Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="content-type" content="text/html; charset=utf-8">
      6   <title>The LLVM Target-Independent Code Generator</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8 
      9   <style type="text/css">
     10     .unknown { background-color: #C0C0C0; text-align: center; }
     11     .unknown:before { content: "?" }
     12     .no { background-color: #C11B17 }
     13     .no:before { content: "N" }
     14     .partial { background-color: #F88017 }
     15     .yes { background-color: #0F0; }
     16     .yes:before { content: "Y" }
     17   </style>
     18 
     19 </head>
     20 <body>
     21 
     22 <h1>
     23   The LLVM Target-Independent Code Generator
     24 </h1>
     25 
     26 <ol>
     27   <li><a href="#introduction">Introduction</a>
     28     <ul>
     29       <li><a href="#required">Required components in the code generator</a></li>
     30       <li><a href="#high-level-design">The high-level design of the code
     31           generator</a></li>
     32       <li><a href="#tablegen">Using TableGen for target description</a></li>
     33     </ul>
     34   </li>
     35   <li><a href="#targetdesc">Target description classes</a>
     36     <ul>
     37       <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li>
     38       <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li>
     39       <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li>
     40       <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li>
     41       <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li>
     42       <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li>
     43       <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li>
     44       <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li>
     45     </ul>
     46   </li>
     47   <li><a href="#codegendesc">The "Machine" Code Generator classes</a>
     48     <ul>
     49     <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li>
     50     <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt>
     51                                      class</a></li>
     52     <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li>
     53     <li><a href="#machineinstrbundle"><tt>MachineInstr Bundles</tt></a></li>
     54     </ul>
     55   </li>
     56   <li><a href="#mc">The "MC" Layer</a>
     57     <ul>
     58     <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li>
     59     <li><a href="#mccontext">The <tt>MCContext</tt> class</a>
     60     <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li>
     61     <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li>
     62     <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li>
     63     </ul>
     64   </li>
     65   <li><a href="#codegenalgs">Target-independent code generation algorithms</a>
     66     <ul>
     67     <li><a href="#instselect">Instruction Selection</a>
     68       <ul>
     69       <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li>
     70       <li><a href="#selectiondag_process">SelectionDAG Code Generation
     71                                           Process</a></li>
     72       <li><a href="#selectiondag_build">Initial SelectionDAG
     73                                         Construction</a></li>
     74       <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li>
     75       <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li>
     76       <li><a href="#selectiondag_optimize">SelectionDAG Optimization
     77                                            Phase: the DAG Combiner</a></li>
     78       <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li>
     79       <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation
     80                                         Phase</a></li>
     81       <li><a href="#selectiondag_future">Future directions for the
     82                                          SelectionDAG</a></li>
     83       </ul></li>
     84      <li><a href="#liveintervals">Live Intervals</a>
     85        <ul>
     86        <li><a href="#livevariable_analysis">Live Variable Analysis</a></li>
     87        <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li>
     88        </ul></li>
     89     <li><a href="#regalloc">Register Allocation</a>
     90       <ul>
     91       <li><a href="#regAlloc_represent">How registers are represented in
     92                                         LLVM</a></li>
     93       <li><a href="#regAlloc_howTo">Mapping virtual registers to physical
     94                                     registers</a></li>
     95       <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li>
     96       <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li>
     97       <li><a href="#regAlloc_fold">Instruction folding</a></li>
     98       <li><a href="#regAlloc_builtIn">Built in register allocators</a></li>
     99       </ul></li>
    100     <li><a href="#codeemit">Code Emission</a></li>
    101     <li><a href="#vliw_packetizer">VLIW Packetizer</a>
    102       <ul>
    103       <li><a href="#vliw_mapping">Mapping from instructions to functional
    104                  units</a></li>
    105       <li><a href="#vliw_repr">How the packetization tables are
    106                              generated and used</a></li>
    107       </ul>
    108     </li>
    109     </ul>
    110   </li>
    111   <li><a href="#nativeassembler">Implementing a Native Assembler</a></li>
    112   
    113   <li><a href="#targetimpls">Target-specific Implementation Notes</a>
    114     <ul>
    115     <li><a href="#targetfeatures">Target Feature Matrix</a></li>
    116     <li><a href="#tailcallopt">Tail call optimization</a></li>
    117     <li><a href="#sibcallopt">Sibling call optimization</a></li>
    118     <li><a href="#x86">The X86 backend</a></li>
    119     <li><a href="#ppc">The PowerPC backend</a>
    120       <ul>
    121       <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li>
    122       <li><a href="#ppc_frame">Frame Layout</a></li>
    123       <li><a href="#ppc_prolog">Prolog/Epilog</a></li>
    124       <li><a href="#ppc_dynamic">Dynamic Allocation</a></li>
    125       </ul></li>
    126     <li><a href="#ptx">The PTX backend</a></li>
    127     </ul></li>
    128 
    129 </ol>
    130 
    131 <div class="doc_author">
    132   <p>Written by the LLVM Team.</p>
    133 </div>
    134 
    135 <div class="doc_warning">
    136   <p>Warning: This is a work in progress.</p>
    137 </div>
    138 
    139 <!-- *********************************************************************** -->
    140 <h2>
    141   <a name="introduction">Introduction</a>
    142 </h2>
    143 <!-- *********************************************************************** -->
    144 
    145 <div>
    146 
    147 <p>The LLVM target-independent code generator is a framework that provides a
    148    suite of reusable components for translating the LLVM internal representation
    149    to the machine code for a specified target&mdash;either in assembly form
    150    (suitable for a static compiler) or in binary machine code format (usable for
    151    a JIT compiler). The LLVM target-independent code generator consists of six
    152    main components:</p>
    153 
    154 <ol>
    155   <li><a href="#targetdesc">Abstract target description</a> interfaces which
    156       capture important properties about various aspects of the machine,
    157       independently of how they will be used.  These interfaces are defined in
    158       <tt>include/llvm/Target/</tt>.</li>
    159 
    160   <li>Classes used to represent the <a href="#codegendesc">code being
    161       generated</a> for a target.  These classes are intended to be abstract
    162       enough to represent the machine code for <i>any</i> target machine.  These
    163       classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level,
    164       concepts like "constant pool entries" and "jump tables" are explicitly
    165       exposed.</li>
    166 
    167   <li>Classes and algorithms used to represent code as the object file level,
    168       the <a href="#mc">MC Layer</a>.  These classes represent assembly level
    169       constructs like labels, sections, and instructions.  At this level,
    170       concepts like "constant pool entries" and "jump tables" don't exist.</li>
    171 
    172   <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement
    173       various phases of native code generation (register allocation, scheduling,
    174       stack frame representation, etc).  This code lives
    175       in <tt>lib/CodeGen/</tt>.</li>
    176 
    177   <li><a href="#targetimpls">Implementations of the abstract target description
    178       interfaces</a> for particular targets.  These machine descriptions make
    179       use of the components provided by LLVM, and can optionally provide custom
    180       target-specific passes, to build complete code generators for a specific
    181       target.  Target descriptions live in <tt>lib/Target/</tt>.</li>
    182 
    183   <li><a href="#jit">The target-independent JIT components</a>.  The LLVM JIT is
    184       completely target independent (it uses the <tt>TargetJITInfo</tt>
    185       structure to interface for target-specific issues.  The code for the
    186       target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li>
    187 </ol>
    188 
    189 <p>Depending on which part of the code generator you are interested in working
    190    on, different pieces of this will be useful to you.  In any case, you should
    191    be familiar with the <a href="#targetdesc">target description</a>
    192    and <a href="#codegendesc">machine code representation</a> classes.  If you
    193    want to add a backend for a new target, you will need
    194    to <a href="#targetimpls">implement the target description</a> classes for
    195    your new target and understand the <a href="LangRef.html">LLVM code
    196    representation</a>.  If you are interested in implementing a
    197    new <a href="#codegenalgs">code generation algorithm</a>, it should only
    198    depend on the target-description and machine code representation classes,
    199    ensuring that it is portable.</p>
    200 
    201 <!-- ======================================================================= -->
    202 <h3>
    203  <a name="required">Required components in the code generator</a>
    204 </h3>
    205 
    206 <div>
    207 
    208 <p>The two pieces of the LLVM code generator are the high-level interface to the
    209    code generator and the set of reusable components that can be used to build
    210    target-specific backends.  The two most important interfaces
    211    (<a href="#targetmachine"><tt>TargetMachine</tt></a>
    212    and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are
    213    required to be defined for a backend to fit into the LLVM system, but the
    214    others must be defined if the reusable code generator components are going to
    215    be used.</p>
    216 
    217 <p>This design has two important implications.  The first is that LLVM can
    218    support completely non-traditional code generation targets.  For example, the
    219    C backend does not require register allocation, instruction selection, or any
    220    of the other standard components provided by the system.  As such, it only
    221    implements these two interfaces, and does its own thing.  Another example of
    222    a code generator like this is a (purely hypothetical) backend that converts
    223    LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p>
    224 
    225 <p>This design also implies that it is possible to design and implement
    226    radically different code generators in the LLVM system that do not make use
    227    of any of the built-in components.  Doing so is not recommended at all, but
    228    could be required for radically different targets that do not fit into the
    229    LLVM machine description model: FPGAs for example.</p>
    230 
    231 </div>
    232 
    233 <!-- ======================================================================= -->
    234 <h3>
    235  <a name="high-level-design">The high-level design of the code generator</a>
    236 </h3>
    237 
    238 <div>
    239 
    240 <p>The LLVM target-independent code generator is designed to support efficient
    241    and quality code generation for standard register-based microprocessors.
    242    Code generation in this model is divided into the following stages:</p>
    243 
    244 <ol>
    245   <li><b><a href="#instselect">Instruction Selection</a></b> &mdash; This phase
    246       determines an efficient way to express the input LLVM code in the target
    247       instruction set.  This stage produces the initial code for the program in
    248       the target instruction set, then makes use of virtual registers in SSA
    249       form and physical registers that represent any required register
    250       assignments due to target constraints or calling conventions.  This step
    251       turns the LLVM code into a DAG of target instructions.</li>
    252 
    253   <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> &mdash;
    254       This phase takes the DAG of target instructions produced by the
    255       instruction selection phase, determines an ordering of the instructions,
    256       then emits the instructions
    257       as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering.
    258       Note that we describe this in the <a href="#instselect">instruction
    259       selection section</a> because it operates on
    260       a <a href="#selectiondag_intro">SelectionDAG</a>.</li>
    261 
    262   <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> &mdash;
    263       This optional stage consists of a series of machine-code optimizations
    264       that operate on the SSA-form produced by the instruction selector.
    265       Optimizations like modulo-scheduling or peephole optimization work
    266       here.</li>
    267 
    268   <li><b><a href="#regalloc">Register Allocation</a></b> &mdash; The target code
    269       is transformed from an infinite virtual register file in SSA form to the
    270       concrete register file used by the target.  This phase introduces spill
    271       code and eliminates all virtual register references from the program.</li>
    272 
    273   <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> &mdash; Once
    274       the machine code has been generated for the function and the amount of
    275       stack space required is known (used for LLVM alloca's and spill slots),
    276       the prolog and epilog code for the function can be inserted and "abstract
    277       stack location references" can be eliminated.  This stage is responsible
    278       for implementing optimizations like frame-pointer elimination and stack
    279       packing.</li>
    280 
    281   <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> &mdash;
    282       Optimizations that operate on "final" machine code can go here, such as
    283       spill code scheduling and peephole optimizations.</li>
    284 
    285   <li><b><a href="#codeemit">Code Emission</a></b> &mdash; The final stage
    286       actually puts out the code for the current function, either in the target
    287       assembler format or in machine code.</li>
    288 </ol>
    289 
    290 <p>The code generator is based on the assumption that the instruction selector
    291    will use an optimal pattern matching selector to create high-quality
    292    sequences of native instructions.  Alternative code generator designs based
    293    on pattern expansion and aggressive iterative peephole optimization are much
    294    slower.  This design permits efficient compilation (important for JIT
    295    environments) and aggressive optimization (used when generating code offline)
    296    by allowing components of varying levels of sophistication to be used for any
    297    step of compilation.</p>
    298 
    299 <p>In addition to these stages, target implementations can insert arbitrary
    300    target-specific passes into the flow.  For example, the X86 target uses a
    301    special pass to handle the 80x87 floating point stack architecture.  Other
    302    targets with unusual requirements can be supported with custom passes as
    303    needed.</p>
    304 
    305 </div>
    306 
    307 <!-- ======================================================================= -->
    308 <h3>
    309  <a name="tablegen">Using TableGen for target description</a>
    310 </h3>
    311 
    312 <div>
    313 
    314 <p>The target description classes require a detailed description of the target
    315    architecture.  These target descriptions often have a large amount of common
    316    information (e.g., an <tt>add</tt> instruction is almost identical to a
    317    <tt>sub</tt> instruction).  In order to allow the maximum amount of
    318    commonality to be factored out, the LLVM code generator uses
    319    the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big
    320    chunks of the target machine, which allows the use of domain-specific and
    321    target-specific abstractions to reduce the amount of repetition.</p>
    322 
    323 <p>As LLVM continues to be developed and refined, we plan to move more and more
    324    of the target description to the <tt>.td</tt> form.  Doing so gives us a
    325    number of advantages.  The most important is that it makes it easier to port
    326    LLVM because it reduces the amount of C++ code that has to be written, and
    327    the surface area of the code generator that needs to be understood before
    328    someone can get something working.  Second, it makes it easier to change
    329    things. In particular, if tables and other things are all emitted
    330    by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to
    331    update all of the targets to a new interface.</p>
    332 
    333 </div>
    334 
    335 </div>
    336 
    337 <!-- *********************************************************************** -->
    338 <h2>
    339   <a name="targetdesc">Target description classes</a>
    340 </h2>
    341 <!-- *********************************************************************** -->
    342 
    343 <div>
    344 
    345 <p>The LLVM target description classes (located in the
    346    <tt>include/llvm/Target</tt> directory) provide an abstract description of
    347    the target machine independent of any particular client.  These classes are
    348    designed to capture the <i>abstract</i> properties of the target (such as the
    349    instructions and registers it has), and do not incorporate any particular
    350    pieces of code generation algorithms.</p>
    351 
    352 <p>All of the target description classes (except the
    353    <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be
    354    subclassed by the concrete target implementation, and have virtual methods
    355    implemented.  To get to these implementations, the
    356    <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors
    357    that should be implemented by the target.</p>
    358 
    359 <!-- ======================================================================= -->
    360 <h3>
    361   <a name="targetmachine">The <tt>TargetMachine</tt> class</a>
    362 </h3>
    363 
    364 <div>
    365 
    366 <p>The <tt>TargetMachine</tt> class provides virtual methods that are used to
    367    access the target-specific implementations of the various target description
    368    classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>,
    369    <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.).  This class is
    370    designed to be specialized by a concrete target implementation
    371    (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual
    372    methods.  The only required target description class is
    373    the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code
    374    generator components are to be used, the other interfaces should be
    375    implemented as well.</p>
    376 
    377 </div>
    378 
    379 <!-- ======================================================================= -->
    380 <h3>
    381   <a name="targetdata">The <tt>TargetData</tt> class</a>
    382 </h3>
    383 
    384 <div>
    385 
    386 <p>The <tt>TargetData</tt> class is the only required target description class,
    387    and it is the only class that is not extensible (you cannot derived a new
    388    class from it).  <tt>TargetData</tt> specifies information about how the
    389    target lays out memory for structures, the alignment requirements for various
