1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 2 "http://www.w3.org/TR/html4/strict.dtd"> 3 <html> 4 <head> 5 <meta http-equiv="content-type" content="text/html; charset=utf-8"> 6 <title>The LLVM Target-Independent Code Generator</title> 7 <link rel="stylesheet" href="llvm.css" type="text/css"> 8 9 <style type="text/css"> 10 .unknown { background-color: #C0C0C0; text-align: center; } 11 .unknown:before { content: "?" } 12 .no { background-color: #C11B17 } 13 .no:before { content: "N" } 14 .partial { background-color: #F88017 } 15 .yes { background-color: #0F0; } 16 .yes:before { content: "Y" } 17 </style> 18 19 </head> 20 <body> 21 22 <h1> 23 The LLVM Target-Independent Code Generator 24 </h1> 25 26 <ol> 27 <li><a href="#introduction">Introduction</a> 28 <ul> 29 <li><a href="#required">Required components in the code generator</a></li> 30 <li><a href="#high-level-design">The high-level design of the code 31 generator</a></li> 32 <li><a href="#tablegen">Using TableGen for target description</a></li> 33 </ul> 34 </li> 35 <li><a href="#targetdesc">Target description classes</a> 36 <ul> 37 <li><a href="#targetmachine">The <tt>TargetMachine</tt> class</a></li> 38 <li><a href="#targetdata">The <tt>TargetData</tt> class</a></li> 39 <li><a href="#targetlowering">The <tt>TargetLowering</tt> class</a></li> 40 <li><a href="#targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a></li> 41 <li><a href="#targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a></li> 42 <li><a href="#targetframeinfo">The <tt>TargetFrameInfo</tt> class</a></li> 43 <li><a href="#targetsubtarget">The <tt>TargetSubtarget</tt> class</a></li> 44 <li><a href="#targetjitinfo">The <tt>TargetJITInfo</tt> class</a></li> 45 </ul> 46 </li> 47 <li><a href="#codegendesc">The "Machine" Code Generator classes</a> 48 <ul> 49 <li><a href="#machineinstr">The <tt>MachineInstr</tt> class</a></li> 50 <li><a href="#machinebasicblock">The <tt>MachineBasicBlock</tt> 51 class</a></li> 52 <li><a href="#machinefunction">The <tt>MachineFunction</tt> class</a></li> 53 <li><a href="#machineinstrbundle"><tt>MachineInstr Bundles</tt></a></li> 54 </ul> 55 </li> 56 <li><a href="#mc">The "MC" Layer</a> 57 <ul> 58 <li><a href="#mcstreamer">The <tt>MCStreamer</tt> API</a></li> 59 <li><a href="#mccontext">The <tt>MCContext</tt> class</a> 60 <li><a href="#mcsymbol">The <tt>MCSymbol</tt> class</a></li> 61 <li><a href="#mcsection">The <tt>MCSection</tt> class</a></li> 62 <li><a href="#mcinst">The <tt>MCInst</tt> class</a></li> 63 </ul> 64 </li> 65 <li><a href="#codegenalgs">Target-independent code generation algorithms</a> 66 <ul> 67 <li><a href="#instselect">Instruction Selection</a> 68 <ul> 69 <li><a href="#selectiondag_intro">Introduction to SelectionDAGs</a></li> 70 <li><a href="#selectiondag_process">SelectionDAG Code Generation 71 Process</a></li> 72 <li><a href="#selectiondag_build">Initial SelectionDAG 73 Construction</a></li> 74 <li><a href="#selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a></li> 75 <li><a href="#selectiondag_legalize">SelectionDAG Legalize Phase</a></li> 76 <li><a href="#selectiondag_optimize">SelectionDAG Optimization 77 Phase: the DAG Combiner</a></li> 78 <li><a href="#selectiondag_select">SelectionDAG Select Phase</a></li> 79 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation 80 Phase</a></li> 81 <li><a href="#selectiondag_future">Future directions for the 82 SelectionDAG</a></li> 83 </ul></li> 84 <li><a href="#liveintervals">Live Intervals</a> 85 <ul> 86 <li><a href="#livevariable_analysis">Live Variable Analysis</a></li> 87 <li><a href="#liveintervals_analysis">Live Intervals Analysis</a></li> 88 </ul></li> 89 <li><a href="#regalloc">Register Allocation</a> 90 <ul> 91 <li><a href="#regAlloc_represent">How registers are represented in 92 LLVM</a></li> 93 <li><a href="#regAlloc_howTo">Mapping virtual registers to physical 94 registers</a></li> 95 <li><a href="#regAlloc_twoAddr">Handling two address instructions</a></li> 96 <li><a href="#regAlloc_ssaDecon">The SSA deconstruction phase</a></li> 97 <li><a href="#regAlloc_fold">Instruction folding</a></li> 98 <li><a href="#regAlloc_builtIn">Built in register allocators</a></li> 99 </ul></li> 100 <li><a href="#codeemit">Code Emission</a></li> 101 <li><a href="#vliw_packetizer">VLIW Packetizer</a> 102 <ul> 103 <li><a href="#vliw_mapping">Mapping from instructions to functional 104 units</a></li> 105 <li><a href="#vliw_repr">How the packetization tables are 106 generated and used</a></li> 107 </ul> 108 </li> 109 </ul> 110 </li> 111 <li><a href="#nativeassembler">Implementing a Native Assembler</a></li> 112 113 <li><a href="#targetimpls">Target-specific Implementation Notes</a> 114 <ul> 115 <li><a href="#targetfeatures">Target Feature Matrix</a></li> 116 <li><a href="#tailcallopt">Tail call optimization</a></li> 117 <li><a href="#sibcallopt">Sibling call optimization</a></li> 118 <li><a href="#x86">The X86 backend</a></li> 119 <li><a href="#ppc">The PowerPC backend</a> 120 <ul> 121 <li><a href="#ppc_abi">LLVM PowerPC ABI</a></li> 122 <li><a href="#ppc_frame">Frame Layout</a></li> 123 <li><a href="#ppc_prolog">Prolog/Epilog</a></li> 124 <li><a href="#ppc_dynamic">Dynamic Allocation</a></li> 125 </ul></li> 126 <li><a href="#ptx">The PTX backend</a></li> 127 </ul></li> 128 129 </ol> 130 131 <div class="doc_author"> 132 <p>Written by the LLVM Team.</p> 133 </div> 134 135 <div class="doc_warning"> 136 <p>Warning: This is a work in progress.</p> 137 </div> 138 139 <!-- *********************************************************************** --> 140 <h2> 141 <a name="introduction">Introduction</a> 142 </h2> 143 <!-- *********************************************************************** --> 144 145 <div> 146 147 <p>The LLVM target-independent code generator is a framework that provides a 148 suite of reusable components for translating the LLVM internal representation 149 to the machine code for a specified target—either in assembly form 150 (suitable for a static compiler) or in binary machine code format (usable for 151 a JIT compiler). The LLVM target-independent code generator consists of six 152 main components:</p> 153 154 <ol> 155 <li><a href="#targetdesc">Abstract target description</a> interfaces which 156 capture important properties about various aspects of the machine, 157 independently of how they will be used. These interfaces are defined in 158 <tt>include/llvm/Target/</tt>.</li> 159 160 <li>Classes used to represent the <a href="#codegendesc">code being 161 generated</a> for a target. These classes are intended to be abstract 162 enough to represent the machine code for <i>any</i> target machine. These 163 classes are defined in <tt>include/llvm/CodeGen/</tt>. At this level, 164 concepts like "constant pool entries" and "jump tables" are explicitly 165 exposed.</li> 166 167 <li>Classes and algorithms used to represent code as the object file level, 168 the <a href="#mc">MC Layer</a>. These classes represent assembly level 169 constructs like labels, sections, and instructions. At this level, 170 concepts like "constant pool entries" and "jump tables" don't exist.</li> 171 172 <li><a href="#codegenalgs">Target-independent algorithms</a> used to implement 173 various phases of native code generation (register allocation, scheduling, 174 stack frame representation, etc). This code lives 175 in <tt>lib/CodeGen/</tt>.</li> 176 177 <li><a href="#targetimpls">Implementations of the abstract target description 178 interfaces</a> for particular targets. These machine descriptions make 179 use of the components provided by LLVM, and can optionally provide custom 180 target-specific passes, to build complete code generators for a specific 181 target. Target descriptions live in <tt>lib/Target/</tt>.</li> 182 183 <li><a href="#jit">The target-independent JIT components</a>. The LLVM JIT is 184 completely target independent (it uses the <tt>TargetJITInfo</tt> 185 structure to interface for target-specific issues. The code for the 186 target-independent JIT lives in <tt>lib/ExecutionEngine/JIT</tt>.</li> 187 </ol> 188 189 <p>Depending on which part of the code generator you are interested in working 190 on, different pieces of this will be useful to you. In any case, you should 191 be familiar with the <a href="#targetdesc">target description</a> 192 and <a href="#codegendesc">machine code representation</a> classes. If you 193 want to add a backend for a new target, you will need 194 to <a href="#targetimpls">implement the target description</a> classes for 195 your new target and understand the <a href="LangRef.html">LLVM code 196 representation</a>. If you are interested in implementing a 197 new <a href="#codegenalgs">code generation algorithm</a>, it should only 198 depend on the target-description and machine code representation classes, 199 ensuring that it is portable.</p> 200 201 <!-- ======================================================================= --> 202 <h3> 203 <a name="required">Required components in the code generator</a> 204 </h3> 205 206 <div> 207 208 <p>The two pieces of the LLVM code generator are the high-level interface to the 209 code generator and the set of reusable components that can be used to build 210 target-specific backends. The two most important interfaces 211 (<a href="#targetmachine"><tt>TargetMachine</tt></a> 212 and <a href="#targetdata"><tt>TargetData</tt></a>) are the only ones that are 213 required to be defined for a backend to fit into the LLVM system, but the 214 others must be defined if the reusable code generator components are going to 215 be used.