check on a '-' within a Character Group. May only be used
     59  * when it's guaranteed that cur is not at the beginning of ctxt->string!
     60  */
     61 #define PREV (ctxt->cur[-1])
     62 
     63 /**
     64  * TODO:
     65  *
     66  * macro to flag unimplemented blocks
     67  */
     68 #define TODO 								\
     69     xmlGenericError(xmlGenericErrorContext,				\
     70 	    "Unimplemented block at %s:%d\n",				\
     71             __FILE__, __LINE__);
     72 
     73 /************************************************************************
     74  * 									*
     75  * 			Datatypes and structures			*
     76  * 									*
     77  ************************************************************************/
     78 
     79 /*
     80  * Note: the order of the enums below is significant, do not shuffle
     81  */
     82 typedef enum {
     83     XML_REGEXP_EPSILON = 1,
     84     XML_REGEXP_CHARVAL,
     85     XML_REGEXP_RANGES,
     86     XML_REGEXP_SUBREG,  /* used for () sub regexps */
     87     XML_REGEXP_STRING,
     88     XML_REGEXP_ANYCHAR, /* . */
     89     XML_REGEXP_ANYSPACE, /* \s */
     90     XML_REGEXP_NOTSPACE, /* \S */
     91     XML_REGEXP_INITNAME, /* \l */
     92     XML_REGEXP_NOTINITNAME, /* \L */
     93     XML_REGEXP_NAMECHAR, /* \c */
     94     XML_REGEXP_NOTNAMECHAR, /* \C */
     95     XML_REGEXP_DECIMAL, /* \d */
     96     XML_REGEXP_NOTDECIMAL, /* \D */
     97     XML_REGEXP_REALCHAR, /* \w */
     98     XML_REGEXP_NOTREALCHAR, /* \W */
     99     XML_REGEXP_LETTER = 100,
    100     XML_REGEXP_LETTER_UPPERCASE,
    101     XML_REGEXP_LETTER_LOWERCASE,
    102     XML_REGEXP_LETTER_TITLECASE,
    103     XML_REGEXP_LETTER_MODIFIER,
    104     XML_REGEXP_LETTER_OTHERS,
    105     XML_REGEXP_MARK,
    106     XML_REGEXP_MARK_NONSPACING,
    107     XML_REGEXP_MARK_SPACECOMBINING,
    108     XML_REGEXP_MARK_ENCLOSING,
    109     XML_REGEXP_NUMBER,
    110     XML_REGEXP_NUMBER_DECIMAL,
    111     XML_REGEXP_NUMBER_LETTER,
    112     XML_REGEXP_NUMBER_OTHERS,
    113     XML_REGEXP_PUNCT,
    114     XML_REGEXP_PUNCT_CONNECTOR,
    115     XML_REGEXP_PUNCT_DASH,
    116     XML_REGEXP_PUNCT_OPEN,
    117     XML_REGEXP_PUNCT_CLOSE,
    118     XML_REGEXP_PUNCT_INITQUOTE,
    119     XML_REGEXP_PUNCT_FINQUOTE,
    120     XML_REGEXP_PUNCT_OTHERS,
    121     XML_REGEXP_SEPAR,
    122     XML_REGEXP_SEPAR_SPACE,
    123     XML_REGEXP_SEPAR_LINE,
    124     XML_REGEXP_SEPAR_PARA,
    125     XML_REGEXP_SYMBOL,
    126     XML_REGEXP_SYMBOL_MATH,
    127     XML_REGEXP_SYMBOL_CURRENCY,
    128     XML_REGEXP_SYMBOL_MODIFIER,
    129     XML_REGEXP_SYMBOL_OTHERS,
    130     XML_REGEXP_OTHER,
    131     XML_REGEXP_OTHER_CONTROL,
    132     XML_REGEXP_OTHER_FORMAT,
    133     XML_REGEXP_OTHER_PRIVATE,
    134     XML_REGEXP_OTHER_NA,
    135     XML_REGEXP_BLOCK_NAME
    136 } xmlRegAtomType;
    137 
    138 typedef enum {
    139     XML_REGEXP_QUANT_EPSILON = 1,
    140     XML_REGEXP_QUANT_ONCE,
    141     XML_REGEXP_QUANT_OPT,
    142     XML_REGEXP_QUANT_MULT,
    143     XML_REGEXP_QUANT_PLUS,
    144     XML_REGEXP_QUANT_ONCEONLY,
    145     XML_REGEXP_QUANT_ALL,
    146     XML_REGEXP_QUANT_RANGE
    147 } xmlRegQuantType;
    148 
    149 typedef enum {
    150     XML_REGEXP_START_STATE = 1,
    151     XML_REGEXP_FINAL_STATE,
    152     XML_REGEXP_TRANS_STATE,
    153     XML_REGEXP_SINK_STATE,
    154     XML_REGEXP_UNREACH_STATE
    155 } xmlRegStateType;
    156 
    157 typedef enum {
    158     XML_REGEXP_MARK_NORMAL = 0,
    159     XML_REGEXP_MARK_START,
    160     XML_REGEXP_MARK_VISITED
    161 } xmlRegMarkedType;
    162 
    163 typedef struct _xmlRegRange xmlRegRange;
    164 typedef xmlRegRange *xmlRegRangePtr;
    165 
    166 struct _xmlRegRange {
    167     int neg;		/* 0 normal, 1 not, 2 exclude */
    168     xmlRegAtomType type;
    169     int start;
    170     int end;
    171     xmlChar *blockName;
    172 };
    173 
    174 typedef struct _xmlRegAtom xmlRegAtom;
    175 typedef xmlRegAtom *xmlRegAtomPtr;
    176 
    177 typedef struct _xmlAutomataState xmlRegState;
    178 typedef xmlRegState *xmlRegStatePtr;
    179 
    180 struct _xmlRegAtom {
    181     int no;
    182     xmlRegAtomType type;
    183     xmlRegQuantType quant;
    184     int min;
    185     int max;
    186 
    187     void *valuep;
    188     void *valuep2;
    189     int neg;
    190     int codepoint;
    191     xmlRegStatePtr start;
    192     xmlRegStatePtr start0;
    193     xmlRegStatePtr stop;
    194     int maxRanges;
    195     int nbRanges;
    196     xmlRegRangePtr *ranges;
    197     void *data;
    198 };
    199 
    200 typedef struct _xmlRegCounter xmlRegCounter;
    201 typedef xmlRegCounter *xmlRegCounterPtr;
    202 
    203 struct _xmlRegCounter {
    204     int min;
    205     int max;
    206 };
    207 
    208 typedef struct _xmlRegTrans xmlRegTrans;
    209 typedef xmlRegTrans *xmlRegTransPtr;
    210 
    211 struct _xmlRegTrans {
    212     xmlRegAtomPtr atom;
    213     int to;
    214     int counter;
    215     int count;
    216     int nd;
    217 };
    218 
    219 struct _xmlAutomataState {
    220     xmlRegStateType type;
    221     xmlRegMarkedType mark;
    222     xmlRegMarkedType reached;
    223     int no;
    224     int maxTrans;
    225     int nbTrans;
    226     xmlRegTrans *trans;
    227     /*  knowing states ponting to us can speed things up */
    228     int maxTransTo;
    229     int nbTransTo;
    230     int *transTo;
    231 };
    232 
    233 typedef struct _xmlAutomata xmlRegParserCtxt;
    234 typedef xmlRegParserCtxt *xmlRegParserCtxtPtr;
    235 
    236 #define AM_AUTOMATA_RNG 1
    237 
    238 struct _xmlAutomata {
    239     xmlChar *string;
    240     xmlChar *cur;
    241 
    242     int error;
    243     int neg;
    244 
    245     xmlRegStatePtr start;
    246     xmlRegStatePtr end;
    247     xmlRegStatePtr state;
    248 
    249     xmlRegAtomPtr atom;
    250 
    251     int maxAtoms;
    252     int nbAtoms;
    253     xmlRegAtomPtr *atoms;
    254 
    255     int maxStates;
    256     int nbStates;
    257     xmlRegStatePtr *states;
    258 
    259     int maxCounters;
    260     int nbCounters;
    261     xmlRegCounter *counters;
    262 
    263     int determinist;
    264     int negs;
    265     int flags;
    266 };
    267 
    268 struct _xmlRegexp {
    269     xmlChar *string;
    270     int nbStates;
    271     xmlRegStatePtr *states;
    272     int nbAtoms;
    273     xmlRegAtomPtr *atoms;
    274     int nbCounters;
    275     xmlRegCounter *counters;
    276     int determinist;
    277     int flags;
    278     /*
    279      * That's the compact form for determinists automatas
    280      */
    281     int nbstates;
    282     int *compact;
    283     void **transdata;
    284     int nbstrings;
    285     xmlChar **stringMap;
    286 };
    287 
    288 typedef struct _xmlRegExecRollback xmlRegExecRollback;
    289 typedef xmlRegExecRollback *xmlRegExecRollbackPtr;
    290 
    291 struct _xmlRegExecRollback {
    292     xmlRegStatePtr state;/* the current state */
    293     int index;		/* the index in the input stack */
    294     int nextbranch;	/* the next transition to explore in that state */
    295     int *counts;	/* save the automata state if it has some */
    296 };
    297 
    298 typedef struct _xmlRegInputToken xmlRegInputToken;
    299 typedef xmlRegInputToken *xmlRegInputTokenPtr;
    300 
    301 struct _xmlRegInputToken {
    302     xmlChar *value;
    303     void *data;
    304 };
    305 
    306 struct _xmlRegExecCtxt {
    307     int status;		/* execution status != 0 indicate an error */
    308     int determinist;	/* did we find an indeterministic behaviour */
    309     xmlRegexpPtr comp;	/* the compiled regexp */
    310     xmlRegExecCallbacks callback;
    311     void *data;
    312 
    313     xmlRegStatePtr state;/* the current state */
    314     int transno;	/* the current transition on that state */
    315     int transcount;	/* the number of chars in char counted transitions */
    316 
    317     /*
    318      * A stack of rollback states
    319      */
    320     int maxRollbacks;
    321     int nbRollbacks;
    322     xmlRegExecRollback *rollbacks;
    323 
    324     /*
    325      * The state of the automata if any
    326      */
    327     int *counts;
    328 
    329     /*
    330      * The input stack
    331      */
    332     int inputStackMax;
    333     int inputStackNr;
    334     int index;
    335     int *charStack;
    336     const xmlChar *inputString; /* when operating on characters */
    337     xmlRegInputTokenPtr inputStack;/* when operating on strings */
    338 
    339     /*
    340      * error handling
    341      */
    342     int errStateNo;		/* the error state number */
    343     xmlRegStatePtr errState;    /* the error state */
    344     xmlChar *errString;		/* the string raising the error */
    345     int *errCounts;		/* counters at the error state */
    346     int nbPush;
    347 };
    348 
    349 #define REGEXP_ALL_COUNTER	0x123456
    350 #define REGEXP_ALL_LAX_COUNTER	0x123457
    351 
    352 static void xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top);
    353 static void xmlRegFreeState(xmlRegStatePtr state);
    354 static void xmlRegFreeAtom(xmlRegAtomPtr atom);
    355 static int xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr);
    356 static int xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint);
    357 static int xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint,
    358                   int neg, int start, int end, const xmlChar *blockName);
    359 
    360 void xmlAutomataSetFlags(xmlAutomataPtr am, int flags);
    361 
    362 /************************************************************************
    363  *									*
    364  * 		Regexp memory error handler				*
    365  *									*
    366  ************************************************************************/
    367 /**
    368  * xmlRegexpErrMemory:
    369  * @extra:  extra information
    370  *
    371  * Handle an out of memory condition
    372  */
    373 static void
    374 xmlRegexpErrMemory(xmlRegParserCtxtPtr ctxt, const char *extra)
    375 {
    376     const char *regexp = NULL;
    377     if (ctxt != NULL) {
    378         regexp = (const char *) ctxt->string;
    379 	ctxt->error = XML_ERR_NO_MEMORY;
    380     }
    381     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
    382 		    XML_ERR_NO_MEMORY, XML_ERR_FATAL, NULL, 0, extra,
    383 		    regexp, NULL, 0, 0,
    384 		    "Memory allocation failed : %s\n", extra);
    385 }
    386 
    387 /**
    388  * xmlRegexpErrCompile:
    389  * @extra:  extra information
    390  *
    391  * Handle a compilation failure
    392  */
    393 static void
    394 xmlRegexpErrCompile(xmlRegParserCtxtPtr ctxt, const char *extra)
    395 {
    396     const char *regexp = NULL;
    397     int idx = 0;
    398 
    399     if (ctxt != NULL) {
    400         regexp = (const char *) ctxt->string;
    401 	idx = ctxt->cur - ctxt->string;
    402 	ctxt->error = XML_REGEXP_COMPILE_ERROR;
    403     }
    404     __xmlRaiseError(NULL, NULL, NULL, NULL, NULL, XML_FROM_REGEXP,
    405 		    XML_REGEXP_COMPILE_ERROR, XML_ERR_FATAL, NULL, 0, extra,
    406 		    regexp, NULL, idx, 0,
    407 		    "failed to compile: %s\n", extra);
    408 }
    409 
    410 /************************************************************************
    411  * 									*
    412  * 			Allocation/Deallocation				*
    413  * 									*
    414  ************************************************************************/
    415 
    416 static int xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt);
    417 /**
    418  * xmlRegEpxFromParse:
    419  * @ctxt:  the parser context used to build it
    420  *
    421  * Allocate a new regexp and fill it with the result from the parser
    422  *
    423  * Returns the new regexp or NULL in case of error
    424  */
    425 static xmlRegexpPtr
    426 xmlRegEpxFromParse(xmlRegParserCtxtPtr ctxt) {
    427     xmlRegexpPtr ret;
    428 
    429     ret = (xmlRegexpPtr) xmlMalloc(sizeof(xmlRegexp));
    430     if (ret == NULL) {
    431 	xmlRegexpErrMemory(ctxt, "compiling regexp");
    432 	return(NULL);
    433     }
    434     memset(ret, 0, sizeof(xmlRegexp));
    435     ret->string = ctxt->string;
    436     ret->nbStates = ctxt->nbStates;
    437     ret->states = ctxt->states;
    438     ret->nbAtoms = ctxt->nbAtoms;
    439     ret->atoms = ctxt->atoms;
    440     ret->nbCounters = ctxt->nbCounters;
    441     ret->counters = ctxt->counters;
    442     ret->determinist = ctxt->determinist;
    443     ret->flags = ctxt->flags;
    444     if (ret->determinist == -1) {
    445         xmlRegexpIsDeterminist(ret);
    446     }
    447 
    448     if ((ret->determinist != 0) &&
    449 	(ret->nbCounters == 0) &&
    450 	(ctxt->negs == 0) &&
    451 	(ret->atoms != NULL) &&
    452 	(ret->atoms[0] != NULL) &&
    453 	(ret->atoms[0]->type == XML_REGEXP_STRING)) {
    454 	int i, j, nbstates = 0, nbatoms = 0;
    455 	int *stateRemap;
    456 	int *stringRemap;
    457 	int *transitions;
    458 	void **transdata;
    459 	xmlChar **stringMap;
    460         xmlChar *value;
    461 
    462 	/*
    463 	 * Switch to a compact representation
    464 	 * 1/ counting the effective number of states left
    465 	 * 2/ counting the unique number of atoms, and check that
    466 	 *    they are all of the string type
    467 	 * 3/ build a table state x atom for the transitions
    468 	 */
    469 
    470 	stateRemap = xmlMalloc(ret->nbStates * sizeof(int));
    471 	if (stateRemap == NULL) {
    472 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    473 	    xmlFree(ret);
    474 	    return(NULL);
    475 	}
    476 	for (i = 0;i < ret->nbStates;i++) {
    477 	    if (ret->states[i] != NULL) {
    478 		stateRemap[i] = nbstates;
    479 		nbstates++;
    480 	    } else {
    481 		stateRemap[i] = -1;
    482 	    }
    483 	}
    484 #ifdef DEBUG_COMPACTION
    485 	printf("Final: %d states\n", nbstates);
    486 #endif
    487 	stringMap = xmlMalloc(ret->nbAtoms * sizeof(char *));
    488 	if (stringMap == NULL) {
    489 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    490 	    xmlFree(stateRemap);
    491 	    xmlFree(ret);
    492 	    return(NULL);
    493 	}
    494 	stringRemap = xmlMalloc(ret->nbAtoms * sizeof(int));
    495 	if (stringRemap == NULL) {
    496 	    xmlRegexpErrMemory(ctxt, "compiling regexp");
    497 	    xmlFree(stringMap);
    498 	    xmlFree(stateRemap);
    499 	    xmlFree(ret);
    500 	    return(NULL);
    501 	}
    502 	for (i = 0;i < ret->nbAtoms;i++) {
    503 	    if ((ret->atoms[i]->type == XML_REGEXP_STRING) &&
    504 		(ret->atoms[i]->quant == XML_REGEXP_QUANT_ONCE)) {
    505 		value = ret->atoms[i]->valuep;
    506                 for (j = 0;j < nbatoms;j++) {
    507 		    if (xmlStrEqual(stringMap[j], value)) {
    508 			stringRemap[i] = j;
    509 			break;
    510 		    }
    511 		}
    512 		if (j >= nbatoms) {
    513 		    stringRemap[i] = nbatoms;
    514 		    stringMap[nbatoms] = xmlStrdup(value);
    515 		    if (stringMap[nbatoms] == NULL) {
    516 			for (i = 0;i < nbatoms;i++)
    517 			    xmlFree(stringMap[i]);
    518 			xmlFree(stringRemap);
    519 			xmlFree(stringMap);
    520 			xmlFree(stateRemap);
    521 			xmlFree(ret);
    522 			return(NULL);
    523 		    }
    524 		    nbatoms++;
    525 		}
    526 	    } else {
    527 		xmlFree(stateRemap);
    528 		xmlFree(stringRemap);
    529 		for (i = 0;i < nbatoms;i++)
    530 		    xmlFree(stringMap[i]);
    531 		xmlFree(stringMap);
    532 		xmlFree(ret);
    533 		return(NULL);
    534 	    }
    535 	}
    536 #ifdef DEBUG_COMPACTION
    537 	printf("Final: %d atoms\n", nbatoms);
    538 #endif
    539 	transitions = (int *) xmlMalloc((nbstates + 1) *
    540 	                                (nbatoms + 1) * sizeof(int));
    541 	if (transitions == NULL) {
    542 	    xmlFree(stateRemap);
    543 	    xmlFree(stringRemap);
    544 	    xmlFree(stringMap);
    545 	    xmlFree(ret);
    546 	    return(NULL);
    547 	}
    548 	memset(transitions, 0, (nbstates + 1) * (nbatoms + 1) * sizeof(int));
    549 
    550 	/*
    551 	 * Allocate the transition table. The first entry for each
    552 	 * state corresponds to the state type.
    553 	 */
    554 	transdata = NULL;
    555 
    556 	for (i = 0;i < ret->nbStates;i++) {
    557 	    int stateno, atomno, targetno, prev;
    558 	    xmlRegStatePtr state;
    559 	    xmlRegTransPtr trans;
    560 
    561 	    stateno = stateRemap[i];
    562 	    if (stateno == -1)
    563 		continue;
    564 	    state = ret->states[i];
    565 
    566 	    transitions[stateno * (nbatoms + 1)] = state->type;
    567 
    568 	    for (j = 0;j < state->nbTrans;j++) {
    569 		trans = &(state->trans[j]);
    570 		if ((trans->to == -1) || (trans->atom == NULL))
    571 		    continue;
    572                 atomno = stringRemap[trans->atom->no];
    573 		if ((trans->atom->data != NULL) && (transdata == NULL)) {
    574 		    transdata = (void **) xmlMalloc(nbstates * nbatoms *
    575 			                            sizeof(void *));
    576 		    if (transdata != NULL)
    577 			memset(transdata, 0,
    578 			       nbstates * nbatoms * sizeof(void *));
    579 		    else {
    580 			xmlRegexpErrMemory(ctxt, "compiling regexp");
    581 			break;
    582 		    }
    583 		}
    584 		targetno = stateRemap[trans->to];
    585 		/*
    586 		 * if the same atom can generate transitions to 2 different
    587 		 * states then it means the automata is not determinist and
    588 		 * the compact form can't be used !
    589 		 */
    590 		prev = transitions[stateno * (nbatoms + 1) + atomno + 1];
    591 		if (prev != 0) {
    592 		    if (prev != targetno + 1) {
    593 			ret->determinist = 0;
    594 #ifdef DEBUG_COMPACTION
    595 			printf("Indet: state %d trans %d, atom %d to %d : %d to %d\n",
    596 			       i, j, trans->atom->no, trans->to, atomno, targetno);
    597 			printf("       previous to is %d\n", prev);
    598 #endif
    599 			if (transdata != NULL)
    600 			    xmlFree(transdata);
    601 			xmlFree(transitions);
    602 			xmlFree(stateRemap);
    603 			xmlFree(stringRemap);
    604 			for (i = 0;i < nbatoms;i++)
    605 			    xmlFree(stringMap[i]);
    606 			xmlFree(stringMap);
    607 			goto not_determ;
    608 		    }
    609 		} else {
    610 #if 0
    611 		    printf("State %d trans %d: atom %d to %d : %d to %d\n",
    612 			   i, j, trans->atom->no, trans->to, atomno, targetno);
    613 #endif
    614 		    transitions[stateno * (nbatoms + 1) + atomno + 1] =
    615 			targetno + 1; /* to avoid 0 */
    616 		    if (transdata != NULL)
    617 			transdata[stateno * nbatoms + atomno] =
    618 			    trans->atom->data;
    619 		}
    620 	    }
    621 	}
    622 	ret->determinist = 1;
    623 #ifdef DEBUG_COMPACTION
    624 	/*
    625 	 * Debug
    626 	 */
    627 	for (i = 0;i < nbstates;i++) {
    628 	    for (j = 0;j < nbatoms + 1;j++) {
    629                 printf("%02d ", transitions[i * (nbatoms + 1) + j]);
    630 	    }
    631 	    printf("\n");
    632 	}
    633 	printf("\n");
    634 #endif
    635 	/*
    636 	 * Cleanup of the old data
    637 	 */
    638 	if (ret->states != NULL) {
    639 	    for (i = 0;i < ret->nbStates;i++)
    640 		xmlRegFreeState(ret->states[i]);
    641 	    xmlFree(ret->states);
    642 	}
    643 	ret->states = NULL;
    644 	ret->nbStates = 0;
    645 	if (ret->atoms != NULL) {
    646 	    for (i = 0;i < ret->nbAtoms;i++)
    647 		xmlRegFreeAtom(ret->atoms[i]);
    648 	    xmlFree(ret->atoms);
    649 	}
    650 	ret->atoms = NULL;
    651 	ret->nbAtoms = 0;
    652 
    653 	ret->compact = transitions;
    654 	ret->transdata = transdata;
    655 	ret->stringMap = stringMap;
    656 	ret->nbstrings = nbatoms;
    657 	ret->nbstates = nbstates;
    658 	xmlFree(stateRemap);
    659 	xmlFree(stringRemap);
    660     }
    661 not_determ:
    662     ctxt->string = NULL;
    663     ctxt->nbStates = 0;
    664     ctxt->states = NULL;
    665     ctxt->nbAtoms = 0;
    666     ctxt->atoms = NULL;
    667     ctxt->nbCounters = 0;
    668     ctxt->counters = NULL;
    669     return(ret);
    670 }
    671 
    672 /**
    673  * xmlRegNewParserCtxt:
    674  * @string:  the string to parse
    675  *
    676  * Allocate a new regexp parser context
    677  *
    678  * Returns the new context or NULL in case of error
    679  */
    680 static xmlRegParserCtxtPtr
    681 xmlRegNewParserCtxt(const xmlChar *string) {
    682     xmlRegParserCtxtPtr ret;
    683 
    684     ret = (xmlRegParserCtxtPtr) xmlMalloc(sizeof(xmlRegParserCtxt));
    685     if (ret == NULL)
    686 	return(NULL);
    687     memset(ret, 0, sizeof(xmlRegParserCtxt));
    688     if (string != NULL)
    689 	ret->string = xmlStrdup(string);
    690     ret->cur = ret->string;
    691     ret->neg = 0;
    692     ret->negs = 0;
    693     ret->error = 0;
    694     ret->determinist = -1;
    695     return(ret);
    696 }
    697 
    698 /**
    699  * xmlRegNewRange:
    700  * @ctxt:  the regexp parser context
    701  * @neg:  is that negative
    702  * @type:  the type of range
    703  * @start:  the start codepoint
    704  * @end:  the end codepoint
    705  *
    706  * Allocate a new regexp range
    707  *
    708  * Returns the new range or NULL in case of error
    709  */
    710 static xmlRegRangePtr
    711 xmlRegNewRange(xmlRegParserCtxtPtr ctxt,
    712 	       int neg, xmlRegAtomType type, int start, int end) {
    713     xmlRegRangePtr ret;
    714 
    715     ret = (xmlRegRangePtr) xmlMalloc(sizeof(xmlRegRange));
    716     if (ret == NULL) {
    717 	xmlRegexpErrMemory(ctxt, "allocating range");
    718 	return(NULL);
    719     }
    720     ret->neg = neg;
    721     ret->type = type;
    722     ret->start = start;
    723     ret->end = end;
    724     return(ret);
    725 }
    726 
    727 /**
    728  * xmlRegFreeRange:
    729  * @range:  the regexp range
    730  *
    731  * Free a regexp range
    732  */
    733 static void
    734 xmlRegFreeRange(xmlRegRangePtr range) {
    735     if (range == NULL)
    736 	return;
    737 
    738     if (range->blockName != NULL)
    739 	xmlFree(range->blockName);
    740     xmlFree(range);
    741 }
    742 
    743 /**
    744  * xmlRegCopyRange:
    745  * @range:  the regexp range
    746  *
    747  * Copy a regexp range
    748  *
    749  * Returns the new copy or NULL in case of error.
    750  */
    751 static xmlRegRangePtr
    752 xmlRegCopyRange(xmlRegParserCtxtPtr ctxt, xmlRegRangePtr range) {
    753     xmlRegRangePtr ret;
    754 
    755     if (range == NULL)
    756 	return(NULL);
    757 
    758     ret = xmlRegNewRange(ctxt, range->neg, range->type, range->start,
    759                          range->end);
    760     if (ret == NULL)
    761         return(NULL);
    762     if (range->blockName != NULL) {
    763 	ret->blockName = xmlStrdup(range->blockName);
    764 	if (ret->blockName == NULL) {
    765 	    xmlRegexpErrMemory(ctxt, "allocating range");
    766 	    xmlRegFreeRange(ret);
    767 	    return(NULL);
    768 	}
    769     }
    770     return(ret);
    771 }
    772 
    773 /**
    774  * xmlRegNewAtom:
    775  * @ctxt:  the regexp parser context
    776  * @type:  the type of atom
    777  *
    778  * Allocate a new atom
    779  *
    780  * Returns the new atom or NULL in case of error
    781  */
    782 static xmlRegAtomPtr
    783 xmlRegNewAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomType type) {
    784     xmlRegAtomPtr ret;
    785 
    786     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
    787     if (ret == NULL) {
    788 	xmlRegexpErrMemory(ctxt, "allocating atom");
    789 	return(NULL);
    790     }
    791     memset(ret, 0, sizeof(xmlRegAtom));
    792     ret->type = type;
    793     ret->quant = XML_REGEXP_QUANT_ONCE;
    794     ret->min = 0;
    795     ret->max = 0;
    796     return(ret);
    797 }
    798 
    799 /**
    800  * xmlRegFreeAtom:
    801  * @atom:  the regexp atom
    802  *
    803  * Free a regexp atom
    804  */
    805 static void
    806 xmlRegFreeAtom(xmlRegAtomPtr atom) {
    807     int i;
    808 
    809     if (atom == NULL)
    810 	return;
    811 
    812     for (i = 0;i < atom->nbRanges;i++)
    813 	xmlRegFreeRange(atom->ranges[i]);
    814     if (atom->ranges != NULL)
    815 	xmlFree(atom->ranges);
    816     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep != NULL))
    817 	xmlFree(atom->valuep);
    818     if ((atom->type == XML_REGEXP_STRING) && (atom->valuep2 != NULL))
    819 	xmlFree(atom->valuep2);
    820     if ((atom->type == XML_REGEXP_BLOCK_NAME) && (atom->valuep != NULL))
    821 	xmlFree(atom->valuep);
    822     xmlFree(atom);
    823 }
    824 
    825 /**
    826  * xmlRegCopyAtom:
    827  * @ctxt:  the regexp parser context
    828  * @atom:  the oiginal atom
    829  *
    830  * Allocate a new regexp range
    831  *
    832  * Returns the new atom or NULL in case of error
    833  */
    834 static xmlRegAtomPtr
    835 xmlRegCopyAtom(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
    836     xmlRegAtomPtr ret;
    837 
    838     ret = (xmlRegAtomPtr) xmlMalloc(sizeof(xmlRegAtom));
    839     if (ret == NULL) {
    840 	xmlRegexpErrMemory(ctxt, "copying atom");
    841 	return(NULL);
    842     }
    843     memset(ret, 0, sizeof(xmlRegAtom));
    844     ret->type = atom->type;
    845     ret->quant = atom->quant;
    846     ret->min = atom->min;
    847     ret->max = atom->max;
    848     if (atom->nbRanges > 0) {
    849         int i;
    850 
    851         ret->ranges = (xmlRegRangePtr *) xmlMalloc(sizeof(xmlRegRangePtr) *
    852 	                                           atom->nbRanges);
    853 	if (ret->ranges == NULL) {
    854 	    xmlRegexpErrMemory(ctxt, "copying atom");
    855 	    goto error;
    856 	}
    857 	for (i = 0;i < atom->nbRanges;i++) {
    858 	    ret->ranges[i] = xmlRegCopyRange(ctxt, atom->ranges[i]);
    859 	    if (ret->ranges[i] == NULL)
    860 	        goto error;
    861 	    ret->nbRanges = i + 1;
    862 	}
    863     }
    864     return(ret);
    865 
    866 error:
    867     xmlRegFreeAtom(ret);
    868     return(NULL);
    869 }
    870 
    871 static xmlRegStatePtr
    872 xmlRegNewState(xmlRegParserCtxtPtr ctxt) {
    873     xmlRegStatePtr ret;
    874 
    875     ret = (xmlRegStatePtr) xmlMalloc(sizeof(xmlRegState));
    876     if (ret == NULL) {
    877 	xmlRegexpErrMemory(ctxt, "allocating state");
    878 	return(NULL);
    879     }
    880     memset(ret, 0, sizeof(xmlRegState));
    881     ret->type = XML_REGEXP_TRANS_STATE;
    882     ret->mark = XML_REGEXP_MARK_NORMAL;
    883     return(ret);
    884 }
    885 
    886 /**
    887  * xmlRegFreeState:
    888  * @state:  the regexp state
    889  *
    890  * Free a regexp state
    891  */
    892 static void
    893 xmlRegFreeState(xmlRegStatePtr state) {
    894     if (state == NULL)
    895 	return;
    896 
    897     if (state->trans != NULL)
    898 	xmlFree(state->trans);
    899     if (state->transTo != NULL)
    900 	xmlFree(state->transTo);
    901     xmlFree(state);
    902 }
    903 
    904 /**
    905  * xmlRegFreeParserCtxt:
    906  * @ctxt:  the regexp parser context
    907  *
    908  * Free a regexp parser context
    909  */
    910 static void
    911 xmlRegFreeParserCtxt(xmlRegParserCtxtPtr ctxt) {
    912     int i;
    913     if (ctxt == NULL)
    914 	return;
    915 
    916     if (ctxt->string != NULL)
    917 	xmlFree(ctxt->string);
    918     if (ctxt->states != NULL) {
    919 	for (i = 0;i < ctxt->nbStates;i++)
    920 	    xmlRegFreeState(ctxt->states[i]);
    921 	xmlFree(ctxt->states);
    922     }
    923     if (ctxt->atoms != NULL) {
    924 	for (i = 0;i < ctxt->nbAtoms;i++)
    925 	    xmlRegFreeAtom(ctxt->atoms[i]);
    926 	xmlFree(ctxt->atoms);
    927     }
    928     if (ctxt->counters != NULL)
    929 	xmlFree(ctxt->counters);
    930     xmlFree(ctxt);
    931 }
    932 
    933 /************************************************************************
    934  * 									*
    935  * 			Display of Data structures			*
    936  * 									*
    937  ************************************************************************/
    938 
    939 static void
    940 xmlRegPrintAtomType(FILE *output, xmlRegAtomType type) {
    941     switch (type) {
    942         case XML_REGEXP_EPSILON:
    943 	    fprintf(output, "epsilon "); break;
    944         case XML_REGEXP_CHARVAL:
    945 	    fprintf(output, "charval "); break;
    946         case XML_REGEXP_RANGES:
    947 	    fprintf(output, "ranges "); break;
    948         case XML_REGEXP_SUBREG:
    949 	    fprintf(output, "subexpr "); break;
    950         case XML_REGEXP_STRING:
    951 	    fprintf(output, "string "); break;
    952         case XML_REGEXP_ANYCHAR:
    953 	    fprintf(output, "anychar "); break;
    954         case XML_REGEXP_ANYSPACE:
    955 	    fprintf(output, "anyspace "); break;
    956         case XML_REGEXP_NOTSPACE:
    957 	    fprintf(output, "notspace "); break;
    958         case XML_REGEXP_INITNAME:
    959 	    fprintf(output, "initname "); break;
    960         case XML_REGEXP_NOTINITNAME:
    961 	    fprintf(output, "notinitname "); break;
    962         case XML_REGEXP_NAMECHAR:
    963 	    fprintf(output, "namechar "); break;
    964         case XML_REGEXP_NOTNAMECHAR:
    965 	    fprintf(output, "notnamechar "); break;
    966         case XML_REGEXP_DECIMAL:
    967 	    fprintf(output, "decimal "); break;
    968         case XML_REGEXP_NOTDECIMAL:
    969 	    fprintf(output, "notdecimal "); break;
    970         case XML_REGEXP_REALCHAR:
    971 	    fprintf(output, "realchar "); break;
    972         case XML_REGEXP_NOTREALCHAR:
    973 	    fprintf(output, "notrealchar "); break;
    974         case XML_REGEXP_LETTER:
    975             fprintf(output, "LETTER "); break;
    976         case XML_REGEXP_LETTER_UPPERCASE:
    977             fprintf(output, "LETTER_UPPERCASE "); break;
    978         case XML_REGEXP_LETTER_LOWERCASE:
    979             fprintf(output, "LETTER_LOWERCASE "); break;
    980         case XML_REGEXP_LETTER_TITLECASE:
    981             fprintf(output, "LETTER_TITLECASE "); break;
    982         case XML_REGEXP_LETTER_MODIFIER:
    983             fprintf(output, "LETTER_MODIFIER "); break;
    984         case XML_REGEXP_LETTER_OTHERS:
    985             fprintf(output, "LETTER_OTHERS "); break;
    986         case XML_REGEXP_MARK:
    987             fprintf(output, "MARK "); break;
    988         case XML_REGEXP_MARK_NONSPACING:
    989             fprintf(output, "MARK_NONSPACING "); break;
    990         case XML_REGEXP_MARK_SPACECOMBINING:
    991             fprintf(output, "MARK_SPACECOMBINING "); break;
    992         case XML_REGEXP_MARK_ENCLOSING:
    993             fprintf(output, "MARK_ENCLOSING "); break;
    994         case XML_REGEXP_NUMBER:
    995             fprintf(output, "NUMBER "); break;
    996         case XML_REGEXP_NUMBER_DECIMAL:
    997             fprintf(output, "NUMBER_DECIMAL "); break;
    998         case XML_REGEXP_NUMBER_LETTER:
    999             fprintf(output, "NUMBER_LETTER "); break;
   1000         case XML_REGEXP_NUMBER_OTHERS:
   1001             fprintf(output, "NUMBER_OTHERS "); break;
   1002         case XML_REGEXP_PUNCT:
   1003             fprintf(output, "PUNCT "); break;
   1004         case XML_REGEXP_PUNCT_CONNECTOR:
   1005             fprintf(output, "PUNCT_CONNECTOR "); break;
   1006         case XML_REGEXP_PUNCT_DASH:
   1007             fprintf(output, "PUNCT_DASH "); break;
   1008         case XML_REGEXP_PUNCT_OPEN:
   1009             fprintf(output, "PUNCT_OPEN "); break;
   1010         case XML_REGEXP_PUNCT_CLOSE:
   1011             fprintf(output, "PUNCT_CLOSE "); break;
   1012         case XML_REGEXP_PUNCT_INITQUOTE:
   1013             fprintf(output, "PUNCT_INITQUOTE "); break;
   1014         case XML_REGEXP_PUNCT_FINQUOTE:
   1015             fprintf(output, "PUNCT_FINQUOTE "); break;
   1016         case XML_REGEXP_PUNCT_OTHERS:
   1017             fprintf(output, "PUNCT_OTHERS "); break;
   1018         case XML_REGEXP_SEPAR:
   1019             fprintf(output, "SEPAR "); break;
   1020         case XML_REGEXP_SEPAR_SPACE:
   1021             fprintf(output, "SEPAR_SPACE "); break;
   1022         case XML_REGEXP_SEPAR_LINE:
   1023             fprintf(output, "SEPAR_LINE "); break;
   1024         case XML_REGEXP_SEPAR_PARA:
   1025             fprintf(output, "SEPAR_PARA "); break;
   1026         case XML_REGEXP_SYMBOL:
   1027             fprintf(output, "SYMBOL "); break;
   1028         case XML_REGEXP_SYMBOL_MATH:
   1029             fprintf(output, "SYMBOL_MATH "); break;
   1030         case XML_REGEXP_SYMBOL_CURRENCY:
   1031             fprintf(output, "SYMBOL_CURRENCY "); break;
   1032         case XML_REGEXP_SYMBOL_MODIFIER:
   1033             fprintf(output, "SYMBOL_MODIFIER "); break;
   1034         case XML_REGEXP_SYMBOL_OTHERS:
   1035             fprintf(output, "SYMBOL_OTHERS "); break;
   1036         case XML_REGEXP_OTHER:
   1037             fprintf(output, "OTHER "); break;
   1038         case XML_REGEXP_OTHER_CONTROL:
   1039             fprintf(output, "OTHER_CONTROL "); break;