    390    data types, the size of pointers in the target, and whether the target is
    391    little-endian or big-endian.</p>
    392 
    393 </div>
    394 
    395 <!-- ======================================================================= -->
    396 <h3>
    397   <a name="targetlowering">The <tt>TargetLowering</tt> class</a>
    398 </h3>
    399 
    400 <div>
    401 
    402 <p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction
    403    selectors primarily to describe how LLVM code should be lowered to
    404    SelectionDAG operations.  Among other things, this class indicates:</p>
    405 
    406 <ul>
    407   <li>an initial register class to use for various <tt>ValueType</tt>s,</li>
    408 
    409   <li>which operations are natively supported by the target machine,</li>
    410 
    411   <li>the return type of <tt>setcc</tt> operations,</li>
    412 
    413   <li>the type to use for shift amounts, and</li>
    414 
    415   <li>various high-level characteristics, like whether it is profitable to turn
    416       division by a constant into a multiplication sequence</li>
    417 </ul>
    418 
    419 </div>
    420 
    421 <!-- ======================================================================= -->
    422 <h3>
    423   <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a>
    424 </h3>
    425 
    426 <div>
    427 
    428 <p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file
    429    of the target and any interactions between the registers.</p>
    430 
    431 <p>Registers in the code generator are represented in the code generator by
    432    unsigned integers.  Physical registers (those that actually exist in the
    433    target description) are unique small numbers, and virtual registers are
    434    generally large.  Note that register #0 is reserved as a flag value.</p>
    435 
    436 <p>Each register in the processor description has an associated
    437    <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the
    438    register (used for assembly output and debugging dumps) and a set of aliases
    439    (used to indicate whether one register overlaps with another).</p>
    440 
    441 <p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt>
    442    class exposes a set of processor specific register classes (instances of the
    443    <tt>TargetRegisterClass</tt> class).  Each register class contains sets of
    444    registers that have the same properties (for example, they are all 32-bit
    445    integer registers).  Each SSA virtual register created by the instruction
    446    selector has an associated register class.  When the register allocator runs,
    447    it replaces virtual registers with a physical register in the set.</p>
    448 
    449 <p>The target-specific implementations of these classes is auto-generated from
    450    a <a href="TableGenFundamentals.html">TableGen</a> description of the
    451    register file.</p>
    452 
    453 </div>
    454 
    455 <!-- ======================================================================= -->
    456 <h3>
    457   <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a>
    458 </h3>
    459 
    460 <div>
    461 
    462 <p>The <tt>TargetInstrInfo</tt> class is used to describe the machine
    463    instructions supported by the target. It is essentially an array of
    464    <tt>TargetInstrDescriptor</tt> objects, each of which describes one
    465    instruction the target supports. Descriptors define things like the mnemonic
    466    for the opcode, the number of operands, the list of implicit register uses
    467    and defs, whether the instruction has certain target-independent properties
    468    (accesses memory, is commutable, etc), and holds any target-specific
    469    flags.</p>
    470 
    471 </div>
    472 
    473 <!-- ======================================================================= -->
    474 <h3>
    475   <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a>
    476 </h3>
    477 
    478 <div>
    479 
    480 <p>The <tt>TargetFrameInfo</tt> class is used to provide information about the
    481    stack frame layout of the target. It holds the direction of stack growth, the
    482    known stack alignment on entry to each function, and the offset to the local
    483    area.  The offset to the local area is the offset from the stack pointer on
    484    function entry to the first location where function data (local variables,
    485    spill locations) can be stored.</p>
    486 
    487 </div>
    488 
    489 <!-- ======================================================================= -->
    490 <h3>
    491   <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a>
    492 </h3>
    493 
    494 <div>
    495 
    496 <p>The <tt>TargetSubtarget</tt> class is used to provide information about the
    497    specific chip set being targeted.  A sub-target informs code generation of
    498    which instructions are supported, instruction latencies and instruction
    499    execution itinerary; i.e., which processing units are used, in what order,
    500    and for how long.</p>
    501 
    502 </div>
    503 
    504 
    505 <!-- ======================================================================= -->
    506 <h3>
    507   <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a>
    508 </h3>
    509 
    510 <div>
    511 
    512 <p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the
    513    Just-In-Time code generator to perform target-specific activities, such as
    514    emitting stubs.  If a <tt>TargetMachine</tt> supports JIT code generation, it
    515    should provide one of these objects through the <tt>getJITInfo</tt>
    516    method.</p>
    517 
    518 </div>
    519 
    520 </div>
    521 
    522 <!-- *********************************************************************** -->
    523 <h2>
    524   <a name="codegendesc">Machine code description classes</a>
    525 </h2>
    526 <!-- *********************************************************************** -->
    527 
    528 <div>
    529 
    530 <p>At the high-level, LLVM code is translated to a machine specific
    531    representation formed out of
    532    <a href="#machinefunction"><tt>MachineFunction</tt></a>,
    533    <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>,
    534    and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined
    535    in <tt>include/llvm/CodeGen</tt>).  This representation is completely target
    536    agnostic, representing instructions in their most abstract form: an opcode
    537    and a series of operands.  This representation is designed to support both an
    538    SSA representation for machine code, as well as a register allocated, non-SSA
    539    form.</p>
    540 
    541 <!-- ======================================================================= -->
    542 <h3>
    543   <a name="machineinstr">The <tt>MachineInstr</tt> class</a>
    544 </h3>
    545 
    546 <div>
    547 
    548 <p>Target machine instructions are represented as instances of the
    549    <tt>MachineInstr</tt> class.  This class is an extremely abstract way of
    550    representing machine instructions.  In particular, it only keeps track of an
    551    opcode number and a set of operands.</p>
    552 
    553 <p>The opcode number is a simple unsigned integer that only has meaning to a
    554    specific backend.  All of the instructions for a target should be defined in
    555    the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are
    556    auto-generated from this description.  The <tt>MachineInstr</tt> class does
    557    not have any information about how to interpret the instruction (i.e., what
    558    the semantics of the instruction are); for that you must refer to the
    559    <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> 
    560 
    561 <p>The operands of a machine instruction can be of several different types: a
    562    register reference, a constant integer, a basic block reference, etc.  In
    563    addition, a machine operand should be marked as a def or a use of the value
    564    (though only registers are allowed to be defs).</p>
    565 
    566 <p>By convention, the LLVM code generator orders instruction operands so that
    567    all register definitions come before the register uses, even on architectures
    568    that are normally printed in other orders.  For example, the SPARC add
    569    instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers
    570    and stores the result into the "%i3" register.  In the LLVM code generator,
    571    the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the
    572    destination first.</p>
    573 
    574 <p>Keeping destination (definition) operands at the beginning of the operand
    575    list has several advantages.  In particular, the debugging printer will print
    576    the instruction like this:</p>
    577 
    578 <div class="doc_code">
    579 <pre>
    580 %r3 = add %i1, %i2
    581 </pre>
    582 </div>
    583 
    584 <p>Also if the first operand is a def, it is easier to <a href="#buildmi">create
    585    instructions</a> whose only def is the first operand.</p>
    586 
    587 <!-- _______________________________________________________________________ -->
    588 <h4>
    589   <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a>
    590 </h4>
    591 
    592 <div>
    593 
    594 <p>Machine instructions are created by using the <tt>BuildMI</tt> functions,
    595    located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file.  The
    596    <tt>BuildMI</tt> functions make it easy to build arbitrary machine
    597    instructions.  Usage of the <tt>BuildMI</tt> functions look like this:</p>
    598 
    599 <div class="doc_code">
    600 <pre>
    601 // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
    602 // instruction.  The '1' specifies how many operands will be added.
    603 MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);
    604 
    605 // Create the same instr, but insert it at the end of a basic block.
    606 MachineBasicBlock &amp;MBB = ...
    607 BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);
    608 
    609 // Create the same instr, but insert it before a specified iterator point.
    610 MachineBasicBlock::iterator MBBI = ...
    611 BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42);
    612 
    613 // Create a 'cmp Reg, 0' instruction, no destination reg.
    614 MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0);
    615 // Create an 'sahf' instruction which takes no operands and stores nothing.
    616 MI = BuildMI(X86::SAHF, 0);
    617 
    618 // Create a self looping branch instruction.
    619 BuildMI(MBB, X86::JNE, 1).addMBB(&amp;MBB);
    620 </pre>
    621 </div>
    622 
    623 <p>The key thing to remember with the <tt>BuildMI</tt> functions is that you
    624    have to specify the number of operands that the machine instruction will
    625    take.  This allows for efficient memory allocation.  You also need to specify
    626    if operands default to be uses of values, not definitions.  If you need to
    627    add a definition operand (other than the optional destination register), you
    628    must explicitly mark it as such:</p>
    629 
    630 <div class="doc_code">
    631 <pre>
    632 MI.addReg(Reg, RegState::Define);
    633 </pre>
    634 </div>
    635 
    636 </div>
    637 
    638 <!-- _______________________________________________________________________ -->
    639 <h4>
    640   <a name="fixedregs">Fixed (preassigned) registers</a>
    641 </h4>
    642 
    643 <div>
    644 
    645 <p>One important issue that the code generator needs to be aware of is the
    646    presence of fixed registers.  In particular, there are often places in the
    647    instruction stream where the register allocator <em>must</em> arrange for a
    648    particular value to be in a particular register.  This can occur due to
    649    limitations of the instruction set (e.g., the X86 can only do a 32-bit divide
    650    with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like
    651    calling conventions.  In any case, the instruction selector should emit code
    652    that copies a virtual register into or out of a physical register when
    653    needed.</p>
    654 
    655 <p>For example, consider this simple LLVM example:</p>
    656 
    657 <div class="doc_code">
    658 <pre>
    659 define i32 @test(i32 %X, i32 %Y) {
    660   %Z = udiv i32 %X, %Y
    661   ret i32 %Z
    662 }
    663 </pre>
    664 </div>
    665 
    666 <p>The X86 instruction selector produces this machine code for the <tt>div</tt>
    667    and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to
    668    get this):</p>
    669 
    670 <div class="doc_code">
    671 <pre>
    672 ;; Start of div
    673 %EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
    674 %reg1027 = sar %reg1024, 31
    675 %EDX = mov %reg1027           ;; Sign extend X into EDX
    676 idiv %reg1025                 ;; Divide by Y (in reg1025)
    677 %reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
    678 
    679 ;; Start of ret
    680 %EAX = mov %reg1026           ;; 32-bit return value goes in EAX
    681 ret
    682 </pre>
    683 </div>
    684 
    685 <p>By the end of code generation, the register allocator has coalesced the
    686    registers and deleted the resultant identity moves producing the following
    687    code:</p>
    688 
    689 <div class="doc_code">
    690 <pre>
    691 ;; X is in EAX, Y is in ECX
    692 mov %EAX, %EDX
    693 sar %EDX, 31
    694 idiv %ECX
    695 ret 
    696 </pre>
    697 </div>
    698 
    699 <p>This approach is extremely general (if it can handle the X86 architecture, it
    700    can handle anything!) and allows all of the target specific knowledge about
    701    the instruction stream to be isolated in the instruction selector.  Note that
    702    physical registers should have a short lifetime for good code generation, and
    703    all physical registers are assumed dead on entry to and exit from basic
    704    blocks (before register allocation).  Thus, if you need a value to be live
    705    across basic block boundaries, it <em>must</em> live in a virtual
    706    register.</p>
    707 
    708 </div>
    709 
    710 <!-- _______________________________________________________________________ -->
    711 <h4>
    712   <a name="callclobber">Call-clobbered registers</a>
    713 </h4>
    714 
    715 <div>
    716 
    717 <p>Some machine instructions, like calls, clobber a large number of physical
    718    registers.  Rather than adding <code>&lt;def,dead&gt;</code> operands for
    719    all of them, it is possible to use an <code>MO_RegisterMask</code> operand
    720    instead.  The register mask operand holds a bit mask of preserved registers,
    721    and everything else is considered to be clobbered by the instruction.  </p>
    722 
    723 </div>
    724 
    725 <!-- _______________________________________________________________________ -->
    726 <h4>
    727   <a name="ssa">Machine code in SSA form</a>
    728 </h4>
    729 
    730 <div>
    731 
    732 <p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are
    733    maintained in SSA-form until register allocation happens.  For the most part,
    734    this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes
    735    become machine code PHI nodes, and virtual registers are only allowed to have
    736    a single definition.</p>
    737 
    738 <p>After register allocation, machine code is no longer in SSA-form because
    739    there are no virtual registers left in the code.</p>
    740 
    741 </div>
    742 
    743 </div>
    744 
    745 <!-- ======================================================================= -->
    746 <h3>
    747   <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a>
    748 </h3>
    749 
    750 <div>
    751 
    752 <p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions
    753    (<tt><a href="#machineinstr">MachineInstr</a></tt> instances).  It roughly
    754    corresponds to the LLVM code input to the instruction selector, but there can
    755    be a one-to-many mapping (i.e. one LLVM basic block can map to multiple
    756    machine basic blocks). The <tt>MachineBasicBlock</tt> class has a
    757    "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it
    758    comes from.</p>
    759 
    760 </div>
    761 
    762 <!-- ======================================================================= -->
    763 <h3>
    764   <a name="machinefunction">The <tt>MachineFunction</tt> class</a>
    765 </h3>
    766 
    767 <div>
    768 
    769 <p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks
    770    (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances).  It
    771    corresponds one-to-one with the LLVM function input to the instruction
    772    selector.  In addition to a list of basic blocks,
    773    the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>,
    774    a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a
    775    <tt>MachineRegisterInfo</tt>.  See
    776    <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p>
    777 
    778 </div>
    779 
    780 <!-- ======================================================================= -->
    781 <h3>
    782   <a name="machineinstrbundle"><tt>MachineInstr Bundles</tt></a>
    783 </h3>
    784 
    785 <div>
    786 
    787 <p>LLVM code generator can model sequences of instructions as MachineInstr
    788    bundles. A MI bundle can model a VLIW group / pack which contains an
    789    arbitrary number of parallel instructions. It can also be used to model
    790    a sequential list of instructions (potentially with data dependencies) that
    791    cannot be legally separated (e.g. ARM Thumb2 IT blocks).</p>
    792 
    793 <p>Conceptually a MI bundle is a MI with a number of other MIs nested within:
    794 </p>
    795 
    796 <div class="doc_code">
    797 <pre>
    798 --------------
    799 |   Bundle   | ---------
    800 --------------          \
    801        |           ----------------
    802        |           |      MI      |
    803        |           ----------------
    804        |                   |
    805        |           ----------------
    806        |           |      MI      |
    807        |           ----------------
    808        |                   |
    809        |           ----------------
    810        |           |      MI      |
    811        |           ----------------
    812        |
    813 --------------
    814 |   Bundle   | --------
    815 --------------         \
    816        |           ----------------
    817        |           |      MI      |
    818        |           ----------------
    819        |                   |
    820        |           ----------------
    821        |           |      MI      |
    822        |           ----------------
    823        |                   |
    824        |                  ...
    825        |
    826 --------------
    827 |   Bundle   | --------
    828 --------------         \
    829        |
    830       ...
    831 </pre>
    832 </div>
    833 
    834 <p> MI bundle support does not change the physical representations of
    835     MachineBasicBlock and MachineInstr. All the MIs (including top level and
    836     nested ones) are stored as sequential list of MIs. The "bundled" MIs are
    837     marked with the 'InsideBundle' flag. A top level MI with the special BUNDLE
    838     opcode is used to represent the start of a bundle. It's legal to mix BUNDLE
    839     MIs with indiviual MIs that are not inside bundles nor represent bundles.
    840 </p>
    841 
    842 <p> MachineInstr passes should operate on a MI bundle as a single unit. Member
    843     methods have been taught to correctly handle bundles and MIs inside bundles.
    844     The MachineBasicBlock iterator has been modified to skip over bundled MIs to
    845     enforce the bundle-as-a-single-unit concept. An alternative iterator
    846     instr_iterator has been added to MachineBasicBlock to allow passes to
    847     iterate over all of the MIs in a MachineBasicBlock, including those which
    848     are nested inside bundles. The top level BUNDLE instruction must have the
    849     correct set of register MachineOperand's that represent the cumulative
    850     inputs and outputs of the bundled MIs.</p>
    851 
    852 <p> Packing / bundling of MachineInstr's should be done as part of the register
    853     allocation super-pass. More specifically, the pass which determines what
    854     MIs should be bundled together must be done after code generator exits SSA
    855     form (i.e. after two-address pass, PHI elimination, and copy coalescing).