</p> 216 217 <p>This design has two important implications. The first is that LLVM can 218 support completely non-traditional code generation targets. For example, the 219 C backend does not require register allocation, instruction selection, or any 220 of the other standard components provided by the system. As such, it only 221 implements these two interfaces, and does its own thing. Another example of 222 a code generator like this is a (purely hypothetical) backend that converts 223 LLVM to the GCC RTL form and uses GCC to emit machine code for a target.</p> 224 225 <p>This design also implies that it is possible to design and implement 226 radically different code generators in the LLVM system that do not make use 227 of any of the built-in components. Doing so is not recommended at all, but 228 could be required for radically different targets that do not fit into the 229 LLVM machine description model: FPGAs for example.</p> 230 231 </div> 232 233 <!-- ======================================================================= --> 234 <h3> 235 <a name="high-level-design">The high-level design of the code generator</a> 236 </h3> 237 238 <div> 239 240 <p>The LLVM target-independent code generator is designed to support efficient 241 and quality code generation for standard register-based microprocessors. 242 Code generation in this model is divided into the following stages:</p> 243 244 <ol> 245 <li><b><a href="#instselect">Instruction Selection</a></b> — This phase 246 determines an efficient way to express the input LLVM code in the target 247 instruction set. This stage produces the initial code for the program in 248 the target instruction set, then makes use of virtual registers in SSA 249 form and physical registers that represent any required register 250 assignments due to target constraints or calling conventions. This step 251 turns the LLVM code into a DAG of target instructions.</li> 252 253 <li><b><a href="#selectiondag_sched">Scheduling and Formation</a></b> — 254 This phase takes the DAG of target instructions produced by the 255 instruction selection phase, determines an ordering of the instructions, 256 then emits the instructions 257 as <tt><a href="#machineinstr">MachineInstr</a></tt>s with that ordering. 258 Note that we describe this in the <a href="#instselect">instruction 259 selection section</a> because it operates on 260 a <a href="#selectiondag_intro">SelectionDAG</a>.</li> 261 262 <li><b><a href="#ssamco">SSA-based Machine Code Optimizations</a></b> — 263 This optional stage consists of a series of machine-code optimizations 264 that operate on the SSA-form produced by the instruction selector. 265 Optimizations like modulo-scheduling or peephole optimization work 266 here.</li> 267 268 <li><b><a href="#regalloc">Register Allocation</a></b> — The target code 269 is transformed from an infinite virtual register file in SSA form to the 270 concrete register file used by the target. This phase introduces spill 271 code and eliminates all virtual register references from the program.</li> 272 273 <li><b><a href="#proepicode">Prolog/Epilog Code Insertion</a></b> — Once 274 the machine code has been generated for the function and the amount of 275 stack space required is known (used for LLVM alloca's and spill slots), 276 the prolog and epilog code for the function can be inserted and "abstract 277 stack location references" can be eliminated. This stage is responsible 278 for implementing optimizations like frame-pointer elimination and stack 279 packing.</li> 280 281 <li><b><a href="#latemco">Late Machine Code Optimizations</a></b> — 282 Optimizations that operate on "final" machine code can go here, such as 283 spill code scheduling and peephole optimizations.</li> 284 285 <li><b><a href="#codeemit">Code Emission</a></b> — The final stage 286 actually puts out the code for the current function, either in the target 287 assembler format or in machine code.</li> 288 </ol> 289 290 <p>The code generator is based on the assumption that the instruction selector 291 will use an optimal pattern matching selector to create high-quality 292 sequences of native instructions. Alternative code generator designs based 293 on pattern expansion and aggressive iterative peephole optimization are much 294 slower. This design permits efficient compilation (important for JIT 295 environments) and aggressive optimization (used when generating code offline) 296 by allowing components of varying levels of sophistication to be used for any 297 step of compilation.</p> 298 299 <p>In addition to these stages, target implementations can insert arbitrary 300 target-specific passes into the flow. For example, the X86 target uses a 301 special pass to handle the 80x87 floating point stack architecture. Other 302 targets with unusual requirements can be supported with custom passes as 303 needed.</p> 304 305 </div> 306 307 <!-- ======================================================================= --> 308 <h3> 309 <a name="tablegen">Using TableGen for target description</a> 310 </h3> 311 312 <div> 313 314 <p>The target description classes require a detailed description of the target 315 architecture. These target descriptions often have a large amount of common 316 information (e.g., an <tt>add</tt> instruction is almost identical to a 317 <tt>sub</tt> instruction). In order to allow the maximum amount of 318 commonality to be factored out, the LLVM code generator uses 319 the <a href="TableGenFundamentals.html">TableGen</a> tool to describe big 320 chunks of the target machine, which allows the use of domain-specific and 321 target-specific abstractions to reduce the amount of repetition.</p> 322 323 <p>As LLVM continues to be developed and refined, we plan to move more and more 324 of the target description to the <tt>.td</tt> form. Doing so gives us a 325 number of advantages. The most important is that it makes it easier to port 326 LLVM because it reduces the amount of C++ code that has to be written, and 327 the surface area of the code generator that needs to be understood before 328 someone can get something working. Second, it makes it easier to change 329 things. In particular, if tables and other things are all emitted 330 by <tt>tblgen</tt>, we only need a change in one place (<tt>tblgen</tt>) to 331 update all of the targets to a new interface.</p> 332 333 </div> 334 335 </div> 336 337 <!-- *********************************************************************** --> 338 <h2> 339 <a name="targetdesc">Target description classes</a> 340 </h2> 341 <!-- *********************************************************************** --> 342 343 <div> 344 345 <p>The LLVM target description classes (located in the 346 <tt>include/llvm/Target</tt> directory) provide an abstract description of 347 the target machine independent of any particular client. These classes are 348 designed to capture the <i>abstract</i> properties of the target (such as the 349 instructions and registers it has), and do not incorporate any particular 350 pieces of code generation algorithms.</p> 351 352 <p>All of the target description classes (except the 353 <tt><a href="#targetdata">TargetData</a></tt> class) are designed to be 354 subclassed by the concrete target implementation, and have virtual methods 355 implemented. To get to these implementations, the 356 <tt><a href="#targetmachine">TargetMachine</a></tt> class provides accessors 357 that should be implemented by the target.</p> 358 359 <!-- ======================================================================= --> 360 <h3> 361 <a name="targetmachine">The <tt>TargetMachine</tt> class</a> 362 </h3> 363 364 <div> 365 366 <p>The <tt>TargetMachine</tt> class provides virtual methods that are used to 367 access the target-specific implementations of the various target description 368 classes via the <tt>get*Info</tt> methods (<tt>getInstrInfo</tt>, 369 <tt>getRegisterInfo</tt>, <tt>getFrameInfo</tt>, etc.). This class is 370 designed to be specialized by a concrete target implementation 371 (e.g., <tt>X86TargetMachine</tt>) which implements the various virtual 372 methods. The only required target description class is 373 the <a href="#targetdata"><tt>TargetData</tt></a> class, but if the code 374 generator components are to be used, the other interfaces should be 375 implemented as well.</p> 376 377 </div> 378 379 <!-- ======================================================================= --> 380 <h3> 381 <a name="targetdata">The <tt>TargetData</tt> class</a> 382 </h3> 383 384 <div> 385 386 <p>The <tt>TargetData</tt> class is the only required target description class, 387 and it is the only class that is not extensible (you cannot derived a new 388 class from it). <tt>TargetData</tt> specifies information about how the 389 target lays out memory for structures, the alignment requirements for various 390 data types, the size of pointers in the target, and whether the target is 391 little-endian or big-endian.</p> 392 393 </div> 394 395 <!-- ======================================================================= --> 396 <h3> 397 <a name="targetlowering">The <tt>TargetLowering</tt> class</a> 398 </h3> 399 400 <div> 401 402 <p>The <tt>TargetLowering</tt> class is used by SelectionDAG based instruction 403 selectors primarily to describe how LLVM code should be lowered to 404 SelectionDAG operations. Among other things, this class indicates:</p> 405 406 <ul> 407 <li>an initial register class to use for various <tt>ValueType</tt>s,</li> 408 409 <li>which operations are natively supported by the target machine,</li> 410 411 <li>the return type of <tt>setcc</tt> operations,</li> 412 413 <li>the type to use for shift amounts, and</li> 414 415 <li>various high-level characteristics, like whether it is profitable to turn 416 division by a constant into a multiplication sequence</li> 417 </ul> 418 419 </div> 420 421 <!