   1040         case XML_REGEXP_OTHER_FORMAT:
   1041             fprintf(output, "OTHER_FORMAT "); break;
   1042         case XML_REGEXP_OTHER_PRIVATE:
   1043             fprintf(output, "OTHER_PRIVATE "); break;
   1044         case XML_REGEXP_OTHER_NA:
   1045             fprintf(output, "OTHER_NA "); break;
   1046         case XML_REGEXP_BLOCK_NAME:
   1047 	    fprintf(output, "BLOCK "); break;
   1048     }
   1049 }
   1050 
   1051 static void
   1052 xmlRegPrintQuantType(FILE *output, xmlRegQuantType type) {
   1053     switch (type) {
   1054         case XML_REGEXP_QUANT_EPSILON:
   1055 	    fprintf(output, "epsilon "); break;
   1056         case XML_REGEXP_QUANT_ONCE:
   1057 	    fprintf(output, "once "); break;
   1058         case XML_REGEXP_QUANT_OPT:
   1059 	    fprintf(output, "? "); break;
   1060         case XML_REGEXP_QUANT_MULT:
   1061 	    fprintf(output, "* "); break;
   1062         case XML_REGEXP_QUANT_PLUS:
   1063 	    fprintf(output, "+ "); break;
   1064 	case XML_REGEXP_QUANT_RANGE:
   1065 	    fprintf(output, "range "); break;
   1066 	case XML_REGEXP_QUANT_ONCEONLY:
   1067 	    fprintf(output, "onceonly "); break;
   1068 	case XML_REGEXP_QUANT_ALL:
   1069 	    fprintf(output, "all "); break;
   1070     }
   1071 }
   1072 static void
   1073 xmlRegPrintRange(FILE *output, xmlRegRangePtr range) {
   1074     fprintf(output, "  range: ");
   1075     if (range->neg)
   1076 	fprintf(output, "negative ");
   1077     xmlRegPrintAtomType(output, range->type);
   1078     fprintf(output, "%c - %c\n", range->start, range->end);
   1079 }
   1080 
   1081 static void
   1082 xmlRegPrintAtom(FILE *output, xmlRegAtomPtr atom) {
   1083     fprintf(output, " atom: ");
   1084     if (atom == NULL) {
   1085 	fprintf(output, "NULL\n");
   1086 	return;
   1087     }
   1088     if (atom->neg)
   1089         fprintf(output, "not ");
   1090     xmlRegPrintAtomType(output, atom->type);
   1091     xmlRegPrintQuantType(output, atom->quant);
   1092     if (atom->quant == XML_REGEXP_QUANT_RANGE)
   1093 	fprintf(output, "%d-%d ", atom->min, atom->max);
   1094     if (atom->type == XML_REGEXP_STRING)
   1095 	fprintf(output, "'%s' ", (char *) atom->valuep);
   1096     if (atom->type == XML_REGEXP_CHARVAL)
   1097 	fprintf(output, "char %c\n", atom->codepoint);
   1098     else if (atom->type == XML_REGEXP_RANGES) {
   1099 	int i;
   1100 	fprintf(output, "%d entries\n", atom->nbRanges);
   1101 	for (i = 0; i < atom->nbRanges;i++)
   1102 	    xmlRegPrintRange(output, atom->ranges[i]);
   1103     } else if (atom->type == XML_REGEXP_SUBREG) {
   1104 	fprintf(output, "start %d end %d\n", atom->start->no, atom->stop->no);
   1105     } else {
   1106 	fprintf(output, "\n");
   1107     }
   1108 }
   1109 
   1110 static void
   1111 xmlRegPrintTrans(FILE *output, xmlRegTransPtr trans) {
   1112     fprintf(output, "  trans: ");
   1113     if (trans == NULL) {
   1114 	fprintf(output, "NULL\n");
   1115 	return;
   1116     }
   1117     if (trans->to < 0) {
   1118 	fprintf(output, "removed\n");
   1119 	return;
   1120     }
   1121     if (trans->nd != 0) {
   1122 	if (trans->nd == 2)
   1123 	    fprintf(output, "last not determinist, ");
   1124 	else
   1125 	    fprintf(output, "not determinist, ");
   1126     }
   1127     if (trans->counter >= 0) {
   1128 	fprintf(output, "counted %d, ", trans->counter);
   1129     }
   1130     if (trans->count == REGEXP_ALL_COUNTER) {
   1131 	fprintf(output, "all transition, ");
   1132     } else if (trans->count >= 0) {
   1133 	fprintf(output, "count based %d, ", trans->count);
   1134     }
   1135     if (trans->atom == NULL) {
   1136 	fprintf(output, "epsilon to %d\n", trans->to);
   1137 	return;
   1138     }
   1139     if (trans->atom->type == XML_REGEXP_CHARVAL)
   1140 	fprintf(output, "char %c ", trans->atom->codepoint);
   1141     fprintf(output, "atom %d, to %d\n", trans->atom->no, trans->to);
   1142 }
   1143 
   1144 static void
   1145 xmlRegPrintState(FILE *output, xmlRegStatePtr state) {
   1146     int i;
   1147 
   1148     fprintf(output, " state: ");
   1149     if (state == NULL) {
   1150 	fprintf(output, "NULL\n");
   1151 	return;
   1152     }
   1153     if (state->type == XML_REGEXP_START_STATE)
   1154 	fprintf(output, "START ");
   1155     if (state->type == XML_REGEXP_FINAL_STATE)
   1156 	fprintf(output, "FINAL ");
   1157 
   1158     fprintf(output, "%d, %d transitions:\n", state->no, state->nbTrans);
   1159     for (i = 0;i < state->nbTrans; i++) {
   1160 	xmlRegPrintTrans(output, &(state->trans[i]));
   1161     }
   1162 }
   1163 
   1164 #ifdef DEBUG_REGEXP_GRAPH
   1165 static void
   1166 xmlRegPrintCtxt(FILE *output, xmlRegParserCtxtPtr ctxt) {
   1167     int i;
   1168 
   1169     fprintf(output, " ctxt: ");
   1170     if (ctxt == NULL) {
   1171 	fprintf(output, "NULL\n");
   1172 	return;
   1173     }
   1174     fprintf(output, "'%s' ", ctxt->string);
   1175     if (ctxt->error)
   1176 	fprintf(output, "error ");
   1177     if (ctxt->neg)
   1178 	fprintf(output, "neg ");
   1179     fprintf(output, "\n");
   1180     fprintf(output, "%d atoms:\n", ctxt->nbAtoms);
   1181     for (i = 0;i < ctxt->nbAtoms; i++) {
   1182 	fprintf(output, " %02d ", i);
   1183 	xmlRegPrintAtom(output, ctxt->atoms[i]);
   1184     }
   1185     if (ctxt->atom != NULL) {
   1186 	fprintf(output, "current atom:\n");
   1187 	xmlRegPrintAtom(output, ctxt->atom);
   1188     }
   1189     fprintf(output, "%d states:", ctxt->nbStates);
   1190     if (ctxt->start != NULL)
   1191 	fprintf(output, " start: %d", ctxt->start->no);
   1192     if (ctxt->end != NULL)
   1193 	fprintf(output, " end: %d", ctxt->end->no);
   1194     fprintf(output, "\n");
   1195     for (i = 0;i < ctxt->nbStates; i++) {
   1196 	xmlRegPrintState(output, ctxt->states[i]);
   1197     }
   1198     fprintf(output, "%d counters:\n", ctxt->nbCounters);
   1199     for (i = 0;i < ctxt->nbCounters; i++) {
   1200 	fprintf(output, " %d: min %d max %d\n", i, ctxt->counters[i].min,
   1201 		                                ctxt->counters[i].max);
   1202     }
   1203 }
   1204 #endif
   1205 
   1206 /************************************************************************
   1207  * 									*
   1208  *		 Finite Automata structures manipulations		*
   1209  * 									*
   1210  ************************************************************************/
   1211 
   1212 static void
   1213 xmlRegAtomAddRange(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom,
   1214 	           int neg, xmlRegAtomType type, int start, int end,
   1215 		   xmlChar *blockName) {
   1216     xmlRegRangePtr range;
   1217 
   1218     if (atom == NULL) {
   1219 	ERROR("add range: atom is NULL");
   1220 	return;
   1221     }
   1222     if (atom->type != XML_REGEXP_RANGES) {
   1223 	ERROR("add range: atom is not ranges");
   1224 	return;
   1225     }
   1226     if (atom->maxRanges == 0) {
   1227 	atom->maxRanges = 4;
   1228 	atom->ranges = (xmlRegRangePtr *) xmlMalloc(atom->maxRanges *
   1229 		                             sizeof(xmlRegRangePtr));
   1230 	if (atom->ranges == NULL) {
   1231 	    xmlRegexpErrMemory(ctxt, "adding ranges");
   1232 	    atom->maxRanges = 0;
   1233 	    return;
   1234 	}
   1235     } else if (atom->nbRanges >= atom->maxRanges) {
   1236 	xmlRegRangePtr *tmp;
   1237 	atom->maxRanges *= 2;
   1238 	tmp = (xmlRegRangePtr *) xmlRealloc(atom->ranges, atom->maxRanges *
   1239 		                             sizeof(xmlRegRangePtr));
   1240 	if (tmp == NULL) {
   1241 	    xmlRegexpErrMemory(ctxt, "adding ranges");
   1242 	    atom->maxRanges /= 2;
   1243 	    return;
   1244 	}
   1245 	atom->ranges = tmp;
   1246     }
   1247     range = xmlRegNewRange(ctxt, neg, type, start, end);
   1248     if (range == NULL)
   1249 	return;
   1250     range->blockName = blockName;
   1251     atom->ranges[atom->nbRanges++] = range;
   1252 
   1253 }
   1254 
   1255 static int
   1256 xmlRegGetCounter(xmlRegParserCtxtPtr ctxt) {
   1257     if (ctxt->maxCounters == 0) {
   1258 	ctxt->maxCounters = 4;
   1259 	ctxt->counters = (xmlRegCounter *) xmlMalloc(ctxt->maxCounters *
   1260 		                             sizeof(xmlRegCounter));
   1261 	if (ctxt->counters == NULL) {
   1262 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1263 	    ctxt->maxCounters = 0;
   1264 	    return(-1);
   1265 	}
   1266     } else if (ctxt->nbCounters >= ctxt->maxCounters) {
   1267 	xmlRegCounter *tmp;
   1268 	ctxt->maxCounters *= 2;
   1269 	tmp = (xmlRegCounter *) xmlRealloc(ctxt->counters, ctxt->maxCounters *
   1270 		                           sizeof(xmlRegCounter));
   1271 	if (tmp == NULL) {
   1272 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1273 	    ctxt->maxCounters /= 2;
   1274 	    return(-1);
   1275 	}
   1276 	ctxt->counters = tmp;
   1277     }
   1278     ctxt->counters[ctxt->nbCounters].min = -1;
   1279     ctxt->counters[ctxt->nbCounters].max = -1;
   1280     return(ctxt->nbCounters++);
   1281 }
   1282 
   1283 static int
   1284 xmlRegAtomPush(xmlRegParserCtxtPtr ctxt, xmlRegAtomPtr atom) {
   1285     if (atom == NULL) {
   1286 	ERROR("atom push: atom is NULL");
   1287 	return(-1);
   1288     }
   1289     if (ctxt->maxAtoms == 0) {
   1290 	ctxt->maxAtoms = 4;
   1291 	ctxt->atoms = (xmlRegAtomPtr *) xmlMalloc(ctxt->maxAtoms *
   1292 		                             sizeof(xmlRegAtomPtr));
   1293 	if (ctxt->atoms == NULL) {
   1294 	    xmlRegexpErrMemory(ctxt, "pushing atom");
   1295 	    ctxt->maxAtoms = 0;
   1296 	    return(-1);
   1297 	}
   1298     } else if (ctxt->nbAtoms >= ctxt->maxAtoms) {
   1299 	xmlRegAtomPtr *tmp;
   1300 	ctxt->maxAtoms *= 2;
   1301 	tmp = (xmlRegAtomPtr *) xmlRealloc(ctxt->atoms, ctxt->maxAtoms *
   1302 		                             sizeof(xmlRegAtomPtr));
   1303 	if (tmp == NULL) {
   1304 	    xmlRegexpErrMemory(ctxt, "allocating counter");
   1305 	    ctxt->maxAtoms /= 2;
   1306 	    return(-1);
   1307 	}
   1308 	ctxt->atoms = tmp;
   1309     }
   1310     atom->no = ctxt->nbAtoms;
   1311     ctxt->atoms[ctxt->nbAtoms++] = atom;
   1312     return(0);
   1313 }
   1314 
   1315 static void
   1316 xmlRegStateAddTransTo(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr target,
   1317                       int from) {
   1318     if (target->maxTransTo == 0) {
   1319 	target->maxTransTo = 8;
   1320 	target->transTo = (int *) xmlMalloc(target->maxTransTo *
   1321 		                             sizeof(int));
   1322 	if (target->transTo == NULL) {
   1323 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1324 	    target->maxTransTo = 0;
   1325 	    return;
   1326 	}
   1327     } else if (target->nbTransTo >= target->maxTransTo) {
   1328 	int *tmp;
   1329 	target->maxTransTo *= 2;
   1330 	tmp = (int *) xmlRealloc(target->transTo, target->maxTransTo *
   1331 		                             sizeof(int));
   1332 	if (tmp == NULL) {
   1333 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1334 	    target->maxTransTo /= 2;
   1335 	    return;
   1336 	}
   1337 	target->transTo = tmp;
   1338     }
   1339     target->transTo[target->nbTransTo] = from;
   1340     target->nbTransTo++;
   1341 }
   1342 
   1343 static void
   1344 xmlRegStateAddTrans(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
   1345 	            xmlRegAtomPtr atom, xmlRegStatePtr target,
   1346 		    int counter, int count) {
   1347 
   1348     int nrtrans;
   1349 
   1350     if (state == NULL) {
   1351 	ERROR("add state: state is NULL");
   1352 	return;
   1353     }
   1354     if (target == NULL) {
   1355 	ERROR("add state: target is NULL");
   1356 	return;
   1357     }
   1358     /*
   1359      * Other routines follow the philosophy 'When in doubt, add a transition'
   1360      * so we check here whether such a transition is already present and, if
   1361      * so, silently ignore this request.
   1362      */
   1363 
   1364     for (nrtrans = state->nbTrans - 1; nrtrans >= 0; nrtrans--) {
   1365 	xmlRegTransPtr trans = &(state->trans[nrtrans]);
   1366 	if ((trans->atom == atom) &&
   1367 	    (trans->to == target->no) &&
   1368 	    (trans->counter == counter) &&
   1369 	    (trans->count == count)) {
   1370 #ifdef DEBUG_REGEXP_GRAPH
   1371 	    printf("Ignoring duplicate transition from %d to %d\n",
   1372 		    state->no, target->no);
   1373 #endif
   1374 	    return;
   1375 	}
   1376     }
   1377 
   1378     if (state->maxTrans == 0) {
   1379 	state->maxTrans = 8;
   1380 	state->trans = (xmlRegTrans *) xmlMalloc(state->maxTrans *
   1381 		                             sizeof(xmlRegTrans));
   1382 	if (state->trans == NULL) {
   1383 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1384 	    state->maxTrans = 0;
   1385 	    return;
   1386 	}
   1387     } else if (state->nbTrans >= state->maxTrans) {
   1388 	xmlRegTrans *tmp;
   1389 	state->maxTrans *= 2;
   1390 	tmp = (xmlRegTrans *) xmlRealloc(state->trans, state->maxTrans *
   1391 		                             sizeof(xmlRegTrans));
   1392 	if (tmp == NULL) {
   1393 	    xmlRegexpErrMemory(ctxt, "adding transition");
   1394 	    state->maxTrans /= 2;
   1395 	    return;
   1396 	}
   1397 	state->trans = tmp;
   1398     }
   1399 #ifdef DEBUG_REGEXP_GRAPH
   1400     printf("Add trans from %d to %d ", state->no, target->no);
   1401     if (count == REGEXP_ALL_COUNTER)
   1402 	printf("all transition\n");
   1403     else if (count >= 0)
   1404 	printf("count based %d\n", count);
   1405     else if (counter >= 0)
   1406 	printf("counted %d\n", counter);
   1407     else if (atom == NULL)
   1408 	printf("epsilon transition\n");
   1409     else if (atom != NULL)
   1410         xmlRegPrintAtom(stdout, atom);
   1411 #endif
   1412 
   1413     state->trans[state->nbTrans].atom = atom;
   1414     state->trans[state->nbTrans].to = target->no;
   1415     state->trans[state->nbTrans].counter = counter;
   1416     state->trans[state->nbTrans].count = count;
   1417     state->trans[state->nbTrans].nd = 0;
   1418     state->nbTrans++;
   1419     xmlRegStateAddTransTo(ctxt, target, state->no);
   1420 }
   1421 
   1422 static int
   1423 xmlRegStatePush(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state) {
   1424     if (state == NULL) return(-1);
   1425     if (ctxt->maxStates == 0) {
   1426 	ctxt->maxStates = 4;
   1427 	ctxt->states = (xmlRegStatePtr *) xmlMalloc(ctxt->maxStates *
   1428 		                             sizeof(xmlRegStatePtr));
   1429 	if (ctxt->states == NULL) {
   1430 	    xmlRegexpErrMemory(ctxt, "adding state");
   1431 	    ctxt->maxStates = 0;
   1432 	    return(-1);
   1433 	}
   1434     } else if (ctxt->nbStates >= ctxt->maxStates) {
   1435 	xmlRegStatePtr *tmp;
   1436 	ctxt->maxStates *= 2;
   1437 	tmp = (xmlRegStatePtr *) xmlRealloc(ctxt->states, ctxt->maxStates *
   1438 		                             sizeof(xmlRegStatePtr));
   1439 	if (tmp == NULL) {
   1440 	    xmlRegexpErrMemory(ctxt, "adding state");
   1441 	    ctxt->maxStates /= 2;
   1442 	    return(-1);
   1443 	}
   1444 	ctxt->states = tmp;
   1445     }
   1446     state->no = ctxt->nbStates;
   1447     ctxt->states[ctxt->nbStates++] = state;
   1448     return(0);
   1449 }
   1450 
   1451 /**
   1452  * xmlFAGenerateAllTransition:
   1453  * @ctxt:  a regexp parser context
   1454  * @from:  the from state
   1455  * @to:  the target state or NULL for building a new one
   1456  * @lax:
   1457  *
   1458  */
   1459 static void
   1460 xmlFAGenerateAllTransition(xmlRegParserCtxtPtr ctxt,
   1461 			   xmlRegStatePtr from, xmlRegStatePtr to,
   1462 			   int lax) {
   1463     if (to == NULL) {
   1464 	to = xmlRegNewState(ctxt);
   1465 	xmlRegStatePush(ctxt, to);
   1466 	ctxt->state = to;
   1467     }
   1468     if (lax)
   1469 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_LAX_COUNTER);
   1470     else
   1471 	xmlRegStateAddTrans(ctxt, from, NULL, to, -1, REGEXP_ALL_COUNTER);
   1472 }
   1473 
   1474 /**
   1475  * xmlFAGenerateEpsilonTransition:
   1476  * @ctxt:  a regexp parser context
   1477  * @from:  the from state
   1478  * @to:  the target state or NULL for building a new one
   1479  *
   1480  */
   1481 static void
   1482 xmlFAGenerateEpsilonTransition(xmlRegParserCtxtPtr ctxt,
   1483 			       xmlRegStatePtr from, xmlRegStatePtr to) {
   1484     if (to == NULL) {
   1485 	to = xmlRegNewState(ctxt);
   1486 	xmlRegStatePush(ctxt, to);
   1487 	ctxt->state = to;
   1488     }
   1489     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, -1);
   1490 }
   1491 
   1492 /**
   1493  * xmlFAGenerateCountedEpsilonTransition:
   1494  * @ctxt:  a regexp parser context
   1495  * @from:  the from state
   1496  * @to:  the target state or NULL for building a new one
   1497  * counter:  the counter for that transition
   1498  *
   1499  */
   1500 static void
   1501 xmlFAGenerateCountedEpsilonTransition(xmlRegParserCtxtPtr ctxt,
   1502 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
   1503     if (to == NULL) {
   1504 	to = xmlRegNewState(ctxt);
   1505 	xmlRegStatePush(ctxt, to);
   1506 	ctxt->state = to;
   1507     }
   1508     xmlRegStateAddTrans(ctxt, from, NULL, to, counter, -1);
   1509 }
   1510 
   1511 /**
   1512  * xmlFAGenerateCountedTransition:
   1513  * @ctxt:  a regexp parser context
   1514  * @from:  the from state
   1515  * @to:  the target state or NULL for building a new one
   1516  * counter:  the counter for that transition
   1517  *
   1518  */
   1519 static void
   1520 xmlFAGenerateCountedTransition(xmlRegParserCtxtPtr ctxt,
   1521 	    xmlRegStatePtr from, xmlRegStatePtr to, int counter) {
   1522     if (to == NULL) {
   1523 	to = xmlRegNewState(ctxt);
   1524 	xmlRegStatePush(ctxt, to);
   1525 	ctxt->state = to;
   1526     }
   1527     xmlRegStateAddTrans(ctxt, from, NULL, to, -1, counter);
   1528 }
   1529 
   1530 /**
   1531  * xmlFAGenerateTransitions:
   1532  * @ctxt:  a regexp parser context
   1533  * @from:  the from state
   1534  * @to:  the target state or NULL for building a new one
   1535  * @atom:  the atom generating the transition
   1536  *
   1537  * Returns 0 if success and -1 in case of error.
   1538  */
   1539 static int
   1540 xmlFAGenerateTransitions(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr from,
   1541 	                 xmlRegStatePtr to, xmlRegAtomPtr atom) {
   1542     xmlRegStatePtr end;
   1543 
   1544     if (atom == NULL) {
   1545 	ERROR("genrate transition: atom == NULL");
   1546 	return(-1);
   1547     }
   1548     if (atom->type == XML_REGEXP_SUBREG) {
   1549 	/*
   1550 	 * this is a subexpression handling one should not need to
   1551 	 * create a new node except for XML_REGEXP_QUANT_RANGE.
   1552 	 */
   1553 	if (xmlRegAtomPush(ctxt, atom) < 0) {
   1554 	    return(-1);
   1555 	}
   1556 	if ((to != NULL) && (atom->stop != to) &&
   1557 	    (atom->quant != XML_REGEXP_QUANT_RANGE)) {
   1558 	    /*
   1559 	     * Generate an epsilon transition to link to the target
   1560 	     */
   1561 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
   1562 #ifdef DV
   1563 	} else if ((to == NULL) && (atom->quant != XML_REGEXP_QUANT_RANGE) &&
   1564 		   (atom->quant != XML_REGEXP_QUANT_ONCE)) {
   1565 	    to = xmlRegNewState(ctxt);
   1566 	    xmlRegStatePush(ctxt, to);
   1567 	    ctxt->state = to;
   1568 	    xmlFAGenerateEpsilonTransition(ctxt, atom->stop, to);
   1569 #endif
   1570 	}
   1571 	switch (atom->quant) {
   1572 	    case XML_REGEXP_QUANT_OPT:
   1573 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1574 		/*
   1575 		 * transition done to the state after end of atom.
   1576 		 *      1. set transition from atom start to new state
   1577 		 *      2. set transition from atom end to this state.
   1578 		 */
   1579                 if (to == NULL) {
   1580                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, 0);
   1581                     xmlFAGenerateEpsilonTransition(ctxt, atom->stop,
   1582                                                    ctxt->state);
   1583                 } else {
   1584                     xmlFAGenerateEpsilonTransition(ctxt, atom->start, to);
   1585                 }
   1586 		break;
   1587 	    case XML_REGEXP_QUANT_MULT:
   1588 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1589 		xmlFAGenerateEpsilonTransition(ctxt, atom->start, atom->stop);
   1590 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
   1591 		break;
   1592 	    case XML_REGEXP_QUANT_PLUS:
   1593 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1594 		xmlFAGenerateEpsilonTransition(ctxt, atom->stop, atom->start);
   1595 		break;
   1596 	    case XML_REGEXP_QUANT_RANGE: {
   1597 		int counter;
   1598 		xmlRegStatePtr inter, newstate;
   1599 
   1600 		/*
   1601 		 * create the final state now if needed
   1602 		 */
   1603 		if (to != NULL) {
   1604 		    newstate = to;
   1605 		} else {
   1606 		    newstate = xmlRegNewState(ctxt);
   1607 		    xmlRegStatePush(ctxt, newstate);
   1608 		}
   1609 
   1610 		/*
   1611 		 * The principle here is to use counted transition
   1612 		 * to avoid explosion in the number of states in the
   1613 		 * graph. This is clearly more complex but should not
   1614 		 * be exploitable at runtime.
   1615 		 */
   1616 		if ((atom->min == 0) && (atom->start0 == NULL)) {
   1617 		    xmlRegAtomPtr copy;
   1618 		    /*
   1619 		     * duplicate a transition based on atom to count next
   1620 		     * occurences after 1. We cannot loop to atom->start
   1621 		     * directly because we need an epsilon transition to
   1622 		     * newstate.
   1623 		     */
   1624 		     /* ???? For some reason it seems we never reach that
   1625 		        case, I suppose this got optimized out before when
   1626 			building the automata */
   1627 		    copy = xmlRegCopyAtom(ctxt, atom);
   1628 		    if (copy == NULL)
   1629 		        return(-1);
   1630 		    copy->quant = XML_REGEXP_QUANT_ONCE;
   1631 		    copy->min = 0;
   1632 		    copy->max = 0;
   1633 
   1634 		    if (xmlFAGenerateTransitions(ctxt, atom->start, NULL, copy)
   1635 		        < 0)
   1636 			return(-1);
   1637 		    inter = ctxt->state;
   1638 		    counter = xmlRegGetCounter(ctxt);
   1639 		    ctxt->counters[counter].min = atom->min - 1;
   1640 		    ctxt->counters[counter].max = atom->max - 1;
   1641 		    /* count the number of times we see it again */
   1642 		    xmlFAGenerateCountedEpsilonTransition(ctxt, inter,
   1643 						   atom->stop, counter);
   1644 		    /* allow a way out based on the count */
   1645 		    xmlFAGenerateCountedTransition(ctxt, inter,
   1646 			                           newstate, counter);
   1647 		    /* and also allow a direct exit for 0 */
   1648 		    xmlFAGenerateEpsilonTransition(ctxt, atom->start,
   1649 		                                   newstate);
   1650 		} else {
   1651 		    /*
   1652 		     * either we need the atom at least once or there
   1653 		     * is an atom->start0 allowing to easilly plug the
   1654 		     * epsilon transition.
   1655 		     */
   1656 		    counter = xmlRegGetCounter(ctxt);
   1657 		    ctxt->counters[counter].min = atom->min - 1;
   1658 		    ctxt->counters[counter].max = atom->max - 1;
   1659 		    /* count the number of times we see it again */
   1660 		    xmlFAGenerateCountedEpsilonTransition(ctxt, atom->stop,
   1661 						   atom->start, counter);
   1662 		    /* allow a way out based on the count */
   1663 		    xmlFAGenerateCountedTransition(ctxt, atom->stop,
   1664 			                           newstate, counter);
   1665 		    /* and if needed allow a direct exit for 0 */
   1666 		    if (atom->min == 0)
   1667 			xmlFAGenerateEpsilonTransition(ctxt, atom->start0,
   1668 						       newstate);
   1669 
   1670 		}
   1671 		atom->min = 0;
   1672 		atom->max = 0;
   1673 		atom->quant = XML_REGEXP_QUANT_ONCE;
   1674 		ctxt->state = newstate;
   1675 	    }
   1676 	    default:
   1677 		break;
   1678 	}
   1679 	return(0);
   1680     }
   1681     if ((atom->min == 0) && (atom->max == 0) &&
   1682                (atom->quant == XML_REGEXP_QUANT_RANGE)) {
   1683         /*
   1684 	 * we can discard the atom and generate an epsilon transition instead
   1685 	 */
   1686 	if (to == NULL) {
   1687 	    to = xmlRegNewState(ctxt);
   1688 	    if (to != NULL)
   1689 		xmlRegStatePush(ctxt, to);
   1690 	    else {
   1691 		return(-1);
   1692 	    }
   1693 	}
   1694 	xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1695 	ctxt->state = to;
   1696 	xmlRegFreeAtom(atom);
   1697 	return(0);
   1698     }
   1699     if (to == NULL) {
   1700 	to = xmlRegNewState(ctxt);
   1701 	if (to != NULL)
   1702 	    xmlRegStatePush(ctxt, to);
   1703 	else {
   1704 	    return(-1);
   1705 	}
   1706     }
   1707     end = to;
   1708     if ((atom->quant == XML_REGEXP_QUANT_MULT) ||
   1709         (atom->quant == XML_REGEXP_QUANT_PLUS)) {
   1710 	/*
   1711 	 * Do not pollute the target state by adding transitions from
   1712 	 * it as it is likely to be the shared target of multiple branches.
   1713 	 * So isolate with an epsilon transition.
   1714 	 */
   1715         xmlRegStatePtr tmp;
   1716 
   1717 	tmp = xmlRegNewState(ctxt);
   1718 	if (tmp != NULL)
   1719 	    xmlRegStatePush(ctxt, tmp);
   1720 	else {
   1721 	    return(-1);
   1722 	}
   1723 	xmlFAGenerateEpsilonTransition(ctxt, tmp, to);
   1724 	to = tmp;
   1725     }
   1726     if (xmlRegAtomPush(ctxt, atom) < 0) {
   1727 	return(-1);
   1728     }
   1729     xmlRegStateAddTrans(ctxt, from, atom, to, -1, -1);
   1730     ctxt->state = end;
   1731     switch (atom->quant) {
   1732 	case XML_REGEXP_QUANT_OPT:
   1733 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1734 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1735 	    break;
   1736 	case XML_REGEXP_QUANT_MULT:
   1737 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1738 	    xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1739 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
   1740 	    break;
   1741 	case XML_REGEXP_QUANT_PLUS:
   1742 	    atom->quant = XML_REGEXP_QUANT_ONCE;
   1743 	    xmlRegStateAddTrans(ctxt, to, atom, to, -1, -1);
   1744 	    break;
   1745 	case XML_REGEXP_QUANT_RANGE:
   1746 #if DV_test
   1747 	    if (atom->min == 0) {
   1748 		xmlFAGenerateEpsilonTransition(ctxt, from, to);
   1749 	    }
   1750 #endif
   1751 	    break;
   1752 	default:
   1753 	    break;
   1754     }
   1755     return(0);
   1756 }
   1757 
   1758 /**
   1759  * xmlFAReduceEpsilonTransitions:
   1760  * @ctxt:  a regexp parser context
   1761  * @fromnr:  the from state
   1762  * @tonr:  the to state
   1763  * @counter:  should that transition be associated to a counted
   1764  *
   1765  */
   1766 static void
   1767 xmlFAReduceEpsilonTransitions(xmlRegParserCtxtPtr ctxt, int fromnr,
   1768 	                      int tonr, int counter) {
   1769     int transnr;
   1770     xmlRegStatePtr from;
   1771     xmlRegStatePtr to;
   1772 
   1773 #ifdef DEBUG_REGEXP_GRAPH
   1774     printf("xmlFAReduceEpsilonTransitions(%d, %d)\n", fromnr, tonr);
   1775 #endif
   1776     from = ctxt->states[fromnr];
   1777     if (from == NULL)
   1778 	return;
   1779     to = ctxt->states[tonr];
   1780     if (to == NULL)
   1781 	return;
   1782     if ((to->mark == XML_REGEXP_MARK_START) ||
   1783 	(to->mark == XML_REGEXP_MARK_VISITED))
   1784 	return;
   1785 
   1786     to->mark = XML_REGEXP_MARK_VISITED;
   1787     if (to->type == XML_REGEXP_FINAL_STATE) {
   1788 #ifdef DEBUG_REGEXP_GRAPH
   1789 	printf("State %d is final, so %d becomes final\n", tonr, fromnr);
   1790 #endif
   1791 	from->type = XML_REGEXP_FINAL_STATE;
   1792     }
   1793     for (transnr = 0;transnr < to->nbTrans;transnr++) {
   1794         if (to->trans[transnr].to < 0)
   1795 	    continue;
   1796 	if (to->trans[transnr].atom == NULL) {
   1797 	    /*
   1798 	     * Don't remove counted transitions
   1799 	     * Don't loop either
   1800 	     */
   1801 	    if (to->trans[transnr].to != fromnr) {
   1802 		if (to->trans[transnr].count >= 0) {
   1803 		    int newto = to->trans[transnr].to;
   1804 
   1805 		    xmlRegStateAddTrans(ctxt, from, NULL,
   1806 					ctxt->states[newto],
   1807 					-1, to->trans[transnr].count);
   1808 		} else {
   1809 #ifdef DEBUG_REGEXP_GRAPH
   1810 		    printf("Found epsilon trans %d from %d to %d\n",
   1811 			   transnr, tonr, to->trans[transnr].to);
   1812 #endif
   1813 		    if (to->trans[transnr].counter >= 0) {
   1814 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
   1815 					      to->trans[transnr].to,
   1816 					      to->trans[transnr].counter);
   1817 		    } else {
   1818 			xmlFAReduceEpsilonTransitions(ctxt, fromnr,
   1819 					      to->trans[transnr].to,
   1820 					      counter);
   1821 		    }
   1822 		}
   1823 	    }
   1824 	} else {
   1825 	    int newto = to->trans[transnr].to;
   1826 
   1827 	    if (to->trans[transnr].counter >= 0) {
   1828 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
   1829 				    ctxt->states[newto],
   1830 				    to->trans[transnr].counter, -1);
   1831 	    } else {
   1832 		xmlRegStateAddTrans(ctxt, from, to->trans[transnr].atom,
   1833 				    ctxt->states[newto], counter, -1);
   1834 	    }
   1835 	}
   1836     }
   1837     to->mark = XML_REGEXP_MARK_NORMAL;
   1838 }
   1839 
   1840 /**
   1841  * xmlFAEliminateSimpleEpsilonTransitions:
   1842  * @ctxt:  a regexp parser context
   1843  *
   1844  * Eliminating general epsilon transitions can get costly in the general
   1845  * algorithm due to the large amount of generated new transitions and
   1846  * associated comparisons. However for simple epsilon transition used just
   1847  * to separate building blocks when generating the automata this can be
   1848  * reduced to state elimination:
   1849  *    - if there exists an epsilon from X to Y
   1850  *    - if there is no other transition from X
   1851  * then X and Y are semantically equivalent and X can be eliminated
   1852  * If X is the start state then make Y the start state, else replace the
   1853  * target of all transitions to X by transitions to Y.
   1854  */
   1855 static void
   1856 xmlFAEliminateSimpleEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
   1857     int statenr, i, j, newto;
   1858     xmlRegStatePtr state, tmp;
   1859 
   1860     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   1861 	state = ctxt->states[statenr];
   1862 	if (state == NULL)
   1863 	    continue;
   1864 	if (state->nbTrans != 1)
   1865 	    continue;
   1866 	if (state->type == XML_REGEXP_UNREACH_STATE)
   1867 	    continue;
   1868 	/* is the only transition out a basic transition */
   1869 	if ((state->trans[0].atom == NULL) &&
   1870 	    (state->trans[0].to >= 0) &&
   1871 	    (state->trans[0].to != statenr) &&
   1872 	    (state->trans[0].counter < 0) &&
   1873 	    (state->trans[0].count < 0)) {
   1874 	    newto = state->trans[0].to;
   1875 
   1876             if (state->type == XML_REGEXP_START_STATE) {
   1877 #ifdef DEBUG_REGEXP_GRAPH
   1878 		printf("Found simple epsilon trans from start %d to %d\n",
   1879 		       statenr, newto);
   1880 #endif
   1881             } else {
   1882 #ifdef DEBUG_REGEXP_GRAPH
   1883 		printf("Found simple epsilon trans from %d to %d\n",
   1884 		       statenr, newto);
   1885 #endif
   1886 	        for (i = 0;i < state->nbTransTo;i++) {
   1887 		    tmp = ctxt->states[state->transTo[i]];
   1888 		    for (j = 0;j < tmp->nbTrans;j++) {
   1889 			if (tmp->trans[j].to == statenr) {
   1890 #ifdef DEBUG_REGEXP_GRAPH
   1891 			    printf("Changed transition %d on %d to go to %d\n",
   1892 				   j, tmp->no, newto);
   1893 #endif
   1894 			    tmp->trans[j].to = -1;
   1895 			    xmlRegStateAddTrans(ctxt, tmp, tmp->trans[j].atom,
   1896 			    			ctxt->states[newto],
   1897 					        tmp->trans[j].counter,
   1898 						tmp->trans[j].count);
   1899 			}
   1900 		    }
   1901 		}
   1902 		if (state->type == XML_REGEXP_FINAL_STATE)
   1903 		    ctxt->states[newto]->type = XML_REGEXP_FINAL_STATE;
   1904 		/* eliminate the transition completely */
   1905 		state->nbTrans = 0;
   1906 
   1907                 state->type = XML_REGEXP_UNREACH_STATE;
   1908 
   1909 	    }
   1910 
   1911 	}
   1912     }
   1913 }
   1914 /**
   1915  * xmlFAEliminateEpsilonTransitions:
   1916  * @ctxt:  a regexp parser context
   1917  *
   1918  */
   1919 static void
   1920 xmlFAEliminateEpsilonTransitions(xmlRegParserCtxtPtr ctxt) {
   1921     int statenr, transnr;
   1922     xmlRegStatePtr state;
   1923     int has_epsilon;
   1924 
   1925     if (ctxt->states == NULL) return;
   1926 
   1927     /*
   1928      * Eliminate simple epsilon transition and the associated unreachable
   1929      * states.
   1930      */
   1931     xmlFAEliminateSimpleEpsilonTransitions(ctxt);
   1932     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   1933 	state = ctxt->states[statenr];
   1934 	if ((state != NULL) && (state->type == XML_REGEXP_UNREACH_STATE)) {
   1935 #ifdef DEBUG_REGEXP_GRAPH
   1936 	    printf("Removed unreachable state %d\n", statenr);
   1937 #endif
   1938 	    xmlRegFreeState(state);
   1939 	    ctxt->states[statenr] = NULL;
   1940 	}
   1941     }
   1942 
   1943     has_epsilon = 0;
   1944 
   1945     /*
   1946      * Build the completed transitions bypassing the epsilons
   1947      * Use a marking algorithm to avoid loops
   1948      * Mark sink states too.