    856     Bundles should only be finalized (i.e. adding BUNDLE MIs and input and
    857     output register MachineOperands) after virtual registers have been
    858     rewritten into physical registers. This requirement eliminates the need to
    859     add virtual register operands to BUNDLE instructions which would effectively
    860     double the virtual register def and use lists.</p>
    861 
    862 </div>
    863 
    864 </div>
    865 
    866 <!-- *********************************************************************** -->
    867 <h2>
    868   <a name="mc">The "MC" Layer</a>
    869 </h2>
    870 <!-- *********************************************************************** -->
    871 
    872 <div>
    873 
    874 <p>
    875 The MC Layer is used to represent and process code at the raw machine code
    876 level, devoid of "high level" information like "constant pools", "jump tables",
    877 "global variables" or anything like that.  At this level, LLVM handles things
    878 like label names, machine instructions, and sections in the object file.  The
    879 code in this layer is used for a number of important purposes: the tail end of
    880 the code generator uses it to write a .s or .o file, and it is also used by the
    881 llvm-mc tool to implement standalone machine code assemblers and disassemblers.
    882 </p>
    883 
    884 <p>
    885 This section describes some of the important classes.  There are also a number
    886 of important subsystems that interact at this layer, they are described later
    887 in this manual.
    888 </p>
    889 
    890 <!-- ======================================================================= -->
    891 <h3>
    892   <a name="mcstreamer">The <tt>MCStreamer</tt> API</a>
    893 </h3>
    894 
    895 <div>
    896 
    897 <p>
    898 MCStreamer is best thought of as an assembler API.  It is an abstract API which
    899 is <em>implemented</em> in different ways (e.g. to output a .s file, output an
    900 ELF .o file, etc) but whose API correspond directly to what you see in a .s
    901 file.  MCStreamer has one method per directive, such as EmitLabel,
    902 EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which
    903 directly correspond to assembly level directives.  It also has an
    904 EmitInstruction method, which is used to output an MCInst to the streamer.
    905 </p>
    906 
    907 <p>
    908 This API is most important for two clients: the llvm-mc stand-alone assembler is
    909 effectively a parser that parses a line, then invokes a method on MCStreamer. In
    910 the code generator, the <a href="#codeemit">Code Emission</a> phase of the code
    911 generator lowers higher level LLVM IR and Machine* constructs down to the MC
    912 layer, emitting directives through MCStreamer.</p>
    913 
    914 <p>
    915 On the implementation side of MCStreamer, there are two major implementations:
    916 one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
    917 file (MCObjectStreamer).  MCAsmStreamer is a straight-forward implementation
    918 that prints out a directive for each method (e.g. EmitValue -&gt; .byte), but
    919 MCObjectStreamer implements a full assembler.
    920 </p>
    921 
    922 </div>
    923 
    924 <!-- ======================================================================= -->
    925 <h3>
    926   <a name="mccontext">The <tt>MCContext</tt> class</a>
    927 </h3>
    928 
    929 <div>
    930 
    931 <p>
    932 The MCContext class is the owner of a variety of uniqued data structures at the
    933 MC layer, including symbols, sections, etc.  As such, this is the class that you
    934 interact with to create symbols and sections.  This class can not be subclassed.
    935 </p>
    936 
    937 </div>
    938 
    939 <!-- ======================================================================= -->
    940 <h3>
    941   <a name="mcsymbol">The <tt>MCSymbol</tt> class</a>
    942 </h3>
    943 
    944 <div>
    945 
    946 <p>
    947 The MCSymbol class represents a symbol (aka label) in the assembly file.  There
    948 are two interesting kinds of symbols: assembler temporary symbols, and normal
    949 symbols.  Assembler temporary symbols are used and processed by the assembler
    950 but are discarded when the object file is produced.  The distinction is usually
    951 represented by adding a prefix to the label, for example "L" labels are
    952 assembler temporary labels in MachO.
    953 </p>
    954 
    955 <p>MCSymbols are created by MCContext and uniqued there.  This means that
    956 MCSymbols can be compared for pointer equivalence to find out if they are the
    957 same symbol.  Note that pointer inequality does not guarantee the labels will
    958 end up at different addresses though.  It's perfectly legal to output something
    959 like this to the .s file:<p>
    960 
    961 <pre>
    962   foo:
    963   bar:
    964     .byte 4
    965 </pre>
    966 
    967 <p>In this case, both the foo and bar symbols will have the same address.</p>
    968 
    969 </div>
    970 
    971 <!-- ======================================================================= -->
    972 <h3>
    973   <a name="mcsection">The <tt>MCSection</tt> class</a>
    974 </h3>
    975 
    976 <div>
    977 
    978 <p>
    979 The MCSection class represents an object-file specific section. It is subclassed
    980 by object file specific implementations (e.g. <tt>MCSectionMachO</tt>, 
    981 <tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued
    982 by MCContext.  The MCStreamer has a notion of the current section, which can be
    983 changed with the SwitchToSection method (which corresponds to a ".section"
    984 directive in a .s file).
    985 </p>
    986 
    987 </div>
    988 
    989 <!-- ======================================================================= -->
    990 <h3>
    991   <a name="mcinst">The <tt>MCInst</tt> class</a>
    992 </h3>
    993 
    994 <div>
    995 
    996 <p>
    997 The MCInst class is a target-independent representation of an instruction.  It
    998 is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>)
    999 that holds a target-specific opcode and a vector of MCOperands.  MCOperand, in
   1000 turn, is a simple discriminated union of three cases: 1) a simple immediate, 
   1001 2) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an
   1002 MCExpr.
   1003 </p>
   1004 
   1005 <p>MCInst is the common currency used to represent machine instructions at the
   1006 MC layer.  It is the type used by the instruction encoder, the instruction
   1007 printer, and the type generated by the assembly parser and disassembler.
   1008 </p>
   1009 
   1010 </div>
   1011 
   1012 </div>
   1013 
   1014 <!-- *********************************************************************** -->
   1015 <h2>
   1016   <a name="codegenalgs">Target-independent code generation algorithms</a>
   1017 </h2>
   1018 <!-- *********************************************************************** -->
   1019 
   1020 <div>
   1021 
   1022 <p>This section documents the phases described in the
   1023    <a href="#high-level-design">high-level design of the code generator</a>.
   1024    It explains how they work and some of the rationale behind their design.</p>
   1025 
   1026 <!-- ======================================================================= -->
   1027 <h3>
   1028   <a name="instselect">Instruction Selection</a>
   1029 </h3>
   1030 
   1031 <div>
   1032 
   1033 <p>Instruction Selection is the process of translating LLVM code presented to
   1034    the code generator into target-specific machine instructions.  There are
   1035    several well-known ways to do this in the literature.  LLVM uses a
   1036    SelectionDAG based instruction selector.</p>
   1037 
   1038 <p>Portions of the DAG instruction selector are generated from the target
   1039    description (<tt>*.td</tt>) files.  Our goal is for the entire instruction
   1040    selector to be generated from these <tt>.td</tt> files, though currently
   1041    there are still things that require custom C++ code.</p>
   1042 
   1043 <!-- _______________________________________________________________________ -->
   1044 <h4>
   1045   <a name="selectiondag_intro">Introduction to SelectionDAGs</a>
   1046 </h4>
   1047 
   1048 <div>
   1049 
   1050 <p>The SelectionDAG provides an abstraction for code representation in a way
   1051    that is amenable to instruction selection using automatic techniques
   1052    (e.g. dynamic-programming based optimal pattern matching selectors). It is
   1053    also well-suited to other phases of code generation; in particular,
   1054    instruction scheduling (SelectionDAG's are very close to scheduling DAGs
   1055    post-selection).  Additionally, the SelectionDAG provides a host
   1056    representation where a large variety of very-low-level (but
   1057    target-independent) <a href="#selectiondag_optimize">optimizations</a> may be
   1058    performed; ones which require extensive information about the instructions
   1059    efficiently supported by the target.</p>
   1060 
   1061 <p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
   1062    <tt>SDNode</tt> class.  The primary payload of the <tt>SDNode</tt> is its
   1063    operation code (Opcode) that indicates what operation the node performs and
   1064    the operands to the operation.  The various operation node types are
   1065    described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>
   1066    file.</p>
   1067 
   1068 <p>Although most operations define a single value, each node in the graph may
   1069    define multiple values.  For example, a combined div/rem operation will
   1070    define both the dividend and the remainder. Many other situations require
   1071    multiple values as well.  Each node also has some number of operands, which
   1072    are edges to the node defining the used value.  Because nodes may define
   1073    multiple values, edges are represented by instances of the <tt>SDValue</tt>
   1074    class, which is a <tt>&lt;SDNode, unsigned&gt;</tt> pair, indicating the node
   1075    and result value being used, respectively.  Each value produced by
   1076    an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type)
   1077    indicating what the type of the value is.</p>
   1078 
   1079 <p>SelectionDAGs contain two different kinds of values: those that represent
   1080    data flow and those that represent control flow dependencies.  Data values
   1081    are simple edges with an integer or floating point value type.  Control edges
   1082    are represented as "chain" edges which are of type <tt>MVT::Other</tt>.
   1083    These edges provide an ordering between nodes that have side effects (such as
   1084    loads, stores, calls, returns, etc).  All nodes that have side effects should
   1085    take a token chain as input and produce a new one as output.  By convention,
   1086    token chain inputs are always operand #0, and chain results are always the
   1087    last value produced by an operation.</p>
   1088 
   1089 <p>A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
   1090    always a marker node with an Opcode of <tt>ISD::EntryToken</tt>.  The Root
   1091    node is the final side-effecting node in the token chain. For example, in a
   1092    single basic block function it would be the return node.</p>
   1093 
   1094 <p>One important concept for SelectionDAGs is the notion of a "legal" vs.
   1095    "illegal" DAG.  A legal DAG for a target is one that only uses supported
   1096    operations and supported types.  On a 32-bit PowerPC, for example, a DAG with
   1097    a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that
   1098    uses a SREM or UREM operation.  The
   1099    <a href="#selectinodag_legalize_types">legalize types</a> and
   1100    <a href="#selectiondag_legalize">legalize operations</a> phases are
   1101    responsible for turning an illegal DAG into a legal DAG.</p>
   1102 
   1103 </div>
   1104 
   1105 <!-- _______________________________________________________________________ -->
   1106 <h4>
   1107   <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a>
   1108 </h4>
   1109 
   1110 <div>
   1111 
   1112 <p>SelectionDAG-based instruction selection consists of the following steps:</p>
   1113 
   1114 <ol>
   1115   <li><a href="#selectiondag_build">Build initial DAG</a> &mdash; This stage
   1116       performs a simple translation from the input LLVM code to an illegal
   1117       SelectionDAG.</li>
   1118 
   1119   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; This
   1120       stage performs simple optimizations on the SelectionDAG to simplify it,
   1121       and recognize meta instructions (like rotates
   1122       and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta
   1123       operations.  This makes the resultant code more efficient and
   1124       the <a href="#selectiondag_select">select instructions from DAG</a> phase
   1125       (below) simpler.</li>
   1126 
   1127   <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a>
   1128       &mdash; This stage transforms SelectionDAG nodes to eliminate any types
   1129       that are unsupported on the target.</li>
   1130 
   1131   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
   1132       SelectionDAG optimizer is run to clean up redundancies exposed by type
   1133       legalization.</li>
   1134 
   1135   <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> &mdash;
   1136       This stage transforms SelectionDAG nodes to eliminate any operations 
   1137       that are unsupported on the target.</li>
   1138 
   1139   <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> &mdash; The
   1140       SelectionDAG optimizer is run to eliminate inefficiencies introduced by
   1141       operation legalization.</li>
   1142 
   1143   <li><a href="#selectiondag_select">Select instructions from DAG</a> &mdash;
   1144       Finally, the target instruction selector matches the DAG operations to
   1145       target instructions.  This process translates the target-independent input
   1146       DAG into another DAG of target instructions.</li>
   1147 
   1148   <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a>
   1149       &mdash; The last phase assigns a linear order to the instructions in the
   1150       target-instruction DAG and emits them into the MachineFunction being
   1151       compiled.  This step uses traditional prepass scheduling techniques.</li>
   1152 </ol>
   1153 
   1154 <p>After all of these steps are complete, the SelectionDAG is destroyed and the
   1155    rest of the code generation passes are run.</p>
   1156 
   1157 <p>One great way to visualize what is going on here is to take advantage of a
   1158    few LLC command line options.  The following options pop up a window
   1159    displaying the SelectionDAG at specific times (if you only get errors printed
   1160    to the console while using this, you probably
   1161    <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a>
   1162    to add support for it).</p>
   1163 
   1164 <ul>
   1165   <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built,
   1166       before the first optimization pass.</li>
   1167 
   1168   <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li>
   1169 
   1170   <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second
   1171       optimization pass.</li>
   1172 
   1173   <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li>
   1174 
   1175   <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li>
   1176 </ul>
   1177 
   1178 <p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph.