-- ======================================================================= --> 422 <h3> 423 <a name="targetregisterinfo">The <tt>TargetRegisterInfo</tt> class</a> 424 </h3> 425 426 <div> 427 428 <p>The <tt>TargetRegisterInfo</tt> class is used to describe the register file 429 of the target and any interactions between the registers.</p> 430 431 <p>Registers in the code generator are represented in the code generator by 432 unsigned integers. Physical registers (those that actually exist in the 433 target description) are unique small numbers, and virtual registers are 434 generally large. Note that register #0 is reserved as a flag value.</p> 435 436 <p>Each register in the processor description has an associated 437 <tt>TargetRegisterDesc</tt> entry, which provides a textual name for the 438 register (used for assembly output and debugging dumps) and a set of aliases 439 (used to indicate whether one register overlaps with another).</p> 440 441 <p>In addition to the per-register description, the <tt>TargetRegisterInfo</tt> 442 class exposes a set of processor specific register classes (instances of the 443 <tt>TargetRegisterClass</tt> class). Each register class contains sets of 444 registers that have the same properties (for example, they are all 32-bit 445 integer registers). Each SSA virtual register created by the instruction 446 selector has an associated register class. When the register allocator runs, 447 it replaces virtual registers with a physical register in the set.</p> 448 449 <p>The target-specific implementations of these classes is auto-generated from 450 a <a href="TableGenFundamentals.html">TableGen</a> description of the 451 register file.</p> 452 453 </div> 454 455 <!-- ======================================================================= --> 456 <h3> 457 <a name="targetinstrinfo">The <tt>TargetInstrInfo</tt> class</a> 458 </h3> 459 460 <div> 461 462 <p>The <tt>TargetInstrInfo</tt> class is used to describe the machine 463 instructions supported by the target. It is essentially an array of 464 <tt>TargetInstrDescriptor</tt> objects, each of which describes one 465 instruction the target supports. Descriptors define things like the mnemonic 466 for the opcode, the number of operands, the list of implicit register uses 467 and defs, whether the instruction has certain target-independent properties 468 (accesses memory, is commutable, etc), and holds any target-specific 469 flags.</p> 470 471 </div> 472 473 <!-- ======================================================================= --> 474 <h3> 475 <a name="targetframeinfo">The <tt>TargetFrameInfo</tt> class</a> 476 </h3> 477 478 <div> 479 480 <p>The <tt>TargetFrameInfo</tt> class is used to provide information about the 481 stack frame layout of the target. It holds the direction of stack growth, the 482 known stack alignment on entry to each function, and the offset to the local 483 area. The offset to the local area is the offset from the stack pointer on 484 function entry to the first location where function data (local variables, 485 spill locations) can be stored.</p> 486 487 </div> 488 489 <!-- ======================================================================= --> 490 <h3> 491 <a name="targetsubtarget">The <tt>TargetSubtarget</tt> class</a> 492 </h3> 493 494 <div> 495 496 <p>The <tt>TargetSubtarget</tt> class is used to provide information about the 497 specific chip set being targeted. A sub-target informs code generation of 498 which instructions are supported, instruction latencies and instruction 499 execution itinerary; i.e., which processing units are used, in what order, 500 and for how long.</p> 501 502 </div> 503 504 505 <!-- ======================================================================= --> 506 <h3> 507 <a name="targetjitinfo">The <tt>TargetJITInfo</tt> class</a> 508 </h3> 509 510 <div> 511 512 <p>The <tt>TargetJITInfo</tt> class exposes an abstract interface used by the 513 Just-In-Time code generator to perform target-specific activities, such as 514 emitting stubs. If a <tt>TargetMachine</tt> supports JIT code generation, it 515 should provide one of these objects through the <tt>getJITInfo</tt> 516 method.</p> 517 518 </div> 519 520 </div> 521 522 <!-- *********************************************************************** --> 523 <h2> 524 <a name="codegendesc">Machine code description classes</a> 525 </h2> 526 <!-- *********************************************************************** --> 527 528 <div> 529 530 <p>At the high-level, LLVM code is translated to a machine specific 531 representation formed out of 532 <a href="#machinefunction"><tt>MachineFunction</tt></a>, 533 <a href="#machinebasicblock"><tt>MachineBasicBlock</tt></a>, 534 and <a href="#machineinstr"><tt>MachineInstr</tt></a> instances (defined 535 in <tt>include/llvm/CodeGen</tt>). This representation is completely target 536 agnostic, representing instructions in their most abstract form: an opcode 537 and a series of operands. This representation is designed to support both an 538 SSA representation for machine code, as well as a register allocated, non-SSA 539 form.</p> 540 541 <!-- ======================================================================= --> 542 <h3> 543 <a name="machineinstr">The <tt>MachineInstr</tt> class</a> 544 </h3> 545 546 <div> 547 548 <p>Target machine instructions are represented as instances of the 549 <tt>MachineInstr</tt> class. This class is an extremely abstract way of 550 representing machine instructions. In particular, it only keeps track of an 551 opcode number and a set of operands.</p> 552 553 <p>The opcode number is a simple unsigned integer that only has meaning to a 554 specific backend. All of the instructions for a target should be defined in 555 the <tt>*InstrInfo.td</tt> file for the target. The opcode enum values are 556 auto-generated from this description. The <tt>MachineInstr</tt> class does 557 not have any information about how to interpret the instruction (i.e., what 558 the semantics of the instruction are); for that you must refer to the 559 <tt><a href="#targetinstrinfo">TargetInstrInfo</a></tt> class.</p> 560 561 <p>The operands of a machine instruction can be of several different types: a 562 register reference, a constant integer, a basic block reference, etc. In 563 addition, a machine operand should be marked as a def or a use of the value 564 (though only registers are allowed to be defs).</p> 565 566 <p>By convention, the LLVM code generator orders instruction operands so that 567 all register definitions come before the register uses, even on architectures 568 that are normally printed in other orders. For example, the SPARC add 569 instruction: "<tt>add %i1, %i2, %i3</tt>" adds the "%i1", and "%i2" registers 570 and stores the result into the "%i3" register. In the LLVM code generator, 571 the operands should be stored as "<tt>%i3, %i1, %i2</tt>": with the 572 destination first.</p> 573 574 <p>Keeping destination (definition) operands at the beginning of the operand 575 list has several advantages. In particular, the debugging printer will print 576 the instruction like this:</p> 577 578 <div class="doc_code"> 579 <pre> 580 %r3 = add %i1, %i2 581 </pre> 582 </div> 583 584 <p>Also if the first operand is a def, it is easier to <a href="#buildmi">create 585 instructions</a> whose only def is the first operand.</p> 586 587 <!-- _______________________________________________________________________ --> 588 <h4> 589 <a name="buildmi">Using the <tt>MachineInstrBuilder.h</tt> functions</a> 590 </h4> 591 592 <div> 593 594 <p>Machine instructions are created by using the <tt>BuildMI</tt> functions, 595 located in the <tt>include/llvm/CodeGen/MachineInstrBuilder.h</tt> file. The 596 <tt>BuildMI</tt> functions make it easy to build arbitrary machine 597 instructions. Usage of the <tt>BuildMI</tt> functions look like this:</p> 598 599 <div class="doc_code"> 600 <pre> 601 // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42') 602 // instruction. The '1' specifies how many operands will be added. 603 MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42); 604 605 // Create the same instr, but insert it at the end of a basic block. 606 MachineBasicBlock &MBB = ... 607 BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42); 608 609 // Create the same instr, but insert it before a specified iterator point. 610 MachineBasicBlock::iterator MBBI = ... 611 BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42); 612 613 // Create a 'cmp Reg, 0' instruction, no destination reg. 614 MI = BuildMI(X86::CMP32ri, 2).addReg(Reg).addImm(0); 615 // Create an 'sahf' instruction which takes no operands and stores nothing. 616 MI = BuildMI(X86::SAHF, 0); 617 618 // Create a self looping branch instruction. 619 BuildMI(MBB, X86::JNE, 1).addMBB(&MBB); 620 </pre> 621 </div> 622 623 <p>The key thing to remember with the <tt>BuildMI</tt> functions is that you 624 have to specify the number of operands that the machine instruction will 625 take. This allows for efficient memory allocation. You also need to specify 626 if operands default to be uses of values, not definitions. If you need to 627 add a definition operand (other than the optional destination register), you 628 must explicitly mark it as such:</p> 629 630 <div class="doc_code"> 631 <pre> 632 MI.addReg(Reg, RegState::Define); 633 </pre> 634 </div> 635 636 </div> 637 638 <!-- _______________________________________________________________________ --> 639 <h4> 640 <a name="fixedregs">Fixed (preassigned) registers</a> 641 </h4> 642 643 <div> 644 645 <p>One important issue that the code generator needs to be aware of is the 646 presence of fixed registers. In particular, there are often places in the 647 instruction stream where the register allocator <em>must</em> arrange for a 648 particular value to be in a particular register. This can occur due to 649 limitations of the instruction set (e.g., the X86 can only do a 32-bit divide 650 with the <tt>EAX</tt>/<tt>EDX</tt> registers), or external factors like 651 calling conventions. In any case, the instruction selector should emit code 652 that copies a virtual register into or out of a physical register when 653 needed.