   1949      * Process from the latests states backward to the start when
   1950      * there is long cascading epsilon chains this minimize the
   1951      * recursions and transition compares when adding the new ones
   1952      */
   1953     for (statenr = ctxt->nbStates - 1;statenr >= 0;statenr--) {
   1954 	state = ctxt->states[statenr];
   1955 	if (state == NULL)
   1956 	    continue;
   1957 	if ((state->nbTrans == 0) &&
   1958 	    (state->type != XML_REGEXP_FINAL_STATE)) {
   1959 	    state->type = XML_REGEXP_SINK_STATE;
   1960 	}
   1961 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   1962 	    if ((state->trans[transnr].atom == NULL) &&
   1963 		(state->trans[transnr].to >= 0)) {
   1964 		if (state->trans[transnr].to == statenr) {
   1965 		    state->trans[transnr].to = -1;
   1966 #ifdef DEBUG_REGEXP_GRAPH
   1967 		    printf("Removed loopback epsilon trans %d on %d\n",
   1968 			   transnr, statenr);
   1969 #endif
   1970 		} else if (state->trans[transnr].count < 0) {
   1971 		    int newto = state->trans[transnr].to;
   1972 
   1973 #ifdef DEBUG_REGEXP_GRAPH
   1974 		    printf("Found epsilon trans %d from %d to %d\n",
   1975 			   transnr, statenr, newto);
   1976 #endif
   1977 		    has_epsilon = 1;
   1978 		    state->trans[transnr].to = -2;
   1979 		    state->mark = XML_REGEXP_MARK_START;
   1980 		    xmlFAReduceEpsilonTransitions(ctxt, statenr,
   1981 				      newto, state->trans[transnr].counter);
   1982 		    state->mark = XML_REGEXP_MARK_NORMAL;
   1983 #ifdef DEBUG_REGEXP_GRAPH
   1984 		} else {
   1985 		    printf("Found counted transition %d on %d\n",
   1986 			   transnr, statenr);
   1987 #endif
   1988 	        }
   1989 	    }
   1990 	}
   1991     }
   1992     /*
   1993      * Eliminate the epsilon transitions
   1994      */
   1995     if (has_epsilon) {
   1996 	for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   1997 	    state = ctxt->states[statenr];
   1998 	    if (state == NULL)
   1999 		continue;
   2000 	    for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2001 		xmlRegTransPtr trans = &(state->trans[transnr]);
   2002 		if ((trans->atom == NULL) &&
   2003 		    (trans->count < 0) &&
   2004 		    (trans->to >= 0)) {
   2005 		    trans->to = -1;
   2006 		}
   2007 	    }
   2008 	}
   2009     }
   2010 
   2011     /*
   2012      * Use this pass to detect unreachable states too
   2013      */
   2014     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2015 	state = ctxt->states[statenr];
   2016 	if (state != NULL)
   2017 	    state->reached = XML_REGEXP_MARK_NORMAL;
   2018     }
   2019     state = ctxt->states[0];
   2020     if (state != NULL)
   2021 	state->reached = XML_REGEXP_MARK_START;
   2022     while (state != NULL) {
   2023 	xmlRegStatePtr target = NULL;
   2024 	state->reached = XML_REGEXP_MARK_VISITED;
   2025 	/*
   2026 	 * Mark all states reachable from the current reachable state
   2027 	 */
   2028 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2029 	    if ((state->trans[transnr].to >= 0) &&
   2030 		((state->trans[transnr].atom != NULL) ||
   2031 		 (state->trans[transnr].count >= 0))) {
   2032 		int newto = state->trans[transnr].to;
   2033 
   2034 		if (ctxt->states[newto] == NULL)
   2035 		    continue;
   2036 		if (ctxt->states[newto]->reached == XML_REGEXP_MARK_NORMAL) {
   2037 		    ctxt->states[newto]->reached = XML_REGEXP_MARK_START;
   2038 		    target = ctxt->states[newto];
   2039 		}
   2040 	    }
   2041 	}
   2042 
   2043 	/*
   2044 	 * find the next accessible state not explored
   2045 	 */
   2046 	if (target == NULL) {
   2047 	    for (statenr = 1;statenr < ctxt->nbStates;statenr++) {
   2048 		state = ctxt->states[statenr];
   2049 		if ((state != NULL) && (state->reached ==
   2050 			XML_REGEXP_MARK_START)) {
   2051 		    target = state;
   2052 		    break;
   2053 		}
   2054 	    }
   2055 	}
   2056 	state = target;
   2057     }
   2058     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2059 	state = ctxt->states[statenr];
   2060 	if ((state != NULL) && (state->reached == XML_REGEXP_MARK_NORMAL)) {
   2061 #ifdef DEBUG_REGEXP_GRAPH
   2062 	    printf("Removed unreachable state %d\n", statenr);
   2063 #endif
   2064 	    xmlRegFreeState(state);
   2065 	    ctxt->states[statenr] = NULL;
   2066 	}
   2067     }
   2068 
   2069 }
   2070 
   2071 static int
   2072 xmlFACompareRanges(xmlRegRangePtr range1, xmlRegRangePtr range2) {
   2073     int ret = 0;
   2074 
   2075     if ((range1->type == XML_REGEXP_RANGES) ||
   2076         (range2->type == XML_REGEXP_RANGES) ||
   2077         (range2->type == XML_REGEXP_SUBREG) ||
   2078         (range1->type == XML_REGEXP_SUBREG) ||
   2079         (range1->type == XML_REGEXP_STRING) ||
   2080         (range2->type == XML_REGEXP_STRING))
   2081 	return(-1);
   2082 
   2083     /* put them in order */
   2084     if (range1->type > range2->type) {
   2085         xmlRegRangePtr tmp;
   2086 
   2087 	tmp = range1;
   2088 	range1 = range2;
   2089 	range2 = tmp;
   2090     }
   2091     if ((range1->type == XML_REGEXP_ANYCHAR) ||
   2092         (range2->type == XML_REGEXP_ANYCHAR)) {
   2093 	ret = 1;
   2094     } else if ((range1->type == XML_REGEXP_EPSILON) ||
   2095                (range2->type == XML_REGEXP_EPSILON)) {
   2096 	return(0);
   2097     } else if (range1->type == range2->type) {
   2098         if (range1->type != XML_REGEXP_CHARVAL)
   2099             ret = 1;
   2100         else if ((range1->end < range2->start) ||
   2101 	         (range2->end < range1->start))
   2102 	    ret = 0;
   2103 	else
   2104 	    ret = 1;
   2105     } else if (range1->type == XML_REGEXP_CHARVAL) {
   2106         int codepoint;
   2107 	int neg = 0;
   2108 
   2109 	/*
   2110 	 * just check all codepoints in the range for acceptance,
   2111 	 * this is usually way cheaper since done only once at
   2112 	 * compilation than testing over and over at runtime or
   2113 	 * pushing too many states when evaluating.
   2114 	 */
   2115 	if (((range1->neg == 0) && (range2->neg != 0)) ||
   2116 	    ((range1->neg != 0) && (range2->neg == 0)))
   2117 	    neg = 1;
   2118 
   2119 	for (codepoint = range1->start;codepoint <= range1->end ;codepoint++) {
   2120 	    ret = xmlRegCheckCharacterRange(range2->type, codepoint,
   2121 					    0, range2->start, range2->end,
   2122 					    range2->blockName);
   2123 	    if (ret < 0)
   2124 	        return(-1);
   2125 	    if (((neg == 1) && (ret == 0)) ||
   2126 	        ((neg == 0) && (ret == 1)))
   2127 		return(1);
   2128 	}
   2129 	return(0);
   2130     } else if ((range1->type == XML_REGEXP_BLOCK_NAME) ||
   2131                (range2->type == XML_REGEXP_BLOCK_NAME)) {
   2132 	if (range1->type == range2->type) {
   2133 	    ret = xmlStrEqual(range1->blockName, range2->blockName);
   2134 	} else {
   2135 	    /*
   2136 	     * comparing a block range with anything else is way
   2137 	     * too costly, and maintining the table is like too much
   2138 	     * memory too, so let's force the automata to save state
   2139 	     * here.
   2140 	     */
   2141 	    return(1);
   2142 	}
   2143     } else if ((range1->type < XML_REGEXP_LETTER) ||
   2144                (range2->type < XML_REGEXP_LETTER)) {
   2145 	if ((range1->type == XML_REGEXP_ANYSPACE) &&
   2146 	    (range2->type == XML_REGEXP_NOTSPACE))
   2147 	    ret = 0;
   2148 	else if ((range1->type == XML_REGEXP_INITNAME) &&
   2149 	         (range2->type == XML_REGEXP_NOTINITNAME))
   2150 	    ret = 0;
   2151 	else if ((range1->type == XML_REGEXP_NAMECHAR) &&
   2152 	         (range2->type == XML_REGEXP_NOTNAMECHAR))
   2153 	    ret = 0;
   2154 	else if ((range1->type == XML_REGEXP_DECIMAL) &&
   2155 	         (range2->type == XML_REGEXP_NOTDECIMAL))
   2156 	    ret = 0;
   2157 	else if ((range1->type == XML_REGEXP_REALCHAR) &&
   2158 	         (range2->type == XML_REGEXP_NOTREALCHAR))
   2159 	    ret = 0;
   2160 	else {
   2161 	    /* same thing to limit complexity */
   2162 	    return(1);
   2163 	}
   2164     } else {
   2165         ret = 0;
   2166         /* range1->type < range2->type here */
   2167         switch (range1->type) {
   2168 	    case XML_REGEXP_LETTER:
   2169 	         /* all disjoint except in the subgroups */
   2170 	         if ((range2->type == XML_REGEXP_LETTER_UPPERCASE) ||
   2171 		     (range2->type == XML_REGEXP_LETTER_LOWERCASE) ||
   2172 		     (range2->type == XML_REGEXP_LETTER_TITLECASE) ||
   2173 		     (range2->type == XML_REGEXP_LETTER_MODIFIER) ||
   2174 		     (range2->type == XML_REGEXP_LETTER_OTHERS))
   2175 		     ret = 1;
   2176 		 break;
   2177 	    case XML_REGEXP_MARK:
   2178 	         if ((range2->type == XML_REGEXP_MARK_NONSPACING) ||
   2179 		     (range2->type == XML_REGEXP_MARK_SPACECOMBINING) ||
   2180 		     (range2->type == XML_REGEXP_MARK_ENCLOSING))
   2181 		     ret = 1;
   2182 		 break;
   2183 	    case XML_REGEXP_NUMBER:
   2184 	         if ((range2->type == XML_REGEXP_NUMBER_DECIMAL) ||
   2185 		     (range2->type == XML_REGEXP_NUMBER_LETTER) ||
   2186 		     (range2->type == XML_REGEXP_NUMBER_OTHERS))
   2187 		     ret = 1;
   2188 		 break;
   2189 	    case XML_REGEXP_PUNCT:
   2190 	         if ((range2->type == XML_REGEXP_PUNCT_CONNECTOR) ||
   2191 		     (range2->type == XML_REGEXP_PUNCT_DASH) ||
   2192 		     (range2->type == XML_REGEXP_PUNCT_OPEN) ||
   2193 		     (range2->type == XML_REGEXP_PUNCT_CLOSE) ||
   2194 		     (range2->type == XML_REGEXP_PUNCT_INITQUOTE) ||
   2195 		     (range2->type == XML_REGEXP_PUNCT_FINQUOTE) ||
   2196 		     (range2->type == XML_REGEXP_PUNCT_OTHERS))
   2197 		     ret = 1;
   2198 		 break;
   2199 	    case XML_REGEXP_SEPAR:
   2200 	         if ((range2->type == XML_REGEXP_SEPAR_SPACE) ||
   2201 		     (range2->type == XML_REGEXP_SEPAR_LINE) ||
   2202 		     (range2->type == XML_REGEXP_SEPAR_PARA))
   2203 		     ret = 1;
   2204 		 break;
   2205 	    case XML_REGEXP_SYMBOL:
   2206 	         if ((range2->type == XML_REGEXP_SYMBOL_MATH) ||
   2207 		     (range2->type == XML_REGEXP_SYMBOL_CURRENCY) ||
   2208 		     (range2->type == XML_REGEXP_SYMBOL_MODIFIER) ||
   2209 		     (range2->type == XML_REGEXP_SYMBOL_OTHERS))
   2210 		     ret = 1;
   2211 		 break;
   2212 	    case XML_REGEXP_OTHER:
   2213 	         if ((range2->type == XML_REGEXP_OTHER_CONTROL) ||
   2214 		     (range2->type == XML_REGEXP_OTHER_FORMAT) ||
   2215 		     (range2->type == XML_REGEXP_OTHER_PRIVATE))
   2216 		     ret = 1;
   2217 		 break;
   2218             default:
   2219 	         if ((range2->type >= XML_REGEXP_LETTER) &&
   2220 		     (range2->type < XML_REGEXP_BLOCK_NAME))
   2221 		     ret = 0;
   2222 		 else {
   2223 		     /* safety net ! */
   2224 		     return(1);
   2225 		 }
   2226 	}
   2227     }
   2228     if (((range1->neg == 0) && (range2->neg != 0)) ||
   2229         ((range1->neg != 0) && (range2->neg == 0)))
   2230 	ret = !ret;
   2231     return(ret);
   2232 }
   2233 
   2234 /**
   2235  * xmlFACompareAtomTypes:
   2236  * @type1:  an atom type
   2237  * @type2:  an atom type
   2238  *
   2239  * Compares two atoms type to check whether they intersect in some ways,
   2240  * this is used by xmlFACompareAtoms only
   2241  *
   2242  * Returns 1 if they may intersect and 0 otherwise
   2243  */
   2244 static int
   2245 xmlFACompareAtomTypes(xmlRegAtomType type1, xmlRegAtomType type2) {
   2246     if ((type1 == XML_REGEXP_EPSILON) ||
   2247         (type1 == XML_REGEXP_CHARVAL) ||
   2248 	(type1 == XML_REGEXP_RANGES) ||
   2249 	(type1 == XML_REGEXP_SUBREG) ||
   2250 	(type1 == XML_REGEXP_STRING) ||
   2251 	(type1 == XML_REGEXP_ANYCHAR))
   2252 	return(1);
   2253     if ((type2 == XML_REGEXP_EPSILON) ||
   2254         (type2 == XML_REGEXP_CHARVAL) ||
   2255 	(type2 == XML_REGEXP_RANGES) ||
   2256 	(type2 == XML_REGEXP_SUBREG) ||
   2257 	(type2 == XML_REGEXP_STRING) ||
   2258 	(type2 == XML_REGEXP_ANYCHAR))
   2259 	return(1);
   2260 
   2261     if (type1 == type2) return(1);
   2262 
   2263     /* simplify subsequent compares by making sure type1 < type2 */
   2264     if (type1 > type2) {
   2265         xmlRegAtomType tmp = type1;
   2266 	type1 = type2;
   2267 	type2 = tmp;
   2268     }
   2269     switch (type1) {
   2270         case XML_REGEXP_ANYSPACE: /* \s */
   2271 	    /* can't be a letter, number, mark, pontuation, symbol */
   2272 	    if ((type2 == XML_REGEXP_NOTSPACE) ||
   2273 		((type2 >= XML_REGEXP_LETTER) &&
   2274 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
   2275 	        ((type2 >= XML_REGEXP_NUMBER) &&
   2276 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
   2277 	        ((type2 >= XML_REGEXP_MARK) &&
   2278 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2279 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2280 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2281 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2282 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS))
   2283 	        ) return(0);
   2284 	    break;
   2285         case XML_REGEXP_NOTSPACE: /* \S */
   2286 	    break;
   2287         case XML_REGEXP_INITNAME: /* \l */
   2288 	    /* can't be a number, mark, separator, pontuation, symbol or other */
   2289 	    if ((type2 == XML_REGEXP_NOTINITNAME) ||
   2290 	        ((type2 >= XML_REGEXP_NUMBER) &&
   2291 		 (type2 <= XML_REGEXP_NUMBER_OTHERS)) ||
   2292 	        ((type2 >= XML_REGEXP_MARK) &&
   2293 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2294 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2295 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2296 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2297 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2298 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2299 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2300 	        ((type2 >= XML_REGEXP_OTHER) &&
   2301 		 (type2 <= XML_REGEXP_OTHER_NA))
   2302 		) return(0);
   2303 	    break;
   2304         case XML_REGEXP_NOTINITNAME: /* \L */
   2305 	    break;
   2306         case XML_REGEXP_NAMECHAR: /* \c */
   2307 	    /* can't be a mark, separator, pontuation, symbol or other */
   2308 	    if ((type2 == XML_REGEXP_NOTNAMECHAR) ||
   2309 	        ((type2 >= XML_REGEXP_MARK) &&
   2310 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2311 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2312 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2313 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2314 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2315 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2316 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2317 	        ((type2 >= XML_REGEXP_OTHER) &&
   2318 		 (type2 <= XML_REGEXP_OTHER_NA))
   2319 		) return(0);
   2320 	    break;
   2321         case XML_REGEXP_NOTNAMECHAR: /* \C */
   2322 	    break;
   2323         case XML_REGEXP_DECIMAL: /* \d */
   2324 	    /* can't be a letter, mark, separator, pontuation, symbol or other */
   2325 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
   2326 	        (type2 == XML_REGEXP_REALCHAR) ||
   2327 		((type2 >= XML_REGEXP_LETTER) &&
   2328 		 (type2 <= XML_REGEXP_LETTER_OTHERS)) ||
   2329 	        ((type2 >= XML_REGEXP_MARK) &&
   2330 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2331 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2332 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2333 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2334 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2335 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2336 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2337 	        ((type2 >= XML_REGEXP_OTHER) &&
   2338 		 (type2 <= XML_REGEXP_OTHER_NA))
   2339 		)return(0);
   2340 	    break;
   2341         case XML_REGEXP_NOTDECIMAL: /* \D */
   2342 	    break;
   2343         case XML_REGEXP_REALCHAR: /* \w */
   2344 	    /* can't be a mark, separator, pontuation, symbol or other */
   2345 	    if ((type2 == XML_REGEXP_NOTDECIMAL) ||
   2346 	        ((type2 >= XML_REGEXP_MARK) &&
   2347 		 (type2 <= XML_REGEXP_MARK_ENCLOSING)) ||
   2348 	        ((type2 >= XML_REGEXP_PUNCT) &&
   2349 		 (type2 <= XML_REGEXP_PUNCT_OTHERS)) ||
   2350 	        ((type2 >= XML_REGEXP_SEPAR) &&
   2351 		 (type2 <= XML_REGEXP_SEPAR_PARA)) ||
   2352 	        ((type2 >= XML_REGEXP_SYMBOL) &&
   2353 		 (type2 <= XML_REGEXP_SYMBOL_OTHERS)) ||
   2354 	        ((type2 >= XML_REGEXP_OTHER) &&
   2355 		 (type2 <= XML_REGEXP_OTHER_NA))
   2356 		)return(0);
   2357 	    break;
   2358         case XML_REGEXP_NOTREALCHAR: /* \W */
   2359 	    break;
   2360 	/*
   2361 	 * at that point we know both type 1 and type2 are from
   2362 	 * character categories are ordered and are different,
   2363 	 * it becomes simple because this is a partition
   2364 	 */
   2365         case XML_REGEXP_LETTER:
   2366 	    if (type2 <= XML_REGEXP_LETTER_OTHERS)
   2367 	        return(1);
   2368 	    return(0);
   2369         case XML_REGEXP_LETTER_UPPERCASE:
   2370         case XML_REGEXP_LETTER_LOWERCASE:
   2371         case XML_REGEXP_LETTER_TITLECASE:
   2372         case XML_REGEXP_LETTER_MODIFIER:
   2373         case XML_REGEXP_LETTER_OTHERS:
   2374 	    return(0);
   2375         case XML_REGEXP_MARK:
   2376 	    if (type2 <= XML_REGEXP_MARK_ENCLOSING)
   2377 	        return(1);
   2378 	    return(0);
   2379         case XML_REGEXP_MARK_NONSPACING:
   2380         case XML_REGEXP_MARK_SPACECOMBINING:
   2381         case XML_REGEXP_MARK_ENCLOSING:
   2382 	    return(0);
   2383         case XML_REGEXP_NUMBER:
   2384 	    if (type2 <= XML_REGEXP_NUMBER_OTHERS)
   2385 	        return(1);
   2386 	    return(0);
   2387         case XML_REGEXP_NUMBER_DECIMAL:
   2388         case XML_REGEXP_NUMBER_LETTER:
   2389         case XML_REGEXP_NUMBER_OTHERS:
   2390 	    return(0);
   2391         case XML_REGEXP_PUNCT:
   2392 	    if (type2 <= XML_REGEXP_PUNCT_OTHERS)
   2393 	        return(1);
   2394 	    return(0);
   2395         case XML_REGEXP_PUNCT_CONNECTOR:
   2396         case XML_REGEXP_PUNCT_DASH:
   2397         case XML_REGEXP_PUNCT_OPEN:
   2398         case XML_REGEXP_PUNCT_CLOSE:
   2399         case XML_REGEXP_PUNCT_INITQUOTE:
   2400         case XML_REGEXP_PUNCT_FINQUOTE:
   2401         case XML_REGEXP_PUNCT_OTHERS:
   2402 	    return(0);
   2403         case XML_REGEXP_SEPAR:
   2404 	    if (type2 <= XML_REGEXP_SEPAR_PARA)
   2405 	        return(1);
   2406 	    return(0);
   2407         case XML_REGEXP_SEPAR_SPACE:
   2408         case XML_REGEXP_SEPAR_LINE:
   2409         case XML_REGEXP_SEPAR_PARA:
   2410 	    return(0);
   2411         case XML_REGEXP_SYMBOL:
   2412 	    if (type2 <= XML_REGEXP_SYMBOL_OTHERS)
   2413 	        return(1);
   2414 	    return(0);
   2415         case XML_REGEXP_SYMBOL_MATH:
   2416         case XML_REGEXP_SYMBOL_CURRENCY:
   2417         case XML_REGEXP_SYMBOL_MODIFIER:
   2418         case XML_REGEXP_SYMBOL_OTHERS:
   2419 	    return(0);
   2420         case XML_REGEXP_OTHER:
   2421 	    if (type2 <= XML_REGEXP_OTHER_NA)
   2422 	        return(1);
   2423 	    return(0);
   2424         case XML_REGEXP_OTHER_CONTROL:
   2425         case XML_REGEXP_OTHER_FORMAT:
   2426         case XML_REGEXP_OTHER_PRIVATE:
   2427         case XML_REGEXP_OTHER_NA:
   2428 	    return(0);
   2429 	default:
   2430 	    break;
   2431     }
   2432     return(1);
   2433 }
   2434 
   2435 /**
   2436  * xmlFAEqualAtoms:
   2437  * @atom1:  an atom
   2438  * @atom2:  an atom
   2439  * @deep: if not set only compare string pointers
   2440  *
   2441  * Compares two atoms to check whether they are the same exactly
   2442  * this is used to remove equivalent transitions
   2443  *
   2444  * Returns 1 if same and 0 otherwise
   2445  */
   2446 static int
   2447 xmlFAEqualAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
   2448     int ret = 0;
   2449 
   2450     if (atom1 == atom2)
   2451 	return(1);
   2452     if ((atom1 == NULL) || (atom2 == NULL))
   2453 	return(0);
   2454 
   2455     if (atom1->type != atom2->type)
   2456         return(0);
   2457     switch (atom1->type) {
   2458         case XML_REGEXP_EPSILON:
   2459 	    ret = 0;
   2460 	    break;
   2461         case XML_REGEXP_STRING:
   2462             if (!deep)
   2463                 ret = (atom1->valuep == atom2->valuep);
   2464             else
   2465                 ret = xmlStrEqual((xmlChar *)atom1->valuep,
   2466                                   (xmlChar *)atom2->valuep);
   2467 	    break;
   2468         case XML_REGEXP_CHARVAL:
   2469 	    ret = (atom1->codepoint == atom2->codepoint);
   2470 	    break;
   2471 	case XML_REGEXP_RANGES:
   2472 	    /* too hard to do in the general case */
   2473 	    ret = 0;
   2474 	default:
   2475 	    break;
   2476     }
   2477     return(ret);
   2478 }
   2479 
   2480 /**
   2481  * xmlFACompareAtoms:
   2482  * @atom1:  an atom
   2483  * @atom2:  an atom
   2484  * @deep: if not set only compare string pointers
   2485  *
   2486  * Compares two atoms to check whether they intersect in some ways,
   2487  * this is used by xmlFAComputesDeterminism and xmlFARecurseDeterminism only
   2488  *
   2489  * Returns 1 if yes and 0 otherwise
   2490  */
   2491 static int
   2492 xmlFACompareAtoms(xmlRegAtomPtr atom1, xmlRegAtomPtr atom2, int deep) {
   2493     int ret = 1;
   2494 
   2495     if (atom1 == atom2)
   2496 	return(1);
   2497     if ((atom1 == NULL) || (atom2 == NULL))
   2498 	return(0);
   2499 
   2500     if ((atom1->type == XML_REGEXP_ANYCHAR) ||
   2501         (atom2->type == XML_REGEXP_ANYCHAR))
   2502 	return(1);
   2503 
   2504     if (atom1->type > atom2->type) {
   2505 	xmlRegAtomPtr tmp;
   2506 	tmp = atom1;
   2507 	atom1 = atom2;
   2508 	atom2 = tmp;
   2509     }
   2510     if (atom1->type != atom2->type) {
   2511         ret = xmlFACompareAtomTypes(atom1->type, atom2->type);
   2512 	/* if they can't intersect at the type level break now */
   2513 	if (ret == 0)
   2514 	    return(0);
   2515     }
   2516     switch (atom1->type) {
   2517         case XML_REGEXP_STRING:
   2518             if (!deep)
   2519                 ret = (atom1->valuep != atom2->valuep);
   2520             else
   2521                 ret = xmlRegStrEqualWildcard((xmlChar *)atom1->valuep,
   2522                                              (xmlChar *)atom2->valuep);
   2523 	    break;
   2524         case XML_REGEXP_EPSILON:
   2525 	    goto not_determinist;
   2526         case XML_REGEXP_CHARVAL:
   2527 	    if (atom2->type == XML_REGEXP_CHARVAL) {
   2528 		ret = (atom1->codepoint == atom2->codepoint);
   2529 	    } else {
   2530 	        ret = xmlRegCheckCharacter(atom2, atom1->codepoint);
   2531 		if (ret < 0)
   2532 		    ret = 1;
   2533 	    }
   2534 	    break;
   2535         case XML_REGEXP_RANGES:
   2536 	    if (atom2->type == XML_REGEXP_RANGES) {
   2537 	        int i, j, res;
   2538 		xmlRegRangePtr r1, r2;
   2539 
   2540 		/*
   2541 		 * need to check that none of the ranges eventually matches
   2542 		 */
   2543 		for (i = 0;i < atom1->nbRanges;i++) {
   2544 		    for (j = 0;j < atom2->nbRanges;j++) {
   2545 			r1 = atom1->ranges[i];
   2546 			r2 = atom2->ranges[j];
   2547 			res = xmlFACompareRanges(r1, r2);
   2548 			if (res == 1) {
   2549 			    ret = 1;
   2550 			    goto done;
   2551 			}
   2552 		    }
   2553 		}
   2554 		ret = 0;
   2555 	    }
   2556 	    break;
   2557 	default:
   2558 	    goto not_determinist;
   2559     }
   2560 done:
   2561     if (atom1->neg != atom2->neg) {
   2562         ret = !ret;
   2563     }
   2564     if (ret == 0)
   2565         return(0);
   2566 not_determinist:
   2567     return(1);
   2568 }
   2569 
   2570 /**
   2571  * xmlFARecurseDeterminism:
   2572  * @ctxt:  a regexp parser context
   2573  *
   2574  * Check whether the associated regexp is determinist,
   2575  * should be called after xmlFAEliminateEpsilonTransitions()
   2576  *
   2577  */
   2578 static int
   2579 xmlFARecurseDeterminism(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr state,
   2580 	                 int to, xmlRegAtomPtr atom) {
   2581     int ret = 1;
   2582     int res;
   2583     int transnr, nbTrans;
   2584     xmlRegTransPtr t1;
   2585     int deep = 1;
   2586 
   2587     if (state == NULL)
   2588 	return(ret);
   2589 
   2590     if (ctxt->flags & AM_AUTOMATA_RNG)
   2591         deep = 0;
   2592 
   2593     /*
   2594      * don't recurse on transitions potentially added in the course of
   2595      * the elimination.
   2596      */
   2597     nbTrans = state->nbTrans;
   2598     for (transnr = 0;transnr < nbTrans;transnr++) {
   2599 	t1 = &(state->trans[transnr]);
   2600 	/*
   2601 	 * check transitions conflicting with the one looked at
   2602 	 */
   2603 	if (t1->atom == NULL) {
   2604 	    if (t1->to < 0)
   2605 		continue;
   2606 	    res = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
   2607 		                           to, atom);
   2608 	    if (res == 0) {
   2609 	        ret = 0;
   2610 		/* t1->nd = 1; */
   2611 	    }
   2612 	    continue;
   2613 	}
   2614 	if (t1->to != to)
   2615 	    continue;
   2616 	if (xmlFACompareAtoms(t1->atom, atom, deep)) {
   2617 	    ret = 0;
   2618 	    /* mark the transition as non-deterministic */
   2619 	    t1->nd = 1;
   2620 	}
   2621     }
   2622     return(ret);
   2623 }
   2624 
   2625 /**
   2626  * xmlFAComputesDeterminism:
   2627  * @ctxt:  a regexp parser context
   2628  *
   2629  * Check whether the associated regexp is determinist,
   2630  * should be called after xmlFAEliminateEpsilonTransitions()
   2631  *
   2632  */
   2633 static int
   2634 xmlFAComputesDeterminism(xmlRegParserCtxtPtr ctxt) {
   2635     int statenr, transnr;
   2636     xmlRegStatePtr state;
   2637     xmlRegTransPtr t1, t2, last;
   2638     int i;
   2639     int ret = 1;
   2640     int deep = 1;
   2641 
   2642 #ifdef DEBUG_REGEXP_GRAPH
   2643     printf("xmlFAComputesDeterminism\n");
   2644     xmlRegPrintCtxt(stdout, ctxt);
   2645 #endif
   2646     if (ctxt->determinist != -1)
   2647 	return(ctxt->determinist);
   2648 
   2649     if (ctxt->flags & AM_AUTOMATA_RNG)
   2650         deep = 0;
   2651 
   2652     /*
   2653      * First cleanup the automata removing cancelled transitions
   2654      */
   2655     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2656 	state = ctxt->states[statenr];
   2657 	if (state == NULL)
   2658 	    continue;
   2659 	if (state->nbTrans < 2)
   2660 	    continue;
   2661 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2662 	    t1 = &(state->trans[transnr]);
   2663 	    /*
   2664 	     * Determinism checks in case of counted or all transitions
   2665 	     * will have to be handled separately
   2666 	     */
   2667 	    if (t1->atom == NULL) {
   2668 		/* t1->nd = 1; */
   2669 		continue;
   2670 	    }
   2671 	    if (t1->to == -1) /* eliminated */
   2672 		continue;
   2673 	    for (i = 0;i < transnr;i++) {
   2674 		t2 = &(state->trans[i]);
   2675 		if (t2->to == -1) /* eliminated */
   2676 		    continue;
   2677 		if (t2->atom != NULL) {
   2678 		    if (t1->to == t2->to) {
   2679                         /*
   2680                          * Here we use deep because we want to keep the
   2681                          * transitions which indicate a conflict
   2682                          */
   2683 			if (xmlFAEqualAtoms(t1->atom, t2->atom, deep) &&
   2684                             (t1->counter == t2->counter) &&
   2685                             (t1->count == t2->count))
   2686 			    t2->to = -1; /* eliminated */
   2687 		    }
   2688 		}
   2689 	    }
   2690 	}
   2691     }
   2692 
   2693     /*
   2694      * Check for all states that there aren't 2 transitions
   2695      * with the same atom and a different target.