   1179    This graph is based on the final SelectionDAG, with nodes that must be
   1180    scheduled together bundled into a single scheduling-unit node, and with
   1181    immediate operands and other nodes that aren't relevant for scheduling
   1182    omitted.</p>
   1183 
   1184 </div>
   1185 
   1186 <!-- _______________________________________________________________________ -->
   1187 <h4>
   1188   <a name="selectiondag_build">Initial SelectionDAG Construction</a>
   1189 </h4>
   1190 
   1191 <div>
   1192 
   1193 <p>The initial SelectionDAG is na&iuml;vely peephole expanded from the LLVM
   1194    input by the <tt>SelectionDAGLowering</tt> class in the
   1195    <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file.  The intent of
   1196    this pass is to expose as much low-level, target-specific details to the
   1197    SelectionDAG as possible.  This pass is mostly hard-coded (e.g. an
   1198    LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a
   1199    <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass
   1200    requires target-specific hooks to lower calls, returns, varargs, etc.  For
   1201    these features, the <tt><a href="#targetlowering">TargetLowering</a></tt>
   1202    interface is used.</p>
   1203 
   1204 </div>
   1205 
   1206 <!-- _______________________________________________________________________ -->
   1207 <h4>
   1208   <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a>
   1209 </h4>
   1210 
   1211 <div>
   1212 
   1213 <p>The Legalize phase is in charge of converting a DAG to only use the types
   1214    that are natively supported by the target.</p>
   1215 
   1216 <p>There are two main ways of converting values of unsupported scalar types to
   1217    values of supported types: converting small types to larger types
   1218    ("promoting"), and breaking up large integer types into smaller ones
   1219    ("expanding").  For example, a target might require that all f32 values are
   1220    promoted to f64 and that all i1/i8/i16 values are promoted to i32.  The same
   1221    target might require that all i64 values be expanded into pairs of i32
   1222    values.  These changes can insert sign and zero extensions as needed to make
   1223    sure that the final code has the same behavior as the input.</p>
   1224 
   1225 <p>There are two main ways of converting values of unsupported vector types to
   1226    value of supported types: splitting vector types, multiple times if
   1227    necessary, until a legal type is found, and extending vector types by adding
   1228    elements to the end to round them out to legal types ("widening").  If a
   1229    vector gets split all the way down to single-element parts with no supported
   1230    vector type being found, the elements are converted to scalars
   1231    ("scalarizing").</p>
   1232 
   1233 <p>A target implementation tells the legalizer which types are supported (and
   1234    which register class to use for them) by calling the
   1235    <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p>
   1236 
   1237 </div>
   1238 
   1239 <!-- _______________________________________________________________________ -->
   1240 <h4>
   1241   <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a>
   1242 </h4>
   1243 
   1244 <div>
   1245 
   1246 <p>The Legalize phase is in charge of converting a DAG to only use the
   1247    operations that are natively supported by the target.</p>
   1248 
   1249 <p>Targets often have weird constraints, such as not supporting every operation
   1250    on every supported datatype (e.g. X86 does not support byte conditional moves
   1251    and PowerPC does not support sign-extending loads from a 16-bit memory
   1252    location).  Legalize takes care of this by open-coding another sequence of
   1253    operations to emulate the operation ("expansion"), by promoting one type to a
   1254    larger type that supports the operation ("promotion"), or by using a
   1255    target-specific hook to implement the legalization ("custom").</p>
   1256 
   1257 <p>A target implementation tells the legalizer which operations are not
   1258    supported (and which of the above three actions to take) by calling the
   1259    <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt>
   1260    constructor.</p>
   1261 
   1262 <p>Prior to the existence of the Legalize passes, we required that every target
   1263    <a href="#selectiondag_optimize">selector</a> supported and handled every
   1264    operator and type even if they are not natively supported.  The introduction
   1265    of the Legalize phases allows all of the canonicalization patterns to be
   1266    shared across targets, and makes it very easy to optimize the canonicalized
   1267    code because it is still in the form of a DAG.</p>
   1268 
   1269 </div>
   1270 
   1271 <!-- _______________________________________________________________________ -->
   1272 <h4>
   1273   <a name="selectiondag_optimize">
   1274     SelectionDAG Optimization Phase: the DAG Combiner
   1275   </a>
   1276 </h4>
   1277 
   1278 <div>
   1279 
   1280 <p>The SelectionDAG optimization phase is run multiple times for code
   1281    generation, immediately after the DAG is built and once after each
   1282    legalization.  The first run of the pass allows the initial code to be
   1283    cleaned up (e.g. performing optimizations that depend on knowing that the
   1284    operators have restricted type inputs).  Subsequent runs of the pass clean up
   1285    the messy code generated by the Legalize passes, which allows Legalize to be
   1286    very simple (it can focus on making code legal instead of focusing on
   1287    generating <em>good</em> and legal code).</p>
   1288 
   1289 <p>One important class of optimizations performed is optimizing inserted sign
   1290    and zero extension instructions.  We currently use ad-hoc techniques, but
   1291    could move to more rigorous techniques in the future.  Here are some good
   1292    papers on the subject:</p>
   1293 
   1294 <p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening
   1295    integer arithmetic</a>"<br>
   1296    Kevin Redwine and Norman Ramsey<br>
   1297    International Conference on Compiler Construction (CC) 2004</p>
   1298 
   1299 <p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective
   1300    sign extension elimination</a>"<br>
   1301    Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br>
   1302    Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
   1303    and Implementation.</p>
   1304 
   1305 </div>
   1306 
   1307 <!-- _______________________________________________________________________ -->
   1308 <h4>
   1309   <a name="selectiondag_select">SelectionDAG Select Phase</a>
   1310 </h4>
   1311 
   1312 <div>
   1313 
   1314 <p>The Select phase is the bulk of the target-specific code for instruction
   1315    selection.  This phase takes a legal SelectionDAG as input, pattern matches
   1316    the instructions supported by the target to this DAG, and produces a new DAG
   1317    of target code.  For example, consider the following LLVM fragment:</p>
   1318 
   1319 <div class="doc_code">
   1320 <pre>
   1321 %t1 = fadd float %W, %X
   1322 %t2 = fmul float %t1, %Y
   1323 %t3 = fadd float %t2, %Z
   1324 </pre>
   1325 </div>
   1326 
   1327 <p>This LLVM code corresponds to a SelectionDAG that looks basically like
   1328    this:</p>
   1329 
   1330 <div class="doc_code">
   1331 <pre>
   1332 (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
   1333 </pre>
   1334 </div>
   1335 
   1336 <p>If a target supports floating point multiply-and-add (FMA) operations, one of
   1337    the adds can be merged with the multiply.  On the PowerPC, for example, the
   1338    output of the instruction selector might look like this DAG:</p>
   1339 
   1340 <div class="doc_code">
   1341 <pre>
   1342 (FMADDS (FADDS W, X), Y, Z)
   1343 </pre>
   1344 </div>
   1345 
   1346 <p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its
   1347 first two operands and adds the third (as single-precision floating-point
   1348 numbers).  The <tt>FADDS</tt> instruction is a simple binary single-precision
   1349 add instruction.  To perform this pattern match, the PowerPC backend includes
   1350 the following instruction definitions:</p>
   1351 
   1352 <div class="doc_code">
   1353 <pre>
   1354 def FMADDS : AForm_1&lt;59, 29,
   1355                     (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
   1356                     "fmadds $FRT, $FRA, $FRC, $FRB",
   1357                     [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
   1358                                            F4RC:$FRB))</b>]&gt;;
   1359 def FADDS : AForm_2&lt;59, 21,
   1360                     (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
   1361                     "fadds $FRT, $FRA, $FRB",
   1362                     [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]&gt;;
   1363 </pre>
   1364 </div>
   1365 
   1366 <p>The portion of the instruction definition in bold indicates the pattern used
   1367    to match the instruction.  The DAG operators
   1368    (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in
   1369    the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file.  "
   1370    <tt>F4RC</tt>" is the register class of the input and result values.</p>
   1371 
   1372 <p>The TableGen DAG instruction selector generator reads the instruction
   1373    patterns in the <tt>.td</tt> file and automatically builds parts of the
   1374    pattern matching code for your target.  It has the following strengths:</p>
   1375 
   1376 <ul>
   1377   <li>At compiler-compiler time, it analyzes your instruction patterns and tells
   1378       you if your patterns make sense or not.</li>
   1379 
   1380   <li>It can handle arbitrary constraints on operands for the pattern match.  In
   1381       particular, it is straight-forward to say things like "match any immediate
   1382       that is a 13-bit sign-extended value".  For examples, see the
   1383       <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC
   1384       backend.</li>
   1385 
   1386   <li>It knows several important identities for the patterns defined.  For
   1387       example, it knows that addition is commutative, so it allows the
   1388       <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as
   1389       well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having
   1390       to specially handle this case.</li>
   1391 
   1392   <li>It has a full-featured type-inferencing system.  In particular, you should
   1393       rarely have to explicitly tell the system what type parts of your patterns
   1394       are.  In the <tt>FMADDS</tt> case above, we didn't have to tell
   1395       <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'.
   1396       It was able to infer and propagate this knowledge from the fact that
   1397       <tt>F4RC</tt> has type 'f32'.</li>
   1398 
   1399   <li>Targets can define their own (and rely on built-in) "pattern fragments".
   1400       Pattern fragments are chunks of reusable patterns that get inlined into
   1401       your patterns during compiler-compiler time.  For example, the integer
   1402       "<tt>(not x)</tt>" operation is actually defined as a pattern fragment
   1403       that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not
   1404       have a native '<tt>not</tt>' operation.  Targets can define their own
   1405       short-hand fragments as they see fit.  See the definition of
   1406       '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li>
   1407 
   1408   <li>In addition to instructions, targets can specify arbitrary patterns that
   1409       map to one or more instructions using the 'Pat' class.  For example, the
   1410       PowerPC has no way to load an arbitrary integer immediate into a register
   1411       in one instruction. To tell tblgen how to do this, it defines:
   1412       <br>
   1413       <br>
   1414 <div class="doc_code">
   1415 <pre>
   1416 // Arbitrary immediate support.  Implement in terms of LIS/ORI.
   1417 def : Pat&lt;(i32 imm:$imm),
   1418           (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))&gt;;
   1419 </pre>
   1420 </div>
   1421       <br>
   1422       If none of the single-instruction patterns for loading an immediate into a
   1423       register match, this will be used.  This rule says "match an arbitrary i32
   1424       immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and
   1425       an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to
   1426       the left 16 bits') instruction".  To make this work, the
   1427       <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate
   1428       the input immediate (in this case, take the high or low 16-bits of the
   1429       immediate).</li>
   1430 
   1431   <li>While the system does automate a lot, it still allows you to write custom
   1432       C++ code to match special cases if there is something that is hard to
   1433       express.</li>
   1434 </ul>
   1435 
   1436 <p>While it has many strengths, the system currently has some limitations,
   1437    primarily because it is a work in progress and is not yet finished:</p>
   1438 
   1439 <ul>
   1440   <li>Overall, there is no way to define or match SelectionDAG nodes that define
   1441       multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>,
   1442       etc).  This is the biggest reason that you currently still <em>have
   1443       to</em> write custom C++ code for your instruction selector.</li>
   1444 
   1445   <li>There is no great way to support matching complex addressing modes yet.
   1446       In the future, we will extend pattern fragments to allow them to define
   1447       multiple values (e.g. the four operands of the <a href="#x86_memory">X86
   1448       addressing mode</a>, which are currently matched with custom C++ code).
   1449       In addition, we'll extend fragments so that a fragment can match multiple
   1450       different patterns.</li>
   1451 
   1452   <li>We don't automatically infer flags like isStore/isLoad yet.</li>
   1453 
   1454   <li>We don't automatically generate the set of supported registers and
   1455       operations for the <a href="#selectiondag_legalize">Legalizer</a>
   1456       yet.</li>
   1457 
   1458   <li>We don't have a way of tying in custom legalized nodes yet.</li>
   1459 </ul>
   1460 
   1461 <p>Despite these limitations, the instruction selector generator is still quite
   1462    useful for most of the binary and logical operations in typical instruction
   1463    sets.  If you run into any problems or can't figure out how to do something,
   1464    please let Chris know!</p>
   1465 
   1466 </div>
   1467 
   1468 <!-- _______________________________________________________________________ -->
   1469 <h4>
   1470   <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a>
   1471 </h4>
   1472 
   1473 <div>
   1474 
   1475 <p>The scheduling phase takes the DAG of target instructions from the selection
   1476    phase and assigns an order.  The scheduler can pick an order depending on
   1477    various constraints of the machines (i.e. order for minimal register pressure
   1478    or try to cover instruction latencies).  Once an order is established, the
   1479    DAG is converted to a list
   1480    of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is
   1481    destroyed.</p>
   1482 
   1483 <p>Note that this phase is logically separate from the instruction selection
   1484    phase, but is tied to it closely in the code because it operates on
   1485    SelectionDAGs.</p>
   1486 
   1487 </div>
   1488 
   1489 <!-- _______________________________________________________________________ -->
   1490 <h4>
   1491   <a name="selectiondag_future">Future directions for the SelectionDAG</a>
   1492 </h4>
   1493 
   1494 <div>
   1495 
   1496 <ol>
   1497   <li>Optional function-at-a-time selection.</li>
   1498 
   1499   <li>Auto-generate entire selector from <tt>.td</tt> file.</li>
   1500 </ol>
   1501 
   1502 </div>
   1503  
   1504 </div>
   1505 
   1506 <!-- ======================================================================= -->
   1507 <h3>
   1508   <a name="ssamco">SSA-based Machine Code Optimizations</a>
   1509 </h3>
   1510 <div><p>To Be Written</p></div>
   1511 
   1512 <!-- ======================================================================= -->
   1513 <h3>
   1514   <a name="liveintervals">Live Intervals</a>
   1515 </h3>
   1516 
   1517 <div>
   1518 
   1519 <p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>.
   1520    They are used by some <a href="#regalloc">register allocator</a> passes to
   1521    determine if two or more virtual registers which require the same physical
   1522    register are live at the same point in the program (i.e., they conflict).
   1523    When this situation occurs, one virtual register must be <i>spilled</i>.</p>
   1524 
   1525 <!-- _______________________________________________________________________ -->
   1526 <h4>
   1527   <a name="livevariable_analysis">Live Variable Analysis</a>
   1528 </h4>
   1529 
   1530 <div>
   1531 
   1532 <p>The first step in determining the live intervals of variables is to calculate
   1533    the set of registers that are immediately dead after the instruction (i.e.,
   1534    the instruction calculates the value, but it is never used) and the set of
   1535    registers that are used by the instruction, but are never used after the
   1536    instruction (i.e., they are killed). Live variable information is computed
   1537    for each <i>virtual</i> register and <i>register allocatable</i> physical
   1538    register in the function.  This is done in a very efficient manner because it
   1539    uses SSA to sparsely compute lifetime information for virtual registers
   1540    (which are in SSA form) and only has to track physical registers within a
   1541    block.  Before register allocation, LLVM can assume that physical registers
   1542    are only live within a single basic block.  This allows it to do a single,
   1543    local analysis to resolve physical register lifetimes within each basic
   1544    block. If a physical register is not register allocatable (e.g., a stack
   1545    pointer or condition codes), it is not tracked.</p>
   1546 
   1547 <p>Physical registers may be live in to or out of a function. Live in values are
   1548    typically arguments in registers. Live out values are typically return values
   1549    in registers. Live in values are marked as such, and are given a dummy
   1550    "defining" instruction during live intervals analysis. If the last basic
   1551    block of a function is a <tt>return</tt>, then it's marked as using all live
   1552    out values in the function.</p>
   1553 
   1554 <p><tt>PHI</tt> nodes need to be handled specially, because the calculation of
   1555    the live variable information from a depth first traversal of the CFG of the
   1556    function won't guarantee that a virtual register used by the <tt>PHI</tt>
   1557    node is defined before it's used. When a <tt>PHI</tt> node is encountered,
   1558    only the definition is handled, because the uses will be handled in other
   1559    basic blocks.</p>
   1560 
   1561 <p>For each <tt>PHI</tt> node of the current basic block, we simulate an
   1562    assignment at the end of the current basic block and traverse the successor
   1563    basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of
   1564    the <tt>PHI</tt> node's operands is coming from the current basic block, then
   1565    the variable is marked as <i>alive</i> within the current basic block and all
   1566    of its predecessor basic blocks, until the basic block with the defining
   1567    instruction is encountered.</p>
   1568 
   1569 </div>
   1570 
   1571 <!-- _______________________________________________________________________ -->
   1572 <h4>
   1573   <a name="liveintervals_analysis">Live Intervals Analysis</a>
   1574 </h4>
   1575 
   1576 <div>
   1577 
   1578 <p>We now have the information available to perform the live intervals analysis
   1579    and build the live intervals themselves.  We start off by numbering the basic
   1580    blocks and machine instructions.  We then handle the "live-in" values.  These
   1581    are in physical registers, so the physical register is assumed to be killed
   1582    by the end of the basic block.  Live intervals for virtual registers are
   1583    computed for some ordering of the machine instructions <tt>[1, N]</tt>.  A
   1584    live interval is an interval <tt>[i, j)</tt>, where <tt>1 &lt;= i &lt;= j
   1585    &lt; N</tt>, for which a variable is live.</p>
   1586 
   1587 <p><i><b>More to come...</b></i></p>
   1588 
   1589 </div>
   1590 
   1591 </div>
   1592 
   1593 <!-- ======================================================================= -->
   1594 <h3>
   1595   <a name="regalloc">Register Allocation</a>
   1596 </h3>
   1597 
   1598 <div>
   1599 
   1600 <p>The <i>Register Allocation problem</i> consists in mapping a program
   1601    <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers,
   1602    to a program <i>P<sub>p</sub></i> that contains a finite (possibly small)
   1603    number of physical registers. Each target architecture has a different number
   1604    of physical registers. If the number of physical registers is not enough to
   1605    accommodate all the virtual registers, some of them will have to be mapped
   1606    into memory. These virtuals are called <i>spilled virtuals</i>.</p>
   1607 
   1608 <!-- _______________________________________________________________________ -->
   1609 
   1610 <h4>
   1611   <a name="regAlloc_represent">How registers are represented in LLVM</a>
   1612 </h4>
   1613 
   1614 <div>
   1615 
   1616 <p>In LLVM, physical registers are denoted by integer numbers that normally
   1617    range from 1 to 1023. To see how this numbering is defined for a particular
   1618    architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that
   1619    architecture. For instance, by
   1620    inspecting <tt>lib/Target/X86/X86GenRegisterInfo.inc</tt> we see that the
   1621    32-bit register <tt>EAX</tt> is denoted by 43, and the MMX register
   1622    <tt>MM0</tt> is mapped to 65.</p>
   1623 
   1624 <p>Some architectures contain registers that share the same physical location. A
   1625    notable example is the X86 platform. For instance, in the X86 architecture,
   1626    the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight
   1627    bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a
   1628    particular architecture, you can check which registers are aliased by
   1629    inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method
   1630    <tt>MCRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing
   1631    all the physical registers aliased to the register <tt>p_reg</tt>.</p>
   1632 
   1633 <p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>.