</p> 654 655 <p>For example, consider this simple LLVM example:</p> 656 657 <div class="doc_code"> 658 <pre> 659 define i32 @test(i32 %X, i32 %Y) { 660 %Z = udiv i32 %X, %Y 661 ret i32 %Z 662 } 663 </pre> 664 </div> 665 666 <p>The X86 instruction selector produces this machine code for the <tt>div</tt> 667 and <tt>ret</tt> (use "<tt>llc X.bc -march=x86 -print-machineinstrs</tt>" to 668 get this):</p> 669 670 <div class="doc_code"> 671 <pre> 672 ;; Start of div 673 %EAX = mov %reg1024 ;; Copy X (in reg1024) into EAX 674 %reg1027 = sar %reg1024, 31 675 %EDX = mov %reg1027 ;; Sign extend X into EDX 676 idiv %reg1025 ;; Divide by Y (in reg1025) 677 %reg1026 = mov %EAX ;; Read the result (Z) out of EAX 678 679 ;; Start of ret 680 %EAX = mov %reg1026 ;; 32-bit return value goes in EAX 681 ret 682 </pre> 683 </div> 684 685 <p>By the end of code generation, the register allocator has coalesced the 686 registers and deleted the resultant identity moves producing the following 687 code:</p> 688 689 <div class="doc_code"> 690 <pre> 691 ;; X is in EAX, Y is in ECX 692 mov %EAX, %EDX 693 sar %EDX, 31 694 idiv %ECX 695 ret 696 </pre> 697 </div> 698 699 <p>This approach is extremely general (if it can handle the X86 architecture, it 700 can handle anything!) and allows all of the target specific knowledge about 701 the instruction stream to be isolated in the instruction selector. Note that 702 physical registers should have a short lifetime for good code generation, and 703 all physical registers are assumed dead on entry to and exit from basic 704 blocks (before register allocation). Thus, if you need a value to be live 705 across basic block boundaries, it <em>must</em> live in a virtual 706 register.</p> 707 708 </div> 709 710 <!-- _______________________________________________________________________ --> 711 <h4> 712 <a name="callclobber">Call-clobbered registers</a> 713 </h4> 714 715 <div> 716 717 <p>Some machine instructions, like calls, clobber a large number of physical 718 registers. Rather than adding <code><def,dead></code> operands for 719 all of them, it is possible to use an <code>MO_RegisterMask</code> operand 720 instead. The register mask operand holds a bit mask of preserved registers, 721 and everything else is considered to be clobbered by the instruction. </p> 722 723 </div> 724 725 <!-- _______________________________________________________________________ --> 726 <h4> 727 <a name="ssa">Machine code in SSA form</a> 728 </h4> 729 730 <div> 731 732 <p><tt>MachineInstr</tt>'s are initially selected in SSA-form, and are 733 maintained in SSA-form until register allocation happens. For the most part, 734 this is trivially simple since LLVM is already in SSA form; LLVM PHI nodes 735 become machine code PHI nodes, and virtual registers are only allowed to have 736 a single definition.</p> 737 738 <p>After register allocation, machine code is no longer in SSA-form because 739 there are no virtual registers left in the code.</p> 740 741 </div> 742 743 </div> 744 745 <!-- ======================================================================= --> 746 <h3> 747 <a name="machinebasicblock">The <tt>MachineBasicBlock</tt> class</a> 748 </h3> 749 750 <div> 751 752 <p>The <tt>MachineBasicBlock</tt> class contains a list of machine instructions 753 (<tt><a href="#machineinstr">MachineInstr</a></tt> instances). It roughly 754 corresponds to the LLVM code input to the instruction selector, but there can 755 be a one-to-many mapping (i.e. one LLVM basic block can map to multiple 756 machine basic blocks). The <tt>MachineBasicBlock</tt> class has a 757 "<tt>getBasicBlock</tt>" method, which returns the LLVM basic block that it 758 comes from.</p> 759 760 </div> 761 762 <!-- ======================================================================= --> 763 <h3> 764 <a name="machinefunction">The <tt>MachineFunction</tt> class</a> 765 </h3> 766 767 <div> 768 769 <p>The <tt>MachineFunction</tt> class contains a list of machine basic blocks 770 (<tt><a href="#machinebasicblock">MachineBasicBlock</a></tt> instances). It 771 corresponds one-to-one with the LLVM function input to the instruction 772 selector. In addition to a list of basic blocks, 773 the <tt>MachineFunction</tt> contains a a <tt>MachineConstantPool</tt>, 774 a <tt>MachineFrameInfo</tt>, a <tt>MachineFunctionInfo</tt>, and a 775 <tt>MachineRegisterInfo</tt>. See 776 <tt>include/llvm/CodeGen/MachineFunction.h</tt> for more information.</p> 777 778 </div> 779 780 <!-- ======================================================================= --> 781 <h3> 782 <a name="machineinstrbundle"><tt>MachineInstr Bundles</tt></a> 783 </h3> 784 785 <div> 786 787 <p>LLVM code generator can model sequences of instructions as MachineInstr 788 bundles. A MI bundle can model a VLIW group / pack which contains an 789 arbitrary number of parallel instructions. It can also be used to model 790 a sequential list of instructions (potentially with data dependencies) that 791 cannot be legally separated (e.g. ARM Thumb2 IT blocks).</p> 792 793 <p>Conceptually a MI bundle is a MI with a number of other MIs nested within: 794 </p> 795 796 <div class="doc_code"> 797 <pre> 798 -------------- 799 | Bundle | --------- 800 -------------- \ 801 | ---------------- 802 | | MI | 803 | ---------------- 804 | | 805 | ---------------- 806 | | MI | 807 | ---------------- 808 | | 809 | ---------------- 810 | | MI | 811 | ---------------- 812 | 813 -------------- 814 | Bundle | -------- 815 -------------- \ 816 | ---------------- 817 | | MI | 818 | ---------------- 819 | | 820 | ---------------- 821 | | MI | 822 | ---------------- 823 | | 824 | ... 825 | 826 -------------- 827 | Bundle | -------- 828 -------------- \ 829 | 830 ... 831 </pre> 832 </div> 833 834 <p> MI bundle support does not change the physical representations of 835 MachineBasicBlock and MachineInstr. All the MIs (including top level and 836 nested ones) are stored as sequential list of MIs. The "bundled" MIs are 837 marked with the 'InsideBundle' flag. A top level MI with the special BUNDLE 838 opcode is used to represent the start of a bundle. It's legal to mix BUNDLE 839 MIs with indiviual MIs that are not inside bundles nor represent bundles. 840 </p> 841 842 <p> MachineInstr passes should operate on a MI bundle as a single unit. Member 843 methods have been taught to correctly handle bundles and MIs inside bundles. 844 The MachineBasicBlock iterator has been modified to skip over bundled MIs to 845 enforce the bundle-as-a-single-unit concept. An alternative iterator 846 instr_iterator has been added to MachineBasicBlock to allow passes to 847 iterate over all of the MIs in a MachineBasicBlock, including those which 848 are nested inside bundles. The top level BUNDLE instruction must have the 849 correct set of register MachineOperand's that represent the cumulative 850 inputs and outputs of the bundled MIs.</p> 851 852 <p> Packing / bundling of MachineInstr's should be done as part of the register 853 allocation super-pass. More specifically, the pass which determines what 854 MIs should be bundled together must be done after code generator exits SSA 855 form (i.e. after two-address pass, PHI elimination, and copy coalescing). 856 Bundles should only be finalized (i.e. adding BUNDLE MIs and input and 857 output register MachineOperands) after virtual registers have been 858 rewritten into physical registers. This requirement eliminates the need to 859 add virtual register operands to BUNDLE instructions which would effectively 860 double the virtual register def and use lists.</p> 861 862 </div> 863 864 </div> 865 866 <!-- *********************************************************************** --> 867 <h2> 868 <a name="mc">The "MC" Layer</a> 869 </h2> 870 <!-- *********************************************************************** --> 871 872 <div> 873 874 <p> 875 The MC Layer is used to represent and process code at the raw machine code 876 level, devoid of "high level" information like "constant pools", "jump tables", 877 "global variables" or anything like that. At this level, LLVM handles things 878 like label names, machine instructions, and sections in the object file. The 879 code in this layer is used for a number of important purposes: the tail end of 880 the code generator uses it to write a .s or .o file, and it is also used by the 881 llvm-mc tool to implement standalone machine code assemblers and disassemblers. 882 </p> 883 884 <p> 885 This section describes some of the important classes. There are also a number 886 of important subsystems that interact at this layer, they are described later 887 in this manual. 888 </p> 889 890 <!-- ======================================================================= --> 891 <h3> 892 <a name="mcstreamer">The <tt>MCStreamer</tt> API</a> 893 </h3> 894 895 <div> 896 897 <p> 898 MCStreamer is best thought of as an assembler API. It is an abstract API which 899 is <em>implemented</em> in different ways (e.g. to output a .s file, output an 900 ELF .o file, etc) but whose API correspond directly to what you see in a .s 901 file. MCStreamer has one method per directive, such as EmitLabel, 902 EmitSymbolAttribute, SwitchSection, EmitValue (for .byte, .word), etc, which 903 directly correspond to assembly level directives. It also has an 904 EmitInstruction method, which is used to output an MCInst to the streamer. 