   2696      */
   2697     for (statenr = 0;statenr < ctxt->nbStates;statenr++) {
   2698 	state = ctxt->states[statenr];
   2699 	if (state == NULL)
   2700 	    continue;
   2701 	if (state->nbTrans < 2)
   2702 	    continue;
   2703 	last = NULL;
   2704 	for (transnr = 0;transnr < state->nbTrans;transnr++) {
   2705 	    t1 = &(state->trans[transnr]);
   2706 	    /*
   2707 	     * Determinism checks in case of counted or all transitions
   2708 	     * will have to be handled separately
   2709 	     */
   2710 	    if (t1->atom == NULL) {
   2711 		continue;
   2712 	    }
   2713 	    if (t1->to == -1) /* eliminated */
   2714 		continue;
   2715 	    for (i = 0;i < transnr;i++) {
   2716 		t2 = &(state->trans[i]);
   2717 		if (t2->to == -1) /* eliminated */
   2718 		    continue;
   2719 		if (t2->atom != NULL) {
   2720                     /*
   2721                      * But here we don't use deep because we want to
   2722                      * find transitions which indicate a conflict
   2723                      */
   2724 		    if (xmlFACompareAtoms(t1->atom, t2->atom, 1)) {
   2725 			ret = 0;
   2726 			/* mark the transitions as non-deterministic ones */
   2727 			t1->nd = 1;
   2728 			t2->nd = 1;
   2729 			last = t1;
   2730 		    }
   2731 		} else if (t1->to != -1) {
   2732 		    /*
   2733 		     * do the closure in case of remaining specific
   2734 		     * epsilon transitions like choices or all
   2735 		     */
   2736 		    ret = xmlFARecurseDeterminism(ctxt, ctxt->states[t1->to],
   2737 						   t2->to, t2->atom);
   2738 		    /* don't shortcut the computation so all non deterministic
   2739 		       transition get marked down
   2740 		    if (ret == 0)
   2741 			return(0);
   2742 		     */
   2743 		    if (ret == 0) {
   2744 			t1->nd = 1;
   2745 			/* t2->nd = 1; */
   2746 			last = t1;
   2747 		    }
   2748 		}
   2749 	    }
   2750 	    /* don't shortcut the computation so all non deterministic
   2751 	       transition get marked down
   2752 	    if (ret == 0)
   2753 		break; */
   2754 	}
   2755 
   2756 	/*
   2757 	 * mark specifically the last non-deterministic transition
   2758 	 * from a state since there is no need to set-up rollback
   2759 	 * from it
   2760 	 */
   2761 	if (last != NULL) {
   2762 	    last->nd = 2;
   2763 	}
   2764 
   2765 	/* don't shortcut the computation so all non deterministic
   2766 	   transition get marked down
   2767 	if (ret == 0)
   2768 	    break; */
   2769     }
   2770 
   2771     ctxt->determinist = ret;
   2772     return(ret);
   2773 }
   2774 
   2775 /************************************************************************
   2776  * 									*
   2777  *	Routines to check input against transition atoms		*
   2778  * 									*
   2779  ************************************************************************/
   2780 
   2781 static int
   2782 xmlRegCheckCharacterRange(xmlRegAtomType type, int codepoint, int neg,
   2783 	                  int start, int end, const xmlChar *blockName) {
   2784     int ret = 0;
   2785 
   2786     switch (type) {
   2787         case XML_REGEXP_STRING:
   2788         case XML_REGEXP_SUBREG:
   2789         case XML_REGEXP_RANGES:
   2790         case XML_REGEXP_EPSILON:
   2791 	    return(-1);
   2792         case XML_REGEXP_ANYCHAR:
   2793 	    ret = ((codepoint != '\n') && (codepoint != '\r'));
   2794 	    break;
   2795         case XML_REGEXP_CHARVAL:
   2796 	    ret = ((codepoint >= start) && (codepoint <= end));
   2797 	    break;
   2798         case XML_REGEXP_NOTSPACE:
   2799 	    neg = !neg;
   2800         case XML_REGEXP_ANYSPACE:
   2801 	    ret = ((codepoint == '\n') || (codepoint == '\r') ||
   2802 		   (codepoint == '\t') || (codepoint == ' '));
   2803 	    break;
   2804         case XML_REGEXP_NOTINITNAME:
   2805 	    neg = !neg;
   2806         case XML_REGEXP_INITNAME:
   2807 	    ret = (IS_LETTER(codepoint) ||
   2808 		   (codepoint == '_') || (codepoint == ':'));
   2809 	    break;
   2810         case XML_REGEXP_NOTNAMECHAR:
   2811 	    neg = !neg;
   2812         case XML_REGEXP_NAMECHAR:
   2813 	    ret = (IS_LETTER(codepoint) || IS_DIGIT(codepoint) ||
   2814 		   (codepoint == '.') || (codepoint == '-') ||
   2815 		   (codepoint == '_') || (codepoint == ':') ||
   2816 		   IS_COMBINING(codepoint) || IS_EXTENDER(codepoint));
   2817 	    break;
   2818         case XML_REGEXP_NOTDECIMAL:
   2819 	    neg = !neg;
   2820         case XML_REGEXP_DECIMAL:
   2821 	    ret = xmlUCSIsCatNd(codepoint);
   2822 	    break;
   2823         case XML_REGEXP_REALCHAR:
   2824 	    neg = !neg;
   2825         case XML_REGEXP_NOTREALCHAR:
   2826 	    ret = xmlUCSIsCatP(codepoint);
   2827 	    if (ret == 0)
   2828 		ret = xmlUCSIsCatZ(codepoint);
   2829 	    if (ret == 0)
   2830 		ret = xmlUCSIsCatC(codepoint);
   2831 	    break;
   2832         case XML_REGEXP_LETTER:
   2833 	    ret = xmlUCSIsCatL(codepoint);
   2834 	    break;
   2835         case XML_REGEXP_LETTER_UPPERCASE:
   2836 	    ret = xmlUCSIsCatLu(codepoint);
   2837 	    break;
   2838         case XML_REGEXP_LETTER_LOWERCASE:
   2839 	    ret = xmlUCSIsCatLl(codepoint);
   2840 	    break;
   2841         case XML_REGEXP_LETTER_TITLECASE:
   2842 	    ret = xmlUCSIsCatLt(codepoint);
   2843 	    break;
   2844         case XML_REGEXP_LETTER_MODIFIER:
   2845 	    ret = xmlUCSIsCatLm(codepoint);
   2846 	    break;
   2847         case XML_REGEXP_LETTER_OTHERS:
   2848 	    ret = xmlUCSIsCatLo(codepoint);
   2849 	    break;
   2850         case XML_REGEXP_MARK:
   2851 	    ret = xmlUCSIsCatM(codepoint);
   2852 	    break;
   2853         case XML_REGEXP_MARK_NONSPACING:
   2854 	    ret = xmlUCSIsCatMn(codepoint);
   2855 	    break;
   2856         case XML_REGEXP_MARK_SPACECOMBINING:
   2857 	    ret = xmlUCSIsCatMc(codepoint);
   2858 	    break;
   2859         case XML_REGEXP_MARK_ENCLOSING:
   2860 	    ret = xmlUCSIsCatMe(codepoint);
   2861 	    break;
   2862         case XML_REGEXP_NUMBER:
   2863 	    ret = xmlUCSIsCatN(codepoint);
   2864 	    break;
   2865         case XML_REGEXP_NUMBER_DECIMAL:
   2866 	    ret = xmlUCSIsCatNd(codepoint);
   2867 	    break;
   2868         case XML_REGEXP_NUMBER_LETTER:
   2869 	    ret = xmlUCSIsCatNl(codepoint);
   2870 	    break;
   2871         case XML_REGEXP_NUMBER_OTHERS:
   2872 	    ret = xmlUCSIsCatNo(codepoint);
   2873 	    break;
   2874         case XML_REGEXP_PUNCT:
   2875 	    ret = xmlUCSIsCatP(codepoint);
   2876 	    break;
   2877         case XML_REGEXP_PUNCT_CONNECTOR:
   2878 	    ret = xmlUCSIsCatPc(codepoint);
   2879 	    break;
   2880         case XML_REGEXP_PUNCT_DASH:
   2881 	    ret = xmlUCSIsCatPd(codepoint);
   2882 	    break;
   2883         case XML_REGEXP_PUNCT_OPEN:
   2884 	    ret = xmlUCSIsCatPs(codepoint);
   2885 	    break;
   2886         case XML_REGEXP_PUNCT_CLOSE:
   2887 	    ret = xmlUCSIsCatPe(codepoint);
   2888 	    break;
   2889         case XML_REGEXP_PUNCT_INITQUOTE:
   2890 	    ret = xmlUCSIsCatPi(codepoint);
   2891 	    break;
   2892         case XML_REGEXP_PUNCT_FINQUOTE:
   2893 	    ret = xmlUCSIsCatPf(codepoint);
   2894 	    break;
   2895         case XML_REGEXP_PUNCT_OTHERS:
   2896 	    ret = xmlUCSIsCatPo(codepoint);
   2897 	    break;
   2898         case XML_REGEXP_SEPAR:
   2899 	    ret = xmlUCSIsCatZ(codepoint);
   2900 	    break;
   2901         case XML_REGEXP_SEPAR_SPACE:
   2902 	    ret = xmlUCSIsCatZs(codepoint);
   2903 	    break;
   2904         case XML_REGEXP_SEPAR_LINE:
   2905 	    ret = xmlUCSIsCatZl(codepoint);
   2906 	    break;
   2907         case XML_REGEXP_SEPAR_PARA:
   2908 	    ret = xmlUCSIsCatZp(codepoint);
   2909 	    break;
   2910         case XML_REGEXP_SYMBOL:
   2911 	    ret = xmlUCSIsCatS(codepoint);
   2912 	    break;
   2913         case XML_REGEXP_SYMBOL_MATH:
   2914 	    ret = xmlUCSIsCatSm(codepoint);
   2915 	    break;
   2916         case XML_REGEXP_SYMBOL_CURRENCY:
   2917 	    ret = xmlUCSIsCatSc(codepoint);
   2918 	    break;
   2919         case XML_REGEXP_SYMBOL_MODIFIER:
   2920 	    ret = xmlUCSIsCatSk(codepoint);
   2921 	    break;
   2922         case XML_REGEXP_SYMBOL_OTHERS:
   2923 	    ret = xmlUCSIsCatSo(codepoint);
   2924 	    break;
   2925         case XML_REGEXP_OTHER:
   2926 	    ret = xmlUCSIsCatC(codepoint);
   2927 	    break;
   2928         case XML_REGEXP_OTHER_CONTROL:
   2929 	    ret = xmlUCSIsCatCc(codepoint);
   2930 	    break;
   2931         case XML_REGEXP_OTHER_FORMAT:
   2932 	    ret = xmlUCSIsCatCf(codepoint);
   2933 	    break;
   2934         case XML_REGEXP_OTHER_PRIVATE:
   2935 	    ret = xmlUCSIsCatCo(codepoint);
   2936 	    break;
   2937         case XML_REGEXP_OTHER_NA:
   2938 	    /* ret = xmlUCSIsCatCn(codepoint); */
   2939 	    /* Seems it doesn't exist anymore in recent Unicode releases */
   2940 	    ret = 0;
   2941 	    break;
   2942         case XML_REGEXP_BLOCK_NAME:
   2943 	    ret = xmlUCSIsBlock(codepoint, (const char *) blockName);
   2944 	    break;
   2945     }
   2946     if (neg)
   2947 	return(!ret);
   2948     return(ret);
   2949 }
   2950 
   2951 static int
   2952 xmlRegCheckCharacter(xmlRegAtomPtr atom, int codepoint) {
   2953     int i, ret = 0;
   2954     xmlRegRangePtr range;
   2955 
   2956     if ((atom == NULL) || (!IS_CHAR(codepoint)))
   2957 	return(-1);
   2958 
   2959     switch (atom->type) {
   2960         case XML_REGEXP_SUBREG:
   2961         case XML_REGEXP_EPSILON:
   2962 	    return(-1);
   2963         case XML_REGEXP_CHARVAL:
   2964             return(codepoint == atom->codepoint);
   2965         case XML_REGEXP_RANGES: {
   2966 	    int accept = 0;
   2967 
   2968 	    for (i = 0;i < atom->nbRanges;i++) {
   2969 		range = atom->ranges[i];
   2970 		if (range->neg == 2) {
   2971 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2972 						0, range->start, range->end,
   2973 						range->blockName);
   2974 		    if (ret != 0)
   2975 			return(0); /* excluded char */
   2976 		} else if (range->neg) {
   2977 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2978 						0, range->start, range->end,
   2979 						range->blockName);
   2980 		    if (ret == 0)
   2981 		        accept = 1;
   2982 		    else
   2983 		        return(0);
   2984 		} else {
   2985 		    ret = xmlRegCheckCharacterRange(range->type, codepoint,
   2986 						0, range->start, range->end,
   2987 						range->blockName);
   2988 		    if (ret != 0)
   2989 			accept = 1; /* might still be excluded */
   2990 		}
   2991 	    }
   2992 	    return(accept);
   2993 	}
   2994         case XML_REGEXP_STRING:
   2995 	    printf("TODO: XML_REGEXP_STRING\n");
   2996 	    return(-1);
   2997         case XML_REGEXP_ANYCHAR:
   2998         case XML_REGEXP_ANYSPACE:
   2999         case XML_REGEXP_NOTSPACE:
   3000         case XML_REGEXP_INITNAME:
   3001         case XML_REGEXP_NOTINITNAME:
   3002         case XML_REGEXP_NAMECHAR:
   3003         case XML_REGEXP_NOTNAMECHAR:
   3004         case XML_REGEXP_DECIMAL:
   3005         case XML_REGEXP_NOTDECIMAL:
   3006         case XML_REGEXP_REALCHAR:
   3007         case XML_REGEXP_NOTREALCHAR:
   3008         case XML_REGEXP_LETTER:
   3009         case XML_REGEXP_LETTER_UPPERCASE:
   3010         case XML_REGEXP_LETTER_LOWERCASE:
   3011         case XML_REGEXP_LETTER_TITLECASE:
   3012         case XML_REGEXP_LETTER_MODIFIER:
   3013         case XML_REGEXP_LETTER_OTHERS:
   3014         case XML_REGEXP_MARK:
   3015         case XML_REGEXP_MARK_NONSPACING:
   3016         case XML_REGEXP_MARK_SPACECOMBINING:
   3017         case XML_REGEXP_MARK_ENCLOSING:
   3018         case XML_REGEXP_NUMBER:
   3019         case XML_REGEXP_NUMBER_DECIMAL:
   3020         case XML_REGEXP_NUMBER_LETTER:
   3021         case XML_REGEXP_NUMBER_OTHERS:
   3022         case XML_REGEXP_PUNCT:
   3023         case XML_REGEXP_PUNCT_CONNECTOR:
   3024         case XML_REGEXP_PUNCT_DASH:
   3025         case XML_REGEXP_PUNCT_OPEN:
   3026         case XML_REGEXP_PUNCT_CLOSE:
   3027         case XML_REGEXP_PUNCT_INITQUOTE:
   3028         case XML_REGEXP_PUNCT_FINQUOTE:
   3029         case XML_REGEXP_PUNCT_OTHERS:
   3030         case XML_REGEXP_SEPAR:
   3031         case XML_REGEXP_SEPAR_SPACE:
   3032         case XML_REGEXP_SEPAR_LINE:
   3033         case XML_REGEXP_SEPAR_PARA:
   3034         case XML_REGEXP_SYMBOL:
   3035         case XML_REGEXP_SYMBOL_MATH:
   3036         case XML_REGEXP_SYMBOL_CURRENCY:
   3037         case XML_REGEXP_SYMBOL_MODIFIER:
   3038         case XML_REGEXP_SYMBOL_OTHERS:
   3039         case XML_REGEXP_OTHER:
   3040         case XML_REGEXP_OTHER_CONTROL:
   3041         case XML_REGEXP_OTHER_FORMAT:
   3042         case XML_REGEXP_OTHER_PRIVATE:
   3043         case XML_REGEXP_OTHER_NA:
   3044 	case XML_REGEXP_BLOCK_NAME:
   3045 	    ret = xmlRegCheckCharacterRange(atom->type, codepoint, 0, 0, 0,
   3046 		                            (const xmlChar *)atom->valuep);
   3047 	    if (atom->neg)
   3048 		ret = !ret;
   3049 	    break;
   3050     }
   3051     return(ret);
   3052 }
   3053 
   3054 /************************************************************************
   3055  * 									*
   3056  *	Saving and restoring state of an execution context		*
   3057  * 									*
   3058  ************************************************************************/
   3059 
   3060 #ifdef DEBUG_REGEXP_EXEC
   3061 static void
   3062 xmlFARegDebugExec(xmlRegExecCtxtPtr exec) {
   3063     printf("state: %d:%d:idx %d", exec->state->no, exec->transno, exec->index);
   3064     if (exec->inputStack != NULL) {
   3065 	int i;
   3066 	printf(": ");
   3067 	for (i = 0;(i < 3) && (i < exec->inputStackNr);i++)
   3068 	    printf("%s ", (const char *)
   3069 	           exec->inputStack[exec->inputStackNr - (i + 1)].value);
   3070     } else {
   3071 	printf(": %s", &(exec->inputString[exec->index]));
   3072     }
   3073     printf("\n");
   3074 }
   3075 #endif
   3076 
   3077 static void
   3078 xmlFARegExecSave(xmlRegExecCtxtPtr exec) {
   3079 #ifdef DEBUG_REGEXP_EXEC
   3080     printf("saving ");
   3081     exec->transno++;
   3082     xmlFARegDebugExec(exec);
   3083     exec->transno--;
   3084 #endif
   3085 #ifdef MAX_PUSH
   3086     if (exec->nbPush > MAX_PUSH) {
   3087         return;
   3088     }
   3089     exec->nbPush++;
   3090 #endif
   3091 
   3092     if (exec->maxRollbacks == 0) {
   3093 	exec->maxRollbacks = 4;
   3094 	exec->rollbacks = (xmlRegExecRollback *) xmlMalloc(exec->maxRollbacks *
   3095 		                             sizeof(xmlRegExecRollback));
   3096 	if (exec->rollbacks == NULL) {
   3097 	    xmlRegexpErrMemory(NULL, "saving regexp");
   3098 	    exec->maxRollbacks = 0;
   3099 	    return;
   3100 	}
   3101 	memset(exec->rollbacks, 0,
   3102 	       exec->maxRollbacks * sizeof(xmlRegExecRollback));
   3103     } else if (exec->nbRollbacks >= exec->maxRollbacks) {
   3104 	xmlRegExecRollback *tmp;
   3105 	int len = exec->maxRollbacks;
   3106 
   3107 	exec->maxRollbacks *= 2;
   3108 	tmp = (xmlRegExecRollback *) xmlRealloc(exec->rollbacks,
   3109 			exec->maxRollbacks * sizeof(xmlRegExecRollback));
   3110 	if (tmp == NULL) {
   3111 	    xmlRegexpErrMemory(NULL, "saving regexp");
   3112 	    exec->maxRollbacks /= 2;
   3113 	    return;
   3114 	}
   3115 	exec->rollbacks = tmp;
   3116 	tmp = &exec->rollbacks[len];
   3117 	memset(tmp, 0, (exec->maxRollbacks - len) * sizeof(xmlRegExecRollback));
   3118     }
   3119     exec->rollbacks[exec->nbRollbacks].state = exec->state;
   3120     exec->rollbacks[exec->nbRollbacks].index = exec->index;
   3121     exec->rollbacks[exec->nbRollbacks].nextbranch = exec->transno + 1;
   3122     if (exec->comp->nbCounters > 0) {
   3123 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3124 	    exec->rollbacks[exec->nbRollbacks].counts = (int *)
   3125 		xmlMalloc(exec->comp->nbCounters * sizeof(int));
   3126 	    if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3127 		xmlRegexpErrMemory(NULL, "saving regexp");
   3128 		exec->status = -5;
   3129 		return;
   3130 	    }
   3131 	}
   3132 	memcpy(exec->rollbacks[exec->nbRollbacks].counts, exec->counts,
   3133 	       exec->comp->nbCounters * sizeof(int));
   3134     }
   3135     exec->nbRollbacks++;
   3136 }
   3137 
   3138 static void
   3139 xmlFARegExecRollBack(xmlRegExecCtxtPtr exec) {
   3140     if (exec->nbRollbacks <= 0) {
   3141 	exec->status = -1;
   3142 #ifdef DEBUG_REGEXP_EXEC
   3143 	printf("rollback failed on empty stack\n");
   3144 #endif
   3145 	return;
   3146     }
   3147     exec->nbRollbacks--;
   3148     exec->state = exec->rollbacks[exec->nbRollbacks].state;
   3149     exec->index = exec->rollbacks[exec->nbRollbacks].index;
   3150     exec->transno = exec->rollbacks[exec->nbRollbacks].nextbranch;
   3151     if (exec->comp->nbCounters > 0) {
   3152 	if (exec->rollbacks[exec->nbRollbacks].counts == NULL) {
   3153 	    fprintf(stderr, "exec save: allocation failed");
   3154 	    exec->status = -6;
   3155 	    return;
   3156 	}
   3157 	memcpy(exec->counts, exec->rollbacks[exec->nbRollbacks].counts,
   3158 	       exec->comp->nbCounters * sizeof(int));
   3159     }
   3160 
   3161 #ifdef DEBUG_REGEXP_EXEC
   3162     printf("restored ");
   3163     xmlFARegDebugExec(exec);
   3164 #endif
   3165 }
   3166 
   3167 /************************************************************************
   3168  * 									*
   3169  *	Verifier, running an input against a compiled regexp		*
   3170  * 									*
   3171  ************************************************************************/
   3172 
   3173 static int
   3174 xmlFARegExec(xmlRegexpPtr comp, const xmlChar *content) {
   3175     xmlRegExecCtxt execval;
   3176     xmlRegExecCtxtPtr exec = &execval;
   3177     int ret, codepoint = 0, len, deter;
   3178 
   3179     exec->inputString = content;
   3180     exec->index = 0;
   3181     exec->nbPush = 0;
   3182     exec->determinist = 1;
   3183     exec->maxRollbacks = 0;
   3184     exec->nbRollbacks = 0;
   3185     exec->rollbacks = NULL;
   3186     exec->status = 0;
   3187     exec->comp = comp;
   3188     exec->state = comp->states[0];
   3189     exec->transno = 0;
   3190     exec->transcount = 0;
   3191     exec->inputStack = NULL;
   3192     exec->inputStackMax = 0;
   3193     if (comp->nbCounters > 0) {
   3194 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int));
   3195 	if (exec->counts == NULL) {
   3196 	    xmlRegexpErrMemory(NULL, "running regexp");
   3197 	    return(-1);
   3198 	}
   3199         memset(exec->counts, 0, comp->nbCounters * sizeof(int));
   3200     } else
   3201 	exec->counts = NULL;
   3202     while ((exec->status == 0) &&
   3203 	   ((exec->inputString[exec->index] != 0) ||
   3204 	    ((exec->state != NULL) &&
   3205 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
   3206 	xmlRegTransPtr trans;
   3207 	xmlRegAtomPtr atom;
   3208 
   3209 	/*
   3210 	 * If end of input on non-terminal state, rollback, however we may
   3211 	 * still have epsilon like transition for counted transitions
   3212 	 * on counters, in that case don't break too early.  Additionally,
   3213 	 * if we are working on a range like "AB{0,2}", where B is not present,
   3214 	 * we don't want to break.
   3215 	 */
   3216 	len = 1;
   3217 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL)) {
   3218 	    /*
   3219 	     * if there is a transition, we must check if
   3220 	     *  atom allows minOccurs of 0
   3221 	     */
   3222 	    if (exec->transno < exec->state->nbTrans) {
   3223 	        trans = &exec->state->trans[exec->transno];
   3224 		if (trans->to >=0) {
   3225 		    atom = trans->atom;
   3226 		    if (!((atom->min == 0) && (atom->max > 0)))
   3227 		        goto rollback;
   3228 		}
   3229 	    } else
   3230 	        goto rollback;
   3231 	}
   3232 
   3233 	exec->transcount = 0;
   3234 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   3235 	    trans = &exec->state->trans[exec->transno];
   3236 	    if (trans->to < 0)
   3237 		continue;
   3238 	    atom = trans->atom;
   3239 	    ret = 0;
   3240 	    deter = 1;
   3241 	    if (trans->count >= 0) {
   3242 		int count;
   3243 		xmlRegCounterPtr counter;
   3244 
   3245 		if (exec->counts == NULL) {
   3246 		    exec->status = -1;
   3247 		    goto error;
   3248 		}
   3249 		/*
   3250 		 * A counted transition.
   3251 		 */
   3252 
   3253 		count = exec->counts[trans->count];
   3254 		counter = &exec->comp->counters[trans->count];
   3255 #ifdef DEBUG_REGEXP_EXEC
   3256 		printf("testing count %d: val %d, min %d, max %d\n",
   3257 		       trans->count, count, counter->min,  counter->max);
   3258 #endif
   3259 		ret = ((count >= counter->min) && (count <= counter->max));
   3260 		if ((ret) && (counter->min != counter->max))
   3261 		    deter = 0;
   3262 	    } else if (atom == NULL) {
   3263 		fprintf(stderr, "epsilon transition left at runtime\n");
   3264 		exec->status = -2;
   3265 		break;
   3266 	    } else if (exec->inputString[exec->index] != 0) {
   3267                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
   3268 		ret = xmlRegCheckCharacter(atom, codepoint);
   3269 		if ((ret == 1) && (atom->min >= 0) && (atom->max > 0)) {
   3270 		    xmlRegStatePtr to = comp->states[trans->to];
   3271 
   3272 		    /*
   3273 		     * this is a multiple input sequence
   3274 		     * If there is a counter associated increment it now.
   3275 		     * before potentially saving and rollback
   3276 		     * do not increment if the counter is already over the
   3277 		     * maximum limit in which case get to next transition
   3278 		     */
   3279 		    if (trans->counter >= 0) {
   3280 			xmlRegCounterPtr counter;
   3281 
   3282 			if ((exec->counts == NULL) ||
   3283 			    (exec->comp == NULL) ||
   3284 			    (exec->comp->counters == NULL)) {
   3285 			    exec->status = -1;
   3286 			    goto error;
   3287 			}
   3288 			counter = &exec->comp->counters[trans->counter];
   3289 			if (exec->counts[trans->counter] >= counter->max)
   3290 			    continue; /* for loop on transitions */
   3291 
   3292 #ifdef DEBUG_REGEXP_EXEC
   3293 			printf("Increasing count %d\n", trans->counter);
   3294 #endif
   3295 			exec->counts[trans->counter]++;
   3296 		    }
   3297 		    if (exec->state->nbTrans > exec->transno + 1) {
   3298 			xmlFARegExecSave(exec);
   3299 		    }
   3300 		    exec->transcount = 1;
   3301 		    do {
   3302 			/*
   3303 			 * Try to progress as much as possible on the input
   3304 			 */
   3305 			if (exec->transcount == atom->max) {
   3306 			    break;
   3307 			}
   3308 			exec->index += len;
   3309 			/*
   3310 			 * End of input: stop here
   3311 			 */
   3312 			if (exec->inputString[exec->index] == 0) {
   3313 			    exec->index -= len;
   3314 			    break;
   3315 			}
   3316 			if (exec->transcount >= atom->min) {
   3317 			    int transno = exec->transno;
   3318 			    xmlRegStatePtr state = exec->state;
   3319 
   3320 			    /*
   3321 			     * The transition is acceptable save it
   3322 			     */
   3323 			    exec->transno = -1; /* trick */
   3324 			    exec->state = to;
   3325 			    xmlFARegExecSave(exec);
   3326 			    exec->transno = transno;
   3327 			    exec->state = state;
   3328 			}
   3329 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
   3330 				              len);
   3331 			ret = xmlRegCheckCharacter(atom, codepoint);
   3332 			exec->transcount++;
   3333 		    } while (ret == 1);
   3334 		    if (exec->transcount < atom->min)
   3335 			ret = 0;
   3336 
   3337 		    /*
   3338 		     * If the last check failed but one transition was found
   3339 		     * possible, rollback
   3340 		     */
   3341 		    if (ret < 0)
   3342 			ret = 0;
   3343 		    if (ret == 0) {
   3344 			goto rollback;
   3345 		    }
   3346 		    if (trans->counter >= 0) {
   3347 			if (exec->counts == NULL) {
   3348 			    exec->status = -1;
   3349 			    goto error;
   3350 			}
   3351 #ifdef DEBUG_REGEXP_EXEC
   3352 			printf("Decreasing count %d\n", trans->counter);
   3353 #endif
   3354 			exec->counts[trans->counter]--;
   3355 		    }
   3356 		} else if ((ret == 0) && (atom->min == 0) && (atom->max > 0)) {
   3357 		    /*
   3358 		     * we don't match on the codepoint, but minOccurs of 0
   3359 		     * says that's ok.  Setting len to 0 inhibits stepping
   3360 		     * over the codepoint.
   3361 		     */
   3362 		    exec->transcount = 1;
   3363 		    len = 0;
   3364 		    ret = 1;
   3365 		}
   3366 	    } else if ((atom->min == 0) && (atom->max > 0)) {
   3367 	        /* another spot to match when minOccurs is 0 */
   3368 		exec->transcount = 1;
   3369 		len = 0;
   3370 		ret = 1;
   3371 	    }
   3372 	    if (ret == 1) {
   3373 		if ((trans->nd == 1) ||
   3374 		    ((trans->count >= 0) && (deter == 0) &&
   3375 		     (exec->state->nbTrans > exec->transno + 1))) {
   3376 #ifdef DEBUG_REGEXP_EXEC
   3377 		    if (trans->nd == 1)
   3378 		        printf("Saving on nd transition atom %d for %c at %d\n",
   3379 			       trans->atom->no, codepoint, exec->index);
   3380 		    else
   3381 		        printf("Saving on counted transition count %d for %c at %d\n",
   3382 			       trans->count, codepoint, exec->index);
   3383 #endif
   3384 		    xmlFARegExecSave(exec);
   3385 		}
   3386 		if (trans->counter >= 0) {
   3387 		    xmlRegCounterPtr counter;
   3388 
   3389                     /* make sure we don't go over the counter maximum value */
   3390 		    if ((exec->counts == NULL) ||
   3391 			(exec->comp == NULL) ||
   3392 			(exec->comp->counters == NULL)) {
   3393 			exec->status = -1;
   3394 			goto error;
   3395 		    }
   3396 		    counter = &exec->comp->counters[trans->counter];
   3397 		    if (exec->counts[trans->counter] >= counter->max)
   3398 			continue; /* for loop on transitions */
   3399 #ifdef DEBUG_REGEXP_EXEC
   3400 		    printf("Increasing count %d\n", trans->counter);
   3401 #endif
   3402 		    exec->counts[trans->counter]++;
   3403 		}
   3404 		if ((trans->count >= 0) &&
   3405 		    (trans->count < REGEXP_ALL_COUNTER)) {
   3406 		    if (exec->counts == NULL) {
   3407 		        exec->status = -1;
   3408 			goto error;
   3409 		    }
   3410 #ifdef DEBUG_REGEXP_EXEC
   3411 		    printf("resetting count %d on transition\n",
   3412 		           trans->count);
   3413 #endif
   3414 		    exec->counts[trans->count] = 0;
   3415 		}
   3416 #ifdef DEBUG_REGEXP_EXEC
   3417 		printf("entering state %d\n", trans->to);
   3418 #endif
   3419 		exec->state = comp->states[trans->to];
   3420 		exec->transno = 0;
   3421 		if (trans->atom != NULL) {
   3422 		    exec->index += len;
   3423 		}
   3424 		goto progress;
   3425 	    } else if (ret < 0) {
   3426 		exec->status = -4;
   3427 		break;
   3428 	    }
   3429 	}
   3430 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   3431 rollback:
   3432 	    /*
   3433 	     * Failed to find a way out
   3434 	     */
   3435 	    exec->determinist = 0;
   3436 #ifdef DEBUG_REGEXP_EXEC
   3437 	    printf("rollback from state %d on %d:%c\n", exec->state->no,
   3438 	           codepoint,codepoint);
   3439 #endif
   3440 	    xmlFARegExecRollBack(exec);
   3441 	}
   3442 progress:
   3443 	continue;
   3444     }
   3445 error:
   3446     if (exec->rollbacks != NULL) {
   3447 	if (exec->counts != NULL) {
   3448 	    int i;
   3449 
   3450 	    for (i = 0;i < exec->maxRollbacks;i++)
   3451 		if (exec->rollbacks[i].counts != NULL)
   3452 		    xmlFree(exec->rollbacks[i].counts);
   3453 	}
   3454 	xmlFree(exec->rollbacks);
   3455     }
   3456     if (exec->counts != NULL)
   3457 	xmlFree(exec->counts);
   3458     if (exec->status == 0)
   3459 	return(1);
   3460     if (exec->status == -1) {
   3461 	if (exec->nbPush > MAX_PUSH)
   3462 	    return(-1);
   3463 	return(0);
   3464     }
   3465     return(exec->status);
   3466 }
   3467 
   3468 /************************************************************************
   3469  * 									*
   3470  *	Progressive interface to the verifier one atom at a time	*
   3471  * 									*
   3472  ************************************************************************/
   3473 #ifdef DEBUG_ERR
   3474 static void testerr(xmlRegExecCtxtPtr exec);
   3475 #endif
   3476 
   3477 /**
   3478  * xmlRegNewExecCtxt:
   3479  * @comp: a precompiled regular expression
   3480  * @callback: a callback function used for handling progresses in the
   3481  *            automata matching phase
   3482  * @data: the context data associated to the callback in this context
   3483  *
   3484  * Build a context used for progressive evaluation of a regexp.
   3485  *
   3486  * Returns the new context
   3487  */
   3488 xmlRegExecCtxtPtr
   3489 xmlRegNewExecCtxt(xmlRegexpPtr comp, xmlRegExecCallbacks callback, void *data) {
   3490     xmlRegExecCtxtPtr exec;
   3491 
   3492     if (comp == NULL)
   3493 	return(NULL);
   3494     if ((comp->compact == NULL) && (comp->states == NULL))
   3495         return(NULL);
   3496     exec = (xmlRegExecCtxtPtr) xmlMalloc(sizeof(xmlRegExecCtxt));
   3497     if (exec == NULL) {
   3498 	xmlRegexpErrMemory(NULL, "creating execution context");
   3499 	return(NULL);
   3500     }
   3501     memset(exec, 0, sizeof(xmlRegExecCtxt));
   3502     exec->inputString = NULL;
   3503     exec->index = 0;
   3504     exec->determinist = 1;
   3505     exec->maxRollbacks = 0;
   3506     exec->nbRollbacks = 0;
   3507     exec->rollbacks = NULL;
   3508     exec->status = 0;
   3509     exec->comp = comp;
   3510     if (comp->compact == NULL)
   3511 	exec->state = comp->states[0];
   3512     exec->transno = 0;
   3513     exec->transcount = 0;
   3514     exec->callback = callback;
   3515     exec->data = data;
   3516     if (comp->nbCounters > 0) {
   3517         /*
   3518 	 * For error handling, exec->counts is allocated twice the size
   3519 	 * the second half is used to store the data in case of rollback
   3520 	 */
   3521 	exec->counts = (int *) xmlMalloc(comp->nbCounters * sizeof(int)
   3522 	                                 * 2);
   3523 	if (exec->counts == NULL) {
   3524 	    xmlRegexpErrMemory(NULL, "creating execution context");
   3525 	    xmlFree(exec);
   3526 	    return(NULL);
   3527 	}
   3528         memset(exec->counts, 0, comp->nbCounters * sizeof(int) * 2);
   3529 	exec->errCounts = &exec->counts[comp->nbCounters];
   3530     } else {
   3531 	exec->counts = NULL;
   3532 	exec->errCounts = NULL;
   3533     }
   3534     exec->inputStackMax = 0;
   3535     exec->inputStackNr = 0;
   3536     exec->inputStack = NULL;
   3537     exec->errStateNo = -1;
   3538     exec->errString = NULL;
   3539     exec->nbPush = 0;
   3540     return(exec);
   3541 }
   3542 
   3543 /**
   3544  * xmlRegFreeExecCtxt:
   3545  * @exec: a regular expression evaulation context
   3546  *
   3547  * Free the structures associated to a regular expression evaulation context.
   3548  */
   3549 void
   3550 xmlRegFreeExecCtxt(xmlRegExecCtxtPtr exec) {
   3551     if (exec == NULL)
   3552 	return;
   3553 
   3554     if (exec->rollbacks != NULL) {
   3555 	if (exec->counts != NULL) {
   3556 	    int i;
   3557 
   3558 	    for (i = 0;i < exec->maxRollbacks;i++)
   3559 		if (exec->rollbacks[i].counts != NULL)
   3560 		    xmlFree(exec->rollbacks[i].counts);
   3561 	}
   3562 	xmlFree(exec->rollbacks);
   3563     }
   3564     if (exec->counts != NULL)
   3565 	xmlFree(exec->counts);
   3566     if (exec->inputStack != NULL) {
   3567 	int i;
   3568 
   3569 	for (i = 0;i < exec->inputStackNr;i++) {
   3570 	    if (exec->inputStack[i].value != NULL)
   3571 		xmlFree(exec->inputStack[i].value);
   3572 	}
   3573 	xmlFree(exec->inputStack);
   3574     }
   3575     if (exec->errString != NULL)
   3576         xmlFree(exec->errString);
   3577     xmlFree(exec);
   3578 }
   3579 
   3580 static void
   3581 xmlFARegExecSaveInputString(xmlRegExecCtxtPtr exec, const xmlChar *value,
   3582 	                    void *data) {
   3583 #ifdef DEBUG_PUSH
   3584     printf("saving value: %d:%s\n", exec->inputStackNr, value);
   3585 #endif
   3586     if (exec->inputStackMax == 0) {
   3587 	exec->inputStackMax = 4;
   3588 	exec->inputStack = (xmlRegInputTokenPtr)
   3589 	    xmlMalloc(exec->inputStackMax * sizeof(xmlRegInputToken));
   3590 	if (exec->inputStack == NULL) {
   3591 	    xmlRegexpErrMemory(NULL, "pushing input string");
   3592 	    exec->inputStackMax = 0;
   3593 	    return;
   3594 	}
   3595     } else if (exec->inputStackNr + 1 >= exec->inputStackMax) {
   3596 	xmlRegInputTokenPtr tmp;
   3597 
   3598 	exec->inputStackMax *= 2;
   3599 	tmp = (xmlRegInputTokenPtr) xmlRealloc(exec->inputStack,
   3600 			exec->inputStackMax * sizeof(xmlRegInputToken));
   3601 	if (tmp == NULL) {
   3602 	    xmlRegexpErrMemory(NULL, "pushing input string");
   3603 	    exec->inputStackMax /= 2;
   3604 	    return;
   3605 	}
   3606 	exec->inputStack = tmp;
   3607     }
   3608     exec->inputStack[exec->inputStackNr].value = xmlStrdup(value);
   3609     exec->inputStack[exec->inputStackNr].data = data;
   3610     exec->inputStackNr++;
   3611     exec->inputStack[exec->inputStackNr].value = NULL;
   3612     exec->inputStack[exec->inputStackNr].data = NULL;
   3613 }
   3614 
   3615 /**
   3616  * xmlRegStrEqualWildcard:
   3617  * @expStr:  the string to be evaluated
   3618  * @valStr:  the validation string
   3619  *
   3620  * Checks if both strings are equal or have the same content. "*"
   3621  * can be used as a wildcard in @valStr; "|" is used as a seperator of
   3622  * substrings in both @expStr and @valStr.
   3623  *
   3624  * Returns 1 if the comparison is satisfied and the number of substrings
   3625  * is equal, 0 otherwise.
   3626  */
   3627 
   3628 static int
   3629 xmlRegStrEqualWildcard(const xmlChar *expStr, const xmlChar *valStr) {
   3630     if (expStr == valStr) return(1);
   3631     if (expStr == NULL) return(0);
   3632     if (valStr == NULL) return(0);
   3633     do {
   3634 	/*
   3635 	* Eval if we have a wildcard for the current item.
   3636 	*/
   3637         if (*expStr != *valStr) {
   3638 	    /* if one of them starts with a wildcard make valStr be it */
   3639 	    if (*valStr == '*') {
   3640 	        const xmlChar *tmp;
   3641 
   3642 		tmp = valStr;
   3643 		valStr = expStr;
   3644 		expStr = tmp;
   3645 	    }
   3646 	    if ((*valStr != 0) && (*expStr != 0) && (*expStr++ == '*')) {
   3647 		do {
   3648 		    if (*valStr == XML_REG_STRING_SEPARATOR)
   3649 			break;
   3650 		    valStr++;
   3651 		} while (*valStr != 0);
   3652 		continue;
   3653 	    } else
   3654 		return(0);
   3655 	}
   3656 	expStr++;
   3657 	valStr++;
   3658     } while (*valStr != 0);
   3659     if (*expStr != 0)
   3660 	return (0);
   3661     else
   3662 	return (1);
   3663 }
   3664 
   3665 /**
   3666  * xmlRegCompactPushString:
   3667  * @exec: a regexp execution context
   3668  * @comp:  the precompiled exec with a compact table
   3669  * @value: a string token input
   3670  * @data: data associated to the token to reuse in callbacks
   3671  *
   3672  * Push one input token in the execution context
   3673  *
   3674  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   3675  *     a negative value in case of error.
   3676  */
   3677 static int
   3678 xmlRegCompactPushString(xmlRegExecCtxtPtr exec,
   3679 	                xmlRegexpPtr comp,
   3680 	                const xmlChar *value,
   3681 	                void *data) {
   3682     int state = exec->index;
   3683     int i, target;
   3684 
   3685     if ((comp == NULL) || (comp->compact == NULL) || (comp->stringMap == NULL))
   3686 	return(-1);
   3687 
   3688     if (value == NULL) {
   3689 	/*
   3690 	 * are we at a final state ?
   3691 	 */
   3692 	if (comp->compact[state * (comp->nbstrings + 1)] ==
   3693             XML_REGEXP_FINAL_STATE)
   3694 	    return(1);
   3695 	return(0);
   3696     }
   3697 
   3698 #ifdef DEBUG_PUSH
   3699     printf("value pushed: %s\n", value);
   3700 #endif
   3701 
   3702     /*
   3703      * Examine all outside transitions from current state
   3704      */
   3705     for (i = 0;i < comp->nbstrings;i++) {
   3706 	target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   3707 	if ((target > 0) && (target <= comp->nbstates)) {
   3708 	    target--; /* to avoid 0 */
   3709 	    if (xmlRegStrEqualWildcard(comp->stringMap[i], value)) {
   3710 		exec->index = target;
   3711 		if ((exec->callback != NULL) && (comp->transdata != NULL)) {
   3712 		    exec->callback(exec->data, value,
   3713 			  comp->transdata[state * comp->nbstrings + i], data);
   3714 		}
   3715 #ifdef DEBUG_PUSH
   3716 		printf("entering state %d\n", target);
   3717 #endif
   3718 		if (comp->compact[target * (comp->nbstrings + 1)] ==
   3719 		    XML_REGEXP_SINK_STATE)
   3720 		    goto error;
   3721 
   3722 		if (comp->compact[target * (comp->nbstrings + 1)] ==
   3723 		    XML_REGEXP_FINAL_STATE)
   3724 		    return(1);
   3725 		return(0);
   3726 	    }
   3727 	}
   3728     }
   3729     /*
   3730      * Failed to find an exit transition out from current state for the
   3731      * current token
   3732      */
   3733 #ifdef DEBUG_PUSH
   3734     printf("failed to find a transition for %s on state %d\n", value, state);
   3735 #endif
   3736 error:
   3737     if (exec->errString != NULL)
   3738         xmlFree(exec->errString);
   3739     exec->errString = xmlStrdup(value);
   3740     exec->errStateNo = state;
   3741     exec->status = -1;
   3742 #ifdef DEBUG_ERR
   3743     testerr(exec);
   3744 #endif
   3745     return(-1);
   3746 }
   3747 
   3748 /**
   3749  * xmlRegExecPushStringInternal:
   3750  * @exec: a regexp execution context or NULL to indicate the end
   3751  * @value: a string token input
   3752  * @data: data associated to the token to reuse in callbacks
   3753  * @compound: value was assembled from 2 strings
   3754  *
   3755  * Push one input token in the execution context
   3756  *
   3757  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   3758  *     a negative value in case of error.
   3759  */
   3760 static int
   3761 xmlRegExecPushStringInternal(xmlRegExecCtxtPtr exec, const xmlChar *value,
   3762 	                     void *data, int compound) {
   3763     xmlRegTransPtr trans;
   3764     xmlRegAtomPtr atom;
   3765     int ret;
   3766     int final = 0;
   3767     int progress = 1;
   3768 
   3769     if (exec == NULL)
   3770 	return(-1);
   3771     if (exec->comp == NULL)
   3772 	return(-1);
   3773     if (exec->status != 0)
   3774 	return(exec->status);
   3775 
   3776     if (exec->comp->compact != NULL)
   3777 	return(xmlRegCompactPushString(exec, exec->comp, value, data));
   3778 
   3779     if (value == NULL) {
   3780         if (exec->state->type == XML_REGEXP_FINAL_STATE)
   3781 	    return(1);
   3782 	final = 1;
   3783     }
   3784 
   3785 #ifdef DEBUG_PUSH
   3786     printf("value pushed: %s\n", value);
   3787 #endif
   3788     /*
   3789      * If we have an active rollback stack push the new value there
   3790      * and get back to where we were left
   3791      */
   3792     if ((value != NULL) && (exec->inputStackNr > 0)) {
   3793 	xmlFARegExecSaveInputString(exec, value, data);
   3794 	value = exec->inputStack[exec->index].value;
   3795 	data = exec->inputStack[exec->index].data;
   3796 #ifdef DEBUG_PUSH
   3797 	printf("value loaded: %s\n", value);
   3798 #endif
   3799     }
   3800 
   3801     while ((exec->status == 0) &&
   3802 	   ((value != NULL) ||
   3803 	    ((final == 1) &&
   3804 	     (exec->state->type != XML_REGEXP_FINAL_STATE)))) {
   3805 
   3806 	/*
   3807 	 * End of input on non-terminal state, rollback, however we may
   3808 	 * still have epsilon like transition for counted transitions
   3809 	 * on counters, in that case don't break too early.
   3810 	 */
   3811 	if ((value == NULL) && (exec->counts == NULL))
   3812 	    goto rollback;
   3813 
   3814 	exec->transcount = 0;
   3815 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   3816 	    trans = &exec->state->trans[exec->transno];
   3817 	    if (trans->to < 0)
   3818 		continue;
   3819 	    atom = trans->atom;
   3820 	    ret = 0;
   3821 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   3822 		int i;
   3823 		int count;
   3824 		xmlRegTransPtr t;
   3825 		xmlRegCounterPtr counter;
   3826 
   3827 		ret = 0;
   3828 
   3829 #ifdef DEBUG_PUSH
   3830 		printf("testing all lax %d\n", trans->count);
   3831 #endif
   3832 		/*
   3833 		 * Check all counted transitions from the current state
   3834 		 */
   3835 		if ((value == NULL) && (final)) {
   3836 		    ret = 1;
   3837 		} else if (value != NULL) {
   3838 		    for (i = 0;i < exec->state->nbTrans;i++) {
   3839 			t = &exec->state->trans[i];
   3840 			if ((t->counter < 0) || (t == trans))
   3841 			    continue;
   3842 			counter = &exec->comp->counters[t->counter];
   3843 			count = exec->counts[t->counter];
   3844 			if ((count < counter->max) &&
   3845 		            (t->atom != NULL) &&
   3846 			    (xmlStrEqual(value, t->atom->valuep))) {
   3847 			    ret = 0;
   3848 			    break;
   3849 			}
   3850 			if ((count >= counter->min) &&
   3851 			    (count < counter->max) &&
   3852 			    (t->atom != NULL) &&
   3853 			    (xmlStrEqual(value, t->atom->valuep))) {
   3854 			    ret = 1;
   3855 			    break;
   3856 			}
   3857 		    }
   3858 		}
   3859 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   3860 		int i;
   3861 		int count;
   3862 		xmlRegTransPtr t;
   3863 		xmlRegCounterPtr counter;
   3864 
   3865 		ret = 1;
   3866 
   3867 #ifdef DEBUG_PUSH
   3868 		printf("testing all %d\n", trans->count);
   3869 #endif
   3870 		/*
   3871 		 * Check all counted transitions from the current state
   3872 		 */
   3873 		for (i = 0;i < exec->state->nbTrans;i++) {
   3874                     t = &exec->state->trans[i];
   3875 		    if ((t->counter < 0) || (t == trans))
   3876 			continue;
   3877                     counter = &exec->comp->counters[t->counter];
   3878 		    count = exec->counts[t->counter];
   3879 		    if ((count < counter->min) || (count > counter->max)) {
   3880 			ret = 0;
   3881 			break;
   3882 		    }
   3883 		}
   3884 	    } else if (trans->count >= 0) {
   3885 		int count;
   3886 		xmlRegCounterPtr counter;
   3887 
   3888 		/*
   3889 		 * A counted transition.