   1634    Elements in the same register class are functionally equivalent, and can be
   1635    interchangeably used. Each virtual register can only be mapped to physical
   1636    registers of a particular class. For instance, in the X86 architecture, some
   1637    virtuals can only be allocated to 8 bit registers.  A register class is
   1638    described by <tt>TargetRegisterClass</tt> objects.  To discover if a virtual
   1639    register is compatible with a given physical, this code can be used:</p>
   1640 
   1641 <div class="doc_code">
   1642 <pre>
   1643 bool RegMapping_Fer::compatible_class(MachineFunction &amp;mf,
   1644                                       unsigned v_reg,
   1645                                       unsigned p_reg) {
   1646   assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &amp;&amp;
   1647          "Target register must be physical");
   1648   const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
   1649   return trc-&gt;contains(p_reg);
   1650 }
   1651 </pre>
   1652 </div>
   1653 
   1654 <p>Sometimes, mostly for debugging purposes, it is useful to change the number
   1655    of physical registers available in the target architecture. This must be done
   1656    statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt>
   1657    for <tt>RegisterClass</tt>, the last parameter of which is a list of
   1658    registers. Just commenting some out is one simple way to avoid them being
   1659    used. A more polite way is to explicitly exclude some registers from
   1660    the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register
   1661    class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this.
   1662    </p>
   1663 
   1664 <p>Virtual registers are also denoted by integer numbers. Contrary to physical
   1665    registers, different virtual registers never share the same number. Whereas
   1666    physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt>
   1667    file and cannot be created by the application developer, that is not the case
   1668    with virtual registers. In order to create new virtual registers, use the
   1669    method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method
   1670    will return a new virtual register. Use an <tt>IndexedMap&lt;Foo,
   1671    VirtReg2IndexFunctor&gt;</tt> to hold information per virtual register. If you
   1672    need to enumerate all virtual registers, use the function
   1673    <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register
   1674    numbers:</p>
   1675 
   1676 <div class="doc_code">
   1677 <pre>
   1678   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
   1679     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
   1680     stuff(VirtReg);
   1681   }
   1682 </pre>
   1683 </div>
   1684 
   1685 <p>Before register allocation, the operands of an instruction are mostly virtual
   1686    registers, although physical registers may also be used. In order to check if
   1687    a given machine operand is a register, use the boolean
   1688    function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of
   1689    a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define
   1690    or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt>
   1691    defines the registers 1024, and uses registers 1025 and 1026. Given a
   1692    register operand, the method <tt>MachineOperand::isUse()</tt> informs if that
   1693    register is being used by the instruction. The
   1694    method <tt>MachineOperand::isDef()</tt> informs if that registers is being
   1695    defined.</p>
   1696 
   1697 <p>We will call physical registers present in the LLVM bitcode before register
   1698    allocation <i>pre-colored registers</i>. Pre-colored registers are used in
   1699    many different situations, for instance, to pass parameters of functions
   1700    calls, and to store results of particular instructions. There are two types
   1701    of pre-colored registers: the ones <i>implicitly</i> defined, and
   1702    those <i>explicitly</i> defined. Explicitly defined registers are normal
   1703    operands, and can be accessed
   1704    with <tt>MachineInstr::getOperand(int)::getReg()</tt>.  In order to check
   1705    which registers are implicitly defined by an instruction, use
   1706    the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>,
   1707    where <tt>opcode</tt> is the opcode of the target instruction. One important
   1708    difference between explicit and implicit physical registers is that the
   1709    latter are defined statically for each instruction, whereas the former may
   1710    vary depending on the program being compiled. For example, an instruction
   1711    that represents a function call will always implicitly define or use the same
   1712    set of physical registers. To read the registers implicitly used by an
   1713    instruction,
   1714    use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored
   1715    registers impose constraints on any register allocation algorithm. The
   1716    register allocator must make sure that none of them are overwritten by
   1717    the values of virtual registers while still alive.</p>
   1718 
   1719 </div>
   1720 
   1721 <!-- _______________________________________________________________________ -->
   1722 
   1723 <h4>
   1724   <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a>
   1725 </h4>
   1726 
   1727 <div>
   1728 
   1729 <p>There are two ways to map virtual registers to physical registers (or to
   1730    memory slots). The first way, that we will call <i>direct mapping</i>, is
   1731    based on the use of methods of the classes <tt>TargetRegisterInfo</tt>,
   1732    and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect
   1733    mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads
   1734    and stores sending and getting values to and from memory.</p>
   1735 
   1736 <p>The direct mapping provides more flexibility to the developer of the register
   1737    allocator; however, it is more error prone, and demands more implementation
   1738    work.  Basically, the programmer will have to specify where load and store
   1739    instructions should be inserted in the target function being compiled in
   1740    order to get and store values in memory. To assign a physical register to a
   1741    virtual register present in a given operand,
   1742    use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction,
   1743    use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a
   1744    load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p>
   1745 
   1746 <p>The indirect mapping shields the application developer from the complexities
   1747    of inserting load and store instructions. In order to map a virtual register
   1748    to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>.  In
   1749    order to map a certain virtual register to memory,
   1750    use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return
   1751    the stack slot where <tt>vreg</tt>'s value will be located.  If it is
   1752    necessary to map another virtual register to the same stack slot,
   1753    use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One
   1754    important point to consider when using the indirect mapping, is that even if
   1755    a virtual register is mapped to memory, it still needs to be mapped to a
   1756    physical register. This physical register is the location where the virtual
   1757    register is supposed to be found before being stored or after being
   1758    reloaded.</p>
   1759 
   1760 <p>If the indirect strategy is used, after all the virtual registers have been
   1761    mapped to physical registers or stack slots, it is necessary to use a spiller
   1762    object to place load and store instructions in the code. Every virtual that
   1763    has been mapped to a stack slot will be stored to memory after been defined
   1764    and will be loaded before being used. The implementation of the spiller tries
   1765    to recycle load/store instructions, avoiding unnecessary instructions. For an
   1766    example of how to invoke the spiller,
   1767    see <tt>RegAllocLinearScan::runOnMachineFunction</tt>
   1768    in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p>
   1769 
   1770 </div>
   1771 
   1772 <!-- _______________________________________________________________________ -->
   1773 <h4>
   1774   <a name="regAlloc_twoAddr">Handling two address instructions</a>
   1775 </h4>
   1776 
   1777 <div>
   1778 
   1779 <p>With very rare exceptions (e.g., function calls), the LLVM machine code
   1780    instructions are three address instructions. That is, each instruction is
   1781    expected to define at most one register, and to use at most two registers.
   1782    However, some architectures use two address instructions. In this case, the
   1783    defined register is also one of the used register. For instance, an
   1784    instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent
   1785    to <tt>%EAX = %EAX + %EBX</tt>.</p>
   1786 
   1787 <p>In order to produce correct code, LLVM must convert three address
   1788    instructions that represent two address instructions into true two address
   1789    instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for
   1790    this specific purpose. It must be run before register allocation takes
   1791    place. After its execution, the resulting code may no longer be in SSA
   1792    form. This happens, for instance, in situations where an instruction such
   1793    as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p>
   1794 
   1795 <div class="doc_code">
   1796 <pre>
   1797 %a = MOVE %b
   1798 %a = ADD %a %c
   1799 </pre>
   1800 </div>
   1801 
   1802 <p>Notice that, internally, the second instruction is represented as
   1803    <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both
   1804    used and defined by the instruction.</p>
   1805 
   1806 </div>
   1807 
   1808 <!-- _______________________________________________________________________ -->
   1809 <h4>
   1810   <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a>
   1811 </h4>
   1812 
   1813 <div>
   1814 
   1815 <p>An important transformation that happens during register allocation is called
   1816    the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses
   1817    that are performed on the control flow graph of programs. However,
   1818    traditional instruction sets do not implement PHI instructions. Thus, in
   1819    order to generate executable code, compilers must replace PHI instructions
   1820    with other instructions that preserve their semantics.</p>
   1821 
   1822 <p>There are many ways in which PHI instructions can safely be removed from the
   1823    target code. The most traditional PHI deconstruction algorithm replaces PHI
   1824    instructions with copy instructions. That is the strategy adopted by
   1825    LLVM. The SSA deconstruction algorithm is implemented
   1826    in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the
   1827    identifier <tt>PHIEliminationID</tt> must be marked as required in the code
   1828    of the register allocator.</p>
   1829 
   1830 </div>
   1831 
   1832 <!-- _______________________________________________________________________ -->
   1833 <h4>
   1834   <a name="regAlloc_fold">Instruction folding</a>
   1835 </h4>
   1836 
   1837 <div>
   1838 
   1839 <p><i>Instruction folding</i> is an optimization performed during register
   1840    allocation that removes unnecessary copy instructions. For instance, a
   1841    sequence of instructions such as:</p>
   1842 
   1843 <div class="doc_code">
   1844 <pre>
   1845 %EBX = LOAD %mem_address
   1846 %EAX = COPY %EBX
   1847 </pre>
   1848 </div>
   1849 
   1850 <p>can be safely substituted by the single instruction:</p>
   1851 
   1852 <div class="doc_code">
   1853 <pre>
   1854 %EAX = LOAD %mem_address
   1855 </pre>
   1856 </div>
   1857 
   1858 <p>Instructions can be folded with
   1859    the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be
   1860    taken when folding instructions; a folded instruction can be quite different
   1861    from the original
   1862    instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt>
   1863    in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its
   1864    use.</p>
   1865 
   1866 </div>
   1867 
   1868 <!-- _______________________________________________________________________ -->
   1869 
   1870 <h4>
   1871   <a name="regAlloc_builtIn">Built in register allocators</a>
   1872 </h4>
   1873 
   1874 <div>
   1875 
   1876 <p>The LLVM infrastructure provides the application developer with three
   1877    different register allocators:</p>
   1878 
   1879 <ul>
   1880   <li><i>Fast</i> &mdash; This register allocator is the default for debug
   1881       builds. It allocates registers on a basic block level, attempting to keep
   1882       values in registers and reusing registers as appropriate.</li>
   1883 
   1884   <li><i>Basic</i> &mdash; This is an incremental approach to register
   1885   allocation. Live ranges are assigned to registers one at a time in
   1886   an order that is driven by heuristics. Since code can be rewritten
   1887   on-the-fly during allocation, this framework allows interesting
   1888   allocators to be developed as extensions. It is not itself a
   1889   production register allocator but is a potentially useful
   1890   stand-alone mode for triaging bugs and as a performance baseline.
   1891 
   1892   <li><i>Greedy</i> &mdash; <i>The default allocator</i>. This is a
   1893   highly tuned implementation of the <i>Basic</i> allocator that
   1894   incorporates global live range splitting. This allocator works hard
   1895   to minimize the cost of spill code.
   1896 
   1897   <li><i>PBQP</i> &mdash; A Partitioned Boolean Quadratic Programming (PBQP)
   1898       based register allocator. This allocator works by constructing a PBQP
   1899       problem representing the register allocation problem under consideration,
   1900       solving this using a PBQP solver, and mapping the solution back to a
   1901       register assignment.</li>
   1902 </ul>
   1903 
   1904 <p>The type of register allocator used in <tt>llc</tt> can be chosen with the
   1905    command line option <tt>-regalloc=...</tt>:</p>
   1906 
   1907 <div class="doc_code">
   1908 <pre>
   1909 $ llc -regalloc=linearscan file.bc -o ln.s;
   1910 $ llc -regalloc=fast file.bc -o fa.s;
   1911 $ llc -regalloc=pbqp file.bc -o pbqp.s;
   1912 </pre>
   1913 </div>
   1914 
   1915 </div>
   1916 
   1917 </div>
   1918 
   1919 <!-- ======================================================================= -->
   1920 <h3>
   1921   <a name="proepicode">Prolog/Epilog Code Insertion</a>
   1922 </h3>
   1923 
   1924 <div>
   1925 
   1926 <!-- _______________________________________________________________________ -->
   1927 <h4>
   1928   <a name="compact_unwind">Compact Unwind</a>
   1929 </h4>
   1930 
   1931 <div>
   1932 
   1933 <p>Throwing an exception requires <em>unwinding</em> out of a function. The
   1934    information on how to unwind a given function is traditionally expressed in
   1935    DWARF unwind (a.k.a. frame) info. But that format was originally developed
   1936    for debuggers to backtrace, and each Frame Description Entry (FDE) requires
   1937    ~20-30 bytes per function. There is also the cost of mapping from an address
   1938    in a function to the corresponding FDE at runtime. An alternative unwind
   1939    encoding is called <em>compact unwind</em> and requires just 4-bytes per
   1940    function.</p>
   1941 
   1942 <p>The compact unwind encoding is a 32-bit value, which is encoded in an
   1943    architecture-specific way. It specifies which registers to restore and from
   1944    where, and how to unwind out of the function. When the linker creates a final
   1945    linked image, it will create a <code>__TEXT,__unwind_info</code>
   1946    section. This section is a small and fast way for the runtime to access
   1947    unwind info for any given function. If we emit compact unwind info for the
   1948    function, that compact unwind info will be encoded in
   1949    the <code>__TEXT,__unwind_info</code> section. If we emit DWARF unwind info,
   1950    the <code>__TEXT,__unwind_info</code> section will contain the offset of the
   1951    FDE in the <code>__TEXT,__eh_frame</code> section in the final linked
   1952    image.</p>
   1953 
   1954 <p>For X86, there are three modes for the compact unwind encoding:</p>
   1955 
   1956 <dl>
   1957   <dt><i>Function with a Frame Pointer (<code>EBP</code> or <code>RBP</code>)</i></dt>
   1958   <dd><p><code>EBP/RBP</code>-based frame, where <code>EBP/RBP</code> is pushed
   1959       onto the stack immediately after the return address,
   1960       then <code>ESP/RSP</code> is moved to <code>EBP/RBP</code>. Thus to
   1961       unwind, <code>ESP/RSP</code> is restored with the
   1962       current <code>EBP/RBP</code> value, then <code>EBP/RBP</code> is restored
   1963       by popping the stack, and the return is done by popping the stack once
   1964       more into the PC. All non-volatile registers that need to be restored must
   1965       have been saved in a small range on the stack that
   1966       starts <code>EBP-4</code> to <code>EBP-1020</code> (<code>RBP-8</code>
   1967       to <code>RBP-1020</code>). The offset (divided by 4 in 32-bit mode and 8
   1968       in 64-bit mode) is encoded in bits 16-23 (mask: <code>0x00FF0000</code>).