905 </p> 906 907 <p> 908 This API is most important for two clients: the llvm-mc stand-alone assembler is 909 effectively a parser that parses a line, then invokes a method on MCStreamer. In 910 the code generator, the <a href="#codeemit">Code Emission</a> phase of the code 911 generator lowers higher level LLVM IR and Machine* constructs down to the MC 912 layer, emitting directives through MCStreamer.</p> 913 914 <p> 915 On the implementation side of MCStreamer, there are two major implementations: 916 one for writing out a .s file (MCAsmStreamer), and one for writing out a .o 917 file (MCObjectStreamer). MCAsmStreamer is a straight-forward implementation 918 that prints out a directive for each method (e.g. EmitValue -> .byte), but 919 MCObjectStreamer implements a full assembler. 920 </p> 921 922 </div> 923 924 <!-- ======================================================================= --> 925 <h3> 926 <a name="mccontext">The <tt>MCContext</tt> class</a> 927 </h3> 928 929 <div> 930 931 <p> 932 The MCContext class is the owner of a variety of uniqued data structures at the 933 MC layer, including symbols, sections, etc. As such, this is the class that you 934 interact with to create symbols and sections. This class can not be subclassed. 935 </p> 936 937 </div> 938 939 <!-- ======================================================================= --> 940 <h3> 941 <a name="mcsymbol">The <tt>MCSymbol</tt> class</a> 942 </h3> 943 944 <div> 945 946 <p> 947 The MCSymbol class represents a symbol (aka label) in the assembly file. There 948 are two interesting kinds of symbols: assembler temporary symbols, and normal 949 symbols. Assembler temporary symbols are used and processed by the assembler 950 but are discarded when the object file is produced. The distinction is usually 951 represented by adding a prefix to the label, for example "L" labels are 952 assembler temporary labels in MachO. 953 </p> 954 955 <p>MCSymbols are created by MCContext and uniqued there. This means that 956 MCSymbols can be compared for pointer equivalence to find out if they are the 957 same symbol. Note that pointer inequality does not guarantee the labels will 958 end up at different addresses though. It's perfectly legal to output something 959 like this to the .s file:<p> 960 961 <pre> 962 foo: 963 bar: 964 .byte 4 965 </pre> 966 967 <p>In this case, both the foo and bar symbols will have the same address.</p> 968 969 </div> 970 971 <!-- ======================================================================= --> 972 <h3> 973 <a name="mcsection">The <tt>MCSection</tt> class</a> 974 </h3> 975 976 <div> 977 978 <p> 979 The MCSection class represents an object-file specific section. It is subclassed 980 by object file specific implementations (e.g. <tt>MCSectionMachO</tt>, 981 <tt>MCSectionCOFF</tt>, <tt>MCSectionELF</tt>) and these are created and uniqued 982 by MCContext. The MCStreamer has a notion of the current section, which can be 983 changed with the SwitchToSection method (which corresponds to a ".section" 984 directive in a .s file). 985 </p> 986 987 </div> 988 989 <!-- ======================================================================= --> 990 <h3> 991 <a name="mcinst">The <tt>MCInst</tt> class</a> 992 </h3> 993 994 <div> 995 996 <p> 997 The MCInst class is a target-independent representation of an instruction. It 998 is a simple class (much more so than <a href="#machineinstr">MachineInstr</a>) 999 that holds a target-specific opcode and a vector of MCOperands. MCOperand, in 1000 turn, is a simple discriminated union of three cases: 1) a simple immediate, 1001 2) a target register ID, 3) a symbolic expression (e.g. "Lfoo-Lbar+42") as an 1002 MCExpr. 1003 </p> 1004 1005 <p>MCInst is the common currency used to represent machine instructions at the 1006 MC layer. It is the type used by the instruction encoder, the instruction 1007 printer, and the type generated by the assembly parser and disassembler. 1008 </p> 1009 1010 </div> 1011 1012 </div> 1013 1014 <!-- *********************************************************************** --> 1015 <h2> 1016 <a name="codegenalgs">Target-independent code generation algorithms</a> 1017 </h2> 1018 <!-- *********************************************************************** --> 1019 1020 <div> 1021 1022 <p>This section documents the phases described in the 1023 <a href="#high-level-design">high-level design of the code generator</a>. 1024 It explains how they work and some of the rationale behind their design.</p> 1025 1026 <!-- ======================================================================= --> 1027 <h3> 1028 <a name="instselect">Instruction Selection</a> 1029 </h3> 1030 1031 <div> 1032 1033 <p>Instruction Selection is the process of translating LLVM code presented to 1034 the code generator into target-specific machine instructions. There are 1035 several well-known ways to do this in the literature. LLVM uses a 1036 SelectionDAG based instruction selector.</p> 1037 1038 <p>Portions of the DAG instruction selector are generated from the target 1039 description (<tt>*.td</tt>) files. Our goal is for the entire instruction 1040 selector to be generated from these <tt>.td</tt> files, though currently 1041 there are still things that require custom C++ code.</p> 1042 1043 <!-- _______________________________________________________________________ --> 1044 <h4> 1045 <a name="selectiondag_intro">Introduction to SelectionDAGs</a> 1046 </h4> 1047 1048 <div> 1049 1050 <p>The SelectionDAG provides an abstraction for code representation in a way 1051 that is amenable to instruction selection using automatic techniques 1052 (e.g. dynamic-programming based optimal pattern matching selectors). It is 1053 also well-suited to other phases of code generation; in particular, 1054 instruction scheduling (SelectionDAG's are very close to scheduling DAGs 1055 post-selection). Additionally, the SelectionDAG provides a host 1056 representation where a large variety of very-low-level (but 1057 target-independent) <a href="#selectiondag_optimize">optimizations</a> may be 1058 performed; ones which require extensive information about the instructions 1059 efficiently supported by the target.</p> 1060 1061 <p>The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the 1062 <tt>SDNode</tt> class. The primary payload of the <tt>SDNode</tt> is its 1063 operation code (Opcode) that indicates what operation the node performs and 1064 the operands to the operation. The various operation node types are 1065 described at the top of the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> 1066 file.</p> 1067 1068 <p>Although most operations define a single value, each node in the graph may 1069 define multiple values. For example, a combined div/rem operation will 1070 define both the dividend and the remainder. Many other situations require 1071 multiple values as well. Each node also has some number of operands, which 1072 are edges to the node defining the used value. Because nodes may define 1073 multiple values, edges are represented by instances of the <tt>SDValue</tt> 1074 class, which is a <tt><SDNode, unsigned></tt> pair, indicating the node 1075 and result value being used, respectively. Each value produced by 1076 an <tt>SDNode</tt> has an associated <tt>MVT</tt> (Machine Value Type) 1077 indicating what the type of the value is.</p> 1078 1079 <p>SelectionDAGs contain two different kinds of values: those that represent 1080 data flow and those that represent control flow dependencies. Data values 1081 are simple edges with an integer or floating point value type. Control edges 1082 are represented as "chain" edges which are of type <tt>MVT::Other</tt>. 1083 These edges provide an ordering between nodes that have side effects (such as 1084 loads, stores, calls, returns, etc). All nodes that have side effects should 1085 take a token chain as input and produce a new one as output. By convention, 1086 token chain inputs are always operand #0, and chain results are always the 1087 last value produced by an operation.</p> 1088 1089 <p>A SelectionDAG has designated "Entry" and "Root" nodes. The Entry node is 1090 always a marker node with an Opcode of <tt>ISD::EntryToken</tt>. The Root 1091 node is the final side-effecting node in the token chain. For example, in a 1092 single basic block function it would be the return node.</p> 1093 1094 <p>One important concept for SelectionDAGs is the notion of a "legal" vs. 1095 "illegal" DAG. A legal DAG for a target is one that only uses supported 1096 operations and supported types. On a 32-bit PowerPC, for example, a DAG with 1097 a value of type i1, i8, i16, or i64 would be illegal, as would a DAG that 1098 uses a SREM or UREM operation. The 1099 <a href="#selectinodag_legalize_types">legalize types</a> and 1100 <a href="#selectiondag_legalize">legalize operations</a> phases are 1101 responsible for turning an illegal DAG into a legal DAG.</p> 1102 1103 </div> 1104 1105 <!-- _______________________________________________________________________ --> 1106 <h4> 1107 <a name="selectiondag_process">SelectionDAG Instruction Selection Process</a> 1108 </h4> 1109 1110 <div> 1111 1112 <p>SelectionDAG-based instruction selection consists of the following steps:</p> 1113 1114 <ol> 1115 <li><a href="#selectiondag_build">Build initial DAG</a> — This stage 1116 performs a simple translation from the input LLVM code to an illegal 1117 SelectionDAG.</li> 1118 1119 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — This 1120 stage performs simple optimizations on the SelectionDAG to simplify it, 1121 and recognize meta instructions (like rotates 1122 and <tt>div</tt>/<tt>rem</tt> pairs) for targets that support these meta 1123 operations. This makes the resultant code more efficient and 1124 the <a href="#selectiondag_select">select instructions from DAG</a> phase 1125 (below) simpler.