   3890 		 */
   3891 
   3892 		count = exec->counts[trans->count];
   3893 		counter = &exec->comp->counters[trans->count];
   3894 #ifdef DEBUG_PUSH
   3895 		printf("testing count %d: val %d, min %d, max %d\n",
   3896 		       trans->count, count, counter->min,  counter->max);
   3897 #endif
   3898 		ret = ((count >= counter->min) && (count <= counter->max));
   3899 	    } else if (atom == NULL) {
   3900 		fprintf(stderr, "epsilon transition left at runtime\n");
   3901 		exec->status = -2;
   3902 		break;
   3903 	    } else if (value != NULL) {
   3904 		ret = xmlRegStrEqualWildcard(atom->valuep, value);
   3905 		if (atom->neg) {
   3906 		    ret = !ret;
   3907 		    if (!compound)
   3908 		        ret = 0;
   3909 		}
   3910 		if ((ret == 1) && (trans->counter >= 0)) {
   3911 		    xmlRegCounterPtr counter;
   3912 		    int count;
   3913 
   3914 		    count = exec->counts[trans->counter];
   3915 		    counter = &exec->comp->counters[trans->counter];
   3916 		    if (count >= counter->max)
   3917 			ret = 0;
   3918 		}
   3919 
   3920 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
   3921 		    xmlRegStatePtr to = exec->comp->states[trans->to];
   3922 
   3923 		    /*
   3924 		     * this is a multiple input sequence
   3925 		     */
   3926 		    if (exec->state->nbTrans > exec->transno + 1) {
   3927 			if (exec->inputStackNr <= 0) {
   3928 			    xmlFARegExecSaveInputString(exec, value, data);
   3929 			}
   3930 			xmlFARegExecSave(exec);
   3931 		    }
   3932 		    exec->transcount = 1;
   3933 		    do {
   3934 			/*
   3935 			 * Try to progress as much as possible on the input
   3936 			 */
   3937 			if (exec->transcount == atom->max) {
   3938 			    break;
   3939 			}
   3940 			exec->index++;
   3941 			value = exec->inputStack[exec->index].value;
   3942 			data = exec->inputStack[exec->index].data;
   3943 #ifdef DEBUG_PUSH
   3944 			printf("value loaded: %s\n", value);
   3945 #endif
   3946 
   3947 			/*
   3948 			 * End of input: stop here
   3949 			 */
   3950 			if (value == NULL) {
   3951 			    exec->index --;
   3952 			    break;
   3953 			}
   3954 			if (exec->transcount >= atom->min) {
   3955 			    int transno = exec->transno;
   3956 			    xmlRegStatePtr state = exec->state;
   3957 
   3958 			    /*
   3959 			     * The transition is acceptable save it
   3960 			     */
   3961 			    exec->transno = -1; /* trick */
   3962 			    exec->state = to;
   3963 			    if (exec->inputStackNr <= 0) {
   3964 				xmlFARegExecSaveInputString(exec, value, data);
   3965 			    }
   3966 			    xmlFARegExecSave(exec);
   3967 			    exec->transno = transno;
   3968 			    exec->state = state;
   3969 			}
   3970 			ret = xmlStrEqual(value, atom->valuep);
   3971 			exec->transcount++;
   3972 		    } while (ret == 1);
   3973 		    if (exec->transcount < atom->min)
   3974 			ret = 0;
   3975 
   3976 		    /*
   3977 		     * If the last check failed but one transition was found
   3978 		     * possible, rollback
   3979 		     */
   3980 		    if (ret < 0)
   3981 			ret = 0;
   3982 		    if (ret == 0) {
   3983 			goto rollback;
   3984 		    }
   3985 		}
   3986 	    }
   3987 	    if (ret == 1) {
   3988 		if ((exec->callback != NULL) && (atom != NULL) &&
   3989 			(data != NULL)) {
   3990 		    exec->callback(exec->data, atom->valuep,
   3991 			           atom->data, data);
   3992 		}
   3993 		if (exec->state->nbTrans > exec->transno + 1) {
   3994 		    if (exec->inputStackNr <= 0) {
   3995 			xmlFARegExecSaveInputString(exec, value, data);
   3996 		    }
   3997 		    xmlFARegExecSave(exec);
   3998 		}
   3999 		if (trans->counter >= 0) {
   4000 #ifdef DEBUG_PUSH
   4001 		    printf("Increasing count %d\n", trans->counter);
   4002 #endif
   4003 		    exec->counts[trans->counter]++;
   4004 		}
   4005 		if ((trans->count >= 0) &&
   4006 		    (trans->count < REGEXP_ALL_COUNTER)) {
   4007 #ifdef DEBUG_REGEXP_EXEC
   4008 		    printf("resetting count %d on transition\n",
   4009 		           trans->count);
   4010 #endif
   4011 		    exec->counts[trans->count] = 0;
   4012 		}
   4013 #ifdef DEBUG_PUSH
   4014 		printf("entering state %d\n", trans->to);
   4015 #endif
   4016                 if ((exec->comp->states[trans->to] != NULL) &&
   4017 		    (exec->comp->states[trans->to]->type ==
   4018 		     XML_REGEXP_SINK_STATE)) {
   4019 		    /*
   4020 		     * entering a sink state, save the current state as error
   4021 		     * state.
   4022 		     */
   4023 		    if (exec->errString != NULL)
   4024 			xmlFree(exec->errString);
   4025 		    exec->errString = xmlStrdup(value);
   4026 		    exec->errState = exec->state;
   4027 		    memcpy(exec->errCounts, exec->counts,
   4028 			   exec->comp->nbCounters * sizeof(int));
   4029 		}
   4030 		exec->state = exec->comp->states[trans->to];
   4031 		exec->transno = 0;
   4032 		if (trans->atom != NULL) {
   4033 		    if (exec->inputStack != NULL) {
   4034 			exec->index++;
   4035 			if (exec->index < exec->inputStackNr) {
   4036 			    value = exec->inputStack[exec->index].value;
   4037 			    data = exec->inputStack[exec->index].data;
   4038 #ifdef DEBUG_PUSH
   4039 			    printf("value loaded: %s\n", value);
   4040 #endif
   4041 			} else {
   4042 			    value = NULL;
   4043 			    data = NULL;
   4044 #ifdef DEBUG_PUSH
   4045 			    printf("end of input\n");
   4046 #endif
   4047 			}
   4048 		    } else {
   4049 			value = NULL;
   4050 			data = NULL;
   4051 #ifdef DEBUG_PUSH
   4052 			printf("end of input\n");
   4053 #endif
   4054 		    }
   4055 		}
   4056 		goto progress;
   4057 	    } else if (ret < 0) {
   4058 		exec->status = -4;
   4059 		break;
   4060 	    }
   4061 	}
   4062 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   4063 rollback:
   4064             /*
   4065 	     * if we didn't yet rollback on the current input
   4066 	     * store the current state as the error state.
   4067 	     */
   4068 	    if ((progress) && (exec->state != NULL) &&
   4069 	        (exec->state->type != XML_REGEXP_SINK_STATE)) {
   4070 	        progress = 0;
   4071 		if (exec->errString != NULL)
   4072 		    xmlFree(exec->errString);
   4073 		exec->errString = xmlStrdup(value);
   4074 		exec->errState = exec->state;
   4075 		memcpy(exec->errCounts, exec->counts,
   4076 		       exec->comp->nbCounters * sizeof(int));
   4077 	    }
   4078 
   4079 	    /*
   4080 	     * Failed to find a way out
   4081 	     */
   4082 	    exec->determinist = 0;
   4083 	    xmlFARegExecRollBack(exec);
   4084 	    if (exec->status == 0) {
   4085 		value = exec->inputStack[exec->index].value;
   4086 		data = exec->inputStack[exec->index].data;
   4087 #ifdef DEBUG_PUSH
   4088 		printf("value loaded: %s\n", value);
   4089 #endif
   4090 	    }
   4091 	}
   4092 	continue;
   4093 progress:
   4094         progress = 1;
   4095 	continue;
   4096     }
   4097     if (exec->status == 0) {
   4098         return(exec->state->type == XML_REGEXP_FINAL_STATE);
   4099     }
   4100 #ifdef DEBUG_ERR
   4101     if (exec->status < 0) {
   4102 	testerr(exec);
   4103     }
   4104 #endif
   4105     return(exec->status);
   4106 }
   4107 
   4108 /**
   4109  * xmlRegExecPushString:
   4110  * @exec: a regexp execution context or NULL to indicate the end
   4111  * @value: a string token input
   4112  * @data: data associated to the token to reuse in callbacks
   4113  *
   4114  * Push one input token in the execution context
   4115  *
   4116  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   4117  *     a negative value in case of error.
   4118  */
   4119 int
   4120 xmlRegExecPushString(xmlRegExecCtxtPtr exec, const xmlChar *value,
   4121 	             void *data) {
   4122     return(xmlRegExecPushStringInternal(exec, value, data, 0));
   4123 }
   4124 
   4125 /**
   4126  * xmlRegExecPushString2:
   4127  * @exec: a regexp execution context or NULL to indicate the end
   4128  * @value: the first string token input
   4129  * @value2: the second string token input
   4130  * @data: data associated to the token to reuse in callbacks
   4131  *
   4132  * Push one input token in the execution context
   4133  *
   4134  * Returns: 1 if the regexp reached a final state, 0 if non-final, and
   4135  *     a negative value in case of error.
   4136  */
   4137 int
   4138 xmlRegExecPushString2(xmlRegExecCtxtPtr exec, const xmlChar *value,
   4139                       const xmlChar *value2, void *data) {
   4140     xmlChar buf[150];
   4141     int lenn, lenp, ret;
   4142     xmlChar *str;
   4143 
   4144     if (exec == NULL)
   4145 	return(-1);
   4146     if (exec->comp == NULL)
   4147 	return(-1);
   4148     if (exec->status != 0)
   4149 	return(exec->status);
   4150 
   4151     if (value2 == NULL)
   4152         return(xmlRegExecPushString(exec, value, data));
   4153 
   4154     lenn = strlen((char *) value2);
   4155     lenp = strlen((char *) value);
   4156 
   4157     if (150 < lenn + lenp + 2) {
   4158 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   4159 	if (str == NULL) {
   4160 	    exec->status = -1;
   4161 	    return(-1);
   4162 	}
   4163     } else {
   4164 	str = buf;
   4165     }
   4166     memcpy(&str[0], value, lenp);
   4167     str[lenp] = XML_REG_STRING_SEPARATOR;
   4168     memcpy(&str[lenp + 1], value2, lenn);
   4169     str[lenn + lenp + 1] = 0;
   4170 
   4171     if (exec->comp->compact != NULL)
   4172 	ret = xmlRegCompactPushString(exec, exec->comp, str, data);
   4173     else
   4174         ret = xmlRegExecPushStringInternal(exec, str, data, 1);
   4175 
   4176     if (str != buf)
   4177         xmlFree(str);
   4178     return(ret);
   4179 }
   4180 
   4181 /**
   4182  * xmlRegExecGetValues:
   4183  * @exec: a regexp execution context
   4184  * @err: error extraction or normal one
   4185  * @nbval: pointer to the number of accepted values IN/OUT
   4186  * @nbneg: return number of negative transitions
   4187  * @values: pointer to the array of acceptable values
   4188  * @terminal: return value if this was a terminal state
   4189  *
   4190  * Extract informations from the regexp execution, internal routine to
   4191  * implement xmlRegExecNextValues() and xmlRegExecErrInfo()
   4192  *
   4193  * Returns: 0 in case of success or -1 in case of error.
   4194  */
   4195 static int
   4196 xmlRegExecGetValues(xmlRegExecCtxtPtr exec, int err,
   4197                     int *nbval, int *nbneg,
   4198 		    xmlChar **values, int *terminal) {
   4199     int maxval;
   4200     int nb = 0;
   4201 
   4202     if ((exec == NULL) || (nbval == NULL) || (nbneg == NULL) ||
   4203         (values == NULL) || (*nbval <= 0))
   4204         return(-1);
   4205 
   4206     maxval = *nbval;
   4207     *nbval = 0;
   4208     *nbneg = 0;
   4209     if ((exec->comp != NULL) && (exec->comp->compact != NULL)) {
   4210         xmlRegexpPtr comp;
   4211 	int target, i, state;
   4212 
   4213         comp = exec->comp;
   4214 
   4215 	if (err) {
   4216 	    if (exec->errStateNo == -1) return(-1);
   4217 	    state = exec->errStateNo;
   4218 	} else {
   4219 	    state = exec->index;
   4220 	}
   4221 	if (terminal != NULL) {
   4222 	    if (comp->compact[state * (comp->nbstrings + 1)] ==
   4223 	        XML_REGEXP_FINAL_STATE)
   4224 		*terminal = 1;
   4225 	    else
   4226 		*terminal = 0;
   4227 	}
   4228 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
   4229 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   4230 	    if ((target > 0) && (target <= comp->nbstates) &&
   4231 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] !=
   4232 		 XML_REGEXP_SINK_STATE)) {
   4233 	        values[nb++] = comp->stringMap[i];
   4234 		(*nbval)++;
   4235 	    }
   4236 	}
   4237 	for (i = 0;(i < comp->nbstrings) && (nb < maxval);i++) {
   4238 	    target = comp->compact[state * (comp->nbstrings + 1) + i + 1];
   4239 	    if ((target > 0) && (target <= comp->nbstates) &&
   4240 	        (comp->compact[(target - 1) * (comp->nbstrings + 1)] ==
   4241 		 XML_REGEXP_SINK_STATE)) {
   4242 	        values[nb++] = comp->stringMap[i];
   4243 		(*nbneg)++;
   4244 	    }
   4245 	}
   4246     } else {
   4247         int transno;
   4248 	xmlRegTransPtr trans;
   4249 	xmlRegAtomPtr atom;
   4250 	xmlRegStatePtr state;
   4251 
   4252 	if (terminal != NULL) {
   4253 	    if (exec->state->type == XML_REGEXP_FINAL_STATE)
   4254 		*terminal = 1;
   4255 	    else
   4256 		*terminal = 0;
   4257 	}
   4258 
   4259 	if (err) {
   4260 	    if (exec->errState == NULL) return(-1);
   4261 	    state = exec->errState;
   4262 	} else {
   4263 	    if (exec->state == NULL) return(-1);
   4264 	    state = exec->state;
   4265 	}
   4266 	for (transno = 0;
   4267 	     (transno < state->nbTrans) && (nb < maxval);
   4268 	     transno++) {
   4269 	    trans = &state->trans[transno];
   4270 	    if (trans->to < 0)
   4271 		continue;
   4272 	    atom = trans->atom;
   4273 	    if ((atom == NULL) || (atom->valuep == NULL))
   4274 		continue;
   4275 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   4276 	        /* this should not be reached but ... */
   4277 	        TODO;
   4278 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   4279 	        /* this should not be reached but ... */
   4280 	        TODO;
   4281 	    } else if (trans->counter >= 0) {
   4282 		xmlRegCounterPtr counter = NULL;
   4283 		int count;
   4284 
   4285 		if (err)
   4286 		    count = exec->errCounts[trans->counter];
   4287 		else
   4288 		    count = exec->counts[trans->counter];
   4289 		if (exec->comp != NULL)
   4290 		    counter = &exec->comp->counters[trans->counter];
   4291 		if ((counter == NULL) || (count < counter->max)) {
   4292 		    if (atom->neg)
   4293 			values[nb++] = (xmlChar *) atom->valuep2;
   4294 		    else
   4295 			values[nb++] = (xmlChar *) atom->valuep;
   4296 		    (*nbval)++;
   4297 		}
   4298 	    } else {
   4299                 if ((exec->comp->states[trans->to] != NULL) &&
   4300 		    (exec->comp->states[trans->to]->type !=
   4301 		     XML_REGEXP_SINK_STATE)) {
   4302 		    if (atom->neg)
   4303 			values[nb++] = (xmlChar *) atom->valuep2;
   4304 		    else
   4305 			values[nb++] = (xmlChar *) atom->valuep;
   4306 		    (*nbval)++;
   4307 		}
   4308 	    }
   4309 	}
   4310 	for (transno = 0;
   4311 	     (transno < state->nbTrans) && (nb < maxval);
   4312 	     transno++) {
   4313 	    trans = &state->trans[transno];
   4314 	    if (trans->to < 0)
   4315 		continue;
   4316 	    atom = trans->atom;
   4317 	    if ((atom == NULL) || (atom->valuep == NULL))
   4318 		continue;
   4319 	    if (trans->count == REGEXP_ALL_LAX_COUNTER) {
   4320 	        continue;
   4321 	    } else if (trans->count == REGEXP_ALL_COUNTER) {
   4322 	        continue;
   4323 	    } else if (trans->counter >= 0) {
   4324 	        continue;
   4325 	    } else {
   4326                 if ((exec->comp->states[trans->to] != NULL) &&
   4327 		    (exec->comp->states[trans->to]->type ==
   4328 		     XML_REGEXP_SINK_STATE)) {
   4329 		    if (atom->neg)
   4330 			values[nb++] = (xmlChar *) atom->valuep2;
   4331 		    else
   4332 			values[nb++] = (xmlChar *) atom->valuep;
   4333 		    (*nbneg)++;
   4334 		}
   4335 	    }
   4336 	}
   4337     }
   4338     return(0);
   4339 }
   4340 
   4341 /**
   4342  * xmlRegExecNextValues:
   4343  * @exec: a regexp execution context
   4344  * @nbval: pointer to the number of accepted values IN/OUT
   4345  * @nbneg: return number of negative transitions
   4346  * @values: pointer to the array of acceptable values
   4347  * @terminal: return value if this was a terminal state
   4348  *
   4349  * Extract informations from the regexp execution,
   4350  * the parameter @values must point to an array of @nbval string pointers
   4351  * on return nbval will contain the number of possible strings in that
   4352  * state and the @values array will be updated with them. The string values
   4353  * returned will be freed with the @exec context and don't need to be
   4354  * deallocated.
   4355  *
   4356  * Returns: 0 in case of success or -1 in case of error.
   4357  */
   4358 int
   4359 xmlRegExecNextValues(xmlRegExecCtxtPtr exec, int *nbval, int *nbneg,
   4360                      xmlChar **values, int *terminal) {
   4361     return(xmlRegExecGetValues(exec, 0, nbval, nbneg, values, terminal));
   4362 }
   4363 
   4364 /**
   4365  * xmlRegExecErrInfo:
   4366  * @exec: a regexp execution context generating an error
   4367  * @string: return value for the error string
   4368  * @nbval: pointer to the number of accepted values IN/OUT
   4369  * @nbneg: return number of negative transitions
   4370  * @values: pointer to the array of acceptable values
   4371  * @terminal: return value if this was a terminal state
   4372  *
   4373  * Extract error informations from the regexp execution, the parameter
   4374  * @string will be updated with the value pushed and not accepted,
   4375  * the parameter @values must point to an array of @nbval string pointers
   4376  * on return nbval will contain the number of possible strings in that
   4377  * state and the @values array will be updated with them. The string values
   4378  * returned will be freed with the @exec context and don't need to be
   4379  * deallocated.
   4380  *
   4381  * Returns: 0 in case of success or -1 in case of error.
   4382  */
   4383 int
   4384 xmlRegExecErrInfo(xmlRegExecCtxtPtr exec, const xmlChar **string,
   4385                   int *nbval, int *nbneg, xmlChar **values, int *terminal) {
   4386     if (exec == NULL)
   4387         return(-1);
   4388     if (string != NULL) {
   4389         if (exec->status != 0)
   4390 	    *string = exec->errString;
   4391 	else
   4392 	    *string = NULL;
   4393     }
   4394     return(xmlRegExecGetValues(exec, 1, nbval, nbneg, values, terminal));
   4395 }
   4396 
   4397 #ifdef DEBUG_ERR
   4398 static void testerr(xmlRegExecCtxtPtr exec) {
   4399     const xmlChar *string;
   4400     xmlChar *values[5];
   4401     int nb = 5;
   4402     int nbneg;
   4403     int terminal;
   4404     xmlRegExecErrInfo(exec, &string, &nb, &nbneg, &values[0], &terminal);
   4405 }
   4406 #endif
   4407 
   4408 #if 0
   4409 static int
   4410 xmlRegExecPushChar(xmlRegExecCtxtPtr exec, int UCS) {
   4411     xmlRegTransPtr trans;
   4412     xmlRegAtomPtr atom;
   4413     int ret;
   4414     int codepoint, len;
   4415 
   4416     if (exec == NULL)
   4417 	return(-1);
   4418     if (exec->status != 0)
   4419 	return(exec->status);
   4420 
   4421     while ((exec->status == 0) &&
   4422 	   ((exec->inputString[exec->index] != 0) ||
   4423 	    (exec->state->type != XML_REGEXP_FINAL_STATE))) {
   4424 
   4425 	/*
   4426 	 * End of input on non-terminal state, rollback, however we may
   4427 	 * still have epsilon like transition for counted transitions
   4428 	 * on counters, in that case don't break too early.
   4429 	 */
   4430 	if ((exec->inputString[exec->index] == 0) && (exec->counts == NULL))
   4431 	    goto rollback;
   4432 
   4433 	exec->transcount = 0;
   4434 	for (;exec->transno < exec->state->nbTrans;exec->transno++) {
   4435 	    trans = &exec->state->trans[exec->transno];
   4436 	    if (trans->to < 0)
   4437 		continue;
   4438 	    atom = trans->atom;
   4439 	    ret = 0;
   4440 	    if (trans->count >= 0) {
   4441 		int count;
   4442 		xmlRegCounterPtr counter;
   4443 
   4444 		/*
   4445 		 * A counted transition.
   4446 		 */
   4447 
   4448 		count = exec->counts[trans->count];
   4449 		counter = &exec->comp->counters[trans->count];
   4450 #ifdef DEBUG_REGEXP_EXEC
   4451 		printf("testing count %d: val %d, min %d, max %d\n",
   4452 		       trans->count, count, counter->min,  counter->max);
   4453 #endif
   4454 		ret = ((count >= counter->min) && (count <= counter->max));
   4455 	    } else if (atom == NULL) {
   4456 		fprintf(stderr, "epsilon transition left at runtime\n");
   4457 		exec->status = -2;
   4458 		break;
   4459 	    } else if (exec->inputString[exec->index] != 0) {
   4460                 codepoint = CUR_SCHAR(&(exec->inputString[exec->index]), len);
   4461 		ret = xmlRegCheckCharacter(atom, codepoint);
   4462 		if ((ret == 1) && (atom->min > 0) && (atom->max > 0)) {
   4463 		    xmlRegStatePtr to = exec->comp->states[trans->to];
   4464 
   4465 		    /*
   4466 		     * this is a multiple input sequence
   4467 		     */
   4468 		    if (exec->state->nbTrans > exec->transno + 1) {
   4469 			xmlFARegExecSave(exec);
   4470 		    }
   4471 		    exec->transcount = 1;
   4472 		    do {
   4473 			/*
   4474 			 * Try to progress as much as possible on the input
   4475 			 */
   4476 			if (exec->transcount == atom->max) {
   4477 			    break;
   4478 			}
   4479 			exec->index += len;
   4480 			/*
   4481 			 * End of input: stop here
   4482 			 */
   4483 			if (exec->inputString[exec->index] == 0) {
   4484 			    exec->index -= len;
   4485 			    break;
   4486 			}
   4487 			if (exec->transcount >= atom->min) {
   4488 			    int transno = exec->transno;
   4489 			    xmlRegStatePtr state = exec->state;
   4490 
   4491 			    /*
   4492 			     * The transition is acceptable save it
   4493 			     */
   4494 			    exec->transno = -1; /* trick */
   4495 			    exec->state = to;
   4496 			    xmlFARegExecSave(exec);
   4497 			    exec->transno = transno;
   4498 			    exec->state = state;
   4499 			}
   4500 			codepoint = CUR_SCHAR(&(exec->inputString[exec->index]),
   4501 				              len);
   4502 			ret = xmlRegCheckCharacter(atom, codepoint);
   4503 			exec->transcount++;
   4504 		    } while (ret == 1);
   4505 		    if (exec->transcount < atom->min)
   4506 			ret = 0;
   4507 
   4508 		    /*
   4509 		     * If the last check failed but one transition was found
   4510 		     * possible, rollback
   4511 		     */
   4512 		    if (ret < 0)
   4513 			ret = 0;
   4514 		    if (ret == 0) {
   4515 			goto rollback;
   4516 		    }
   4517 		}
   4518 	    }
   4519 	    if (ret == 1) {
   4520 		if (exec->state->nbTrans > exec->transno + 1) {
   4521 		    xmlFARegExecSave(exec);
   4522 		}
   4523 		/*
   4524 		 * restart count for expressions like this ((abc){2})*
   4525 		 */
   4526 		if (trans->count >= 0) {
   4527 #ifdef DEBUG_REGEXP_EXEC
   4528 		    printf("Reset count %d\n", trans->count);
   4529 #endif
   4530 		    exec->counts[trans->count] = 0;
   4531 		}
   4532 		if (trans->counter >= 0) {
   4533 #ifdef DEBUG_REGEXP_EXEC
   4534 		    printf("Increasing count %d\n", trans->counter);
   4535 #endif
   4536 		    exec->counts[trans->counter]++;
   4537 		}
   4538 #ifdef DEBUG_REGEXP_EXEC
   4539 		printf("entering state %d\n", trans->to);
   4540 #endif
   4541 		exec->state = exec->comp->states[trans->to];
   4542 		exec->transno = 0;
   4543 		if (trans->atom != NULL) {
   4544 		    exec->index += len;
   4545 		}
   4546 		goto progress;
   4547 	    } else if (ret < 0) {
   4548 		exec->status = -4;
   4549 		break;
   4550 	    }
   4551 	}
   4552 	if ((exec->transno != 0) || (exec->state->nbTrans == 0)) {
   4553 rollback:
   4554 	    /*
   4555 	     * Failed to find a way out
   4556 	     */
   4557 	    exec->determinist = 0;
   4558 	    xmlFARegExecRollBack(exec);
   4559 	}
   4560 progress:
   4561 	continue;
   4562     }
   4563 }
   4564 #endif
   4565 /************************************************************************
   4566  * 									*
   4567  *	Parser for the Schemas Datatype Regular Expressions		*
   4568  *	http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#regexs	*
   4569  * 									*
   4570  ************************************************************************/
   4571 
   4572 /**
   4573  * xmlFAIsChar:
   4574  * @ctxt:  a regexp parser context
   4575  *
   4576  * [10]   Char   ::=   [^.\?*+()|#x5B#x5D]
   4577  */
   4578 static int
   4579 xmlFAIsChar(xmlRegParserCtxtPtr ctxt) {
   4580     int cur;
   4581     int len;
   4582 
   4583     cur = CUR_SCHAR(ctxt->cur, len);
   4584     if ((cur == '.') || (cur == '\\') || (cur == '?') ||
   4585 	(cur == '*') || (cur == '+') || (cur == '(') ||
   4586 	(cur == ')') || (cur == '|') || (cur == 0x5B) ||
   4587 	(cur == 0x5D) || (cur == 0))
   4588 	return(-1);
   4589     return(cur);
   4590 }
   4591 
   4592 /**
   4593  * xmlFAParseCharProp:
   4594  * @ctxt:  a regexp parser context
   4595  *
   4596  * [27]   charProp   ::=   IsCategory | IsBlock
   4597  * [28]   IsCategory ::= Letters | Marks | Numbers | Punctuation |
   4598  *                       Separators | Symbols | Others
   4599  * [29]   Letters   ::=   'L' [ultmo]?
   4600  * [30]   Marks   ::=   'M' [nce]?
   4601  * [31]   Numbers   ::=   'N' [dlo]?
   4602  * [32]   Punctuation   ::=   'P' [cdseifo]?
   4603  * [33]   Separators   ::=   'Z' [slp]?
   4604  * [34]   Symbols   ::=   'S' [mcko]?
   4605  * [35]   Others   ::=   'C' [cfon]?
   4606  * [36]   IsBlock   ::=   'Is' [a-zA-Z0-9#x2D]+
   4607  */
   4608 static void
   4609 xmlFAParseCharProp(xmlRegParserCtxtPtr ctxt) {
   4610     int cur;
   4611     xmlRegAtomType type = (xmlRegAtomType) 0;
   4612     xmlChar *blockName = NULL;
   4613 
   4614     cur = CUR;
   4615     if (cur == 'L') {
   4616 	NEXT;
   4617 	cur = CUR;
   4618 	if (cur == 'u') {
   4619 	    NEXT;
   4620 	    type = XML_REGEXP_LETTER_UPPERCASE;
   4621 	} else if (cur == 'l') {
   4622 	    NEXT;
   4623 	    type = XML_REGEXP_LETTER_LOWERCASE;
   4624 	} else if (cur == 't') {
   4625 	    NEXT;
   4626 	    type = XML_REGEXP_LETTER_TITLECASE;
   4627 	} else if (cur == 'm') {
   4628 	    NEXT;
   4629 	    type = XML_REGEXP_LETTER_MODIFIER;
   4630 	} else if (cur == 'o') {
   4631 	    NEXT;
   4632 	    type = XML_REGEXP_LETTER_OTHERS;
   4633 	} else {
   4634 	    type = XML_REGEXP_LETTER;
   4635 	}
   4636     } else if (cur == 'M') {
   4637 	NEXT;
   4638 	cur = CUR;
   4639 	if (cur == 'n') {
   4640 	    NEXT;
   4641 	    /* nonspacing */
   4642 	    type = XML_REGEXP_MARK_NONSPACING;
   4643 	} else if (cur == 'c') {
   4644 	    NEXT;
   4645 	    /* spacing combining */
   4646 	    type = XML_REGEXP_MARK_SPACECOMBINING;
   4647 	} else if (cur == 'e') {
   4648 	    NEXT;
   4649 	    /* enclosing */
   4650 	    type = XML_REGEXP_MARK_ENCLOSING;
   4651 	} else {
   4652 	    /* all marks */
   4653 	    type = XML_REGEXP_MARK;
   4654 	}
   4655     } else if (cur == 'N') {
   4656 	NEXT;
   4657 	cur = CUR;
   4658 	if (cur == 'd') {
   4659 	    NEXT;
   4660 	    /* digital */
   4661 	    type = XML_REGEXP_NUMBER_DECIMAL;
   4662 	} else if (cur == 'l') {
   4663 	    NEXT;
   4664 	    /* letter */
   4665 	    type = XML_REGEXP_NUMBER_LETTER;
   4666 	} else if (cur == 'o') {
   4667 	    NEXT;
   4668 	    /* other */
   4669 	    type = XML_REGEXP_NUMBER_OTHERS;
   4670 	} else {
   4671 	    /* all numbers */
   4672 	    type = XML_REGEXP_NUMBER;
   4673 	}
   4674     } else if (cur == 'P') {
   4675 	NEXT;
   4676 	cur = CUR;
   4677 	if (cur == 'c') {
   4678 	    NEXT;
   4679 	    /* connector */
   4680 	    type = XML_REGEXP_PUNCT_CONNECTOR;
   4681 	} else if (cur == 'd') {
   4682 	    NEXT;
   4683 	    /* dash */
   4684 	    type = XML_REGEXP_PUNCT_DASH;
   4685 	} else if (cur == 's') {
   4686 	    NEXT;
   4687 	    /* open */
   4688 	    type = XML_REGEXP_PUNCT_OPEN;
   4689 	} else if (cur == 'e') {
   4690 	    NEXT;
   4691 	    /* close */
   4692 	    type = XML_REGEXP_PUNCT_CLOSE;
   4693 	} else if (cur == 'i') {
   4694 	    NEXT;
   4695 	    /* initial quote */
   4696 	    type = XML_REGEXP_PUNCT_INITQUOTE;
   4697 	} else if (cur == 'f') {
   4698 	    NEXT;
   4699 	    /* final quote */
   4700 	    type = XML_REGEXP_PUNCT_FINQUOTE;
   4701 	} else if (cur == 'o') {
   4702 	    NEXT;
   4703 	    /* other */
   4704 	    type = XML_REGEXP_PUNCT_OTHERS;
   4705 	} else {
   4706 	    /* all punctuation */
   4707 	    type = XML_REGEXP_PUNCT;
   4708 	}
   4709     } else if (cur == 'Z') {
   4710 	NEXT;
   4711 	cur = CUR;
   4712 	if (cur == 's') {
   4713 	    NEXT;
   4714 	    /* space */
   4715 	    type = XML_REGEXP_SEPAR_SPACE;
   4716 	} else if (cur == 'l') {
   4717 	    NEXT;
   4718 	    /* line */
   4719 	    type = XML_REGEXP_SEPAR_LINE;
   4720 	} else if (cur == 'p') {
   4721 	    NEXT;
   4722 	    /* paragraph */
   4723 	    type = XML_REGEXP_SEPAR_PARA;
   4724 	} else {
   4725 	    /* all separators */
   4726 	    type = XML_REGEXP_SEPAR;
   4727 	}
   4728     } else if (cur == 'S') {
   4729 	NEXT;
   4730 	cur = CUR;
   4731 	if (cur == 'm') {
   4732 	    NEXT;
   4733 	    type = XML_REGEXP_SYMBOL_MATH;
   4734 	    /* math */
   4735 	} else if (cur == 'c') {
   4736 	    NEXT;
   4737 	    type = XML_REGEXP_SYMBOL_CURRENCY;
   4738 	    /* currency */
   4739 	} else if (cur == 'k') {
   4740 	    NEXT;
   4741 	    type = XML_REGEXP_SYMBOL_MODIFIER;
   4742 	    /* modifiers */
   4743 	} else if (cur == 'o') {
   4744 	    NEXT;
   4745 	    type = XML_REGEXP_SYMBOL_OTHERS;
   4746 	    /* other */
   4747 	} else {
   4748 	    /* all symbols */
   4749 	    type = XML_REGEXP_SYMBOL;
   4750 	}
   4751     } else if (cur == 'C') {
   4752 	NEXT;
   4753 	cur = CUR;
   4754 	if (cur == 'c') {
   4755 	    NEXT;
   4756 	    /* control */
   4757 	    type = XML_REGEXP_OTHER_CONTROL;
   4758 	} else if (cur == 'f') {
   4759 	    NEXT;
   4760 	    /* format */
   4761 	    type = XML_REGEXP_OTHER_FORMAT;
   4762 	} else if (cur == 'o') {
   4763 	    NEXT;
   4764 	    /* private use */
   4765 	    type = XML_REGEXP_OTHER_PRIVATE;
   4766 	} else if (cur == 'n') {
   4767 	    NEXT;
   4768 	    /* not assigned */
   4769 	    type = XML_REGEXP_OTHER_NA;
   4770 	} else {
   4771 	    /* all others */
   4772 	    type = XML_REGEXP_OTHER;
   4773 	}
   4774     } else if (cur == 'I') {
   4775 	const xmlChar *start;
   4776 	NEXT;
   4777 	cur = CUR;
   4778 	if (cur != 's') {
   4779 	    ERROR("IsXXXX expected");
   4780 	    return;
   4781 	}
   4782 	NEXT;
   4783 	start = ctxt->cur;
   4784 	cur = CUR;
   4785 	if (((cur >= 'a') && (cur <= 'z')) ||
   4786 	    ((cur >= 'A') && (cur <= 'Z')) ||
   4787 	    ((cur >= '0') && (cur <= '9')) ||
   4788 	    (cur == 0x2D)) {
   4789 	    NEXT;
   4790 	    cur = CUR;
   4791 	    while (((cur >= 'a') && (cur <= 'z')) ||
   4792 		((cur >= 'A') && (cur <= 'Z')) ||
   4793 		((cur >= '0') && (cur <= '9')) ||
   4794 		(cur == 0x2D)) {
   4795 		NEXT;
   4796 		cur = CUR;
   4797 	    }
   4798 	}
   4799 	type = XML_REGEXP_BLOCK_NAME;
   4800 	blockName = xmlStrndup(start, ctxt->cur - start);
   4801     } else {
   4802 	ERROR("Unknown char property");
   4803 	return;
   4804     }
   4805     if (ctxt->atom == NULL) {
   4806 	ctxt->atom = xmlRegNewAtom(ctxt, type);
   4807 	if (ctxt->atom != NULL)
   4808 	    ctxt->atom->valuep = blockName;
   4809     } else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4810         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4811 		           type, 0, 0, blockName);
   4812     }
   4813 }
   4814 
   4815 /**
   4816  * xmlFAParseCharClassEsc:
   4817  * @ctxt:  a regexp parser context
   4818  *
   4819  * [23] charClassEsc ::= ( SingleCharEsc | MultiCharEsc | catEsc | complEsc )
   4820  * [24] SingleCharEsc ::= '\' [nrt\|.?*+(){}#x2D#x5B#x5D#x5E]
   4821  * [25] catEsc   ::=   '\p{' charProp '}'
   4822  * [26] complEsc ::=   '\P{' charProp '}'
   4823  * [37] MultiCharEsc ::= '.' | ('\' [sSiIcCdDwW])
   4824  */
   4825 static void
   4826 xmlFAParseCharClassEsc(xmlRegParserCtxtPtr ctxt) {
   4827     int cur;
   4828 
   4829     if (CUR == '.') {
   4830 	if (ctxt->atom == NULL) {
   4831 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_ANYCHAR);
   4832 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4833 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4834 			       XML_REGEXP_ANYCHAR, 0, 0, NULL);
   4835 	}
   4836 	NEXT;
   4837 	return;
   4838     }
   4839     if (CUR != '\\') {
   4840 	ERROR("Escaped sequence: expecting \\");
   4841 	return;
   4842     }
   4843     NEXT;
   4844     cur = CUR;
   4845     if (cur == 'p') {
   4846 	NEXT;
   4847 	if (CUR != '{') {
   4848 	    ERROR("Expecting '{'");
   4849 	    return;
   4850 	}
   4851 	NEXT;
   4852 	xmlFAParseCharProp(ctxt);
   4853 	if (CUR != '}') {
   4854 	    ERROR("Expecting '}'");
   4855 	    return;
   4856 	}
   4857 	NEXT;
   4858     } else if (cur == 'P') {
   4859 	NEXT;
   4860 	if (CUR != '{') {
   4861 	    ERROR("Expecting '{'");
   4862 	    return;
   4863 	}
   4864 	NEXT;
   4865 	xmlFAParseCharProp(ctxt);
   4866 	ctxt->atom->neg = 1;
   4867 	if (CUR != '}') {
   4868 	    ERROR("Expecting '}'");
   4869 	    return;
   4870 	}
   4871 	NEXT;
   4872     } else if ((cur == 'n') || (cur == 'r') || (cur == 't') || (cur == '\\') ||
   4873 	(cur == '|') || (cur == '.') || (cur == '?') || (cur == '*') ||
   4874 	(cur == '+') || (cur == '(') || (cur == ')') || (cur == '{') ||
   4875 	(cur == '}') || (cur == 0x2D) || (cur == 0x5B) || (cur == 0x5D) ||
   4876 	(cur == 0x5E)) {
   4877 	if (ctxt->atom == NULL) {
   4878 	    ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
   4879 	    if (ctxt->atom != NULL) {
   4880 	        switch (cur) {
   4881 		    case 'n':
   4882 		        ctxt->atom->codepoint = '\n';
   4883 			break;
   4884 		    case 'r':
   4885 		        ctxt->atom->codepoint = '\r';
   4886 			break;
   4887 		    case 't':
   4888 		        ctxt->atom->codepoint = '\t';
   4889 			break;
   4890 		    default:
   4891 			ctxt->atom->codepoint = cur;
   4892 		}
   4893 	    }
   4894 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4895             switch (cur) {
   4896                 case 'n':
   4897                     cur = '\n';
   4898                     break;
   4899                 case 'r':
   4900                     cur = '\r';
   4901                     break;
   4902                 case 't':
   4903                     cur = '\t';
   4904                     break;
   4905             }
   4906 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4907 			       XML_REGEXP_CHARVAL, cur, cur, NULL);
   4908 	}
   4909 	NEXT;
   4910     } else if ((cur == 's') || (cur == 'S') || (cur == 'i') || (cur == 'I') ||
   4911 	(cur == 'c') || (cur == 'C') || (cur == 'd') || (cur == 'D') ||
   4912 	(cur == 'w') || (cur == 'W')) {
   4913 	xmlRegAtomType type = XML_REGEXP_ANYSPACE;
   4914 
   4915 	switch (cur) {
   4916 	    case 's':
   4917 		type = XML_REGEXP_ANYSPACE;
   4918 		break;
   4919 	    case 'S':
   4920 		type = XML_REGEXP_NOTSPACE;
   4921 		break;
   4922 	    case 'i':
   4923 		type = XML_REGEXP_INITNAME;
   4924 		break;
   4925 	    case 'I':
   4926 		type = XML_REGEXP_NOTINITNAME;
   4927 		break;
   4928 	    case 'c':
   4929 		type = XML_REGEXP_NAMECHAR;
   4930 		break;
   4931 	    case 'C':
   4932 		type = XML_REGEXP_NOTNAMECHAR;
   4933 		break;
   4934 	    case 'd':
   4935 		type = XML_REGEXP_DECIMAL;
   4936 		break;
   4937 	    case 'D':
   4938 		type = XML_REGEXP_NOTDECIMAL;
   4939 		break;
   4940 	    case 'w':
   4941 		type = XML_REGEXP_REALCHAR;
   4942 		break;
   4943 	    case 'W':
   4944 		type = XML_REGEXP_NOTREALCHAR;
   4945 		break;
   4946 	}
   4947 	NEXT;
   4948 	if (ctxt->atom == NULL) {
   4949 	    ctxt->atom = xmlRegNewAtom(ctxt, type);
   4950 	} else if (ctxt->atom->type == XML_REGEXP_RANGES) {
   4951 	    xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   4952 			       type, 0, 0, NULL);
   4953 	}
   4954     } else {
   4955 	ERROR("Wrong escape sequence, misuse of character '\\'");
   4956     }
   4957 }
   4958 
   4959 /**
   4960  * xmlFAParseCharRange:
   4961  * @ctxt:  a regexp parser context
   4962  *
   4963  * [17]   charRange   ::=     seRange | XmlCharRef | XmlCharIncDash
   4964  * [18]   seRange   ::=   charOrEsc '-' charOrEsc
   4965  * [20]   charOrEsc   ::=   XmlChar | SingleCharEsc
   4966  * [21]   XmlChar   ::=   [^\#x2D#x5B#x5D]
   4967  * [22]   XmlCharIncDash   ::=   [^\#x5B#x5D]
   4968  */
   4969 static void
   4970 xmlFAParseCharRange(xmlRegParserCtxtPtr ctxt) {
   4971     int cur, len;
   4972     int start = -1;
   4973     int end = -1;
   4974 
   4975     if (CUR == '\0') {
   4976         ERROR("Expecting ']'");
   4977 	return;
   4978     }
   4979 
   4980     cur = CUR;
   4981     if (cur == '\\') {
   4982 	NEXT;
   4983 	cur = CUR;
   4984 	switch (cur) {
   4985 	    case 'n': start = 0xA; break;
   4986 	    case 'r': start = 0xD; break;
   4987 	    case 't': start = 0x9; break;
   4988 	    case '\\': case '|': case '.': case '-': case '^': case '?':
   4989 	    case '*': case '+': case '{': case '}': case '(': case ')':
   4990 	    case '[': case ']':
   4991 		start = cur; break;
   4992 	    default:
   4993 		ERROR("Invalid escape value");
   4994 		return;
   4995 	}
   4996 	end = start;
   4997         len = 1;
   4998     } else if ((cur != 0x5B) && (cur != 0x5D)) {
   4999         end = start = CUR_SCHAR(ctxt->cur, len);
   5000     } else {
   5001 	ERROR("Expecting a char range");
   5002 	return;
   5003     }
   5004     /*
   5005      * Since we are "inside" a range, we can assume ctxt->cur is past
   5006      * the start of ctxt->string, and PREV should be safe
   5007      */
   5008     if ((start == '-') && (NXT(1) != ']') && (PREV != '[') && (PREV != '^')) {
   5009 	NEXTL(len);
   5010 	return;
   5011     }
   5012     NEXTL(len);
   5013     cur = CUR;
   5014     if ((cur != '-') || (NXT(1) == ']')) {
   5015         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   5016 		              XML_REGEXP_CHARVAL, start, end, NULL);
   5017 	return;
   5018     }
   5019     NEXT;
   5020     cur = CUR;
   5021     if (cur == '\\') {
   5022 	NEXT;
   5023 	cur = CUR;
   5024 	switch (cur) {
   5025 	    case 'n': end = 0xA; break;
   5026 	    case 'r': end = 0xD; break;
   5027 	    case 't': end = 0x9; break;
   5028 	    case '\\': case '|': case '.': case '-': case '^': case '?':
   5029 	    case '*': case '+': case '{': case '}': case '(': case ')':
   5030 	    case '[': case ']':
   5031 		end = cur; break;
   5032 	    default:
   5033 		ERROR("Invalid escape value");
   5034 		return;
   5035 	}
   5036         len = 1;
   5037     } else if ((cur != 0x5B) && (cur != 0x5D)) {
   5038         end = CUR_SCHAR(ctxt->cur, len);
   5039     } else {
   5040 	ERROR("Expecting the end of a char range");
   5041 	return;
   5042     }
   5043     NEXTL(len);
   5044     /* TODO check that the values are acceptable character ranges for XML */
   5045     if (end < start) {
   5046 	ERROR("End of range is before start of range");
   5047     } else {
   5048         xmlRegAtomAddRange(ctxt, ctxt->atom, ctxt->neg,
   5049 		           XML_REGEXP_CHARVAL, start, end, NULL);
   5050     }
   5051     return;
   5052 }
   5053 
   5054 /**
   5055  * xmlFAParsePosCharGroup:
   5056  * @ctxt:  a regexp parser context
   5057  *
   5058  * [14]   posCharGroup ::= ( charRange | charClassEsc  )+
   5059  */
   5060 static void
   5061 xmlFAParsePosCharGroup(xmlRegParserCtxtPtr ctxt) {
   5062     do {
   5063 	if (CUR == '\\') {
   5064 	    xmlFAParseCharClassEsc(ctxt);
   5065 	} else {
   5066 	    xmlFAParseCharRange(ctxt);
   5067 	}
   5068     } while ((CUR != ']') && (CUR != '^') && (CUR != '-') &&
   5069              (CUR != 0) && (ctxt->error == 0));
   5070 }
   5071 
   5072 /**
   5073  * xmlFAParseCharGroup:
   5074  * @ctxt:  a regexp parser context
   5075  *
   5076  * [13]   charGroup    ::= posCharGroup | negCharGroup | charClassSub
   5077  * [15]   negCharGroup ::= '^' posCharGroup
   5078  * [16]   charClassSub ::= ( posCharGroup | negCharGroup ) '-' charClassExpr
   5079  * [12]   charClassExpr ::= '[' charGroup ']'
   5080  */
   5081 static void
   5082 xmlFAParseCharGroup(xmlRegParserCtxtPtr ctxt) {
   5083     int n = ctxt->neg;
   5084     while ((CUR != ']') && (ctxt->error == 0)) {
   5085 	if (CUR == '^') {
   5086 	    int neg = ctxt->neg;
   5087 
   5088 	    NEXT;
   5089 	    ctxt->neg = !ctxt->neg;
   5090 	    xmlFAParsePosCharGroup(ctxt);
   5091 	    ctxt->neg = neg;
   5092 	} else if ((CUR == '-') && (NXT(1) == '[')) {
   5093 	    int neg = ctxt->neg;
   5094 	    ctxt->neg = 2;
   5095 	    NEXT;	/* eat the '-' */
   5096 	    NEXT;	/* eat the '[' */
   5097 	    xmlFAParseCharGroup(ctxt);
   5098 	    if (CUR == ']') {
   5099 		NEXT;
   5100 	    } else {
   5101 		ERROR("charClassExpr: ']' expected");
   5102 		break;
   5103 	    }
   5104 	    ctxt->neg = neg;
   5105 	    break;
   5106 	} else if (CUR != ']') {
   5107 	    xmlFAParsePosCharGroup(ctxt);
   5108 	}
   5109     }
   5110     ctxt->neg = n;
   5111 }
   5112 
   5113 /**
   5114  * xmlFAParseCharClass:
   5115  * @ctxt:  a regexp parser context
   5116  *
   5117  * [11]   charClass   ::=     charClassEsc | charClassExpr
   5118  * [12]   charClassExpr   ::=   '[' charGroup ']'
   5119  */
   5120 static void
   5121 xmlFAParseCharClass(xmlRegParserCtxtPtr ctxt) {
   5122     if (CUR == '[') {
   5123 	NEXT;
   5124 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_RANGES);
   5125 	if (ctxt->atom == NULL)
   5126 	    return;
   5127 	xmlFAParseCharGroup(ctxt);
   5128 	if (CUR == ']') {
   5129 	    NEXT;
   5130 	} else {
   5131 	    ERROR("xmlFAParseCharClass: ']' expected");
   5132 	}
   5133     } else {
   5134 	xmlFAParseCharClassEsc(ctxt);
   5135     }
   5136 }
   5137 
   5138 /**
   5139  * xmlFAParseQuantExact:
   5140  * @ctxt:  a regexp parser context
   5141  *
   5142  * [8]   QuantExact   ::=   [0-9]+
   5143  *
   5144  * Returns 0 if success or -1 in case of error
   5145  */
   5146 static int
   5147 xmlFAParseQuantExact(xmlRegParserCtxtPtr ctxt) {
   5148     int ret = 0;
   5149     int ok = 0;
   5150 
   5151     while ((CUR >= '0') && (CUR <= '9')) {
   5152 	ret = ret * 10 + (CUR - '0');
   5153 	ok = 1;
   5154 	NEXT;
   5155     }
   5156     if (ok != 1) {
   5157 	return(-1);
   5158     }
   5159     return(ret);
   5160 }
   5161 
   5162 /**
   5163  * xmlFAParseQuantifier:
   5164  * @ctxt:  a regexp parser context
   5165  *
   5166  * [4]   quantifier   ::=   [?*+] | ( '{' quantity '}' )
   5167  * [5]   quantity   ::=   quantRange | quantMin | QuantExact
   5168  * [6]   quantRange   ::=   QuantExact ',' QuantExact
   5169  * [7]   quantMin   ::=   QuantExact ','
   5170  * [8]   QuantExact   ::=   [0-9]+
   5171  */
   5172 static int
   5173 xmlFAParseQuantifier(xmlRegParserCtxtPtr ctxt) {
   5174     int cur;
   5175 
   5176     cur = CUR;
   5177     if ((cur == '?') || (cur == '*') || (cur == '+')) {
   5178 	if (ctxt->atom != NULL) {
   5179 	    if (cur == '?')