   1969       The registers saved are encoded in bits 0-14
   1970       (mask: <code>0x00007FFF</code>) as five 3-bit entries from the following
   1971       table:</p>
   1972 <table border="1" cellspacing="0">
   1973   <tr>
   1974     <th>Compact Number</th>
   1975     <th>i386 Register</th>
   1976     <th>x86-64 Regiser</th>
   1977   </tr>
   1978   <tr>
   1979     <td>1</td>
   1980     <td><code>EBX</code></td>
   1981     <td><code>RBX</code></td>
   1982   </tr>
   1983   <tr>
   1984     <td>2</td>
   1985     <td><code>ECX</code></td>
   1986     <td><code>R12</code></td>
   1987   </tr>
   1988   <tr>
   1989     <td>3</td>
   1990     <td><code>EDX</code></td>
   1991     <td><code>R13</code></td>
   1992   </tr>
   1993   <tr>
   1994     <td>4</td>
   1995     <td><code>EDI</code></td>
   1996     <td><code>R14</code></td>
   1997   </tr>
   1998   <tr>
   1999     <td>5</td>
   2000     <td><code>ESI</code></td>
   2001     <td><code>R15</code></td>
   2002   </tr>
   2003   <tr>
   2004     <td>6</td>
   2005     <td><code>EBP</code></td>
   2006     <td><code>RBP</code></td>
   2007   </tr>
   2008 </table>
   2009 
   2010 </dd>
   2011 
   2012   <dt><i>Frameless with a Small Constant Stack Size (<code>EBP</code>
   2013          or <code>RBP</code> is not used as a frame pointer)</i></dt>
   2014   <dd><p>To return, a constant (encoded in the compact unwind encoding) is added
   2015       to the <code>ESP/RSP</code>.  Then the return is done by popping the stack
   2016       into the PC. All non-volatile registers that need to be restored must have
   2017       been saved on the stack immediately after the return address. The stack
   2018       size (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits
   2019       16-23 (mask: <code>0x00FF0000</code>). There is a maximum stack size of
   2020       1024 bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers
   2021       saved is encoded in bits 9-12 (mask: <code>0x00001C00</code>). Bits 0-9
   2022       (mask: <code>0x000003FF</code>) contain which registers were saved and
   2023       their order. (See
   2024       the <code>encodeCompactUnwindRegistersWithoutFrame()</code> function
   2025       in <code>lib/Target/X86FrameLowering.cpp</code> for the encoding
   2026       algorithm.)</p></dd>
   2027 
   2028   <dt><i>Frameless with a Large Constant Stack Size (<code>EBP</code>
   2029          or <code>RBP</code> is not used as a frame pointer)</i></dt>
   2030   <dd><p>This case is like the "Frameless with a Small Constant Stack Size"
   2031       case, but the stack size is too large to encode in the compact unwind
   2032       encoding. Instead it requires that the function contains "<code>subl
   2033       $nnnnnn, %esp</code>" in its prolog. The compact encoding contains the
   2034       offset to the <code>$nnnnnn</code> value in the function in bits 9-12
   2035       (mask: <code>0x00001C00</code>).</p></dd>
   2036 </dl>
   2037 
   2038 </div>
   2039 
   2040 </div>
   2041 
   2042 <!-- ======================================================================= -->
   2043 <h3>
   2044   <a name="latemco">Late Machine Code Optimizations</a>
   2045 </h3>
   2046 <div><p>To Be Written</p></div>
   2047 
   2048 <!-- ======================================================================= -->
   2049 <h3>
   2050   <a name="codeemit">Code Emission</a>
   2051 </h3>
   2052 
   2053 <div>
   2054 
   2055 <p>The code emission step of code generation is responsible for lowering from
   2056 the code generator abstractions (like <a 
   2057 href="#machinefunction">MachineFunction</a>, <a 
   2058 href="#machineinstr">MachineInstr</a>, etc) down
   2059 to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>, 
   2060 <a href="#mcstreamer">MCStreamer</a>, etc).  This is
   2061 done with a combination of several different classes: the (misnamed)
   2062 target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
   2063 (such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p>
   2064 
   2065 <p>Since the MC layer works at the level of abstraction of object files, it
   2066 doesn't have a notion of functions, global variables etc.  Instead, it thinks
   2067 about labels, directives, and instructions.  A key class used at this time is
   2068 the MCStreamer class.  This is an abstract API that is implemented in different
   2069 ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively
   2070 an "assembler API".  MCStreamer has one method per directive, such as EmitLabel,
   2071 EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
   2072 level directives.
   2073 </p>
   2074 
   2075 <p>If you are interested in implementing a code generator for a target, there
   2076 are three important things that you have to implement for your target:</p>
   2077 
   2078 <ol>
   2079 <li>First, you need a subclass of AsmPrinter for your target.  This class
   2080 implements the general lowering process converting MachineFunction's into MC
   2081 label constructs.  The AsmPrinter base class provides a number of useful methods
   2082 and routines, and also allows you to override the lowering process in some
   2083 important ways.  You should get much of the lowering for free if you are
   2084 implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile
   2085 class implements much of the common logic.</li>
   2086 
   2087 <li>Second, you need to implement an instruction printer for your target.  The
   2088 instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a
   2089 raw_ostream as text.  Most of this is automatically generated from the .td file
   2090 (when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the
   2091 instructions), but you need to implement routines to print operands.</li>
   2092 
   2093 <li>Third, you need to implement code that lowers a <a
   2094 href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in
   2095 "&lt;target&gt;MCInstLower.cpp".  This lowering process is often target
   2096 specific, and is responsible for turning jump table entries, constant pool
   2097 indices, global variable addresses, etc into MCLabels as appropriate.  This
   2098 translation layer is also responsible for expanding pseudo ops used by the code
   2099 generator into the actual machine instructions they correspond to. The MCInsts
   2100 that are generated by this are fed into the instruction printer or the encoder.
   2101 </li>
   2102 
   2103 </ol>
   2104 
   2105 <p>Finally, at your choosing, you can also implement an subclass of
   2106 MCCodeEmitter which lowers MCInst's into machine code bytes and relocations.
   2107 This is important if you want to support direct .o file emission, or would like
   2108 to implement an assembler for your target.</p>
   2109 
   2110 </div>
   2111 
   2112 <!-- ======================================================================= -->
   2113 <h3>
   2114   <a name="vliw_packetizer">VLIW Packetizer</a>
   2115 </h3>
   2116 
   2117 <div>
   2118 
   2119 <p>In a Very Long Instruction Word (VLIW) architecture, the compiler is
   2120    responsible for mapping instructions to functional-units available on
   2121    the architecture. To that end, the compiler creates groups of instructions
   2122    called <i>packets</i> or <i>bundles</i>. The VLIW packetizer in LLVM is
   2123    a target-independent mechanism to enable the packetization of machine
   2124    instructions.</p>
   2125 
   2126 <!-- _______________________________________________________________________ -->
   2127 
   2128 <h4>
   2129   <a name="vliw_mapping">Mapping from instructions to functional units</a>
   2130 </h4>
   2131 
   2132 <div>
   2133 
   2134 <p>Instructions in a VLIW target can typically be mapped to multiple functional
   2135 units. During the process of packetizing, the compiler must be able to reason
   2136 about whether an instruction can be added to a packet. This decision can be
   2137 complex since the compiler has to examine all possible mappings of instructions
   2138 to functional units. Therefore to alleviate compilation-time complexity, the
   2139 VLIW packetizer parses the instruction classes of a target and generates tables
   2140 at compiler build time. These tables can then be queried by the provided
   2141 machine-independent API to determine if an instruction can be accommodated in a
   2142 packet.</p>
   2143 </div>
   2144 
   2145 <!-- ======================================================================= -->
   2146 <h4>
   2147   <a name="vliw_repr">
   2148     How the packetization tables are generated and used
   2149   </a>
   2150 </h4>
   2151 
   2152 <div>
   2153 
   2154 <p>The packetizer reads instruction classes from a target's itineraries and
   2155 creates a deterministic finite automaton (DFA) to represent the state of a
   2156 packet. A DFA consists of three major elements: inputs, states, and
   2157 transitions. The set of inputs for the generated DFA represents the instruction
   2158 being added to a packet. The states represent the possible consumption
   2159 of functional units by instructions in a packet. In the DFA, transitions from
   2160 one state to another occur on the addition of an instruction to an existing
   2161 packet. If there is a legal mapping of functional units to instructions, then
   2162 the DFA contains a corresponding transition. The absence of a transition
   2163 indicates that a legal mapping does not exist and that the instruction cannot
   2164 be added to the packet.</p>
   2165 
   2166 <p>To generate tables for a VLIW target, add <i>Target</i>GenDFAPacketizer.inc
   2167 as a target to the Makefile in the target directory. The exported API provides
   2168 three functions: <tt>DFAPacketizer::clearResources()</tt>,
   2169 <tt>DFAPacketizer::reserveResources(MachineInstr *MI)</tt>, and
   2170 <tt>DFAPacketizer::canReserveResources(MachineInstr *MI)</tt>. These functions
   2171 allow a target packetizer to add an instruction to an existing packet and to
   2172 check whether an instruction can be added to a packet. See
   2173 <tt>llvm/CodeGen/DFAPacketizer.h</tt> for more information.</p>
   2174 
   2175 </div>
   2176 
   2177 </div>
   2178 
   2179 </div>
   2180 
   2181 <!-- *********************************************************************** -->
   2182 <h2>
   2183   <a name="nativeassembler">Implementing a Native Assembler</a>
   2184 </h2>
   2185 <!-- *********************************************************************** -->
   2186 
   2187 <div>
   2188 
   2189 <p>Though you're probably reading this because you want to write or maintain a
   2190 compiler backend, LLVM also fully supports building a native assemblers too.
   2191 We've tried hard to automate the generation of the assembler from the .td files
   2192 (in particular the instruction syntax and encodings), which means that a large
   2193 part of the manual and repetitive data entry can be factored and shared with the
   2194 compiler.</p>
   2195 
   2196 <!-- ======================================================================= -->
   2197 <h3 id="na_instparsing">Instruction Parsing</h3>
   2198 
   2199 <div><p>To Be Written</p></div>
   2200 
   2201 
   2202 <!-- ======================================================================= -->
   2203 <h3 id="na_instaliases">
   2204   Instruction Alias Processing
   2205 </h3>
   2206 
   2207 <div>
   2208 <p>Once the instruction is parsed, it enters the MatchInstructionImpl function.
   2209 The MatchInstructionImpl function performs alias processing and then does
   2210 actual matching.</p>
   2211 
   2212 <p>Alias processing is the phase that canonicalizes different lexical forms of
   2213 the same instructions down to one representation.  There are several different
   2214 kinds of alias that are possible to implement and they are listed below in the
   2215 order that they are processed (which is in order from simplest/weakest to most
   2216 complex/powerful).  Generally you want to use the first alias mechanism that
   2217 meets the needs of your instruction, because it will allow a more concise
   2218 description.</p>
   2219 
   2220 <!-- _______________________________________________________________________ -->
   2221 <h4>Mnemonic Aliases</h4>
   2222 
   2223 <div>
   2224 
   2225 <p>The first phase of alias processing is simple instruction mnemonic
   2226 remapping for classes of instructions which are allowed with two different
   2227 mnemonics.  This phase is a simple and unconditionally remapping from one input
   2228 mnemonic to one output mnemonic.  It isn't possible for this form of alias to
   2229 look at the operands at all, so the remapping must apply for all forms of a
   2230 given mnemonic.  Mnemonic aliases are defined simply, for example X86 has:
   2231 </p>
   2232 
   2233 <div class="doc_code">
   2234 <pre>
   2235 def : MnemonicAlias&lt;"cbw",     "cbtw"&gt;;
   2236 def : MnemonicAlias&lt;"smovq",   "movsq"&gt;;
   2237 def : MnemonicAlias&lt;"fldcww",  "fldcw"&gt;;
   2238 def : MnemonicAlias&lt;"fucompi", "fucomip"&gt;;
   2239 def : MnemonicAlias&lt;"ud2a",    "ud2"&gt;;
   2240 </pre>
   2241 </div>
   2242 
   2243 <p>... and many others.  With a MnemonicAlias definition, the mnemonic is
   2244 remapped simply and directly.  Though MnemonicAlias's can't look at any aspect
   2245 of the instruction (such as the operands) they can depend on global modes (the
   2246 same ones supported by the matcher), through a Requires clause:</p>
   2247 
   2248 <div class="doc_code">
   2249 <pre>
   2250 def : MnemonicAlias&lt;"pushf", "pushfq"&gt;, Requires&lt;[In64BitMode]&gt;;
   2251 def : MnemonicAlias&lt;"pushf", "pushfl"&gt;, Requires&lt;[In32BitMode]&gt;;
   2252 </pre>
   2253 </div>
   2254 
   2255 <p>In this example, the mnemonic gets mapped into different a new one depending
   2256 on the current instruction set.</p>
   2257 
   2258 </div>
   2259 
   2260 <!-- _______________________________________________________________________ -->
   2261 <h4>Instruction Aliases</h4>
   2262 
   2263 <div>
   2264 
   2265 <p>The most general phase of alias processing occurs while matching is
   2266 happening: it provides new forms for the matcher to match along with a specific
   2267 instruction to generate.  An instruction alias has two parts: the string to
   2268 match and the instruction to generate.  For example:
   2269 </p>
   2270 
   2271 <div class="doc_code">
   2272 <pre>
   2273 def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)&gt;;
   2274 def : InstAlias&lt;"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)&gt;;
   2275 def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)&gt;;
   2276 def : InstAlias&lt;"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)&gt;;
   2277 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)&gt;;
   2278 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)&gt;;
   2279 def : InstAlias&lt;"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)&gt;;
   2280 </pre>
   2281 </div>
   2282 
   2283 <p>This shows a powerful example of the instruction aliases, matching the
   2284 same mnemonic in multiple different ways depending on what operands are present
   2285 in the assembly.  The result of instruction aliases can include operands in a
   2286 different order than the destination instruction, and can use an input
   2287 multiple times, for example:</p>
   2288 
   2289 <div class="doc_code">
   2290 <pre>
   2291 def : InstAlias&lt;"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)&gt;;
   2292 def : InstAlias&lt;"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)&gt;;
   2293 def : InstAlias&lt;"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)&gt;;
   2294 def : InstAlias&lt;"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)&gt;;
   2295 </pre>
   2296 </div>
   2297 
   2298 <p>This example also shows that tied operands are only listed once.  In the X86
   2299 backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
   2300 to the output).  InstAliases take a flattened operand list without duplicates
   2301 for tied operands.  The result of an instruction alias can also use immediates
   2302 and fixed physical registers which are added as simple immediate operands in the
   2303 result, for example:</p>
   2304 
   2305 <div class="doc_code">
   2306 <pre>
   2307 // Fixed Immediate operand.
   2308 def : InstAlias&lt;"aad", (AAD8i8 10)&gt;;
   2309 
   2310 // Fixed register operand.
   2311 def : InstAlias&lt;"fcomi", (COM_FIr ST1)&gt;;
   2312 
   2313 // Simple alias.