</li> 1126 1127 <li><a href="#selectiondag_legalize_types">Legalize SelectionDAG Types</a> 1128 — This stage transforms SelectionDAG nodes to eliminate any types 1129 that are unsupported on the target.</li> 1130 1131 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — The 1132 SelectionDAG optimizer is run to clean up redundancies exposed by type 1133 legalization.</li> 1134 1135 <li><a href="#selectiondag_legalize">Legalize SelectionDAG Ops</a> — 1136 This stage transforms SelectionDAG nodes to eliminate any operations 1137 that are unsupported on the target.</li> 1138 1139 <li><a href="#selectiondag_optimize">Optimize SelectionDAG</a> — The 1140 SelectionDAG optimizer is run to eliminate inefficiencies introduced by 1141 operation legalization.</li> 1142 1143 <li><a href="#selectiondag_select">Select instructions from DAG</a> — 1144 Finally, the target instruction selector matches the DAG operations to 1145 target instructions. This process translates the target-independent input 1146 DAG into another DAG of target instructions.</li> 1147 1148 <li><a href="#selectiondag_sched">SelectionDAG Scheduling and Formation</a> 1149 — The last phase assigns a linear order to the instructions in the 1150 target-instruction DAG and emits them into the MachineFunction being 1151 compiled. This step uses traditional prepass scheduling techniques.</li> 1152 </ol> 1153 1154 <p>After all of these steps are complete, the SelectionDAG is destroyed and the 1155 rest of the code generation passes are run.</p> 1156 1157 <p>One great way to visualize what is going on here is to take advantage of a 1158 few LLC command line options. The following options pop up a window 1159 displaying the SelectionDAG at specific times (if you only get errors printed 1160 to the console while using this, you probably 1161 <a href="ProgrammersManual.html#ViewGraph">need to configure your system</a> 1162 to add support for it).</p> 1163 1164 <ul> 1165 <li><tt>-view-dag-combine1-dags</tt> displays the DAG after being built, 1166 before the first optimization pass.</li> 1167 1168 <li><tt>-view-legalize-dags</tt> displays the DAG before Legalization.</li> 1169 1170 <li><tt>-view-dag-combine2-dags</tt> displays the DAG before the second 1171 optimization pass.</li> 1172 1173 <li><tt>-view-isel-dags</tt> displays the DAG before the Select phase.</li> 1174 1175 <li><tt>-view-sched-dags</tt> displays the DAG before Scheduling.</li> 1176 </ul> 1177 1178 <p>The <tt>-view-sunit-dags</tt> displays the Scheduler's dependency graph. 1179 This graph is based on the final SelectionDAG, with nodes that must be 1180 scheduled together bundled into a single scheduling-unit node, and with 1181 immediate operands and other nodes that aren't relevant for scheduling 1182 omitted.</p> 1183 1184 </div> 1185 1186 <!-- _______________________________________________________________________ --> 1187 <h4> 1188 <a name="selectiondag_build">Initial SelectionDAG Construction</a> 1189 </h4> 1190 1191 <div> 1192 1193 <p>The initial SelectionDAG is naïvely peephole expanded from the LLVM 1194 input by the <tt>SelectionDAGLowering</tt> class in the 1195 <tt>lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp</tt> file. The intent of 1196 this pass is to expose as much low-level, target-specific details to the 1197 SelectionDAG as possible. This pass is mostly hard-coded (e.g. an 1198 LLVM <tt>add</tt> turns into an <tt>SDNode add</tt> while a 1199 <tt>getelementptr</tt> is expanded into the obvious arithmetic). This pass 1200 requires target-specific hooks to lower calls, returns, varargs, etc. For 1201 these features, the <tt><a href="#targetlowering">TargetLowering</a></tt> 1202 interface is used.</p> 1203 1204 </div> 1205 1206 <!-- _______________________________________________________________________ --> 1207 <h4> 1208 <a name="selectiondag_legalize_types">SelectionDAG LegalizeTypes Phase</a> 1209 </h4> 1210 1211 <div> 1212 1213 <p>The Legalize phase is in charge of converting a DAG to only use the types 1214 that are natively supported by the target.</p> 1215 1216 <p>There are two main ways of converting values of unsupported scalar types to 1217 values of supported types: converting small types to larger types 1218 ("promoting"), and breaking up large integer types into smaller ones 1219 ("expanding"). For example, a target might require that all f32 values are 1220 promoted to f64 and that all i1/i8/i16 values are promoted to i32. The same 1221 target might require that all i64 values be expanded into pairs of i32 1222 values. These changes can insert sign and zero extensions as needed to make 1223 sure that the final code has the same behavior as the input.</p> 1224 1225 <p>There are two main ways of converting values of unsupported vector types to 1226 value of supported types: splitting vector types, multiple times if 1227 necessary, until a legal type is found, and extending vector types by adding 1228 elements to the end to round them out to legal types ("widening"). If a 1229 vector gets split all the way down to single-element parts with no supported 1230 vector type being found, the elements are converted to scalars 1231 ("scalarizing").</p> 1232 1233 <p>A target implementation tells the legalizer which types are supported (and 1234 which register class to use for them) by calling the 1235 <tt>addRegisterClass</tt> method in its TargetLowering constructor.</p> 1236 1237 </div> 1238 1239 <!-- _______________________________________________________________________ --> 1240 <h4> 1241 <a name="selectiondag_legalize">SelectionDAG Legalize Phase</a> 1242 </h4> 1243 1244 <div> 1245 1246 <p>The Legalize phase is in charge of converting a DAG to only use the 1247 operations that are natively supported by the target.</p> 1248 1249 <p>Targets often have weird constraints, such as not supporting every operation 1250 on every supported datatype (e.g. X86 does not support byte conditional moves 1251 and PowerPC does not support sign-extending loads from a 16-bit memory 1252 location). Legalize takes care of this by open-coding another sequence of 1253 operations to emulate the operation ("expansion"), by promoting one type to a 1254 larger type that supports the operation ("promotion"), or by using a 1255 target-specific hook to implement the legalization ("custom").</p> 1256 1257 <p>A target implementation tells the legalizer which operations are not 1258 supported (and which of the above three actions to take) by calling the 1259 <tt>setOperationAction</tt> method in its <tt>TargetLowering</tt> 1260 constructor.</p> 1261 1262 <p>Prior to the existence of the Legalize passes, we required that every target 1263 <a href="#selectiondag_optimize">selector</a> supported and handled every 1264 operator and type even if they are not natively supported. The introduction 1265 of the Legalize phases allows all of the canonicalization patterns to be 1266 shared across targets, and makes it very easy to optimize the canonicalized 1267 code because it is still in the form of a DAG.</p> 1268 1269 </div> 1270 1271 <!-- _______________________________________________________________________ --> 1272 <h4> 1273 <a name="selectiondag_optimize"> 1274 SelectionDAG Optimization Phase: the DAG Combiner 1275 </a> 1276 </h4> 1277 1278 <div> 1279 1280 <p>The SelectionDAG optimization phase is run multiple times for code 1281 generation, immediately after the DAG is built and once after each 1282 legalization. The first run of the pass allows the initial code to be 1283 cleaned up (e.g. performing optimizations that depend on knowing that the 1284 operators have restricted type inputs). Subsequent runs of the pass clean up 1285 the messy code generated by the Legalize passes, which allows Legalize to be 1286 very simple (it can focus on making code legal instead of focusing on 1287 generating <em>good</em> and legal code).</p> 1288 1289 <p>One important class of optimizations performed is optimizing inserted sign 1290 and zero extension instructions. We currently use ad-hoc techniques, but 1291 could move to more rigorous techniques in the future. Here are some good 1292 papers on the subject:</p> 1293 1294 <p>"<a href="http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html">Widening 1295 integer arithmetic</a>"<br> 1296 Kevin Redwine and Norman Ramsey<br> 1297 International Conference on Compiler Construction (CC) 2004</p> 1298 1299 <p>"<a href="http://portal.acm.org/citation.cfm?doid=512529.512552">Effective 1300 sign extension elimination</a>"<br> 1301 Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani<br> 1302 Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design 1303 and Implementation.</p> 1304 1305 </div> 1306 1307 <!