   5180 		ctxt->atom->quant = XML_REGEXP_QUANT_OPT;
   5181 	    else if (cur == '*')
   5182 		ctxt->atom->quant = XML_REGEXP_QUANT_MULT;
   5183 	    else if (cur == '+')
   5184 		ctxt->atom->quant = XML_REGEXP_QUANT_PLUS;
   5185 	}
   5186 	NEXT;
   5187 	return(1);
   5188     }
   5189     if (cur == '{') {
   5190 	int min = 0, max = 0;
   5191 
   5192 	NEXT;
   5193 	cur = xmlFAParseQuantExact(ctxt);
   5194 	if (cur >= 0)
   5195 	    min = cur;
   5196 	if (CUR == ',') {
   5197 	    NEXT;
   5198 	    if (CUR == '}')
   5199 	        max = INT_MAX;
   5200 	    else {
   5201 	        cur = xmlFAParseQuantExact(ctxt);
   5202 	        if (cur >= 0)
   5203 		    max = cur;
   5204 		else {
   5205 		    ERROR("Improper quantifier");
   5206 		}
   5207 	    }
   5208 	}
   5209 	if (CUR == '}') {
   5210 	    NEXT;
   5211 	} else {
   5212 	    ERROR("Unterminated quantifier");
   5213 	}
   5214 	if (max == 0)
   5215 	    max = min;
   5216 	if (ctxt->atom != NULL) {
   5217 	    ctxt->atom->quant = XML_REGEXP_QUANT_RANGE;
   5218 	    ctxt->atom->min = min;
   5219 	    ctxt->atom->max = max;
   5220 	}
   5221 	return(1);
   5222     }
   5223     return(0);
   5224 }
   5225 
   5226 /**
   5227  * xmlFAParseAtom:
   5228  * @ctxt:  a regexp parser context
   5229  *
   5230  * [9]   atom   ::=   Char | charClass | ( '(' regExp ')' )
   5231  */
   5232 static int
   5233 xmlFAParseAtom(xmlRegParserCtxtPtr ctxt) {
   5234     int codepoint, len;
   5235 
   5236     codepoint = xmlFAIsChar(ctxt);
   5237     if (codepoint > 0) {
   5238 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_CHARVAL);
   5239 	if (ctxt->atom == NULL)
   5240 	    return(-1);
   5241 	codepoint = CUR_SCHAR(ctxt->cur, len);
   5242 	ctxt->atom->codepoint = codepoint;
   5243 	NEXTL(len);
   5244 	return(1);
   5245     } else if (CUR == '|') {
   5246 	return(0);
   5247     } else if (CUR == 0) {
   5248 	return(0);
   5249     } else if (CUR == ')') {
   5250 	return(0);
   5251     } else if (CUR == '(') {
   5252 	xmlRegStatePtr start, oldend, start0;
   5253 
   5254 	NEXT;
   5255 	/*
   5256 	 * this extra Epsilon transition is needed if we count with 0 allowed
   5257 	 * unfortunately this can't be known at that point
   5258 	 */
   5259 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
   5260 	start0 = ctxt->state;
   5261 	xmlFAGenerateEpsilonTransition(ctxt, ctxt->state, NULL);
   5262 	start = ctxt->state;
   5263 	oldend = ctxt->end;
   5264 	ctxt->end = NULL;
   5265 	ctxt->atom = NULL;
   5266 	xmlFAParseRegExp(ctxt, 0);
   5267 	if (CUR == ')') {
   5268 	    NEXT;
   5269 	} else {
   5270 	    ERROR("xmlFAParseAtom: expecting ')'");
   5271 	}
   5272 	ctxt->atom = xmlRegNewAtom(ctxt, XML_REGEXP_SUBREG);
   5273 	if (ctxt->atom == NULL)
   5274 	    return(-1);
   5275 	ctxt->atom->start = start;
   5276 	ctxt->atom->start0 = start0;
   5277 	ctxt->atom->stop = ctxt->state;
   5278 	ctxt->end = oldend;
   5279 	return(1);
   5280     } else if ((CUR == '[') || (CUR == '\\') || (CUR == '.')) {
   5281 	xmlFAParseCharClass(ctxt);
   5282 	return(1);
   5283     }
   5284     return(0);
   5285 }
   5286 
   5287 /**
   5288  * xmlFAParsePiece:
   5289  * @ctxt:  a regexp parser context
   5290  *
   5291  * [3]   piece   ::=   atom quantifier?
   5292  */
   5293 static int
   5294 xmlFAParsePiece(xmlRegParserCtxtPtr ctxt) {
   5295     int ret;
   5296 
   5297     ctxt->atom = NULL;
   5298     ret = xmlFAParseAtom(ctxt);
   5299     if (ret == 0)
   5300 	return(0);
   5301     if (ctxt->atom == NULL) {
   5302 	ERROR("internal: no atom generated");
   5303     }
   5304     xmlFAParseQuantifier(ctxt);
   5305     return(1);
   5306 }
   5307 
   5308 /**
   5309  * xmlFAParseBranch:
   5310  * @ctxt:  a regexp parser context
   5311  * @to: optional target to the end of the branch
   5312  *
   5313  * @to is used to optimize by removing duplicate path in automata
   5314  * in expressions like (a|b)(c|d)
   5315  *
   5316  * [2]   branch   ::=   piece*
   5317  */
   5318 static int
   5319 xmlFAParseBranch(xmlRegParserCtxtPtr ctxt, xmlRegStatePtr to) {
   5320     xmlRegStatePtr previous;
   5321     int ret;
   5322 
   5323     previous = ctxt->state;
   5324     ret = xmlFAParsePiece(ctxt);
   5325     if (ret != 0) {
   5326 	if (xmlFAGenerateTransitions(ctxt, previous,
   5327 	        (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
   5328 	    return(-1);
   5329 	previous = ctxt->state;
   5330 	ctxt->atom = NULL;
   5331     }
   5332     while ((ret != 0) && (ctxt->error == 0)) {
   5333 	ret = xmlFAParsePiece(ctxt);
   5334 	if (ret != 0) {
   5335 	    if (xmlFAGenerateTransitions(ctxt, previous,
   5336 	            (CUR=='|' || CUR==')') ? to : NULL, ctxt->atom) < 0)
   5337 		    return(-1);
   5338 	    previous = ctxt->state;
   5339 	    ctxt->atom = NULL;
   5340 	}
   5341     }
   5342     return(0);
   5343 }
   5344 
   5345 /**
   5346  * xmlFAParseRegExp:
   5347  * @ctxt:  a regexp parser context
   5348  * @top:  is this the top-level expression ?
   5349  *
   5350  * [1]   regExp   ::=     branch  ( '|' branch )*
   5351  */
   5352 static void
   5353 xmlFAParseRegExp(xmlRegParserCtxtPtr ctxt, int top) {
   5354     xmlRegStatePtr start, end;
   5355 
   5356     /* if not top start should have been generated by an epsilon trans */
   5357     start = ctxt->state;
   5358     ctxt->end = NULL;
   5359     xmlFAParseBranch(ctxt, NULL);
   5360     if (top) {
   5361 #ifdef DEBUG_REGEXP_GRAPH
   5362 	printf("State %d is final\n", ctxt->state->no);
   5363 #endif
   5364 	ctxt->state->type = XML_REGEXP_FINAL_STATE;
   5365     }
   5366     if (CUR != '|') {
   5367 	ctxt->end = ctxt->state;
   5368 	return;
   5369     }
   5370     end = ctxt->state;
   5371     while ((CUR == '|') && (ctxt->error == 0)) {
   5372 	NEXT;
   5373 	ctxt->state = start;
   5374 	ctxt->end = NULL;
   5375 	xmlFAParseBranch(ctxt, end);
   5376     }
   5377     if (!top) {
   5378 	ctxt->state = end;
   5379 	ctxt->end = end;
   5380     }
   5381 }
   5382 
   5383 /************************************************************************
   5384  * 									*
   5385  * 			The basic API					*
   5386  * 									*
   5387  ************************************************************************/
   5388 
   5389 /**
   5390  * xmlRegexpPrint:
   5391  * @output: the file for the output debug
   5392  * @regexp: the compiled regexp
   5393  *
   5394  * Print the content of the compiled regular expression
   5395  */
   5396 void
   5397 xmlRegexpPrint(FILE *output, xmlRegexpPtr regexp) {
   5398     int i;
   5399 
   5400     if (output == NULL)
   5401         return;
   5402     fprintf(output, " regexp: ");
   5403     if (regexp == NULL) {
   5404 	fprintf(output, "NULL\n");
   5405 	return;
   5406     }
   5407     fprintf(output, "'%s' ", regexp->string);
   5408     fprintf(output, "\n");
   5409     fprintf(output, "%d atoms:\n", regexp->nbAtoms);
   5410     for (i = 0;i < regexp->nbAtoms; i++) {
   5411 	fprintf(output, " %02d ", i);
   5412 	xmlRegPrintAtom(output, regexp->atoms[i]);
   5413     }
   5414     fprintf(output, "%d states:", regexp->nbStates);
   5415     fprintf(output, "\n");
   5416     for (i = 0;i < regexp->nbStates; i++) {
   5417 	xmlRegPrintState(output, regexp->states[i]);
   5418     }
   5419     fprintf(output, "%d counters:\n", regexp->nbCounters);
   5420     for (i = 0;i < regexp->nbCounters; i++) {
   5421 	fprintf(output, " %d: min %d max %d\n", i, regexp->counters[i].min,
   5422 		                                regexp->counters[i].max);
   5423     }
   5424 }
   5425 
   5426 /**
   5427  * xmlRegexpCompile:
   5428  * @regexp:  a regular expression string
   5429  *
   5430  * Parses a regular expression conforming to XML Schemas Part 2 Datatype
   5431  * Appendix F and builds an automata suitable for testing strings against
   5432  * that regular expression
   5433  *
   5434  * Returns the compiled expression or NULL in case of error
   5435  */
   5436 xmlRegexpPtr
   5437 xmlRegexpCompile(const xmlChar *regexp) {
   5438     xmlRegexpPtr ret;
   5439     xmlRegParserCtxtPtr ctxt;
   5440 
   5441     ctxt = xmlRegNewParserCtxt(regexp);
   5442     if (ctxt == NULL)
   5443 	return(NULL);
   5444 
   5445     /* initialize the parser */
   5446     ctxt->end = NULL;
   5447     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
   5448     xmlRegStatePush(ctxt, ctxt->start);
   5449 
   5450     /* parse the expression building an automata */
   5451     xmlFAParseRegExp(ctxt, 1);
   5452     if (CUR != 0) {
   5453 	ERROR("xmlFAParseRegExp: extra characters");
   5454     }
   5455     if (ctxt->error != 0) {
   5456 	xmlRegFreeParserCtxt(ctxt);
   5457 	return(NULL);
   5458     }
   5459     ctxt->end = ctxt->state;
   5460     ctxt->start->type = XML_REGEXP_START_STATE;
   5461     ctxt->end->type = XML_REGEXP_FINAL_STATE;
   5462 
   5463     /* remove the Epsilon except for counted transitions */
   5464     xmlFAEliminateEpsilonTransitions(ctxt);
   5465 
   5466 
   5467     if (ctxt->error != 0) {
   5468 	xmlRegFreeParserCtxt(ctxt);
   5469 	return(NULL);
   5470     }
   5471     ret = xmlRegEpxFromParse(ctxt);
   5472     xmlRegFreeParserCtxt(ctxt);
   5473     return(ret);
   5474 }
   5475 
   5476 /**
   5477  * xmlRegexpExec:
   5478  * @comp:  the compiled regular expression
   5479  * @content:  the value to check against the regular expression
   5480  *
   5481  * Check if the regular expression generates the value
   5482  *
   5483  * Returns 1 if it matches, 0 if not and a negative value in case of error
   5484  */
   5485 int
   5486 xmlRegexpExec(xmlRegexpPtr comp, const xmlChar *content) {
   5487     if ((comp == NULL) || (content == NULL))
   5488 	return(-1);
   5489     return(xmlFARegExec(comp, content));
   5490 }
   5491 
   5492 /**
   5493  * xmlRegexpIsDeterminist:
   5494  * @comp:  the compiled regular expression
   5495  *
   5496  * Check if the regular expression is determinist
   5497  *
   5498  * Returns 1 if it yes, 0 if not and a negative value in case of error
   5499  */
   5500 int
   5501 xmlRegexpIsDeterminist(xmlRegexpPtr comp) {
   5502     xmlAutomataPtr am;
   5503     int ret;
   5504 
   5505     if (comp == NULL)
   5506 	return(-1);
   5507     if (comp->determinist != -1)
   5508 	return(comp->determinist);
   5509 
   5510     am = xmlNewAutomata();
   5511     if (am->states != NULL) {
   5512 	int i;
   5513 
   5514 	for (i = 0;i < am->nbStates;i++)
   5515 	    xmlRegFreeState(am->states[i]);
   5516 	xmlFree(am->states);
   5517     }
   5518     am->nbAtoms = comp->nbAtoms;
   5519     am->atoms = comp->atoms;
   5520     am->nbStates = comp->nbStates;
   5521     am->states = comp->states;
   5522     am->determinist = -1;
   5523     am->flags = comp->flags;
   5524     ret = xmlFAComputesDeterminism(am);
   5525     am->atoms = NULL;
   5526     am->states = NULL;
   5527     xmlFreeAutomata(am);
   5528     comp->determinist = ret;
   5529     return(ret);
   5530 }
   5531 
   5532 /**
   5533  * xmlRegFreeRegexp:
   5534  * @regexp:  the regexp
   5535  *
   5536  * Free a regexp
   5537  */
   5538 void
   5539 xmlRegFreeRegexp(xmlRegexpPtr regexp) {
   5540     int i;
   5541     if (regexp == NULL)
   5542 	return;
   5543 
   5544     if (regexp->string != NULL)
   5545 	xmlFree(regexp->string);
   5546     if (regexp->states != NULL) {
   5547 	for (i = 0;i < regexp->nbStates;i++)
   5548 	    xmlRegFreeState(regexp->states[i]);
   5549 	xmlFree(regexp->states);
   5550     }
   5551     if (regexp->atoms != NULL) {
   5552 	for (i = 0;i < regexp->nbAtoms;i++)
   5553 	    xmlRegFreeAtom(regexp->atoms[i]);
   5554 	xmlFree(regexp->atoms);
   5555     }
   5556     if (regexp->counters != NULL)
   5557 	xmlFree(regexp->counters);
   5558     if (regexp->compact != NULL)
   5559 	xmlFree(regexp->compact);
   5560     if (regexp->transdata != NULL)
   5561 	xmlFree(regexp->transdata);
   5562     if (regexp->stringMap != NULL) {
   5563 	for (i = 0; i < regexp->nbstrings;i++)
   5564 	    xmlFree(regexp->stringMap[i]);
   5565 	xmlFree(regexp->stringMap);
   5566     }
   5567 
   5568     xmlFree(regexp);
   5569 }
   5570 
   5571 #ifdef LIBXML_AUTOMATA_ENABLED
   5572 /************************************************************************
   5573  * 									*
   5574  * 			The Automata interface				*
   5575  * 									*
   5576  ************************************************************************/
   5577 
   5578 /**
   5579  * xmlNewAutomata:
   5580  *
   5581  * Create a new automata
   5582  *
   5583  * Returns the new object or NULL in case of failure
   5584  */
   5585 xmlAutomataPtr
   5586 xmlNewAutomata(void) {
   5587     xmlAutomataPtr ctxt;
   5588 
   5589     ctxt = xmlRegNewParserCtxt(NULL);
   5590     if (ctxt == NULL)
   5591 	return(NULL);
   5592 
   5593     /* initialize the parser */
   5594     ctxt->end = NULL;
   5595     ctxt->start = ctxt->state = xmlRegNewState(ctxt);
   5596     if (ctxt->start == NULL) {
   5597 	xmlFreeAutomata(ctxt);
   5598 	return(NULL);
   5599     }
   5600     ctxt->start->type = XML_REGEXP_START_STATE;
   5601     if (xmlRegStatePush(ctxt, ctxt->start) < 0) {
   5602         xmlRegFreeState(ctxt->start);
   5603 	xmlFreeAutomata(ctxt);
   5604 	return(NULL);
   5605     }
   5606     ctxt->flags = 0;
   5607 
   5608     return(ctxt);
   5609 }
   5610 
   5611 /**
   5612  * xmlFreeAutomata:
   5613  * @am: an automata
   5614  *
   5615  * Free an automata
   5616  */
   5617 void
   5618 xmlFreeAutomata(xmlAutomataPtr am) {
   5619     if (am == NULL)
   5620 	return;
   5621     xmlRegFreeParserCtxt(am);
   5622 }
   5623 
   5624 /**
   5625  * xmlAutomataSetFlags:
   5626  * @am: an automata
   5627  * @flags:  a set of internal flags
   5628  *
   5629  * Set some flags on the automata
   5630  */
   5631 void
   5632 xmlAutomataSetFlags(xmlAutomataPtr am, int flags) {
   5633     if (am == NULL)
   5634 	return;
   5635     am->flags |= flags;
   5636 }
   5637 
   5638 /**
   5639  * xmlAutomataGetInitState:
   5640  * @am: an automata
   5641  *
   5642  * Initial state lookup
   5643  *
   5644  * Returns the initial state of the automata
   5645  */
   5646 xmlAutomataStatePtr
   5647 xmlAutomataGetInitState(xmlAutomataPtr am) {
   5648     if (am == NULL)
   5649 	return(NULL);
   5650     return(am->start);
   5651 }
   5652 
   5653 /**
   5654  * xmlAutomataSetFinalState:
   5655  * @am: an automata
   5656  * @state: a state in this automata
   5657  *
   5658  * Makes that state a final state
   5659  *
   5660  * Returns 0 or -1 in case of error
   5661  */
   5662 int
   5663 xmlAutomataSetFinalState(xmlAutomataPtr am, xmlAutomataStatePtr state) {
   5664     if ((am == NULL) || (state == NULL))
   5665 	return(-1);
   5666     state->type = XML_REGEXP_FINAL_STATE;
   5667     return(0);
   5668 }
   5669 
   5670 /**
   5671  * xmlAutomataNewTransition:
   5672  * @am: an automata
   5673  * @from: the starting point of the transition
   5674  * @to: the target point of the transition or NULL
   5675  * @token: the input string associated to that transition
   5676  * @data: data passed to the callback function if the transition is activated
   5677  *
   5678  * If @to is NULL, this creates first a new target state in the automata
   5679  * and then adds a transition from the @from state to the target state
   5680  * activated by the value of @token
   5681  *
   5682  * Returns the target state or NULL in case of error
   5683  */
   5684 xmlAutomataStatePtr
   5685 xmlAutomataNewTransition(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5686 			 xmlAutomataStatePtr to, const xmlChar *token,
   5687 			 void *data) {
   5688     xmlRegAtomPtr atom;
   5689 
   5690     if ((am == NULL) || (from == NULL) || (token == NULL))
   5691 	return(NULL);
   5692     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5693     if (atom == NULL)
   5694         return(NULL);
   5695     atom->data = data;
   5696     if (atom == NULL)
   5697 	return(NULL);
   5698     atom->valuep = xmlStrdup(token);
   5699 
   5700     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5701         xmlRegFreeAtom(atom);
   5702 	return(NULL);
   5703     }
   5704     if (to == NULL)
   5705 	return(am->state);
   5706     return(to);
   5707 }
   5708 
   5709 /**
   5710  * xmlAutomataNewTransition2:
   5711  * @am: an automata
   5712  * @from: the starting point of the transition
   5713  * @to: the target point of the transition or NULL
   5714  * @token: the first input string associated to that transition
   5715  * @token2: the second input string associated to that transition
   5716  * @data: data passed to the callback function if the transition is activated
   5717  *
   5718  * If @to is NULL, this creates first a new target state in the automata
   5719  * and then adds a transition from the @from state to the target state
   5720  * activated by the value of @token
   5721  *
   5722  * Returns the target state or NULL in case of error
   5723  */
   5724 xmlAutomataStatePtr
   5725 xmlAutomataNewTransition2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5726 			  xmlAutomataStatePtr to, const xmlChar *token,
   5727 			  const xmlChar *token2, void *data) {
   5728     xmlRegAtomPtr atom;
   5729 
   5730     if ((am == NULL) || (from == NULL) || (token == NULL))
   5731 	return(NULL);
   5732     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5733     if (atom == NULL)
   5734 	return(NULL);
   5735     atom->data = data;
   5736     if ((token2 == NULL) || (*token2 == 0)) {
   5737 	atom->valuep = xmlStrdup(token);
   5738     } else {
   5739 	int lenn, lenp;
   5740 	xmlChar *str;
   5741 
   5742 	lenn = strlen((char *) token2);
   5743 	lenp = strlen((char *) token);
   5744 
   5745 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5746 	if (str == NULL) {
   5747 	    xmlRegFreeAtom(atom);
   5748 	    return(NULL);
   5749 	}
   5750 	memcpy(&str[0], token, lenp);
   5751 	str[lenp] = '|';
   5752 	memcpy(&str[lenp + 1], token2, lenn);
   5753 	str[lenn + lenp + 1] = 0;
   5754 
   5755 	atom->valuep = str;
   5756     }
   5757 
   5758     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5759         xmlRegFreeAtom(atom);
   5760 	return(NULL);
   5761     }
   5762     if (to == NULL)
   5763 	return(am->state);
   5764     return(to);
   5765 }
   5766 
   5767 /**
   5768  * xmlAutomataNewNegTrans:
   5769  * @am: an automata
   5770  * @from: the starting point of the transition
   5771  * @to: the target point of the transition or NULL
   5772  * @token: the first input string associated to that transition
   5773  * @token2: the second input string associated to that transition
   5774  * @data: data passed to the callback function if the transition is activated
   5775  *
   5776  * If @to is NULL, this creates first a new target state in the automata
   5777  * and then adds a transition from the @from state to the target state
   5778  * activated by any value except (@token,@token2)
   5779  * Note that if @token2 is not NULL, then (X, NULL) won't match to follow
   5780  # the semantic of XSD ##other
   5781  *
   5782  * Returns the target state or NULL in case of error
   5783  */
   5784 xmlAutomataStatePtr
   5785 xmlAutomataNewNegTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5786 		       xmlAutomataStatePtr to, const xmlChar *token,
   5787 		       const xmlChar *token2, void *data) {
   5788     xmlRegAtomPtr atom;
   5789     xmlChar err_msg[200];
   5790 
   5791     if ((am == NULL) || (from == NULL) || (token == NULL))
   5792 	return(NULL);
   5793     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5794     if (atom == NULL)
   5795 	return(NULL);
   5796     atom->data = data;
   5797     atom->neg = 1;
   5798     if ((token2 == NULL) || (*token2 == 0)) {
   5799 	atom->valuep = xmlStrdup(token);
   5800     } else {
   5801 	int lenn, lenp;
   5802 	xmlChar *str;
   5803 
   5804 	lenn = strlen((char *) token2);
   5805 	lenp = strlen((char *) token);
   5806 
   5807 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5808 	if (str == NULL) {
   5809 	    xmlRegFreeAtom(atom);
   5810 	    return(NULL);
   5811 	}
   5812 	memcpy(&str[0], token, lenp);
   5813 	str[lenp] = '|';
   5814 	memcpy(&str[lenp + 1], token2, lenn);
   5815 	str[lenn + lenp + 1] = 0;
   5816 
   5817 	atom->valuep = str;
   5818     }
   5819     snprintf((char *) err_msg, 199, "not %s", (const char *) atom->valuep);
   5820     err_msg[199] = 0;
   5821     atom->valuep2 = xmlStrdup(err_msg);
   5822 
   5823     if (xmlFAGenerateTransitions(am, from, to, atom) < 0) {
   5824         xmlRegFreeAtom(atom);
   5825 	return(NULL);
   5826     }
   5827     am->negs++;
   5828     if (to == NULL)
   5829 	return(am->state);
   5830     return(to);
   5831 }
   5832 
   5833 /**
   5834  * xmlAutomataNewCountTrans2:
   5835  * @am: an automata
   5836  * @from: the starting point of the transition
   5837  * @to: the target point of the transition or NULL
   5838  * @token: the input string associated to that transition
   5839  * @token2: the second input string associated to that transition
   5840  * @min:  the minimum successive occurences of token
   5841  * @max:  the maximum successive occurences of token
   5842  * @data:  data associated to the transition
   5843  *
   5844  * If @to is NULL, this creates first a new target state in the automata
   5845  * and then adds a transition from the @from state to the target state
   5846  * activated by a succession of input of value @token and @token2 and
   5847  * whose number is between @min and @max
   5848  *
   5849  * Returns the target state or NULL in case of error
   5850  */
   5851 xmlAutomataStatePtr
   5852 xmlAutomataNewCountTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5853 			 xmlAutomataStatePtr to, const xmlChar *token,
   5854 			 const xmlChar *token2,
   5855 			 int min, int max, void *data) {
   5856     xmlRegAtomPtr atom;
   5857     int counter;
   5858 
   5859     if ((am == NULL) || (from == NULL) || (token == NULL))
   5860 	return(NULL);
   5861     if (min < 0)
   5862 	return(NULL);
   5863     if ((max < min) || (max < 1))
   5864 	return(NULL);
   5865     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5866     if (atom == NULL)
   5867 	return(NULL);
   5868     if ((token2 == NULL) || (*token2 == 0)) {
   5869 	atom->valuep = xmlStrdup(token);
   5870     } else {
   5871 	int lenn, lenp;
   5872 	xmlChar *str;
   5873 
   5874 	lenn = strlen((char *) token2);
   5875 	lenp = strlen((char *) token);
   5876 
   5877 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   5878 	if (str == NULL) {
   5879 	    xmlRegFreeAtom(atom);
   5880 	    return(NULL);
   5881 	}
   5882 	memcpy(&str[0], token, lenp);
   5883 	str[lenp] = '|';
   5884 	memcpy(&str[lenp + 1], token2, lenn);
   5885 	str[lenn + lenp + 1] = 0;
   5886 
   5887 	atom->valuep = str;
   5888     }
   5889     atom->data = data;
   5890     if (min == 0)
   5891 	atom->min = 1;
   5892     else
   5893 	atom->min = min;
   5894     atom->max = max;
   5895 
   5896     /*
   5897      * associate a counter to the transition.
   5898      */
   5899     counter = xmlRegGetCounter(am);
   5900     am->counters[counter].min = min;
   5901     am->counters[counter].max = max;
   5902 
   5903     /* xmlFAGenerateTransitions(am, from, to, atom); */
   5904     if (to == NULL) {
   5905         to = xmlRegNewState(am);
   5906 	xmlRegStatePush(am, to);
   5907     }
   5908     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   5909     xmlRegAtomPush(am, atom);
   5910     am->state = to;
   5911 
   5912     if (to == NULL)
   5913 	to = am->state;
   5914     if (to == NULL)
   5915 	return(NULL);
   5916     if (min == 0)
   5917 	xmlFAGenerateEpsilonTransition(am, from, to);
   5918     return(to);
   5919 }
   5920 
   5921 /**
   5922  * xmlAutomataNewCountTrans:
   5923  * @am: an automata
   5924  * @from: the starting point of the transition
   5925  * @to: the target point of the transition or NULL
   5926  * @token: the input string associated to that transition
   5927  * @min:  the minimum successive occurences of token
   5928  * @max:  the maximum successive occurences of token
   5929  * @data:  data associated to the transition
   5930  *
   5931  * If @to is NULL, this creates first a new target state in the automata
   5932  * and then adds a transition from the @from state to the target state
   5933  * activated by a succession of input of value @token and whose number
   5934  * is between @min and @max
   5935  *
   5936  * Returns the target state or NULL in case of error
   5937  */
   5938 xmlAutomataStatePtr
   5939 xmlAutomataNewCountTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   5940 			 xmlAutomataStatePtr to, const xmlChar *token,
   5941 			 int min, int max, void *data) {
   5942     xmlRegAtomPtr atom;
   5943     int counter;
   5944 
   5945     if ((am == NULL) || (from == NULL) || (token == NULL))
   5946 	return(NULL);
   5947     if (min < 0)
   5948 	return(NULL);
   5949     if ((max < min) || (max < 1))
   5950 	return(NULL);
   5951     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   5952     if (atom == NULL)
   5953 	return(NULL);
   5954     atom->valuep = xmlStrdup(token);
   5955     atom->data = data;
   5956     if (min == 0)
   5957 	atom->min = 1;
   5958     else
   5959 	atom->min = min;
   5960     atom->max = max;
   5961 
   5962     /*
   5963      * associate a counter to the transition.
   5964      */
   5965     counter = xmlRegGetCounter(am);
   5966     am->counters[counter].min = min;
   5967     am->counters[counter].max = max;
   5968 
   5969     /* xmlFAGenerateTransitions(am, from, to, atom); */
   5970     if (to == NULL) {
   5971         to = xmlRegNewState(am);
   5972 	xmlRegStatePush(am, to);
   5973     }
   5974     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   5975     xmlRegAtomPush(am, atom);
   5976     am->state = to;
   5977 
   5978     if (to == NULL)
   5979 	to = am->state;
   5980     if (to == NULL)
   5981 	return(NULL);
   5982     if (min == 0)
   5983 	xmlFAGenerateEpsilonTransition(am, from, to);
   5984     return(to);
   5985 }
   5986 
   5987 /**
   5988  * xmlAutomataNewOnceTrans2:
   5989  * @am: an automata
   5990  * @from: the starting point of the transition
   5991  * @to: the target point of the transition or NULL
   5992  * @token: the input string associated to that transition
   5993  * @token2: the second input string associated to that transition
   5994  * @min:  the minimum successive occurences of token
   5995  * @max:  the maximum successive occurences of token
   5996  * @data:  data associated to the transition
   5997  *
   5998  * If @to is NULL, this creates first a new target state in the automata
   5999  * and then adds a transition from the @from state to the target state
   6000  * activated by a succession of input of value @token and @token2 and whose
   6001  * number is between @min and @max, moreover that transition can only be
   6002  * crossed once.
   6003  *
   6004  * Returns the target state or NULL in case of error
   6005  */
   6006 xmlAutomataStatePtr
   6007 xmlAutomataNewOnceTrans2(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6008 			 xmlAutomataStatePtr to, const xmlChar *token,
   6009 			 const xmlChar *token2,
   6010 			 int min, int max, void *data) {
   6011     xmlRegAtomPtr atom;
   6012     int counter;
   6013 
   6014     if ((am == NULL) || (from == NULL) || (token == NULL))
   6015 	return(NULL);
   6016     if (min < 1)
   6017 	return(NULL);
   6018     if ((max < min) || (max < 1))
   6019 	return(NULL);
   6020     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   6021     if (atom == NULL)
   6022 	return(NULL);
   6023     if ((token2 == NULL) || (*token2 == 0)) {
   6024 	atom->valuep = xmlStrdup(token);
   6025     } else {
   6026 	int lenn, lenp;
   6027 	xmlChar *str;
   6028 
   6029 	lenn = strlen((char *) token2);
   6030 	lenp = strlen((char *) token);
   6031 
   6032 	str = (xmlChar *) xmlMallocAtomic(lenn + lenp + 2);
   6033 	if (str == NULL) {
   6034 	    xmlRegFreeAtom(atom);
   6035 	    return(NULL);
   6036 	}
   6037 	memcpy(&str[0], token, lenp);
   6038 	str[lenp] = '|';
   6039 	memcpy(&str[lenp + 1], token2, lenn);
   6040 	str[lenn + lenp + 1] = 0;
   6041 
   6042 	atom->valuep = str;
   6043     }
   6044     atom->data = data;
   6045     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
   6046     atom->min = min;
   6047     atom->max = max;
   6048     /*
   6049      * associate a counter to the transition.