   2314 def : InstAlias&lt;"fcomi $reg", (COM_FIr RST:$reg)&gt;;
   2315 </pre>
   2316 </div>
   2317 
   2318 
   2319 <p>Instruction aliases can also have a Requires clause to make them
   2320 subtarget specific.</p>
   2321 
   2322 <p>If the back-end supports it, the instruction printer can automatically emit
   2323    the alias rather than what's being aliased. It typically leads to better,
   2324    more readable code. If it's better to print out what's being aliased, then
   2325    pass a '0' as the third parameter to the InstAlias definition.</p>
   2326 
   2327 </div>
   2328 
   2329 </div>
   2330 
   2331 <!-- ======================================================================= -->
   2332 <h3 id="na_matching">Instruction Matching</h3>
   2333 
   2334 <div><p>To Be Written</p></div>
   2335 
   2336 </div>
   2337 
   2338 <!-- *********************************************************************** -->
   2339 <h2>
   2340   <a name="targetimpls">Target-specific Implementation Notes</a>
   2341 </h2>
   2342 <!-- *********************************************************************** -->
   2343 
   2344 <div>
   2345 
   2346 <p>This section of the document explains features or design decisions that are
   2347    specific to the code generator for a particular target.  First we start
   2348    with a table that summarizes what features are supported by each target.</p>
   2349 
   2350 <!-- ======================================================================= -->
   2351 <h3>
   2352   <a name="targetfeatures">Target Feature Matrix</a>
   2353 </h3>
   2354 
   2355 <div>
   2356 
   2357 <p>Note that this table does not include the C backend or Cpp backends, since
   2358 they do not use the target independent code generator infrastructure.  It also
   2359 doesn't list features that are not supported fully by any target yet.  It
   2360 considers a feature to be supported if at least one subtarget supports it.  A
   2361 feature being supported means that it is useful and works for most cases, it
   2362 does not indicate that there are zero known bugs in the implementation.  Here
   2363 is the key:</p>
   2364 
   2365 
   2366 <table border="1" cellspacing="0">
   2367   <tr>
   2368     <th>Unknown</th>
   2369     <th>No support</th>
   2370     <th>Partial Support</th>
   2371     <th>Complete Support</th>
   2372   </tr>
   2373   <tr>
   2374     <td class="unknown"></td>
   2375     <td class="no"></td>
   2376     <td class="partial"></td>
   2377     <td class="yes"></td>
   2378   </tr>
   2379 </table>
   2380 
   2381 <p>Here is the table:</p>
   2382 
   2383 <table width="689" border="1" cellspacing="0">
   2384 <tr><td></td>
   2385 <td colspan="13" align="center" style="background-color:#ffc">Target</td>
   2386 </tr>
   2387   <tr>
   2388     <th>Feature</th>
   2389     <th>ARM</th>
   2390     <th>CellSPU</th>
   2391     <th>Hexagon</th>
   2392     <th>MBlaze</th>
   2393     <th>MSP430</th>
   2394     <th>Mips</th>
   2395     <th>PTX</th>
   2396     <th>PowerPC</th>
   2397     <th>Sparc</th>
   2398     <th>X86</th>
   2399     <th>XCore</th>
   2400   </tr>
   2401 
   2402 <tr>
   2403   <td><a href="#feat_reliable">is generally reliable</a></td>
   2404   <td class="yes"></td> <!-- ARM -->
   2405   <td class="no"></td> <!-- CellSPU -->
   2406   <td class="yes"></td> <!-- Hexagon -->
   2407   <td class="no"></td> <!-- MBlaze -->
   2408   <td class="unknown"></td> <!-- MSP430 -->
   2409   <td class="yes"></td> <!-- Mips -->
   2410   <td class="no"></td> <!-- PTX -->
   2411   <td class="yes"></td> <!-- PowerPC -->
   2412   <td class="yes"></td> <!-- Sparc -->
   2413   <td class="yes"></td> <!-- X86 -->
   2414   <td class="unknown"></td> <!-- XCore -->
   2415 </tr>
   2416 
   2417 <tr>
   2418   <td><a href="#feat_asmparser">assembly parser</a></td>
   2419   <td class="no"></td> <!-- ARM -->
   2420   <td class="no"></td> <!-- CellSPU -->
   2421   <td class="no"></td> <!-- Hexagon -->
   2422   <td class="yes"></td> <!-- MBlaze -->
   2423   <td class="no"></td> <!-- MSP430 -->
   2424   <td class="no"></td> <!-- Mips -->
   2425   <td class="no"></td> <!-- PTX -->
   2426   <td class="no"></td> <!-- PowerPC -->
   2427   <td class="no"></td> <!-- Sparc -->
   2428   <td class="yes"></td> <!-- X86 -->
   2429   <td class="no"></td> <!-- XCore -->
   2430 </tr>
   2431 
   2432 <tr>
   2433   <td><a href="#feat_disassembler">disassembler</a></td>
   2434   <td class="yes"></td> <!-- ARM -->
   2435   <td class="no"></td> <!-- CellSPU -->
   2436   <td class="no"></td> <!-- Hexagon -->
   2437   <td class="yes"></td> <!-- MBlaze -->
   2438   <td class="no"></td> <!-- MSP430 -->
   2439   <td class="no"></td> <!-- Mips -->
   2440   <td class="no"></td> <!-- PTX -->
   2441   <td class="no"></td> <!-- PowerPC -->
   2442   <td class="no"></td> <!-- Sparc -->
   2443   <td class="yes"></td> <!-- X86 -->
   2444   <td class="no"></td> <!-- XCore -->
   2445 </tr>
   2446 
   2447 <tr>
   2448   <td><a href="#feat_inlineasm">inline asm</a></td>
   2449   <td class="yes"></td> <!-- ARM -->
   2450   <td class="no"></td> <!-- CellSPU -->
   2451   <td class="yes"></td> <!-- Hexagon -->
   2452   <td class="yes"></td> <!-- MBlaze -->
   2453   <td class="unknown"></td> <!-- MSP430 -->
   2454   <td class="no"></td> <!-- Mips -->
   2455   <td class="unknown"></td> <!-- PTX -->
   2456   <td class="yes"></td> <!-- PowerPC -->
   2457   <td class="unknown"></td> <!-- Sparc -->
   2458   <td class="yes"></td> <!-- X86 -->
   2459   <td class="unknown"></td> <!-- XCore -->
   2460 </tr>
   2461 
   2462 <tr>
   2463   <td><a href="#feat_jit">jit</a></td>
   2464   <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->
   2465   <td class="no"></td> <!-- CellSPU -->
   2466   <td class="no"></td> <!-- Hexagon -->
   2467   <td class="no"></td> <!-- MBlaze -->
   2468   <td class="unknown"></td> <!-- MSP430 -->
   2469   <td class="yes"></td> <!-- Mips -->
   2470   <td class="unknown"></td> <!-- PTX -->
   2471   <td class="yes"></td> <!-- PowerPC -->
   2472   <td class="unknown"></td> <!-- Sparc -->
   2473   <td class="yes"></td> <!-- X86 -->
   2474   <td class="unknown"></td> <!-- XCore -->
   2475 </tr>
   2476 
   2477 <tr>
   2478   <td><a href="#feat_objectwrite">.o&nbsp;file writing</a></td>
   2479   <td class="no"></td> <!-- ARM -->
   2480   <td class="no"></td> <!-- CellSPU -->
   2481   <td class="no"></td> <!-- Hexagon -->
   2482   <td class="yes"></td> <!-- MBlaze -->
   2483   <td class="no"></td> <!-- MSP430 -->
   2484   <td class="no"></td> <!-- Mips -->
   2485   <td class="no"></td> <!-- PTX -->
   2486   <td class="no"></td> <!-- PowerPC -->
   2487   <td class="no"></td> <!-- Sparc -->
   2488   <td class="yes"></td> <!-- X86 -->
   2489   <td class="no"></td> <!-- XCore -->
   2490 </tr>
   2491 
   2492 <tr>
   2493   <td><a href="#feat_tailcall">tail calls</a></td>
   2494   <td class="yes"></td> <!-- ARM -->
   2495   <td class="no"></td> <!-- CellSPU -->
   2496   <td class="yes"></td> <!-- Hexagon -->
   2497   <td class="no"></td> <!-- MBlaze -->
   2498   <td class="unknown"></td> <!-- MSP430 -->
   2499   <td class="no"></td> <!-- Mips -->
   2500   <td class="unknown"></td> <!-- PTX -->
   2501   <td class="yes"></td> <!-- PowerPC -->
   2502   <td class="unknown"></td> <!-- Sparc -->
   2503   <td class="yes"></td> <!-- X86 -->
   2504   <td class="unknown"></td> <!-- XCore -->
   2505 </tr>
   2506 
   2507 <tr>
   2508   <td><a href="#feat_segstacks">segmented stacks</a></td>
   2509   <td class="no"></td> <!-- ARM -->
   2510   <td class="no"></td> <!-- CellSPU -->
   2511   <td class="no"></td> <!-- Hexagon -->
   2512   <td class="no"></td> <!-- MBlaze -->
   2513   <td class="no"></td> <!-- MSP430 -->
   2514   <td class="no"></td> <!-- Mips -->
   2515   <td class="no"></td> <!-- PTX -->
   2516   <td class="no"></td> <!-- PowerPC -->
   2517   <td class="no"></td> <!-- Sparc -->
   2518   <td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 -->
   2519   <td class="no"></td> <!-- XCore -->
   2520 </tr>
   2521 
   2522 
   2523 </table>
   2524 
   2525 <!-- _______________________________________________________________________ -->
   2526 <h4 id="feat_reliable">Is Generally Reliable</h4>
   2527 
   2528 <div>
   2529 <p>This box indicates whether the target is considered to be production quality.
   2530 This indicates that the target has been used as a static compiler to
   2531 compile large amounts of code by a variety of different people and is in
   2532 continuous use.</p>
   2533 </div>
   2534 
   2535 <!-- _______________________________________________________________________ -->
   2536 <h4 id="feat_asmparser">Assembly Parser</h4>
   2537 
   2538 <div>
   2539 <p>This box indicates whether the target supports parsing target specific .s
   2540 files by implementing the MCAsmParser interface.  This is required for llvm-mc
   2541 to be able to act as a native assembler and is required for inline assembly
   2542 support in the native .o file writer.</p>
   2543 
   2544 </div>
   2545 
   2546 
   2547 <!-- _______________________________________________________________________ -->
   2548 <h4 id="feat_disassembler">Disassembler</h4>
   2549 
   2550 <div>
   2551 <p>This box indicates whether the target supports the MCDisassembler API for
   2552 disassembling machine opcode bytes into MCInst's.</p>
   2553 
   2554 </div>
   2555 
   2556 <!-- _______________________________________________________________________ -->
   2557 <h4 id="feat_inlineasm">Inline Asm</h4>
   2558 
   2559 <div>
   2560 <p>This box indicates whether the target supports most popular inline assembly
   2561 constraints and modifiers.</p>
   2562 
   2563 </div>
   2564 
   2565 <!-- _______________________________________________________________________ -->
   2566 <h4 id="feat_jit">JIT Support</h4>
   2567 
   2568 <div>
   2569 <p>This box indicates whether the target supports the JIT compiler through
   2570 the ExecutionEngine interface.</p>
   2571 
   2572 <p id="feat_jit_arm">The ARM backend has basic support for integer code
   2573 in ARM codegen mode, but lacks NEON and full Thumb support.</p>
   2574 
   2575 </div>
   2576 
   2577 <!-- _______________________________________________________________________ -->
   2578 <h4 id="feat_objectwrite">.o File Writing</h4>
   2579 
   2580 <div>
   2581 
   2582 <p>This box indicates whether the target supports writing .o files (e.g. MachO,
   2583 ELF, and/or COFF) files directly from the target.  Note that the target also
   2584 must include an assembly parser and general inline assembly support for full
   2585 inline assembly support in the .o writer.</p>
   2586 
   2587 <p>Targets that don't support this feature can obviously still write out .o
   2588 files, they just rely on having an external assembler to translate from a .s
   2589 file to a .o file (as is the case for many C compilers).</p>
   2590 
   2591 </div>
   2592 
   2593 <!-- _______________________________________________________________________ -->
   2594 <h4 id="feat_tailcall">Tail Calls</h4>
   2595 
   2596 <div>
   2597 
   2598 <p>This box indicates whether the target supports guaranteed tail calls.  These
   2599 are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc
   2600 calling convention.  Please see the <a href="#tailcallopt">tail call section
   2601 more more details</a>.</p>
   2602 
   2603 </div>
   2604 
   2605 <!-- _______________________________________________________________________ -->
   2606 <h4 id="feat_segstacks">Segmented Stacks</h4>
   2607 
   2608 <div>
   2609 
   2610 <p>This box indicates whether the target supports segmented stacks. This
   2611 replaces the traditional large C stack with many linked segments. It
   2612 is compatible with the <a href="http://gcc.gnu.org/wiki/SplitStacks">gcc
   2613 implementation</a> used by the Go front end.</p>
   2614 
   2615 <p id="feat_segstacks_x86">Basic support exists on the X86 backend. Currently
   2616 vararg doesn't work and the object files are not marked the way the gold
   2617 linker expects, but simple Go programs can be built by dragonegg.</p>
   2618 
   2619 </div>
   2620 
   2621 </div>
   2622 
   2623 <!-- ======================================================================= -->
   2624 <h3>
   2625   <a name="tailcallopt">Tail call optimization</a>
   2626 </h3>
   2627 
   2628 <div>
   2629 
   2630 <p>Tail call optimization, callee reusing the stack of the caller, is currently
   2631    supported on x86/x86-64 and PowerPC. It is performed if:</p>
   2632 
   2633 <ul>
   2634   <li>Caller and callee have the calling convention <tt>fastcc</tt> or
   2635        <tt>cc 10</tt> (GHC call convention).</li>
   2636 
   2637   <li>The call is a tail call - in tail position (ret immediately follows call
   2638       and ret uses value of call or is void).</li>
   2639 
   2640   <li>Option <tt>-tailcallopt</tt> is enabled.</li>
   2641 
   2642   <li>Platform specific constraints are met.</li>
   2643 </ul>
   2644 
   2645 <p>x86/x86-64 constraints:</p>
   2646 
   2647 <ul>
   2648   <li>No variable argument lists are used.</li>
   2649 
   2650   <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility
   2651   = hidden or protected) are supported.</li>
   2652 </ul>
   2653 
   2654 <p>PowerPC constraints:</p>
   2655 
   2656 <ul>
   2657   <li>No variable argument lists are used.</li>
   2658 
   2659   <li>No byval parameters are used.</li>
   2660 
   2661   <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li>
   2662 </ul>
   2663 
   2664 <p>Example:</p>
   2665 
   2666 <p>Call as <tt>llc -tailcallopt test.ll</tt>.</p>
   2667 
   2668 <div class="doc_code">
   2669 <pre>
   2670 declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
   2671 
   2672 define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
   2673   %l1 = add i32 %in1, %in2
   2674   %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
   2675   ret i32 %tmp
   2676 }
   2677 </pre>
   2678 </div>
   2679 
   2680 <p>Implications of <tt>-tailcallopt</tt>:</p>
   2681 
   2682 <p>To support tail call optimization in situations where the callee has more
   2683    arguments than the caller a 'callee pops arguments' convention is used. This
   2684    currently causes each <tt>fastcc</tt> call that is not tail call optimized
   2685    (because one or more of above constraints are not met) to be followed by a
   2686    readjustment of the stack. So performance might be worse in such cases.</p>
   2687 
   2688 </div>
   2689 <!-- ======================================================================= -->
   2690 <h3>
   2691   <a name="sibcallopt">Sibling call optimization</a>
   2692 </h3>
   2693 
   2694 <div>
   2695 
   2696 <p>Sibling call optimization is a restricted form of tail call optimization.
   2697    Unlike tail call optimization described in the previous section, it can be
   2698    performed automatically on any tail calls when <tt>-tailcallopt</tt> option
   2699    is not specified.</p>
   2700 
   2701 <p>Sibling call optimization is currently performed on x86/x86-64 when the
   2702    following constraints are met:</p>
   2703 
   2704 <ul>
   2705   <li>Caller and callee have the same calling convention. It can be either
   2706       <tt>c</tt> or <tt>fastcc</tt>.
   2707 
   2708   <li>The call is a tail call - in tail position (ret immediately follows call
   2709       and ret uses value of call or is void).</li>
   2710 
   2711   <li>Caller and callee have matching return type or the callee result is not
   2712       used.
   2713 
   2714   <li>If any of the callee arguments are being passed in stack, they must be
   2715       available in caller's own incoming argument stack and the frame offsets
   2716       must be the same.