-- _______________________________________________________________________ --> 1308 <h4> 1309 <a name="selectiondag_select">SelectionDAG Select Phase</a> 1310 </h4> 1311 1312 <div> 1313 1314 <p>The Select phase is the bulk of the target-specific code for instruction 1315 selection. This phase takes a legal SelectionDAG as input, pattern matches 1316 the instructions supported by the target to this DAG, and produces a new DAG 1317 of target code. For example, consider the following LLVM fragment:</p> 1318 1319 <div class="doc_code"> 1320 <pre> 1321 %t1 = fadd float %W, %X 1322 %t2 = fmul float %t1, %Y 1323 %t3 = fadd float %t2, %Z 1324 </pre> 1325 </div> 1326 1327 <p>This LLVM code corresponds to a SelectionDAG that looks basically like 1328 this:</p> 1329 1330 <div class="doc_code"> 1331 <pre> 1332 (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z) 1333 </pre> 1334 </div> 1335 1336 <p>If a target supports floating point multiply-and-add (FMA) operations, one of 1337 the adds can be merged with the multiply. On the PowerPC, for example, the 1338 output of the instruction selector might look like this DAG:</p> 1339 1340 <div class="doc_code"> 1341 <pre> 1342 (FMADDS (FADDS W, X), Y, Z) 1343 </pre> 1344 </div> 1345 1346 <p>The <tt>FMADDS</tt> instruction is a ternary instruction that multiplies its 1347 first two operands and adds the third (as single-precision floating-point 1348 numbers). The <tt>FADDS</tt> instruction is a simple binary single-precision 1349 add instruction. To perform this pattern match, the PowerPC backend includes 1350 the following instruction definitions:</p> 1351 1352 <div class="doc_code"> 1353 <pre> 1354 def FMADDS : AForm_1<59, 29, 1355 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB), 1356 "fmadds $FRT, $FRA, $FRC, $FRB", 1357 [<b>(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC), 1358 F4RC:$FRB))</b>]>; 1359 def FADDS : AForm_2<59, 21, 1360 (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB), 1361 "fadds $FRT, $FRA, $FRB", 1362 [<b>(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))</b>]>; 1363 </pre> 1364 </div> 1365 1366 <p>The portion of the instruction definition in bold indicates the pattern used 1367 to match the instruction. The DAG operators 1368 (like <tt>fmul</tt>/<tt>fadd</tt>) are defined in 1369 the <tt>include/llvm/Target/TargetSelectionDAG.td</tt> file. " 1370 <tt>F4RC</tt>" is the register class of the input and result values.</p> 1371 1372 <p>The TableGen DAG instruction selector generator reads the instruction 1373 patterns in the <tt>.td</tt> file and automatically builds parts of the 1374 pattern matching code for your target. It has the following strengths:</p> 1375 1376 <ul> 1377 <li>At compiler-compiler time, it analyzes your instruction patterns and tells 1378 you if your patterns make sense or not.</li> 1379 1380 <li>It can handle arbitrary constraints on operands for the pattern match. In 1381 particular, it is straight-forward to say things like "match any immediate 1382 that is a 13-bit sign-extended value". For examples, see the 1383 <tt>immSExt16</tt> and related <tt>tblgen</tt> classes in the PowerPC 1384 backend.</li> 1385 1386 <li>It knows several important identities for the patterns defined. For 1387 example, it knows that addition is commutative, so it allows the 1388 <tt>FMADDS</tt> pattern above to match "<tt>(fadd X, (fmul Y, Z))</tt>" as 1389 well as "<tt>(fadd (fmul X, Y), Z)</tt>", without the target author having 1390 to specially handle this case.</li> 1391 1392 <li>It has a full-featured type-inferencing system. In particular, you should 1393 rarely have to explicitly tell the system what type parts of your patterns 1394 are. In the <tt>FMADDS</tt> case above, we didn't have to tell 1395 <tt>tblgen</tt> that all of the nodes in the pattern are of type 'f32'. 1396 It was able to infer and propagate this knowledge from the fact that 1397 <tt>F4RC</tt> has type 'f32'.</li> 1398 1399 <li>Targets can define their own (and rely on built-in) "pattern fragments". 1400 Pattern fragments are chunks of reusable patterns that get inlined into 1401 your patterns during compiler-compiler time. For example, the integer 1402 "<tt>(not x)</tt>" operation is actually defined as a pattern fragment 1403 that expands as "<tt>(xor x, -1)</tt>", since the SelectionDAG does not 1404 have a native '<tt>not</tt>' operation. Targets can define their own 1405 short-hand fragments as they see fit. See the definition of 1406 '<tt>not</tt>' and '<tt>ineg</tt>' for examples.</li> 1407 1408 <li>In addition to instructions, targets can specify arbitrary patterns that 1409 map to one or more instructions using the 'Pat' class. For example, the 1410 PowerPC has no way to load an arbitrary integer immediate into a register 1411 in one instruction. To tell tblgen how to do this, it defines: 1412 <br> 1413 <br> 1414 <div class="doc_code"> 1415 <pre> 1416 // Arbitrary immediate support. Implement in terms of LIS/ORI. 1417 def : Pat<(i32 imm:$imm), 1418 (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>; 1419 </pre> 1420 </div> 1421 <br> 1422 If none of the single-instruction patterns for loading an immediate into a 1423 register match, this will be used. This rule says "match an arbitrary i32 1424 immediate, turning it into an <tt>ORI</tt> ('or a 16-bit immediate') and 1425 an <tt>LIS</tt> ('load 16-bit immediate, where the immediate is shifted to 1426 the left 16 bits') instruction". To make this work, the 1427 <tt>LO16</tt>/<tt>HI16</tt> node transformations are used to manipulate 1428 the input immediate (in this case, take the high or low 16-bits of the 1429 immediate).</li> 1430 1431 <li>While the system does automate a lot, it still allows you to write custom 1432 C++ code to match special cases if there is something that is hard to 1433 express.</li> 1434 </ul> 1435 1436 <p>While it has many strengths, the system currently has some limitations, 1437 primarily because it is a work in progress and is not yet finished:</p> 1438 1439 <ul> 1440 <li>Overall, there is no way to define or match SelectionDAG nodes that define 1441 multiple values (e.g. <tt>SMUL_LOHI</tt>, <tt>LOAD</tt>, <tt>CALL</tt>, 1442 etc). This is the biggest reason that you currently still <em>have 1443 to</em> write custom C++ code for your instruction selector.</li> 1444 1445 <li>There is no great way to support matching complex addressing modes yet. 1446 In the future, we will extend pattern fragments to allow them to define 1447 multiple values (e.g. the four operands of the <a href="#x86_memory">X86 1448 addressing mode</a>, which are currently matched with custom C++ code). 1449 In addition, we'll extend fragments so that a fragment can match multiple 1450 different patterns.</li> 1451 1452 <li>We don't automatically infer flags like isStore/isLoad yet.</li> 1453 1454 <li>We don't automatically generate the set of supported registers and 1455 operations for the <a href="#selectiondag_legalize">Legalizer</a> 1456 yet.</li> 1457 1458 <li>We don't have a way of tying in custom legalized nodes yet.</li> 1459 </ul> 1460 1461 <p>Despite these limitations, the instruction selector generator is still quite 1462 useful for most of the binary and logical operations in typical instruction 1463 sets. If you run into any problems or can't figure out how to do something, 1464 please let Chris know!</p> 1465 1466 </div> 1467 1468 <!-- _______________________________________________________________________ --> 1469 <h4> 1470 <a name="selectiondag_sched">SelectionDAG Scheduling and Formation Phase</a> 1471 </h4> 1472 1473 <div> 1474 1475 <p>The scheduling phase takes the DAG of target instructions from the selection 1476 phase and assigns an order. The scheduler can pick an order depending on 1477 various constraints of the machines (i.e. order for minimal register pressure 1478 or try to cover instruction latencies). Once an order is established, the 1479 DAG is converted to a list 1480 of <tt><a href="#machineinstr">MachineInstr</a></tt>s and the SelectionDAG is 1481 destroyed.</p> 1482 1483 <p>Note that this phase is logically separate from the instruction selection 1484 phase, but is tied to it closely in the code because it operates on 1485 SelectionDAGs.</p> 1486 1487 </div> 1488 1489 <!-- _______________________________________________________________________ --> 1490 <h4> 1491 <a name="selectiondag_future">Future directions for the SelectionDAG</a> 1492 </h4> 1493 1494 <div> 1495 1496 <ol> 1497 <li>Optional function-at-a-time selection.</li> 1498 1499 <li>Auto-generate entire selector from <tt>.td</tt> file.</li> 1500 </ol> 1501 1502 </div> 1503 1504 </div> 1505 1506 <!-- ======================================================================= --> 1507 <h3> 1508 <a name="ssamco">SSA-based Machine Code Optimizations</a> 1509 </h3> 1510 <div><p>To Be Written</p></div> 1511 1512 <!-- ======================================================================= --> 1513 <h3> 1514 <a name="liveintervals">Live Intervals</a> 1515 </h3> 1516 1517 <div> 1518 1519 <p>Live Intervals are the ranges (intervals) where a variable is <i>live</i>. 1520 They are used by some <a href="#regalloc">register allocator</a> passes to 1521 determine if two or more virtual registers which require the same physical 1522 register are live at the same point in the program (i.e., they conflict). 1523 When this situation occurs, one virtual register must be <i>spilled</i>.</p> 1524 1525 <!-- _______________________________________________________________________ --> 1526 <h4> 1527 <a name="livevariable_analysis">Live Variable Analysis</a> 1528 </h4> 1529 1530 <div> 1531 1532 <p>The first step in determining the live intervals of variables is to calculate 1533 the set of registers that are immediately dead after the instruction (i.e., 1534 the instruction calculates the value, but it is never used) and the set of 1535 registers that are used by the instruction, but are never used after the 1536 instruction (i.e., they are killed). Live variable information is computed 1537 for each <i>virtual</i> register and <i>register allocatable</i> physical 1538 register in the function. This is done in a very efficient manner because it 1539 uses SSA to sparsely compute lifetime information for virtual registers 1540 (which are in SSA form) and only has to track physical registers within a 1541 block. Before register allocation, LLVM can assume that physical registers 1542 are only live within a single basic block. This allows it to do a single, 1543 local analysis to resolve physical register lifetimes within each basic 1544 block. If a physical register is not register allocatable (e.g., a stack 1545 pointer or condition codes), it is not tracked.