   6050      */
   6051     counter = xmlRegGetCounter(am);
   6052     am->counters[counter].min = 1;
   6053     am->counters[counter].max = 1;
   6054 
   6055     /* xmlFAGenerateTransitions(am, from, to, atom); */
   6056     if (to == NULL) {
   6057 	to = xmlRegNewState(am);
   6058 	xmlRegStatePush(am, to);
   6059     }
   6060     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   6061     xmlRegAtomPush(am, atom);
   6062     am->state = to;
   6063     return(to);
   6064 }
   6065 
   6066 
   6067 
   6068 /**
   6069  * xmlAutomataNewOnceTrans:
   6070  * @am: an automata
   6071  * @from: the starting point of the transition
   6072  * @to: the target point of the transition or NULL
   6073  * @token: the input string associated to that transition
   6074  * @min:  the minimum successive occurences of token
   6075  * @max:  the maximum successive occurences of token
   6076  * @data:  data associated to the transition
   6077  *
   6078  * If @to is NULL, this creates first a new target state in the automata
   6079  * and then adds a transition from the @from state to the target state
   6080  * activated by a succession of input of value @token and whose number
   6081  * is between @min and @max, moreover that transition can only be crossed
   6082  * once.
   6083  *
   6084  * Returns the target state or NULL in case of error
   6085  */
   6086 xmlAutomataStatePtr
   6087 xmlAutomataNewOnceTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6088 			 xmlAutomataStatePtr to, const xmlChar *token,
   6089 			 int min, int max, void *data) {
   6090     xmlRegAtomPtr atom;
   6091     int counter;
   6092 
   6093     if ((am == NULL) || (from == NULL) || (token == NULL))
   6094 	return(NULL);
   6095     if (min < 1)
   6096 	return(NULL);
   6097     if ((max < min) || (max < 1))
   6098 	return(NULL);
   6099     atom = xmlRegNewAtom(am, XML_REGEXP_STRING);
   6100     if (atom == NULL)
   6101 	return(NULL);
   6102     atom->valuep = xmlStrdup(token);
   6103     atom->data = data;
   6104     atom->quant = XML_REGEXP_QUANT_ONCEONLY;
   6105     atom->min = min;
   6106     atom->max = max;
   6107     /*
   6108      * associate a counter to the transition.
   6109      */
   6110     counter = xmlRegGetCounter(am);
   6111     am->counters[counter].min = 1;
   6112     am->counters[counter].max = 1;
   6113 
   6114     /* xmlFAGenerateTransitions(am, from, to, atom); */
   6115     if (to == NULL) {
   6116 	to = xmlRegNewState(am);
   6117 	xmlRegStatePush(am, to);
   6118     }
   6119     xmlRegStateAddTrans(am, from, atom, to, counter, -1);
   6120     xmlRegAtomPush(am, atom);
   6121     am->state = to;
   6122     return(to);
   6123 }
   6124 
   6125 /**
   6126  * xmlAutomataNewState:
   6127  * @am: an automata
   6128  *
   6129  * Create a new disconnected state in the automata
   6130  *
   6131  * Returns the new state or NULL in case of error
   6132  */
   6133 xmlAutomataStatePtr
   6134 xmlAutomataNewState(xmlAutomataPtr am) {
   6135     xmlAutomataStatePtr to;
   6136 
   6137     if (am == NULL)
   6138 	return(NULL);
   6139     to = xmlRegNewState(am);
   6140     xmlRegStatePush(am, to);
   6141     return(to);
   6142 }
   6143 
   6144 /**
   6145  * xmlAutomataNewEpsilon:
   6146  * @am: an automata
   6147  * @from: the starting point of the transition
   6148  * @to: the target point of the transition or NULL
   6149  *
   6150  * If @to is NULL, this creates first a new target state in the automata
   6151  * and then adds an epsilon transition from the @from state to the
   6152  * target state
   6153  *
   6154  * Returns the target state or NULL in case of error
   6155  */
   6156 xmlAutomataStatePtr
   6157 xmlAutomataNewEpsilon(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6158 		      xmlAutomataStatePtr to) {
   6159     if ((am == NULL) || (from == NULL))
   6160 	return(NULL);
   6161     xmlFAGenerateEpsilonTransition(am, from, to);
   6162     if (to == NULL)
   6163 	return(am->state);
   6164     return(to);
   6165 }
   6166 
   6167 /**
   6168  * xmlAutomataNewAllTrans:
   6169  * @am: an automata
   6170  * @from: the starting point of the transition
   6171  * @to: the target point of the transition or NULL
   6172  * @lax: allow to transition if not all all transitions have been activated
   6173  *
   6174  * If @to is NULL, this creates first a new target state in the automata
   6175  * and then adds a an ALL transition from the @from state to the
   6176  * target state. That transition is an epsilon transition allowed only when
   6177  * all transitions from the @from node have been activated.
   6178  *
   6179  * Returns the target state or NULL in case of error
   6180  */
   6181 xmlAutomataStatePtr
   6182 xmlAutomataNewAllTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6183 		       xmlAutomataStatePtr to, int lax) {
   6184     if ((am == NULL) || (from == NULL))
   6185 	return(NULL);
   6186     xmlFAGenerateAllTransition(am, from, to, lax);
   6187     if (to == NULL)
   6188 	return(am->state);
   6189     return(to);
   6190 }
   6191 
   6192 /**
   6193  * xmlAutomataNewCounter:
   6194  * @am: an automata
   6195  * @min:  the minimal value on the counter
   6196  * @max:  the maximal value on the counter
   6197  *
   6198  * Create a new counter
   6199  *
   6200  * Returns the counter number or -1 in case of error
   6201  */
   6202 int
   6203 xmlAutomataNewCounter(xmlAutomataPtr am, int min, int max) {
   6204     int ret;
   6205 
   6206     if (am == NULL)
   6207 	return(-1);
   6208 
   6209     ret = xmlRegGetCounter(am);
   6210     if (ret < 0)
   6211 	return(-1);
   6212     am->counters[ret].min = min;
   6213     am->counters[ret].max = max;
   6214     return(ret);
   6215 }
   6216 
   6217 /**
   6218  * xmlAutomataNewCountedTrans:
   6219  * @am: an automata
   6220  * @from: the starting point of the transition
   6221  * @to: the target point of the transition or NULL
   6222  * @counter: the counter associated to that transition
   6223  *
   6224  * If @to is NULL, this creates first a new target state in the automata
   6225  * and then adds an epsilon transition from the @from state to the target state
   6226  * which will increment the counter provided
   6227  *
   6228  * Returns the target state or NULL in case of error
   6229  */
   6230 xmlAutomataStatePtr
   6231 xmlAutomataNewCountedTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6232 		xmlAutomataStatePtr to, int counter) {
   6233     if ((am == NULL) || (from == NULL) || (counter < 0))
   6234 	return(NULL);
   6235     xmlFAGenerateCountedEpsilonTransition(am, from, to, counter);
   6236     if (to == NULL)
   6237 	return(am->state);
   6238     return(to);
   6239 }
   6240 
   6241 /**
   6242  * xmlAutomataNewCounterTrans:
   6243  * @am: an automata
   6244  * @from: the starting point of the transition
   6245  * @to: the target point of the transition or NULL
   6246  * @counter: the counter associated to that transition
   6247  *
   6248  * If @to is NULL, this creates first a new target state in the automata
   6249  * and then adds an epsilon transition from the @from state to the target state
   6250  * which will be allowed only if the counter is within the right range.
   6251  *
   6252  * Returns the target state or NULL in case of error
   6253  */
   6254 xmlAutomataStatePtr
   6255 xmlAutomataNewCounterTrans(xmlAutomataPtr am, xmlAutomataStatePtr from,
   6256 		xmlAutomataStatePtr to, int counter) {
   6257     if ((am == NULL) || (from == NULL) || (counter < 0))
   6258 	return(NULL);
   6259     xmlFAGenerateCountedTransition(am, from, to, counter);
   6260     if (to == NULL)
   6261 	return(am->state);
   6262     return(to);
   6263 }
   6264 
   6265 /**
   6266  * xmlAutomataCompile:
   6267  * @am: an automata
   6268  *
   6269  * Compile the automata into a Reg Exp ready for being executed.
   6270  * The automata should be free after this point.
   6271  *
   6272  * Returns the compiled regexp or NULL in case of error
   6273  */
   6274 xmlRegexpPtr
   6275 xmlAutomataCompile(xmlAutomataPtr am) {
   6276     xmlRegexpPtr ret;
   6277 
   6278     if ((am == NULL) || (am->error != 0)) return(NULL);
   6279     xmlFAEliminateEpsilonTransitions(am);
   6280     /* xmlFAComputesDeterminism(am); */
   6281     ret = xmlRegEpxFromParse(am);
   6282 
   6283     return(ret);
   6284 }
   6285 
   6286 /**
   6287  * xmlAutomataIsDeterminist:
   6288  * @am: an automata
   6289  *
   6290  * Checks if an automata is determinist.
   6291  *
   6292  * Returns 1 if true, 0 if not, and -1 in case of error
   6293  */
   6294 int
   6295 xmlAutomataIsDeterminist(xmlAutomataPtr am) {
   6296     int ret;
   6297 
   6298     if (am == NULL)
   6299 	return(-1);
   6300 
   6301     ret = xmlFAComputesDeterminism(am);
   6302     return(ret);
   6303 }
   6304 #endif /* LIBXML_AUTOMATA_ENABLED */
   6305 
   6306 #ifdef LIBXML_EXPR_ENABLED
   6307 /************************************************************************
   6308  *									*
   6309  *		Formal Expression handling code				*
   6310  *									*
   6311  ************************************************************************/
   6312 /************************************************************************
   6313  *									*
   6314  *		Expression handling context				*
   6315  *									*
   6316  ************************************************************************/
   6317 
   6318 struct _xmlExpCtxt {
   6319     xmlDictPtr dict;
   6320     xmlExpNodePtr *table;
   6321     int size;
   6322     int nbElems;
   6323     int nb_nodes;
   6324     int maxNodes;
   6325     const char *expr;
   6326     const char *cur;
   6327     int nb_cons;
   6328     int tabSize;
   6329 };
   6330 
   6331 /**
   6332  * xmlExpNewCtxt:
   6333  * @maxNodes:  the maximum number of nodes
   6334  * @dict:  optional dictionnary to use internally
   6335  *
   6336  * Creates a new context for manipulating expressions
   6337  *
   6338  * Returns the context or NULL in case of error
   6339  */
   6340 xmlExpCtxtPtr
   6341 xmlExpNewCtxt(int maxNodes, xmlDictPtr dict) {
   6342     xmlExpCtxtPtr ret;
   6343     int size = 256;
   6344 
   6345     if (maxNodes <= 4096)
   6346         maxNodes = 4096;
   6347 
   6348     ret = (xmlExpCtxtPtr) xmlMalloc(sizeof(xmlExpCtxt));
   6349     if (ret == NULL)
   6350         return(NULL);
   6351     memset(ret, 0, sizeof(xmlExpCtxt));
   6352     ret->size = size;
   6353     ret->nbElems = 0;
   6354     ret->maxNodes = maxNodes;
   6355     ret->table = xmlMalloc(size * sizeof(xmlExpNodePtr));
   6356     if (ret->table == NULL) {
   6357         xmlFree(ret);
   6358 	return(NULL);
   6359     }
   6360     memset(ret->table, 0, size * sizeof(xmlExpNodePtr));
   6361     if (dict == NULL) {
   6362         ret->dict = xmlDictCreate();
   6363 	if (ret->dict == NULL) {
   6364 	    xmlFree(ret->table);
   6365 	    xmlFree(ret);
   6366 	    return(NULL);
   6367 	}
   6368     } else {
   6369         ret->dict = dict;
   6370 	xmlDictReference(ret->dict);
   6371     }
   6372     return(ret);
   6373 }
   6374 
   6375 /**
   6376  * xmlExpFreeCtxt:
   6377  * @ctxt:  an expression context
   6378  *
   6379  * Free an expression context
   6380  */
   6381 void
   6382 xmlExpFreeCtxt(xmlExpCtxtPtr ctxt) {
   6383     if (ctxt == NULL)
   6384         return;
   6385     xmlDictFree(ctxt->dict);
   6386     if (ctxt->table != NULL)
   6387 	xmlFree(ctxt->table);
   6388     xmlFree(ctxt);
   6389 }
   6390 
   6391 /************************************************************************
   6392  *									*
   6393  *		Structure associated to an expression node		*
   6394  *									*
   6395  ************************************************************************/
   6396 #define MAX_NODES 10000
   6397 
   6398 /* #define DEBUG_DERIV */
   6399 
   6400 /*
   6401  * TODO:
   6402  * - Wildcards
   6403  * - public API for creation
   6404  *
   6405  * Started
   6406  * - regression testing
   6407  *
   6408  * Done
   6409  * - split into module and test tool
   6410  * - memleaks
   6411  */
   6412 
   6413 typedef enum {
   6414     XML_EXP_NILABLE = (1 << 0)
   6415 } xmlExpNodeInfo;
   6416 
   6417 #define IS_NILLABLE(node) ((node)->info & XML_EXP_NILABLE)
   6418 
   6419 struct _xmlExpNode {
   6420     unsigned char type;/* xmlExpNodeType */
   6421     unsigned char info;/* OR of xmlExpNodeInfo */
   6422     unsigned short key;	/* the hash key */
   6423     unsigned int ref;	/* The number of references */
   6424     int c_max;		/* the maximum length it can consume */
   6425     xmlExpNodePtr exp_left;
   6426     xmlExpNodePtr next;/* the next node in the hash table or free list */
   6427     union {
   6428 	struct {
   6429 	    int f_min;
   6430 	    int f_max;
   6431 	} count;
   6432 	struct {
   6433 	    xmlExpNodePtr f_right;
   6434 	} children;
   6435         const xmlChar *f_str;
   6436     } field;
   6437 };
   6438 
   6439 #define exp_min field.count.f_min
   6440 #define exp_max field.count.f_max
   6441 /* #define exp_left field.children.f_left */
   6442 #define exp_right field.children.f_right
   6443 #define exp_str field.f_str
   6444 
   6445 static xmlExpNodePtr xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type);
   6446 static xmlExpNode forbiddenExpNode = {
   6447     XML_EXP_FORBID, 0, 0, 0, 0, NULL, NULL, {{ 0, 0}}
   6448 };
   6449 xmlExpNodePtr forbiddenExp = &forbiddenExpNode;
   6450 static xmlExpNode emptyExpNode = {
   6451     XML_EXP_EMPTY, 1, 0, 0, 0, NULL, NULL, {{ 0, 0}}
   6452 };
   6453 xmlExpNodePtr emptyExp = &emptyExpNode;
   6454 
   6455 /************************************************************************
   6456  *									*
   6457  *  The custom hash table for unicity and canonicalization		*
   6458  *  of sub-expressions pointers						*
   6459  *									*
   6460  ************************************************************************/
   6461 /*
   6462  * xmlExpHashNameComputeKey:
   6463  * Calculate the hash key for a token
   6464  */
   6465 static unsigned short
   6466 xmlExpHashNameComputeKey(const xmlChar *name) {
   6467     unsigned short value = 0L;
   6468     char ch;
   6469 
   6470     if (name != NULL) {
   6471 	value += 30 * (*name);
   6472 	while ((ch = *name++) != 0) {
   6473 	    value = value ^ ((value << 5) + (value >> 3) + (unsigned long)ch);
   6474 	}
   6475     }
   6476     return (value);
   6477 }
   6478 
   6479 /*
   6480  * xmlExpHashComputeKey:
   6481  * Calculate the hash key for a compound expression
   6482  */
   6483 static unsigned short
   6484 xmlExpHashComputeKey(xmlExpNodeType type, xmlExpNodePtr left,
   6485                      xmlExpNodePtr right) {
   6486     unsigned long value;
   6487     unsigned short ret;
   6488 
   6489     switch (type) {
   6490         case XML_EXP_SEQ:
   6491 	    value = left->key;
   6492 	    value += right->key;
   6493 	    value *= 3;
   6494 	    ret = (unsigned short) value;
   6495 	    break;
   6496         case XML_EXP_OR:
   6497 	    value = left->key;
   6498 	    value += right->key;
   6499 	    value *= 7;
   6500 	    ret = (unsigned short) value;
   6501 	    break;
   6502         case XML_EXP_COUNT:
   6503 	    value = left->key;
   6504 	    value += right->key;
   6505 	    ret = (unsigned short) value;
   6506 	    break;
   6507 	default:
   6508 	    ret = 0;
   6509     }
   6510     return(ret);
   6511 }
   6512 
   6513 
   6514 static xmlExpNodePtr
   6515 xmlExpNewNode(xmlExpCtxtPtr ctxt, xmlExpNodeType type) {
   6516     xmlExpNodePtr ret;
   6517 
   6518     if (ctxt->nb_nodes >= MAX_NODES)
   6519         return(NULL);
   6520     ret = (xmlExpNodePtr) xmlMalloc(sizeof(xmlExpNode));
   6521     if (ret == NULL)
   6522         return(NULL);
   6523     memset(ret, 0, sizeof(xmlExpNode));
   6524     ret->type = type;
   6525     ret->next = NULL;
   6526     ctxt->nb_nodes++;
   6527     ctxt->nb_cons++;
   6528     return(ret);
   6529 }
   6530 
   6531 /**
   6532  * xmlExpHashGetEntry:
   6533  * @table: the hash table
   6534  *
   6535  * Get the unique entry from the hash table. The entry is created if
   6536  * needed. @left and @right are consumed, i.e. their ref count will
   6537  * be decremented by the operation.
   6538  *
   6539  * Returns the pointer or NULL in case of error
   6540  */
   6541 static xmlExpNodePtr
   6542 xmlExpHashGetEntry(xmlExpCtxtPtr ctxt, xmlExpNodeType type,
   6543                    xmlExpNodePtr left, xmlExpNodePtr right,
   6544 		   const xmlChar *name, int min, int max) {
   6545     unsigned short kbase, key;
   6546     xmlExpNodePtr entry;
   6547     xmlExpNodePtr insert;
   6548 
   6549     if (ctxt == NULL)
   6550 	return(NULL);
   6551 
   6552     /*
   6553      * Check for duplicate and insertion location.
   6554      */
   6555     if (type == XML_EXP_ATOM) {
   6556 	kbase = xmlExpHashNameComputeKey(name);
   6557     } else if (type == XML_EXP_COUNT) {
   6558         /* COUNT reduction rule 1 */
   6559 	/* a{1} -> a */
   6560 	if (min == max) {
   6561 	    if (min == 1) {
   6562 		return(left);
   6563 	    }
   6564 	    if (min == 0) {
   6565 		xmlExpFree(ctxt, left);
   6566 	        return(emptyExp);
   6567 	    }
   6568 	}
   6569 	if (min < 0) {
   6570 	    xmlExpFree(ctxt, left);
   6571 	    return(forbiddenExp);
   6572 	}
   6573         if (max == -1)
   6574 	    kbase = min + 79;
   6575 	else
   6576 	    kbase = max - min;
   6577 	kbase += left->key;
   6578     } else if (type == XML_EXP_OR) {
   6579         /* Forbid reduction rules */
   6580         if (left->type == XML_EXP_FORBID) {
   6581 	    xmlExpFree(ctxt, left);
   6582 	    return(right);
   6583 	}
   6584         if (right->type == XML_EXP_FORBID) {
   6585 	    xmlExpFree(ctxt, right);
   6586 	    return(left);
   6587 	}
   6588 
   6589         /* OR reduction rule 1 */
   6590 	/* a | a reduced to a */
   6591         if (left == right) {
   6592 	    left->ref--;
   6593 	    return(left);
   6594 	}
   6595         /* OR canonicalization rule 1 */
   6596 	/* linearize (a | b) | c into a | (b | c) */
   6597         if ((left->type == XML_EXP_OR) && (right->type != XML_EXP_OR)) {
   6598 	    xmlExpNodePtr tmp = left;
   6599             left = right;
   6600 	    right = tmp;
   6601 	}
   6602         /* OR reduction rule 2 */
   6603 	/* a | (a | b) and b | (a | b) are reduced to a | b */
   6604         if (right->type == XML_EXP_OR) {
   6605 	    if ((left == right->exp_left) ||
   6606 	        (left == right->exp_right)) {
   6607 		xmlExpFree(ctxt, left);
   6608 		return(right);
   6609 	    }
   6610 	}
   6611         /* OR canonicalization rule 2 */
   6612 	/* linearize (a | b) | c into a | (b | c) */
   6613         if (left->type == XML_EXP_OR) {
   6614 	    xmlExpNodePtr tmp;
   6615 
   6616 	    /* OR canonicalization rule 2 */
   6617 	    if ((left->exp_right->type != XML_EXP_OR) &&
   6618 	        (left->exp_right->key < left->exp_left->key)) {
   6619 	        tmp = left->exp_right;
   6620 		left->exp_right = left->exp_left;
   6621 		left->exp_left = tmp;
   6622 	    }
   6623 	    left->exp_right->ref++;
   6624 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_right, right,
   6625 	                             NULL, 0, 0);
   6626 	    left->exp_left->ref++;
   6627 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left->exp_left, tmp,
   6628 	                             NULL, 0, 0);
   6629 
   6630 	    xmlExpFree(ctxt, left);
   6631 	    return(tmp);
   6632 	}
   6633 	if (right->type == XML_EXP_OR) {
   6634 	    /* Ordering in the tree */
   6635 	    /* C | (A | B) -> A | (B | C) */
   6636 	    if (left->key > right->exp_right->key) {
   6637 		xmlExpNodePtr tmp;
   6638 		right->exp_right->ref++;
   6639 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_right,
   6640 		                         left, NULL, 0, 0);
   6641 		right->exp_left->ref++;
   6642 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
   6643 		                         tmp, NULL, 0, 0);
   6644 		xmlExpFree(ctxt, right);
   6645 		return(tmp);
   6646 	    }
   6647 	    /* Ordering in the tree */
   6648 	    /* B | (A | C) -> A | (B | C) */
   6649 	    if (left->key > right->exp_left->key) {
   6650 		xmlExpNodePtr tmp;
   6651 		right->exp_right->ref++;
   6652 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, left,
   6653 		                         right->exp_right, NULL, 0, 0);
   6654 		right->exp_left->ref++;
   6655 		tmp = xmlExpHashGetEntry(ctxt, XML_EXP_OR, right->exp_left,
   6656 		                         tmp, NULL, 0, 0);
   6657 		xmlExpFree(ctxt, right);
   6658 		return(tmp);
   6659 	    }
   6660 	}
   6661 	/* we know both types are != XML_EXP_OR here */
   6662         else if (left->key > right->key) {
   6663 	    xmlExpNodePtr tmp = left;
   6664             left = right;
   6665 	    right = tmp;
   6666 	}
   6667 	kbase = xmlExpHashComputeKey(type, left, right);
   6668     } else if (type == XML_EXP_SEQ) {
   6669         /* Forbid reduction rules */
   6670         if (left->type == XML_EXP_FORBID) {
   6671 	    xmlExpFree(ctxt, right);
   6672 	    return(left);
   6673 	}
   6674         if (right->type == XML_EXP_FORBID) {
   6675 	    xmlExpFree(ctxt, left);
   6676 	    return(right);
   6677 	}
   6678         /* Empty reduction rules */
   6679         if (right->type == XML_EXP_EMPTY) {
   6680 	    return(left);
   6681 	}
   6682         if (left->type == XML_EXP_EMPTY) {
   6683 	    return(right);
   6684 	}
   6685 	kbase = xmlExpHashComputeKey(type, left, right);
   6686     } else
   6687         return(NULL);
   6688 
   6689     key = kbase % ctxt->size;
   6690     if (ctxt->table[key] != NULL) {
   6691 	for (insert = ctxt->table[key]; insert != NULL;
   6692 	     insert = insert->next) {
   6693 	    if ((insert->key == kbase) &&
   6694 	        (insert->type == type)) {
   6695 		if (type == XML_EXP_ATOM) {
   6696 		    if (name == insert->exp_str) {
   6697 			insert->ref++;
   6698 			return(insert);
   6699 		    }
   6700 		} else if (type == XML_EXP_COUNT) {
   6701 		    if ((insert->exp_min == min) && (insert->exp_max == max) &&
   6702 		        (insert->exp_left == left)) {
   6703 			insert->ref++;
   6704 			left->ref--;
   6705 			return(insert);
   6706 		    }
   6707 		} else if ((insert->exp_left == left) &&
   6708 			   (insert->exp_right == right)) {
   6709 		    insert->ref++;
   6710 		    left->ref--;
   6711 		    right->ref--;
   6712 		    return(insert);
   6713 		}
   6714 	    }
   6715 	}
   6716     }
   6717 
   6718     entry = xmlExpNewNode(ctxt, type);
   6719     if (entry == NULL)
   6720         return(NULL);
   6721     entry->key = kbase;
   6722     if (type == XML_EXP_ATOM) {
   6723 	entry->exp_str = name;
   6724 	entry->c_max = 1;
   6725     } else if (type == XML_EXP_COUNT) {
   6726         entry->exp_min = min;
   6727         entry->exp_max = max;
   6728 	entry->exp_left = left;
   6729 	if ((min == 0) || (IS_NILLABLE(left)))
   6730 	    entry->info |= XML_EXP_NILABLE;
   6731 	if (max < 0)
   6732 	    entry->c_max = -1;
   6733 	else
   6734 	    entry->c_max = max * entry->exp_left->c_max;
   6735     } else {
   6736 	entry->exp_left = left;
   6737 	entry->exp_right = right;
   6738 	if (type == XML_EXP_OR) {
   6739 	    if ((IS_NILLABLE(left)) || (IS_NILLABLE(right)))
   6740 		entry->info |= XML_EXP_NILABLE;
   6741 	    if ((entry->exp_left->c_max == -1) ||
   6742 	        (entry->exp_right->c_max == -1))
   6743 		entry->c_max = -1;
   6744 	    else if (entry->exp_left->c_max > entry->exp_right->c_max)
   6745 	        entry->c_max = entry->exp_left->c_max;
   6746 	    else
   6747 	        entry->c_max = entry->exp_right->c_max;
   6748 	} else {
   6749 	    if ((IS_NILLABLE(left)) && (IS_NILLABLE(right)))
   6750 		entry->info |= XML_EXP_NILABLE;
   6751 	    if ((entry->exp_left->c_max == -1) ||
   6752 	        (entry->exp_right->c_max == -1))
   6753 		entry->c_max = -1;
   6754 	    else
   6755 	        entry->c_max = entry->exp_left->c_max + entry->exp_right->c_max;
   6756 	}
   6757     }
   6758     entry->ref = 1;
   6759     if (ctxt->table[key] != NULL)
   6760         entry->next = ctxt->table[key];
   6761 
   6762     ctxt->table[key] = entry;
   6763     ctxt->nbElems++;
   6764 
   6765     return(entry);
   6766 }
   6767 
   6768 /**
   6769  * xmlExpFree:
   6770  * @ctxt: the expression context
   6771  * @exp: the expression
   6772  *
   6773  * Dereference the expression
   6774  */
   6775 void
   6776 xmlExpFree(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp) {
   6777     if ((exp == NULL) || (exp == forbiddenExp) || (exp == emptyExp))
   6778         return;
   6779     exp->ref--;
   6780     if (exp->ref == 0) {
   6781         unsigned short key;
   6782 
   6783         /* Unlink it first from the hash table */
   6784 	key = exp->key % ctxt->size;
   6785 	if (ctxt->table[key] == exp) {
   6786 	    ctxt->table[key] = exp->next;
   6787 	} else {
   6788 	    xmlExpNodePtr tmp;
   6789 
   6790 	    tmp = ctxt->table[key];
   6791 	    while (tmp != NULL) {
   6792 	        if (tmp->next == exp) {
   6793 		    tmp->next = exp->next;
   6794 		    break;
   6795 		}
   6796 	        tmp = tmp->next;
   6797 	    }
   6798 	}
   6799 
   6800         if ((exp->type == XML_EXP_SEQ) || (exp->type == XML_EXP_OR)) {
   6801 	    xmlExpFree(ctxt, exp->exp_left);
   6802 	    xmlExpFree(ctxt, exp->exp_right);
   6803 	} else if (exp->type == XML_EXP_COUNT) {
   6804 	    xmlExpFree(ctxt, exp->exp_left);
   6805 	}
   6806         xmlFree(exp);
   6807 	ctxt->nb_nodes--;
   6808     }
   6809 }
   6810 
   6811 /**
   6812  * xmlExpRef:
   6813  * @exp: the expression
   6814  *
   6815  * Increase the reference count of the expression
   6816  */
   6817 void
   6818 xmlExpRef(xmlExpNodePtr exp) {
   6819     if (exp != NULL)
   6820         exp->ref++;
   6821 }
   6822 
   6823 /**
   6824  * xmlExpNewAtom:
   6825  * @ctxt: the expression context
   6826  * @name: the atom name
   6827  * @len: the atom name lenght in byte (or -1);
   6828  *
   6829  * Get the atom associated to this name from that context
   6830  *
   6831  * Returns the node or NULL in case of error
   6832  */
   6833 xmlExpNodePtr
   6834 xmlExpNewAtom(xmlExpCtxtPtr ctxt, const xmlChar *name, int len) {
   6835     if ((ctxt == NULL) || (name == NULL))
   6836         return(NULL);
   6837     name = xmlDictLookup(ctxt->dict, name, len);
   6838     if (name == NULL)
   6839         return(NULL);
   6840     return(xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, name, 0, 0));
   6841 }
   6842 
   6843 /**
   6844  * xmlExpNewOr:
   6845  * @ctxt: the expression context
   6846  * @left: left expression
   6847  * @right: right expression
   6848  *
   6849  * Get the atom associated to the choice @left | @right
   6850  * Note that @left and @right are consumed in the operation, to keep
   6851  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
   6852  * this is true even in case of failure (unless ctxt == NULL).
   6853  *
   6854  * Returns the node or NULL in case of error
   6855  */
   6856 xmlExpNodePtr
   6857 xmlExpNewOr(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
   6858     if (ctxt == NULL)
   6859         return(NULL);
   6860     if ((left == NULL) || (right == NULL)) {
   6861         xmlExpFree(ctxt, left);
   6862         xmlExpFree(ctxt, right);
   6863         return(NULL);
   6864     }
   6865     return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, left, right, NULL, 0, 0));
   6866 }
   6867 
   6868 /**
   6869  * xmlExpNewSeq:
   6870  * @ctxt: the expression context
   6871  * @left: left expression
   6872  * @right: right expression
   6873  *
   6874  * Get the atom associated to the sequence @left , @right
   6875  * Note that @left and @right are consumed in the operation, to keep
   6876  * an handle on them use xmlExpRef() and use xmlExpFree() to release them,
   6877  * this is true even in case of failure (unless ctxt == NULL).
   6878  *
   6879  * Returns the node or NULL in case of error
   6880  */
   6881 xmlExpNodePtr
   6882 xmlExpNewSeq(xmlExpCtxtPtr ctxt, xmlExpNodePtr left, xmlExpNodePtr right) {
   6883     if (ctxt == NULL)
   6884         return(NULL);
   6885     if ((left == NULL) || (right == NULL)) {
   6886         xmlExpFree(ctxt, left);
   6887         xmlExpFree(ctxt, right);
   6888         return(NULL);
   6889     }
   6890     return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, left, right, NULL, 0, 0));
   6891 }
   6892 
   6893 /**
   6894  * xmlExpNewRange:
   6895  * @ctxt: the expression context
   6896  * @subset: the expression to be repeated
   6897  * @min: the lower bound for the repetition
   6898  * @max: the upper bound for the repetition, -1 means infinite
   6899  *
   6900  * Get the atom associated to the range (@subset){@min, @max}
   6901  * Note that @subset is consumed in the operation, to keep
   6902  * an handle on it use xmlExpRef() and use xmlExpFree() to release it,
   6903  * this is true even in case of failure (unless ctxt == NULL).
   6904  *
   6905  * Returns the node or NULL in case of error
   6906  */
   6907 xmlExpNodePtr
   6908 xmlExpNewRange(xmlExpCtxtPtr ctxt, xmlExpNodePtr subset, int min, int max) {
   6909     if (ctxt == NULL)
   6910         return(NULL);
   6911     if ((subset == NULL) || (min < 0) || (max < -1) ||
   6912         ((max >= 0) && (min > max))) {
   6913 	xmlExpFree(ctxt, subset);
   6914         return(NULL);
   6915     }
   6916     return(xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, subset,
   6917                               NULL, NULL, min, max));
   6918 }
   6919 
   6920 /************************************************************************
   6921  *									*
   6922  *		Public API for operations on expressions		*
   6923  *									*
   6924  ************************************************************************/
   6925 
   6926 static int
   6927 xmlExpGetLanguageInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6928                      const xmlChar**list, int len, int nb) {
   6929     int tmp, tmp2;
   6930 tail:
   6931     switch (exp->type) {
   6932         case XML_EXP_EMPTY:
   6933 	    return(0);
   6934         case XML_EXP_ATOM:
   6935 	    for (tmp = 0;tmp < nb;tmp++)
   6936 	        if (list[tmp] == exp->exp_str)
   6937 		    return(0);
   6938             if (nb >= len)
   6939 	        return(-2);
   6940 	    list[nb] = exp->exp_str;
   6941 	    return(1);
   6942         case XML_EXP_COUNT:
   6943 	    exp = exp->exp_left;
   6944 	    goto tail;
   6945         case XML_EXP_SEQ:
   6946         case XML_EXP_OR:
   6947 	    tmp = xmlExpGetLanguageInt(ctxt, exp->exp_left, list, len, nb);
   6948 	    if (tmp < 0)
   6949 	        return(tmp);
   6950 	    tmp2 = xmlExpGetLanguageInt(ctxt, exp->exp_right, list, len,
   6951 	                                nb + tmp);
   6952 	    if (tmp2 < 0)
   6953 	        return(tmp2);
   6954             return(tmp + tmp2);
   6955     }
   6956     return(-1);
   6957 }
   6958 
   6959 /**
   6960  * xmlExpGetLanguage:
   6961  * @ctxt: the expression context
   6962  * @exp: the expression
   6963  * @langList: where to store the tokens
   6964  * @len: the allocated lenght of @list
   6965  *
   6966  * Find all the strings used in @exp and store them in @list
   6967  *
   6968  * Returns the number of unique strings found, -1 in case of errors and
   6969  *         -2 if there is more than @len strings
   6970  */
   6971 int
   6972 xmlExpGetLanguage(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6973                   const xmlChar**langList, int len) {
   6974     if ((ctxt == NULL) || (exp == NULL) || (langList == NULL) || (len <= 0))
   6975         return(-1);
   6976     return(xmlExpGetLanguageInt(ctxt, exp, langList, len, 0));
   6977 }
   6978 
   6979 static int
   6980 xmlExpGetStartInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   6981                   const xmlChar**list, int len, int nb) {
   6982     int tmp, tmp2;
   6983 tail:
   6984     switch (exp->type) {
   6985         case XML_EXP_FORBID:
   6986 	    return(0);
   6987         case XML_EXP_EMPTY:
   6988 	    return(0);
   6989         case XML_EXP_ATOM:
   6990 	    for (tmp = 0;tmp < nb;tmp++)
   6991 	        if (list[tmp] == exp->exp_str)
   6992 		    return(0);
   6993             if (nb >= len)
   6994 	        return(-2);
   6995 	    list[nb] = exp->exp_str;
   6996 	    return(1);
   6997         case XML_EXP_COUNT:
   6998 	    exp = exp->exp_left;
   6999 	    goto tail;
   7000         case XML_EXP_SEQ:
   7001 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
   7002 	    if (tmp < 0)
   7003 	        return(tmp);
   7004 	    if (IS_NILLABLE(exp->exp_left)) {
   7005 		tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
   7006 					    nb + tmp);
   7007 		if (tmp2 < 0)
   7008 		    return(tmp2);
   7009 		tmp += tmp2;
   7010 	    }
   7011             return(tmp);
   7012         case XML_EXP_OR:
   7013 	    tmp = xmlExpGetStartInt(ctxt, exp->exp_left, list, len, nb);
   7014 	    if (tmp < 0)
   7015 	        return(tmp);
   7016 	    tmp2 = xmlExpGetStartInt(ctxt, exp->exp_right, list, len,
   7017 	                                nb + tmp);
   7018 	    if (tmp2 < 0)
   7019 	        return(tmp2);
   7020             return(tmp + tmp2);
   7021     }
   7022     return(-1);
   7023 }
   7024 
   7025 /**
   7026  * xmlExpGetStart:
   7027  * @ctxt: the expression context
   7028  * @exp: the expression
   7029  * @tokList: where to store the tokens
   7030  * @len: the allocated lenght of @list
   7031  *
   7032  * Find all the strings that appears at the start of the languages
   7033  * accepted by @exp and store them in @list. E.g. for (a, b) | c
   7034  * it will return the list [a, c]
   7035  *
   7036  * Returns the number of unique strings found, -1 in case of errors and
   7037  *         -2 if there is more than @len strings
   7038  */
   7039 int
   7040 xmlExpGetStart(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7041                const xmlChar**tokList, int len) {
   7042     if ((ctxt == NULL) || (exp == NULL) || (tokList == NULL) || (len <= 0))
   7043         return(-1);
   7044     return(xmlExpGetStartInt(ctxt, exp, tokList, len, 0));
   7045 }
   7046 
   7047 /**
   7048  * xmlExpIsNillable:
   7049  * @exp: the expression
   7050  *
   7051  * Finds if the expression is nillable, i.e. if it accepts the empty sequqnce
   7052  *
   7053  * Returns 1 if nillable, 0 if not and -1 in case of error
   7054  */
   7055 int
   7056 xmlExpIsNillable(xmlExpNodePtr exp) {
   7057     if (exp == NULL)
   7058         return(-1);
   7059     return(IS_NILLABLE(exp) != 0);
   7060 }
   7061 
   7062 static xmlExpNodePtr
   7063 xmlExpStringDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, const xmlChar *str)
   7064 {
   7065     xmlExpNodePtr ret;
   7066 
   7067     switch (exp->type) {
   7068 	case XML_EXP_EMPTY:
   7069 	    return(forbiddenExp);
   7070 	case XML_EXP_FORBID:
   7071 	    return(forbiddenExp);
   7072 	case XML_EXP_ATOM:
   7073 	    if (exp->exp_str == str) {
   7074 #ifdef DEBUG_DERIV
   7075 		printf("deriv atom: equal => Empty\n");
   7076 #endif
   7077 	        ret = emptyExp;
   7078 	    } else {
   7079 #ifdef DEBUG_DERIV
   7080 		printf("deriv atom: mismatch => forbid\n");
   7081 #endif
   7082 	        /* TODO wildcards here */
   7083 		ret = forbiddenExp;
   7084 	    }
   7085 	    return(ret);
   7086 	case XML_EXP_OR: {
   7087 	    xmlExpNodePtr tmp;
   7088 
   7089 #ifdef DEBUG_DERIV
   7090 	    printf("deriv or: => or(derivs)\n");
   7091 #endif
   7092 	    tmp = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7093 	    if (tmp == NULL) {
   7094 		return(NULL);
   7095 	    }
   7096 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
   7097 	    if (ret == NULL) {
   7098 	        xmlExpFree(ctxt, tmp);
   7099 		return(NULL);
   7100 	    }
   7101             ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret,
   7102 			     NULL, 0, 0);
   7103 	    return(ret);
   7104 	}
   7105 	case XML_EXP_SEQ:
   7106 #ifdef DEBUG_DERIV
   7107 	    printf("deriv seq: starting with left\n");
   7108 #endif
   7109 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7110 	    if (ret == NULL) {
   7111 	        return(NULL);
   7112 	    } else if (ret == forbiddenExp) {
   7113 	        if (IS_NILLABLE(exp->exp_left)) {
   7114 #ifdef DEBUG_DERIV
   7115 		    printf("deriv seq: left failed but nillable\n");
   7116 #endif
   7117 		    ret = xmlExpStringDeriveInt(ctxt, exp->exp_right, str);
   7118 		}
   7119 	    } else {
   7120 #ifdef DEBUG_DERIV
   7121 		printf("deriv seq: left match => sequence\n");
   7122 #endif
   7123 	        exp->exp_right->ref++;
   7124 	        ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, exp->exp_right,
   7125 		                         NULL, 0, 0);
   7126 	    }
   7127 	    return(ret);
   7128 	case XML_EXP_COUNT: {
   7129 	    int min, max;
   7130 	    xmlExpNodePtr tmp;
   7131 
   7132 	    if (exp->exp_max == 0)
   7133 		return(forbiddenExp);
   7134 	    ret = xmlExpStringDeriveInt(ctxt, exp->exp_left, str);
   7135 	    if (ret == NULL)
   7136 	        return(NULL);
   7137 	    if (ret == forbiddenExp) {
   7138 #ifdef DEBUG_DERIV
   7139 		printf("deriv count: pattern mismatch => forbid\n");
   7140 #endif
   7141 	        return(ret);
   7142 	    }
   7143 	    if (exp->exp_max == 1)
   7144 		return(ret);
   7145 	    if (exp->exp_max < 0) /* unbounded */
   7146 		max = -1;
   7147 	    else
   7148 		max = exp->exp_max - 1;
   7149 	    if (exp->exp_min > 0)
   7150 		min = exp->exp_min - 1;
   7151 	    else
   7152 		min = 0;
   7153 	    exp->exp_left->ref++;
   7154 	    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left, NULL,
   7155 				     NULL, min, max);
   7156 	    if (ret == emptyExp) {
   7157 #ifdef DEBUG_DERIV
   7158 		printf("deriv count: match to empty => new count\n");
   7159 #endif
   7160 	        return(tmp);
   7161 	    }
   7162 #ifdef DEBUG_DERIV
   7163 	    printf("deriv count: match => sequence with new count\n");
   7164 #endif
   7165 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, tmp,
   7166 	                              NULL, 0, 0));
   7167 	}
   7168     }
   7169     return(NULL);
   7170 }
   7171 
   7172 /**
   7173  * xmlExpStringDerive:
   7174  * @ctxt: the expression context
   7175  * @exp: the expression
   7176  * @str: the string
   7177  * @len: the string len in bytes if available
   7178  *
   7179  * Do one step of Brzozowski derivation of the expression @exp with
   7180  * respect to the input string
   7181  *
   7182  * Returns the resulting expression or NULL in case of internal error
   7183  */
   7184 xmlExpNodePtr
   7185 xmlExpStringDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7186                    const xmlChar *str, int len) {
   7187     const xmlChar *input;
   7188 
   7189     if ((exp == NULL) || (ctxt == NULL) || (str == NULL)) {
   7190         return(NULL);
   7191     }
   7192     /*
   7193      * check the string is in the dictionnary, if yes use an interned
   7194      * copy, otherwise we know it's not an acceptable input
   7195      */
   7196     input = xmlDictExists(ctxt->dict, str, len);
   7197     if (input == NULL) {
   7198         return(forbiddenExp);
   7199     }
   7200     return(xmlExpStringDeriveInt(ctxt, exp, input));
   7201 }
   7202 
   7203 static int
   7204 xmlExpCheckCard(xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7205     int ret = 1;
   7206 
   7207     if (sub->c_max == -1) {
   7208         if (exp->c_max != -1)
   7209 	    ret = 0;
   7210     } else if ((exp->c_max >= 0) && (exp->c_max < sub->c_max)) {
   7211         ret = 0;
   7212     }
   7213 #if 0
   7214     if ((IS_NILLABLE(sub)) && (!IS_NILLABLE(exp)))
   7215         ret = 0;
   7216 #endif
   7217     return(ret);
   7218 }
   7219 
   7220 static xmlExpNodePtr xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp,
   7221                                         xmlExpNodePtr sub);
   7222 /**
   7223  * xmlExpDivide:
   7224  * @ctxt: the expressions context
   7225  * @exp: the englobing expression
   7226  * @sub: the subexpression
   7227  * @mult: the multiple expression
   7228  * @remain: the remain from the derivation of the multiple
   7229  *
   7230  * Check if exp is a multiple of sub, i.e. if there is a finite number n
   7231  * so that sub{n} subsume exp
   7232  *
   7233  * Returns the multiple value if successful, 0 if it is not a multiple
   7234  *         and -1 in case of internel error.