   2717 </ul>
   2718 
   2719 <p>Example:</p>
   2720 <div class="doc_code">
   2721 <pre>
   2722 declare i32 @bar(i32, i32)
   2723 
   2724 define i32 @foo(i32 %a, i32 %b, i32 %c) {
   2725 entry:
   2726   %0 = tail call i32 @bar(i32 %a, i32 %b)
   2727   ret i32 %0
   2728 }
   2729 </pre>
   2730 </div>
   2731 
   2732 </div>
   2733 <!-- ======================================================================= -->
   2734 <h3>
   2735   <a name="x86">The X86 backend</a>
   2736 </h3>
   2737 
   2738 <div>
   2739 
   2740 <p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory.  This
   2741    code generator is capable of targeting a variety of x86-32 and x86-64
   2742    processors, and includes support for ISA extensions such as MMX and SSE.</p>
   2743 
   2744 <!-- _______________________________________________________________________ -->
   2745 <h4>
   2746   <a name="x86_tt">X86 Target Triples supported</a>
   2747 </h4>
   2748 
   2749 <div>
   2750 
   2751 <p>The following are the known target triples that are supported by the X86
   2752    backend.  This is not an exhaustive list, and it would be useful to add those
   2753    that people test.</p>
   2754 
   2755 <ul>
   2756   <li><b>i686-pc-linux-gnu</b> &mdash; Linux</li>
   2757 
   2758   <li><b>i386-unknown-freebsd5.3</b> &mdash; FreeBSD 5.3</li>
   2759 
   2760   <li><b>i686-pc-cygwin</b> &mdash; Cygwin on Win32</li>
   2761 
   2762   <li><b>i686-pc-mingw32</b> &mdash; MingW on Win32</li>
   2763 
   2764   <li><b>i386-pc-mingw32msvc</b> &mdash; MingW crosscompiler on Linux</li>
   2765 
   2766   <li><b>i686-apple-darwin*</b> &mdash; Apple Darwin on X86</li>
   2767 
   2768   <li><b>x86_64-unknown-linux-gnu</b> &mdash; Linux</li>
   2769 </ul>
   2770 
   2771 </div>
   2772 
   2773 <!-- _______________________________________________________________________ -->
   2774 <h4>
   2775   <a name="x86_cc">X86 Calling Conventions supported</a>
   2776 </h4>
   2777 
   2778 
   2779 <div>
   2780 
   2781 <p>The following target-specific calling conventions are known to backend:</p>
   2782 
   2783 <ul>
   2784 <li><b>x86_StdCall</b> &mdash; stdcall calling convention seen on Microsoft
   2785     Windows platform (CC ID = 64).</li>
   2786 <li><b>x86_FastCall</b> &mdash; fastcall calling convention seen on Microsoft
   2787     Windows platform (CC ID = 65).</li>
   2788 <li><b>x86_ThisCall</b> &mdash; Similar to X86_StdCall. Passes first argument
   2789     in ECX,  others via stack. Callee is responsible for stack cleaning. This
   2790     convention is used by MSVC by default for methods in its ABI
   2791     (CC ID = 70).</li>
   2792 </ul>
   2793 
   2794 </div>
   2795 
   2796 <!-- _______________________________________________________________________ -->
   2797 <h4>
   2798   <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a>
   2799 </h4>
   2800 
   2801 <div>
   2802 
   2803 <p>The x86 has a very flexible way of accessing memory.  It is capable of
   2804    forming memory addresses of the following expression directly in integer
   2805    instructions (which use ModR/M addressing):</p>
   2806 
   2807 <div class="doc_code">
   2808 <pre>
   2809 SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
   2810 </pre>
   2811 </div>
   2812 
   2813 <p>In order to represent this, LLVM tracks no less than 5 operands for each
   2814    memory operand of this form.  This means that the "load" form of
   2815    '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p>
   2816 
   2817 <div class="doc_code">
   2818 <pre>
   2819 Index:        0     |    1        2       3           4          5
   2820 Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
   2821 OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
   2822 </pre>
   2823 </div>
   2824 
   2825 <p>Stores, and all other instructions, treat the four memory operands in the
   2826    same way and in the same order.  If the segment register is unspecified
   2827    (regno = 0), then no segment override is generated.  "Lea" operations do not
   2828    have a segment register specified, so they only have 4 operands for their
   2829    memory reference.</p>
   2830 
   2831 </div>
   2832 
   2833 <!-- _______________________________________________________________________ -->
   2834 <h4>
   2835   <a name="x86_memory">X86 address spaces supported</a>
   2836 </h4>
   2837 
   2838 <div>
   2839 
   2840 <p>x86 has a feature which provides
   2841    the ability to perform loads and stores to different address spaces
   2842    via the x86 segment registers.  A segment override prefix byte on an
   2843    instruction causes the instruction's memory access to go to the specified
   2844    segment.  LLVM address space 0 is the default address space, which includes
   2845    the stack, and any unqualified memory accesses in a program.  Address spaces
   2846    1-255 are currently reserved for user-defined code.  The GS-segment is
   2847    represented by address space 256, while the FS-segment is represented by 
   2848    address space 257. Other x86 segments have yet to be allocated address space
   2849    numbers.</p>
   2850 
   2851 <p>While these address spaces may seem similar to TLS via the
   2852    <tt>thread_local</tt> keyword, and often use the same underlying hardware,
   2853    there are some fundamental differences.</p>
   2854 
   2855 <p>The <tt>thread_local</tt> keyword applies to global variables and
   2856    specifies that they are to be allocated in thread-local memory. There are
   2857    no type qualifiers involved, and these variables can be pointed to with
   2858    normal pointers and accessed with normal loads and stores.
   2859    The <tt>thread_local</tt> keyword is target-independent at the LLVM IR
   2860    level (though LLVM doesn't yet have implementations of it for some
   2861    configurations).<p>
   2862 
   2863 <p>Special address spaces, in contrast, apply to static types. Every
   2864    load and store has a particular address space in its address operand type,
   2865    and this is what determines which address space is accessed.
   2866    LLVM ignores these special address space qualifiers on global variables,
   2867    and does not provide a way to directly allocate storage in them.
   2868    At the LLVM IR level, the behavior of these special address spaces depends
   2869    in part on the underlying OS or runtime environment, and they are specific
   2870    to x86 (and LLVM doesn't yet handle them correctly in some cases).</p>
   2871 
   2872 <p>Some operating systems and runtime environments use (or may in the future
   2873    use) the FS/GS-segment registers for various low-level purposes, so care
   2874    should be taken when considering them.</p>
   2875 
   2876 </div>
   2877 
   2878 <!-- _______________________________________________________________________ -->
   2879 <h4>
   2880   <a name="x86_names">Instruction naming</a>
   2881 </h4>
   2882 
   2883 <div>
   2884 
   2885 <p>An instruction name consists of the base name, a default operand size, and a
   2886    a character per operand with an optional special size. For example:</p>
   2887 
   2888 <div class="doc_code">
   2889 <pre>
   2890 ADD8rr      -&gt; add, 8-bit register, 8-bit register
   2891 IMUL16rmi   -&gt; imul, 16-bit register, 16-bit memory, 16-bit immediate
   2892 IMUL16rmi8  -&gt; imul, 16-bit register, 16-bit memory, 8-bit immediate
   2893 MOVSX32rm16 -&gt; movsx, 32-bit register, 16-bit memory
   2894 </pre>
   2895 </div>
   2896 
   2897 </div>
   2898 
   2899 </div>
   2900 
   2901 <!-- ======================================================================= -->
   2902 <h3>
   2903   <a name="ppc">The PowerPC backend</a>
   2904 </h3>
   2905 
   2906 <div>
   2907 
   2908 <p>The PowerPC code generator lives in the lib/Target/PowerPC directory.  The
   2909    code generation is retargetable to several variations or <i>subtargets</i> of
   2910    the PowerPC ISA; including ppc32, ppc64 and altivec.</p>
   2911 
   2912 <!-- _______________________________________________________________________ -->
   2913 <h4>
   2914   <a name="ppc_abi">LLVM PowerPC ABI</a>
   2915 </h4>
   2916 
   2917 <div>
   2918 
   2919 <p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC
   2920    relative (PIC) or static addressing for accessing global values, so no TOC
   2921    (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth
   2922    of a stack frame.  LLVM takes advantage of having no TOC to provide space to
   2923    save the frame pointer in the PowerPC linkage area of the caller frame.
   2924    Other details of PowerPC ABI can be found at <a href=
   2925    "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html"
   2926    >PowerPC ABI.</a> Note: This link describes the 32 bit ABI.  The 64 bit ABI
   2927    is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved
   2928    for system use.</p>
   2929 
   2930 </div>
   2931 
   2932 <!-- _______________________________________________________________________ -->
   2933 <h4>
   2934   <a name="ppc_frame">Frame Layout</a>
   2935 </h4>
   2936 
   2937 <div>
   2938 
   2939 <p>The size of a PowerPC frame is usually fixed for the duration of a
   2940    function's invocation.  Since the frame is fixed size, all references
   2941    into the frame can be accessed via fixed offsets from the stack pointer.  The
   2942    exception to this is when dynamic alloca or variable sized arrays are
   2943    present, then a base pointer (r31) is used as a proxy for the stack pointer
   2944    and stack pointer is free to grow or shrink.  A base pointer is also used if
   2945    llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is
   2946    always aligned to 16 bytes, so that space allocated for altivec vectors will
   2947    be properly aligned.</p>
   2948 
   2949 <p>An invocation frame is laid out as follows (low memory at top);</p>
   2950 
   2951 <table class="layout">
   2952   <tr>
   2953     <td>Linkage<br><br></td>
   2954   </tr>
   2955   <tr>
   2956     <td>Parameter area<br><br></td>
   2957   </tr>
   2958   <tr>
   2959     <td>Dynamic area<br><br></td>
   2960   </tr>
   2961   <tr>
   2962     <td>Locals area<br><br></td>
   2963   </tr>
   2964   <tr>
   2965     <td>Saved registers area<br><br></td>
   2966   </tr>
   2967   <tr style="border-style: none hidden none hidden;">
   2968     <td><br></td>
   2969   </tr>
   2970   <tr>
   2971     <td>Previous Frame<br><br></td>
   2972   </tr>
   2973 </table>
   2974 
   2975 <p>The <i>linkage</i> area is used by a callee to save special registers prior
   2976    to allocating its own frame.  Only three entries are relevant to LLVM. The
   2977    first entry is the previous stack pointer (sp), aka link.  This allows
   2978    probing tools like gdb or exception handlers to quickly scan the frames in
   2979    the stack.  A function epilog can also use the link to pop the frame from the
   2980    stack.  The third entry in the linkage area is used to save the return
   2981    address from the lr register. Finally, as mentioned above, the last entry is
   2982    used to save the previous frame pointer (r31.)  The entries in the linkage
   2983    area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit
   2984    mode and 48 bytes in 64 bit mode.</p>
   2985 
   2986 <p>32 bit linkage area</p>
   2987 
   2988 <table class="layout">
   2989   <tr>
   2990     <td>0</td>
   2991     <td>Saved SP (r1)</td>
   2992   </tr>
   2993   <tr>
   2994     <td>4</td>
   2995     <td>Saved CR</td>
   2996   </tr>
   2997   <tr>
   2998     <td>8</td>
   2999     <td>Saved LR</td>
   3000   </tr>
   3001   <tr>
   3002     <td>12</td>
   3003     <td>Reserved</td>
   3004   </tr>
   3005   <tr>
   3006     <td>16</td>
   3007     <td>Reserved</td>
   3008   </tr>
   3009   <tr>
   3010     <td>20</td>
   3011     <td>Saved FP (r31)</td>
   3012   </tr>
   3013 </table>
   3014 
   3015 <p>64 bit linkage area</p>
   3016 
   3017 <table class="layout">
   3018   <tr>
   3019     <td>0</td>
   3020     <td>Saved SP (r1)</td>
   3021   </tr>
   3022   <tr>
   3023     <td>8</td>
   3024     <td>Saved CR</td>
   3025   </tr>
   3026   <tr>
   3027     <td>16</td>
   3028     <td>Saved LR</td>
   3029   </tr>
   3030   <tr>
   3031     <td>24</td>
   3032     <td>Reserved</td>
   3033   </tr>
   3034   <tr>
   3035     <td>32</td>
   3036     <td>Reserved</td>
   3037   </tr>
   3038   <tr>
   3039     <td>40</td>
   3040     <td>Saved FP (r31)</td>
   3041   </tr>
   3042 </table>
   3043 
   3044 <p>The <i>parameter area</i> is used to store arguments being passed to a callee
   3045    function.  Following the PowerPC ABI, the first few arguments are actually
   3046    passed in registers, with the space in the parameter area unused.  However,
   3047    if there are not enough registers or the callee is a thunk or vararg
   3048    function, these register arguments can be spilled into the parameter area.
   3049    Thus, the parameter area must be large enough to store all the parameters for
   3050    the largest call sequence made by the caller.  The size must also be
   3051    minimally large enough to spill registers r3-r10.  This allows callees blind
   3052    to the call signature, such as thunks and vararg functions, enough space to
   3053    cache the argument registers.  Therefore, the parameter area is minimally 32
   3054    bytes (64 bytes in 64 bit mode.)  Also note that since the parameter area is
   3055    a fixed offset from the top of the frame, that a callee can access its spilt
   3056    arguments using fixed offsets from the stack pointer (or base pointer.)</p>
   3057 
   3058 <p>Combining the information about the linkage, parameter areas and alignment. A
   3059    stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit
   3060    mode.</p>
   3061 
   3062 <p>The <i>dynamic area</i> starts out as size zero.  If a function uses dynamic
   3063    alloca then space is added to the stack, the linkage and parameter areas are
   3064    shifted to top of stack, and the new space is available immediately below the
   3065    linkage and parameter areas.  The cost of shifting the linkage and parameter
   3066    areas is minor since only the link value needs to be copied.  The link value
   3067    can be easily fetched by adding the original frame size to the base pointer.
   3068    Note that allocations in the dynamic space need to observe 16 byte
   3069    alignment.</p>
   3070 
   3071 <p>The <i>locals area</i> is where the llvm compiler reserves space for local
   3072    variables.</p>
   3073 
   3074 <p>The <i>saved registers area</i> is where the llvm compiler spills callee
   3075    saved registers on entry to the callee.</p>
   3076 
   3077 </div>
   3078 
   3079 <!-- _______________________________________________________________________ -->
   3080 <h4>
   3081   <a name="ppc_prolog">Prolog/Epilog</a>
   3082 </h4>
   3083 
   3084 <div>
   3085 
   3086 <p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with
   3087    the following exceptions.  Callee saved registers are spilled after the frame
   3088    is created.  This allows the llvm epilog/prolog support to be common with
   3089    other targets.  The base pointer callee saved register r31 is saved in the
   3090    TOC slot of linkage area.  This simplifies allocation of space for the base
   3091    pointer and makes it convenient to locate programatically and during
   3092    debugging.</p>
   3093 
   3094 </div>
   3095 
   3096 <!-- _______________________________________________________________________ -->
   3097 <h4>
   3098   <a name="ppc_dynamic">Dynamic Allocation</a>
   3099 </h4>
   3100 
   3101 <div>
   3102 
   3103 <p><i>TODO - More to come.</i></p>
   3104 
   3105 </div>
   3106 
   3107 </div>
   3108 
   3109 <!-- ======================================================================= -->
   3110 <h3>
   3111   <a name="ptx">The PTX backend</a>
   3112 </h3>
   3113 
   3114 <div>
   3115 
   3116 <p>The PTX code generator lives in the lib/Target/PTX directory. It is
   3117   currently a work-in-progress, but already supports most of the code
   3118   generation functionality needed to generate correct PTX kernels for
   3119   CUDA devices.</p>
   3120 
   3121 <p>The code generator can target PTX 2.0+, and shader model 1.0+.  The
   3122   PTX ISA Reference Manual is used as the primary source of ISA
   3123   information, though an effort is made to make the output of the code
   3124   generator match the output of the NVidia nvcc compiler, whenever
   3125   possible.</p>
   3126 
   3127 <p>Code Generator Options:</p>
   3128 <table border="1" cellspacing="0">
   3129   <tr>
   3130     <th>Option</th>
   3131     <th>Description</th>
   3132  </tr>
   3133    <tr>
   3134      <td><code>double</code></td>
   3135      <td align="left">If enabled, the map_f64_to_f32 directive is
   3136        disabled in the PTX output, allowing native double-precision
   3137        arithmetic</td>
   3138   </tr>
   3139   <tr>
   3140     <td><code>no-fma</code></td>
   3141     <td align="left">Disable generation of Fused-Multiply Add
   3142       instructions, which may be beneficial for some devices</td>
   3143   </tr>
   3144   <tr>
   3145     <td><code>smxy / computexy</code></td>
   3146     <td align="left">Set shader model/compute capability to x.y,
   3147     e.g. sm20 or compute13</td>
   3148   </tr>
   3149 </table>
   3150 
   3151 <p>Working:</p>
   3152 <ul>
   3153   <li>Arithmetic instruction selection (including combo FMA)</li>
   3154   <li>Bitwise instruction selection</li>
   3155   <li>Control-flow instruction selection</li>
   3156   <li>Function calls (only on SM 2.0+ and no return arguments)</li>
   3157   <li>Addresses spaces (0 = global, 1 = constant, 2 = local, 4 =
   3158   shared)</li>
   3159   <li>Thread synchronization (bar.sync)</li>
   3160   <li>Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.)</li>
   3161 </ul>
   3162 
   3163 <p>In Progress:</p>
   3164 <ul>
   3165   <li>Robust call instruction selection</li>
   3166   <li>Stack frame allocation</li>
   3167   <li>Device-specific instruction scheduling optimizations</li>
   3168 </ul>
   3169 
   3170 
   3171 </div>
   3172 
   3173 </div>
   3174 
   3175 <!-- *********************************************************************** -->
   3176 <hr>
   3177 <address>
   3178   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   3179   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   3180   <a href="http://validator.w3.org/check/referer"><img
   3181   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   3182 
   3183   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   3184   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
   3185   Last modified: $Date$
   3186 </address>
   3187 
   3188 </body>
   3189 </html>
   3190