   7235  */
   7236 
   7237 static int
   7238 xmlExpDivide(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub,
   7239              xmlExpNodePtr *mult, xmlExpNodePtr *remain) {
   7240     int i;
   7241     xmlExpNodePtr tmp, tmp2;
   7242 
   7243     if (mult != NULL) *mult = NULL;
   7244     if (remain != NULL) *remain = NULL;
   7245     if (exp->c_max == -1) return(0);
   7246     if (IS_NILLABLE(exp) && (!IS_NILLABLE(sub))) return(0);
   7247 
   7248     for (i = 1;i <= exp->c_max;i++) {
   7249         sub->ref++;
   7250         tmp = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
   7251 				 sub, NULL, NULL, i, i);
   7252 	if (tmp == NULL) {
   7253 	    return(-1);
   7254 	}
   7255 	if (!xmlExpCheckCard(tmp, exp)) {
   7256 	    xmlExpFree(ctxt, tmp);
   7257 	    continue;
   7258 	}
   7259 	tmp2 = xmlExpExpDeriveInt(ctxt, tmp, exp);
   7260 	if (tmp2 == NULL) {
   7261 	    xmlExpFree(ctxt, tmp);
   7262 	    return(-1);
   7263 	}
   7264 	if ((tmp2 != forbiddenExp) && (IS_NILLABLE(tmp2))) {
   7265 	    if (remain != NULL)
   7266 	        *remain = tmp2;
   7267 	    else
   7268 	        xmlExpFree(ctxt, tmp2);
   7269 	    if (mult != NULL)
   7270 	        *mult = tmp;
   7271 	    else
   7272 	        xmlExpFree(ctxt, tmp);
   7273 #ifdef DEBUG_DERIV
   7274 	    printf("Divide succeeded %d\n", i);
   7275 #endif
   7276 	    return(i);
   7277 	}
   7278 	xmlExpFree(ctxt, tmp);
   7279 	xmlExpFree(ctxt, tmp2);
   7280     }
   7281 #ifdef DEBUG_DERIV
   7282     printf("Divide failed\n");
   7283 #endif
   7284     return(0);
   7285 }
   7286 
   7287 /**
   7288  * xmlExpExpDeriveInt:
   7289  * @ctxt: the expressions context
   7290  * @exp: the englobing expression
   7291  * @sub: the subexpression
   7292  *
   7293  * Try to do a step of Brzozowski derivation but at a higher level
   7294  * the input being a subexpression.
   7295  *
   7296  * Returns the resulting expression or NULL in case of internal error
   7297  */
   7298 static xmlExpNodePtr
   7299 xmlExpExpDeriveInt(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7300     xmlExpNodePtr ret, tmp, tmp2, tmp3;
   7301     const xmlChar **tab;
   7302     int len, i;
   7303 
   7304     /*
   7305      * In case of equality and if the expression can only consume a finite
   7306      * amount, then the derivation is empty
   7307      */
   7308     if ((exp == sub) && (exp->c_max >= 0)) {
   7309 #ifdef DEBUG_DERIV
   7310         printf("Equal(exp, sub) and finite -> Empty\n");
   7311 #endif
   7312         return(emptyExp);
   7313     }
   7314     /*
   7315      * decompose sub sequence first
   7316      */
   7317     if (sub->type == XML_EXP_EMPTY) {
   7318 #ifdef DEBUG_DERIV
   7319         printf("Empty(sub) -> Empty\n");
   7320 #endif
   7321 	exp->ref++;
   7322         return(exp);
   7323     }
   7324     if (sub->type == XML_EXP_SEQ) {
   7325 #ifdef DEBUG_DERIV
   7326         printf("Seq(sub) -> decompose\n");
   7327 #endif
   7328         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
   7329 	if (tmp == NULL)
   7330 	    return(NULL);
   7331 	if (tmp == forbiddenExp)
   7332 	    return(tmp);
   7333 	ret = xmlExpExpDeriveInt(ctxt, tmp, sub->exp_right);
   7334 	xmlExpFree(ctxt, tmp);
   7335 	return(ret);
   7336     }
   7337     if (sub->type == XML_EXP_OR) {
   7338 #ifdef DEBUG_DERIV
   7339         printf("Or(sub) -> decompose\n");
   7340 #endif
   7341         tmp = xmlExpExpDeriveInt(ctxt, exp, sub->exp_left);
   7342 	if (tmp == forbiddenExp)
   7343 	    return(tmp);
   7344 	if (tmp == NULL)
   7345 	    return(NULL);
   7346 	ret = xmlExpExpDeriveInt(ctxt, exp, sub->exp_right);
   7347 	if ((ret == NULL) || (ret == forbiddenExp)) {
   7348 	    xmlExpFree(ctxt, tmp);
   7349 	    return(ret);
   7350 	}
   7351 	return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, tmp, ret, NULL, 0, 0));
   7352     }
   7353     if (!xmlExpCheckCard(exp, sub)) {
   7354 #ifdef DEBUG_DERIV
   7355         printf("CheckCard(exp, sub) failed -> Forbid\n");
   7356 #endif
   7357         return(forbiddenExp);
   7358     }
   7359     switch (exp->type) {
   7360         case XML_EXP_EMPTY:
   7361 	    if (sub == emptyExp)
   7362 	        return(emptyExp);
   7363 #ifdef DEBUG_DERIV
   7364 	    printf("Empty(exp) -> Forbid\n");
   7365 #endif
   7366 	    return(forbiddenExp);
   7367         case XML_EXP_FORBID:
   7368 #ifdef DEBUG_DERIV
   7369 	    printf("Forbid(exp) -> Forbid\n");
   7370 #endif
   7371 	    return(forbiddenExp);
   7372         case XML_EXP_ATOM:
   7373 	    if (sub->type == XML_EXP_ATOM) {
   7374 	        /* TODO: handle wildcards */
   7375 	        if (exp->exp_str == sub->exp_str) {
   7376 #ifdef DEBUG_DERIV
   7377 		    printf("Atom match -> Empty\n");
   7378 #endif
   7379 		    return(emptyExp);
   7380                 }
   7381 #ifdef DEBUG_DERIV
   7382 		printf("Atom mismatch -> Forbid\n");
   7383 #endif
   7384 	        return(forbiddenExp);
   7385 	    }
   7386 	    if ((sub->type == XML_EXP_COUNT) &&
   7387 	        (sub->exp_max == 1) &&
   7388 	        (sub->exp_left->type == XML_EXP_ATOM)) {
   7389 	        /* TODO: handle wildcards */
   7390 	        if (exp->exp_str == sub->exp_left->exp_str) {
   7391 #ifdef DEBUG_DERIV
   7392 		    printf("Atom match -> Empty\n");
   7393 #endif
   7394 		    return(emptyExp);
   7395 		}
   7396 #ifdef DEBUG_DERIV
   7397 		printf("Atom mismatch -> Forbid\n");
   7398 #endif
   7399 	        return(forbiddenExp);
   7400 	    }
   7401 #ifdef DEBUG_DERIV
   7402 	    printf("Compex exp vs Atom -> Forbid\n");
   7403 #endif
   7404 	    return(forbiddenExp);
   7405         case XML_EXP_SEQ:
   7406 	    /* try to get the sequence consumed only if possible */
   7407 	    if (xmlExpCheckCard(exp->exp_left, sub)) {
   7408 		/* See if the sequence can be consumed directly */
   7409 #ifdef DEBUG_DERIV
   7410 		printf("Seq trying left only\n");
   7411 #endif
   7412 		ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7413 		if ((ret != forbiddenExp) && (ret != NULL)) {
   7414 #ifdef DEBUG_DERIV
   7415 		    printf("Seq trying left only worked\n");
   7416 #endif
   7417 		    /*
   7418 		     * TODO: assumption here that we are determinist
   7419 		     *       i.e. we won't get to a nillable exp left
   7420 		     *       subset which could be matched by the right
   7421 		     *       part too.
   7422 		     * e.g.: (a | b)+,(a | c) and 'a+,a'
   7423 		     */
   7424 		    exp->exp_right->ref++;
   7425 		    return(xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
   7426 					      exp->exp_right, NULL, 0, 0));
   7427 		}
   7428 #ifdef DEBUG_DERIV
   7429 	    } else {
   7430 		printf("Seq: left too short\n");
   7431 #endif
   7432 	    }
   7433 	    /* Try instead to decompose */
   7434 	    if (sub->type == XML_EXP_COUNT) {
   7435 		int min, max;
   7436 
   7437 #ifdef DEBUG_DERIV
   7438 		printf("Seq: sub is a count\n");
   7439 #endif
   7440 	        ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
   7441 		if (ret == NULL)
   7442 		    return(NULL);
   7443 		if (ret != forbiddenExp) {
   7444 #ifdef DEBUG_DERIV
   7445 		    printf("Seq , Count match on left\n");
   7446 #endif
   7447 		    if (sub->exp_max < 0)
   7448 		        max = -1;
   7449 	            else
   7450 		        max = sub->exp_max -1;
   7451 		    if (sub->exp_min > 0)
   7452 		        min = sub->exp_min -1;
   7453 		    else
   7454 		        min = 0;
   7455 		    exp->exp_right->ref++;
   7456 		    tmp = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret,
   7457 		                             exp->exp_right, NULL, 0, 0);
   7458 		    if (tmp == NULL)
   7459 		        return(NULL);
   7460 
   7461 		    sub->exp_left->ref++;
   7462 		    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT,
   7463 				      sub->exp_left, NULL, NULL, min, max);
   7464 		    if (tmp2 == NULL) {
   7465 		        xmlExpFree(ctxt, tmp);
   7466 			return(NULL);
   7467 		    }
   7468 		    ret = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
   7469 		    xmlExpFree(ctxt, tmp);
   7470 		    xmlExpFree(ctxt, tmp2);
   7471 		    return(ret);
   7472 		}
   7473 	    }
   7474 	    /* we made no progress on structured operations */
   7475 	    break;
   7476         case XML_EXP_OR:
   7477 #ifdef DEBUG_DERIV
   7478 	    printf("Or , trying both side\n");
   7479 #endif
   7480 	    ret = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7481 	    if (ret == NULL)
   7482 	        return(NULL);
   7483 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_right, sub);
   7484 	    if (tmp == NULL) {
   7485 		xmlExpFree(ctxt, ret);
   7486 	        return(NULL);
   7487 	    }
   7488 	    return(xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp, NULL, 0, 0));
   7489         case XML_EXP_COUNT: {
   7490 	    int min, max;
   7491 
   7492 	    if (sub->type == XML_EXP_COUNT) {
   7493 	        /*
   7494 		 * Try to see if the loop is completely subsumed
   7495 		 */
   7496 	        tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub->exp_left);
   7497 		if (tmp == NULL)
   7498 		    return(NULL);
   7499 		if (tmp == forbiddenExp) {
   7500 		    int mult;
   7501 
   7502 #ifdef DEBUG_DERIV
   7503 		    printf("Count, Count inner don't subsume\n");
   7504 #endif
   7505 		    mult = xmlExpDivide(ctxt, sub->exp_left, exp->exp_left,
   7506 		                        NULL, &tmp);
   7507 		    if (mult <= 0) {
   7508 #ifdef DEBUG_DERIV
   7509 			printf("Count, Count not multiple => forbidden\n");
   7510 #endif
   7511                         return(forbiddenExp);
   7512 		    }
   7513 		    if (sub->exp_max == -1) {
   7514 		        max = -1;
   7515 			if (exp->exp_max == -1) {
   7516 			    if (exp->exp_min <= sub->exp_min * mult)
   7517 			        min = 0;
   7518 			    else
   7519 			        min = exp->exp_min - sub->exp_min * mult;
   7520 			} else {
   7521 #ifdef DEBUG_DERIV
   7522 			    printf("Count, Count finite can't subsume infinite\n");
   7523 #endif
   7524                             xmlExpFree(ctxt, tmp);
   7525 			    return(forbiddenExp);
   7526 			}
   7527 		    } else {
   7528 			if (exp->exp_max == -1) {
   7529 #ifdef DEBUG_DERIV
   7530 			    printf("Infinite loop consume mult finite loop\n");
   7531 #endif
   7532 			    if (exp->exp_min > sub->exp_min * mult) {
   7533 				max = -1;
   7534 				min = exp->exp_min - sub->exp_min * mult;
   7535 			    } else {
   7536 				max = -1;
   7537 				min = 0;
   7538 			    }
   7539 			} else {
   7540 			    if (exp->exp_max < sub->exp_max * mult) {
   7541 #ifdef DEBUG_DERIV
   7542 				printf("loops max mult mismatch => forbidden\n");
   7543 #endif
   7544 				xmlExpFree(ctxt, tmp);
   7545 				return(forbiddenExp);
   7546 			    }
   7547 			    if (sub->exp_max * mult > exp->exp_min)
   7548 				min = 0;
   7549 			    else
   7550 				min = exp->exp_min - sub->exp_max * mult;
   7551 			    max = exp->exp_max - sub->exp_max * mult;
   7552 			}
   7553 		    }
   7554 		} else if (!IS_NILLABLE(tmp)) {
   7555 		    /*
   7556 		     * TODO: loop here to try to grow if working on finite
   7557 		     *       blocks.
   7558 		     */
   7559 #ifdef DEBUG_DERIV
   7560 		    printf("Count, Count remain not nillable => forbidden\n");
   7561 #endif
   7562 		    xmlExpFree(ctxt, tmp);
   7563 		    return(forbiddenExp);
   7564 		} else if (sub->exp_max == -1) {
   7565 		    if (exp->exp_max == -1) {
   7566 		        if (exp->exp_min <= sub->exp_min) {
   7567 #ifdef DEBUG_DERIV
   7568 			    printf("Infinite loops Okay => COUNT(0,Inf)\n");
   7569 #endif
   7570                             max = -1;
   7571 			    min = 0;
   7572 			} else {
   7573 #ifdef DEBUG_DERIV
   7574 			    printf("Infinite loops min => Count(X,Inf)\n");
   7575 #endif
   7576                             max = -1;
   7577 			    min = exp->exp_min - sub->exp_min;
   7578 			}
   7579 		    } else if (exp->exp_min > sub->exp_min) {
   7580 #ifdef DEBUG_DERIV
   7581 			printf("loops min mismatch 1 => forbidden ???\n");
   7582 #endif
   7583 		        xmlExpFree(ctxt, tmp);
   7584 		        return(forbiddenExp);
   7585 		    } else {
   7586 			max = -1;
   7587 			min = 0;
   7588 		    }
   7589 		} else {
   7590 		    if (exp->exp_max == -1) {
   7591 #ifdef DEBUG_DERIV
   7592 			printf("Infinite loop consume finite loop\n");
   7593 #endif
   7594 		        if (exp->exp_min > sub->exp_min) {
   7595 			    max = -1;
   7596 			    min = exp->exp_min - sub->exp_min;
   7597 			} else {
   7598 			    max = -1;
   7599 			    min = 0;
   7600 			}
   7601 		    } else {
   7602 		        if (exp->exp_max < sub->exp_max) {
   7603 #ifdef DEBUG_DERIV
   7604 			    printf("loops max mismatch => forbidden\n");
   7605 #endif
   7606 			    xmlExpFree(ctxt, tmp);
   7607 			    return(forbiddenExp);
   7608 			}
   7609 			if (sub->exp_max > exp->exp_min)
   7610 			    min = 0;
   7611 			else
   7612 			    min = exp->exp_min - sub->exp_max;
   7613 			max = exp->exp_max - sub->exp_max;
   7614 		    }
   7615 		}
   7616 #ifdef DEBUG_DERIV
   7617 		printf("loops match => SEQ(COUNT())\n");
   7618 #endif
   7619 		exp->exp_left->ref++;
   7620 		tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
   7621 		                          NULL, NULL, min, max);
   7622 		if (tmp2 == NULL) {
   7623 		    return(NULL);
   7624 		}
   7625                 ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
   7626 		                         NULL, 0, 0);
   7627 		return(ret);
   7628 	    }
   7629 	    tmp = xmlExpExpDeriveInt(ctxt, exp->exp_left, sub);
   7630 	    if (tmp == NULL)
   7631 		return(NULL);
   7632 	    if (tmp == forbiddenExp) {
   7633 #ifdef DEBUG_DERIV
   7634 		printf("loop mismatch => forbidden\n");
   7635 #endif
   7636 		return(forbiddenExp);
   7637 	    }
   7638 	    if (exp->exp_min > 0)
   7639 		min = exp->exp_min - 1;
   7640 	    else
   7641 		min = 0;
   7642 	    if (exp->exp_max < 0)
   7643 		max = -1;
   7644 	    else
   7645 		max = exp->exp_max - 1;
   7646 
   7647 #ifdef DEBUG_DERIV
   7648 	    printf("loop match => SEQ(COUNT())\n");
   7649 #endif
   7650 	    exp->exp_left->ref++;
   7651 	    tmp2 = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, exp->exp_left,
   7652 				      NULL, NULL, min, max);
   7653 	    if (tmp2 == NULL)
   7654 		return(NULL);
   7655 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, tmp, tmp2,
   7656 				     NULL, 0, 0);
   7657 	    return(ret);
   7658 	}
   7659     }
   7660 
   7661 #ifdef DEBUG_DERIV
   7662     printf("Fallback to derivative\n");
   7663 #endif
   7664     if (IS_NILLABLE(sub)) {
   7665         if (!(IS_NILLABLE(exp)))
   7666 	    return(forbiddenExp);
   7667 	else
   7668 	    ret = emptyExp;
   7669     } else
   7670 	ret = NULL;
   7671     /*
   7672      * here the structured derivation made no progress so
   7673      * we use the default token based derivation to force one more step
   7674      */
   7675     if (ctxt->tabSize == 0)
   7676         ctxt->tabSize = 40;
   7677 
   7678     tab = (const xmlChar **) xmlMalloc(ctxt->tabSize *
   7679 	                               sizeof(const xmlChar *));
   7680     if (tab == NULL) {
   7681 	return(NULL);
   7682     }
   7683 
   7684     /*
   7685      * collect all the strings accepted by the subexpression on input
   7686      */
   7687     len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
   7688     while (len < 0) {
   7689         const xmlChar **temp;
   7690 	temp = (const xmlChar **) xmlRealloc((xmlChar **) tab, ctxt->tabSize * 2 *
   7691 	                                     sizeof(const xmlChar *));
   7692 	if (temp == NULL) {
   7693 	    xmlFree((xmlChar **) tab);
   7694 	    return(NULL);
   7695 	}
   7696 	tab = temp;
   7697 	ctxt->tabSize *= 2;
   7698 	len = xmlExpGetStartInt(ctxt, sub, tab, ctxt->tabSize, 0);
   7699     }
   7700     for (i = 0;i < len;i++) {
   7701         tmp = xmlExpStringDeriveInt(ctxt, exp, tab[i]);
   7702 	if ((tmp == NULL) || (tmp == forbiddenExp)) {
   7703 	    xmlExpFree(ctxt, ret);
   7704 	    xmlFree((xmlChar **) tab);
   7705 	    return(tmp);
   7706 	}
   7707 	tmp2 = xmlExpStringDeriveInt(ctxt, sub, tab[i]);
   7708 	if ((tmp2 == NULL) || (tmp2 == forbiddenExp)) {
   7709 	    xmlExpFree(ctxt, tmp);
   7710 	    xmlExpFree(ctxt, ret);
   7711 	    xmlFree((xmlChar **) tab);
   7712 	    return(tmp);
   7713 	}
   7714 	tmp3 = xmlExpExpDeriveInt(ctxt, tmp, tmp2);
   7715 	xmlExpFree(ctxt, tmp);
   7716 	xmlExpFree(ctxt, tmp2);
   7717 
   7718 	if ((tmp3 == NULL) || (tmp3 == forbiddenExp)) {
   7719 	    xmlExpFree(ctxt, ret);
   7720 	    xmlFree((xmlChar **) tab);
   7721 	    return(tmp3);
   7722 	}
   7723 
   7724 	if (ret == NULL)
   7725 	    ret = tmp3;
   7726 	else {
   7727 	    ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, tmp3, NULL, 0, 0);
   7728 	    if (ret == NULL) {
   7729 		xmlFree((xmlChar **) tab);
   7730 	        return(NULL);
   7731 	    }
   7732 	}
   7733     }
   7734     xmlFree((xmlChar **) tab);
   7735     return(ret);
   7736 }
   7737 
   7738 /**
   7739  * xmlExpExpDerive:
   7740  * @ctxt: the expressions context
   7741  * @exp: the englobing expression
   7742  * @sub: the subexpression
   7743  *
   7744  * Evaluates the expression resulting from @exp consuming a sub expression @sub
   7745  * Based on algebraic derivation and sometimes direct Brzozowski derivation
   7746  * it usually tatkes less than linear time and can handle expressions generating
   7747  * infinite languages.
   7748  *
   7749  * Returns the resulting expression or NULL in case of internal error, the
   7750  *         result must be freed
   7751  */
   7752 xmlExpNodePtr
   7753 xmlExpExpDerive(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7754     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
   7755         return(NULL);
   7756 
   7757     /*
   7758      * O(1) speedups
   7759      */
   7760     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
   7761 #ifdef DEBUG_DERIV
   7762 	printf("Sub nillable and not exp : can't subsume\n");
   7763 #endif
   7764         return(forbiddenExp);
   7765     }
   7766     if (xmlExpCheckCard(exp, sub) == 0) {
   7767 #ifdef DEBUG_DERIV
   7768 	printf("sub generate longuer sequances than exp : can't subsume\n");
   7769 #endif
   7770         return(forbiddenExp);
   7771     }
   7772     return(xmlExpExpDeriveInt(ctxt, exp, sub));
   7773 }
   7774 
   7775 /**
   7776  * xmlExpSubsume:
   7777  * @ctxt: the expressions context
   7778  * @exp: the englobing expression
   7779  * @sub: the subexpression
   7780  *
   7781  * Check whether @exp accepts all the languages accexpted by @sub
   7782  * the input being a subexpression.
   7783  *
   7784  * Returns 1 if true 0 if false and -1 in case of failure.
   7785  */
   7786 int
   7787 xmlExpSubsume(xmlExpCtxtPtr ctxt, xmlExpNodePtr exp, xmlExpNodePtr sub) {
   7788     xmlExpNodePtr tmp;
   7789 
   7790     if ((exp == NULL) || (ctxt == NULL) || (sub == NULL))
   7791         return(-1);
   7792 
   7793     /*
   7794      * TODO: speedup by checking the language of sub is a subset of the
   7795      *       language of exp
   7796      */
   7797     /*
   7798      * O(1) speedups
   7799      */
   7800     if (IS_NILLABLE(sub) && (!IS_NILLABLE(exp))) {
   7801 #ifdef DEBUG_DERIV
   7802 	printf("Sub nillable and not exp : can't subsume\n");
   7803 #endif
   7804         return(0);
   7805     }
   7806     if (xmlExpCheckCard(exp, sub) == 0) {
   7807 #ifdef DEBUG_DERIV
   7808 	printf("sub generate longuer sequances than exp : can't subsume\n");
   7809 #endif
   7810         return(0);
   7811     }
   7812     tmp = xmlExpExpDeriveInt(ctxt, exp, sub);
   7813 #ifdef DEBUG_DERIV
   7814     printf("Result derivation :\n");
   7815     PRINT_EXP(tmp);
   7816 #endif
   7817     if (tmp == NULL)
   7818         return(-1);
   7819     if (tmp == forbiddenExp)
   7820 	return(0);
   7821     if (tmp == emptyExp)
   7822 	return(1);
   7823     if ((tmp != NULL) && (IS_NILLABLE(tmp))) {
   7824         xmlExpFree(ctxt, tmp);
   7825         return(1);
   7826     }
   7827     xmlExpFree(ctxt, tmp);
   7828     return(0);
   7829 }
   7830 
   7831 /************************************************************************
   7832  *									*
   7833  *			Parsing expression 				*
   7834  *									*
   7835  ************************************************************************/
   7836 
   7837 static xmlExpNodePtr xmlExpParseExpr(xmlExpCtxtPtr ctxt);
   7838 
   7839 #undef CUR
   7840 #define CUR (*ctxt->cur)
   7841 #undef NEXT
   7842 #define NEXT ctxt->cur++;
   7843 #undef IS_BLANK
   7844 #define IS_BLANK(c) ((c == ' ') || (c == '\n') || (c == '\r') || (c == '\t'))
   7845 #define SKIP_BLANKS while (IS_BLANK(*ctxt->cur)) ctxt->cur++;
   7846 
   7847 static int
   7848 xmlExpParseNumber(xmlExpCtxtPtr ctxt) {
   7849     int ret = 0;
   7850 
   7851     SKIP_BLANKS
   7852     if (CUR == '*') {
   7853 	NEXT
   7854 	return(-1);
   7855     }
   7856     if ((CUR < '0') || (CUR > '9'))
   7857         return(-1);
   7858     while ((CUR >= '0') && (CUR <= '9')) {
   7859         ret = ret * 10 + (CUR - '0');
   7860 	NEXT
   7861     }
   7862     return(ret);
   7863 }
   7864 
   7865 static xmlExpNodePtr
   7866 xmlExpParseOr(xmlExpCtxtPtr ctxt) {
   7867     const char *base;
   7868     xmlExpNodePtr ret;
   7869     const xmlChar *val;
   7870 
   7871     SKIP_BLANKS
   7872     base = ctxt->cur;
   7873     if (*ctxt->cur == '(') {
   7874         NEXT
   7875 	ret = xmlExpParseExpr(ctxt);
   7876 	SKIP_BLANKS
   7877 	if (*ctxt->cur != ')') {
   7878 	    fprintf(stderr, "unbalanced '(' : %s\n", base);
   7879 	    xmlExpFree(ctxt, ret);
   7880 	    return(NULL);
   7881 	}
   7882 	NEXT;
   7883 	SKIP_BLANKS
   7884 	goto parse_quantifier;
   7885     }
   7886     while ((CUR != 0) && (!(IS_BLANK(CUR))) && (CUR != '(') &&
   7887            (CUR != ')') && (CUR != '|') && (CUR != ',') && (CUR != '{') &&
   7888 	   (CUR != '*') && (CUR != '+') && (CUR != '?') && (CUR != '}'))
   7889 	NEXT;
   7890     val = xmlDictLookup(ctxt->dict, BAD_CAST base, ctxt->cur - base);
   7891     if (val == NULL)
   7892         return(NULL);
   7893     ret = xmlExpHashGetEntry(ctxt, XML_EXP_ATOM, NULL, NULL, val, 0, 0);
   7894     if (ret == NULL)
   7895         return(NULL);
   7896     SKIP_BLANKS
   7897 parse_quantifier:
   7898     if (CUR == '{') {
   7899         int min, max;
   7900 
   7901         NEXT
   7902 	min = xmlExpParseNumber(ctxt);
   7903 	if (min < 0) {
   7904 	    xmlExpFree(ctxt, ret);
   7905 	    return(NULL);
   7906 	}
   7907 	SKIP_BLANKS
   7908 	if (CUR == ',') {
   7909 	    NEXT
   7910 	    max = xmlExpParseNumber(ctxt);
   7911 	    SKIP_BLANKS
   7912 	} else
   7913 	    max = min;
   7914 	if (CUR != '}') {
   7915 	    xmlExpFree(ctxt, ret);
   7916 	    return(NULL);
   7917 	}
   7918         NEXT
   7919 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7920 	                         min, max);
   7921 	SKIP_BLANKS
   7922     } else if (CUR == '?') {
   7923         NEXT
   7924 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7925 	                         0, 1);
   7926 	SKIP_BLANKS
   7927     } else if (CUR == '+') {
   7928         NEXT
   7929 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7930 	                         1, -1);
   7931 	SKIP_BLANKS
   7932     } else if (CUR == '*') {
   7933         NEXT
   7934 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_COUNT, ret, NULL, NULL,
   7935 	                         0, -1);
   7936 	SKIP_BLANKS
   7937     }
   7938     return(ret);
   7939 }
   7940 
   7941 
   7942 static xmlExpNodePtr
   7943 xmlExpParseSeq(xmlExpCtxtPtr ctxt) {
   7944     xmlExpNodePtr ret, right;
   7945 
   7946     ret = xmlExpParseOr(ctxt);
   7947     SKIP_BLANKS
   7948     while (CUR == '|') {
   7949         NEXT
   7950 	right = xmlExpParseOr(ctxt);
   7951 	if (right == NULL) {
   7952 	    xmlExpFree(ctxt, ret);
   7953 	    return(NULL);
   7954 	}
   7955 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_OR, ret, right, NULL, 0, 0);
   7956 	if (ret == NULL)
   7957 	    return(NULL);
   7958     }
   7959     return(ret);
   7960 }
   7961 
   7962 static xmlExpNodePtr
   7963 xmlExpParseExpr(xmlExpCtxtPtr ctxt) {
   7964     xmlExpNodePtr ret, right;
   7965 
   7966     ret = xmlExpParseSeq(ctxt);
   7967     SKIP_BLANKS
   7968     while (CUR == ',') {
   7969         NEXT
   7970 	right = xmlExpParseSeq(ctxt);
   7971 	if (right == NULL) {
   7972 	    xmlExpFree(ctxt, ret);
   7973 	    return(NULL);
   7974 	}
   7975 	ret = xmlExpHashGetEntry(ctxt, XML_EXP_SEQ, ret, right, NULL, 0, 0);
   7976 	if (ret == NULL)
   7977 	    return(NULL);
   7978     }
   7979     return(ret);
   7980 }
   7981 
   7982 /**
   7983  * xmlExpParse:
   7984  * @ctxt: the expressions context
   7985  * @expr: the 0 terminated string
   7986  *
   7987  * Minimal parser for regexps, it understand the following constructs
   7988  *  - string terminals
   7989  *  - choice operator |
   7990  *  - sequence operator ,
   7991  *  - subexpressions (...)
   7992  *  - usual cardinality operators + * and ?
   7993  *  - finite sequences  { min, max }
   7994  *  - infinite sequences { min, * }
   7995  * There is minimal checkings made especially no checking on strings values
   7996  *
   7997  * Returns a new expression or NULL in case of failure
   7998  */
   7999 xmlExpNodePtr
   8000 xmlExpParse(xmlExpCtxtPtr ctxt, const char *expr) {
   8001     xmlExpNodePtr ret;
   8002 
   8003     ctxt->expr = expr;
   8004     ctxt->cur = expr;
   8005 
   8006     ret = xmlExpParseExpr(ctxt);
   8007     SKIP_BLANKS
   8008     if (*ctxt->cur != 0) {
   8009         xmlExpFree(ctxt, ret);
   8010         return(NULL);
   8011     }
   8012     return(ret);
   8013 }
   8014 
   8015 static void
   8016 xmlExpDumpInt(xmlBufferPtr buf, xmlExpNodePtr expr, int glob) {
   8017     xmlExpNodePtr c;
   8018 
   8019     if (expr == NULL) return;
   8020     if (glob) xmlBufferWriteChar(buf, "(");
   8021     switch (expr->type) {
   8022         case XML_EXP_EMPTY:
   8023 	    xmlBufferWriteChar(buf, "empty");
   8024 	    break;
   8025         case XML_EXP_FORBID:
   8026 	    xmlBufferWriteChar(buf, "forbidden");
   8027 	    break;
   8028         case XML_EXP_ATOM:
   8029 	    xmlBufferWriteCHAR(buf, expr->exp_str);
   8030 	    break;
   8031         case XML_EXP_SEQ:
   8032 	    c = expr->exp_left;
   8033 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8034 	        xmlExpDumpInt(buf, c, 1);
   8035 	    else
   8036 	        xmlExpDumpInt(buf, c, 0);
   8037 	    xmlBufferWriteChar(buf, " , ");
   8038 	    c = expr->exp_right;
   8039 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8040 	        xmlExpDumpInt(buf, c, 1);
   8041 	    else
   8042 	        xmlExpDumpInt(buf, c, 0);
   8043             break;
   8044         case XML_EXP_OR:
   8045 	    c = expr->exp_left;
   8046 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8047 	        xmlExpDumpInt(buf, c, 1);
   8048 	    else
   8049 	        xmlExpDumpInt(buf, c, 0);
   8050 	    xmlBufferWriteChar(buf, " | ");
   8051 	    c = expr->exp_right;
   8052 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8053 	        xmlExpDumpInt(buf, c, 1);
   8054 	    else
   8055 	        xmlExpDumpInt(buf, c, 0);
   8056             break;
   8057         case XML_EXP_COUNT: {
   8058 	    char rep[40];
   8059 
   8060 	    c = expr->exp_left;
   8061 	    if ((c->type == XML_EXP_SEQ) || (c->type == XML_EXP_OR))
   8062 	        xmlExpDumpInt(buf, c, 1);
   8063 	    else
   8064 	        xmlExpDumpInt(buf, c, 0);
   8065 	    if ((expr->exp_min == 0) && (expr->exp_max == 1)) {
   8066 		rep[0] = '?';
   8067 		rep[1] = 0;
   8068 	    } else if ((expr->exp_min == 0) && (expr->exp_max == -1)) {
   8069 		rep[0] = '*';
   8070 		rep[1] = 0;
   8071 	    } else if ((expr->exp_min == 1) && (expr->exp_max == -1)) {
   8072 		rep[0] = '+';
   8073 		rep[1] = 0;
   8074 	    } else if (expr->exp_max == expr->exp_min) {
   8075 	        snprintf(rep, 39, "{%d}", expr->exp_min);
   8076 	    } else if (expr->exp_max < 0) {
   8077 	        snprintf(rep, 39, "{%d,inf}", expr->exp_min);
   8078 	    } else {
   8079 	        snprintf(rep, 39, "{%d,%d}", expr->exp_min, expr->exp_max);
   8080 	    }
   8081 	    rep[39] = 0;
   8082 	    xmlBufferWriteChar(buf, rep);
   8083 	    break;
   8084 	}
   8085 	default:
   8086 	    fprintf(stderr, "Error in tree\n");
   8087     }
   8088     if (glob)
   8089         xmlBufferWriteChar(buf, ")");
   8090 }
   8091 /**
   8092  * xmlExpDump:
   8093  * @buf:  a buffer to receive the output
   8094  * @expr:  the compiled expression
   8095  *
   8096  * Serialize the expression as compiled to the buffer
   8097  */
   8098 void
   8099 xmlExpDump(xmlBufferPtr buf, xmlExpNodePtr expr) {
   8100     if ((buf == NULL) || (expr == NULL))
   8101         return;
   8102     xmlExpDumpInt(buf, expr, 0);
   8103 }
   8104 
   8105 /**
   8106  * xmlExpMaxToken:
   8107  * @expr: a compiled expression
   8108  *
   8109  * Indicate the maximum number of input a expression can accept
   8110  *
   8111  * Returns the maximum length or -1 in case of error
   8112  */
   8113 int
   8114 xmlExpMaxToken(xmlExpNodePtr expr) {
   8115     if (expr == NULL)
   8116         return(-1);
   8117     return(expr->c_max);
   8118 }
   8119 
   8120 /**
   8121  * xmlExpCtxtNbNodes:
   8122  * @ctxt: an expression context
   8123  *
   8124  * Debugging facility provides the number of allocated nodes at a that point
   8125  *
   8126  * Returns the number of nodes in use or -1 in case of error
   8127  */
   8128 int
   8129 xmlExpCtxtNbNodes(xmlExpCtxtPtr ctxt) {
   8130     if (ctxt == NULL)
   8131         return(-1);
   8132     return(ctxt->nb_nodes);
   8133 }
   8134 
   8135 /**
   8136  * xmlExpCtxtNbCons:
   8137  * @ctxt: an expression context
   8138  *
   8139  * Debugging facility provides the number of allocated nodes over lifetime
   8140  *
   8141  * Returns the number of nodes ever allocated or -1 in case of error
   8142  */
   8143 int
   8144 xmlExpCtxtNbCons(xmlExpCtxtPtr ctxt) {
   8145     if (ctxt == NULL)
   8146         return(-1);
   8147     return(ctxt->nb_cons);
   8148 }
   8149 
   8150 #endif /* LIBXML_EXPR_ENABLED */
   8151 #define bottom_xmlregexp
   8152 #include "elfgcchack.h"
   8153 #endif /* LIBXML_REGEXP_ENABLED */
   8154