</p> 1546 1547 <p>Physical registers may be live in to or out of a function. Live in values are 1548 typically arguments in registers. Live out values are typically return values 1549 in registers. Live in values are marked as such, and are given a dummy 1550 "defining" instruction during live intervals analysis. If the last basic 1551 block of a function is a <tt>return</tt>, then it's marked as using all live 1552 out values in the function.</p> 1553 1554 <p><tt>PHI</tt> nodes need to be handled specially, because the calculation of 1555 the live variable information from a depth first traversal of the CFG of the 1556 function won't guarantee that a virtual register used by the <tt>PHI</tt> 1557 node is defined before it's used. When a <tt>PHI</tt> node is encountered, 1558 only the definition is handled, because the uses will be handled in other 1559 basic blocks.</p> 1560 1561 <p>For each <tt>PHI</tt> node of the current basic block, we simulate an 1562 assignment at the end of the current basic block and traverse the successor 1563 basic blocks. If a successor basic block has a <tt>PHI</tt> node and one of 1564 the <tt>PHI</tt> node's operands is coming from the current basic block, then 1565 the variable is marked as <i>alive</i> within the current basic block and all 1566 of its predecessor basic blocks, until the basic block with the defining 1567 instruction is encountered.</p> 1568 1569 </div> 1570 1571 <!-- _______________________________________________________________________ --> 1572 <h4> 1573 <a name="liveintervals_analysis">Live Intervals Analysis</a> 1574 </h4> 1575 1576 <div> 1577 1578 <p>We now have the information available to perform the live intervals analysis 1579 and build the live intervals themselves. We start off by numbering the basic 1580 blocks and machine instructions. We then handle the "live-in" values. These 1581 are in physical registers, so the physical register is assumed to be killed 1582 by the end of the basic block. Live intervals for virtual registers are 1583 computed for some ordering of the machine instructions <tt>[1, N]</tt>. A 1584 live interval is an interval <tt>[i, j)</tt>, where <tt>1 <= i <= j 1585 < N</tt>, for which a variable is live.</p> 1586 1587 <p><i><b>More to come...</b></i></p> 1588 1589 </div> 1590 1591 </div> 1592 1593 <!-- ======================================================================= --> 1594 <h3> 1595 <a name="regalloc">Register Allocation</a> 1596 </h3> 1597 1598 <div> 1599 1600 <p>The <i>Register Allocation problem</i> consists in mapping a program 1601 <i>P<sub>v</sub></i>, that can use an unbounded number of virtual registers, 1602 to a program <i>P<sub>p</sub></i> that contains a finite (possibly small) 1603 number of physical registers. Each target architecture has a different number 1604 of physical registers. If the number of physical registers is not enough to 1605 accommodate all the virtual registers, some of them will have to be mapped 1606 into memory. These virtuals are called <i>spilled virtuals</i>.</p> 1607 1608 <!-- _______________________________________________________________________ --> 1609 1610 <h4> 1611 <a name="regAlloc_represent">How registers are represented in LLVM</a> 1612 </h4> 1613 1614 <div> 1615 1616 <p>In LLVM, physical registers are denoted by integer numbers that normally 1617 range from 1 to 1023. To see how this numbering is defined for a particular 1618 architecture, you can read the <tt>GenRegisterNames.inc</tt> file for that 1619 architecture. For instance, by 1620 inspecting <tt>lib/Target/X86/X86GenRegisterInfo.inc</tt> we see that the 1621 32-bit register <tt>EAX</tt> is denoted by 43, and the MMX register 1622 <tt>MM0</tt> is mapped to 65.</p> 1623 1624 <p>Some architectures contain registers that share the same physical location. A 1625 notable example is the X86 platform. For instance, in the X86 architecture, 1626 the registers <tt>EAX</tt>, <tt>AX</tt> and <tt>AL</tt> share the first eight 1627 bits. These physical registers are marked as <i>aliased</i> in LLVM. Given a 1628 particular architecture, you can check which registers are aliased by 1629 inspecting its <tt>RegisterInfo.td</tt> file. Moreover, the method 1630 <tt>MCRegisterInfo::getAliasSet(p_reg)</tt> returns an array containing 1631 all the physical registers aliased to the register <tt>p_reg</tt>.</p> 1632 1633 <p>Physical registers, in LLVM, are grouped in <i>Register Classes</i>. 1634 Elements in the same register class are functionally equivalent, and can be 1635 interchangeably used. Each virtual register can only be mapped to physical 1636 registers of a particular class. For instance, in the X86 architecture, some 1637 virtuals can only be allocated to 8 bit registers. A register class is 1638 described by <tt>TargetRegisterClass</tt> objects. To discover if a virtual 1639 register is compatible with a given physical, this code can be used:</p> 1640 1641 <div class="doc_code"> 1642 <pre> 1643 bool RegMapping_Fer::compatible_class(MachineFunction &mf, 1644 unsigned v_reg, 1645 unsigned p_reg) { 1646 assert(TargetRegisterInfo::isPhysicalRegister(p_reg) && 1647 "Target register must be physical"); 1648 const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg); 1649 return trc->contains(p_reg); 1650 } 1651 </pre> 1652 </div> 1653 1654 <p>Sometimes, mostly for debugging purposes, it is useful to change the number 1655 of physical registers available in the target architecture. This must be done 1656 statically, inside the <tt>TargetRegsterInfo.td</tt> file. Just <tt>grep</tt> 1657 for <tt>RegisterClass</tt>, the last parameter of which is a list of 1658 registers. Just commenting some out is one simple way to avoid them being 1659 used. A more polite way is to explicitly exclude some registers from 1660 the <i>allocation order</i>. See the definition of the <tt>GR8</tt> register 1661 class in <tt>lib/Target/X86/X86RegisterInfo.td</tt> for an example of this. 1662 </p> 1663 1664 <p>Virtual registers are also denoted by integer numbers. Contrary to physical 1665 registers, different virtual registers never share the same number. Whereas 1666 physical registers are statically defined in a <tt>TargetRegisterInfo.td</tt> 1667 file and cannot be created by the application developer, that is not the case 1668 with virtual registers. In order to create new virtual registers, use the 1669 method <tt>MachineRegisterInfo::createVirtualRegister()</tt>. This method 1670 will return a new virtual register. Use an <tt>IndexedMap<Foo, 1671 VirtReg2IndexFunctor></tt> to hold information per virtual register. If you 1672 need to enumerate all virtual registers, use the function 1673 <tt>TargetRegisterInfo::index2VirtReg()</tt> to find the virtual register 1674 numbers:</p> 1675 1676 <div class="doc_code"> 1677 <pre> 1678 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1679 unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i); 1680 stuff(VirtReg); 1681 } 1682 </pre> 1683 </div> 1684 1685 <p>Before register allocation, the operands of an instruction are mostly virtual 1686 registers, although physical registers may also be used. In order to check if 1687 a given machine operand is a register, use the boolean 1688 function <tt>MachineOperand::isRegister()</tt>. To obtain the integer code of 1689 a register, use <tt>MachineOperand::getReg()</tt>. An instruction may define 1690 or use a register. For instance, <tt>ADD reg:1026 := reg:1025 reg:1024</tt> 1691 defines the registers 1024, and uses registers 1025 and 1026. Given a 1692 register operand, the method <tt>MachineOperand::isUse()</tt> informs if that 1693 register is being used by the instruction. The 1694 method <tt>MachineOperand::isDef()</tt> informs if that registers is being 1695 defined.</p> 1696 1697 <p>We will call physical registers present in the LLVM bitcode before register 1698 allocation <i>pre-colored registers</i>. Pre-colored registers are used in 1699 many different situations, for instance, to pass parameters of functions 1700 calls, and to store results of particular instructions. There are two types 1701 of pre-colored registers: the ones <i>implicitly</i> defined, and 1702 those <i>explicitly</i> defined. Explicitly defined registers are normal 1703 operands, and can be accessed 1704 with <tt>MachineInstr::getOperand(int)::getReg()</tt>. In order to check 1705 which registers are implicitly defined by an instruction, use 1706 the <tt>TargetInstrInfo::get(opcode)::ImplicitDefs</tt>, 1707 where <tt>opcode</tt> is the opcode of the target instruction. One important 1708 difference between explicit and implicit physical registers is that the 1709 latter are defined statically for each instruction, whereas the former may 1710 vary depending on the program being compiled. For example, an instruction 1711 that represents a function call will always implicitly define or use the same 1712 set of physical registers. To read the registers implicitly used by an 1713 instruction, 1714 use <tt>TargetInstrInfo::get(opcode)::ImplicitUses</tt>. Pre-colored 1715 registers impose constraints on any register allocation algorithm. The 1716 register allocator must make sure that none of them are overwritten by 1717 the values of virtual registers while still alive.</p> 1718 1719 </div> 1720 1721 <!-- _______________________________________________________________________ --> 1722 1723 <h4> 1724 <a name="regAlloc_howTo">Mapping virtual registers to physical registers</a> 1725 </h4> 1726 1727 <div> 1728 1729 <p>There are two ways to map virtual registers to physical registers (or to 1730 memory slots). The first way, that we will call <i>direct mapping</i>, is 1731 based on the use of methods of the classes <tt>TargetRegisterInfo</tt>, 1732 and <tt>MachineOperand</tt>. The second way, that we will call <i>indirect 1733 mapping</i>, relies on the <tt>VirtRegMap</tt> class in order to insert loads 1734 and stores sending and getting values to and from memory.</p> 1735 1736 <p>The direct mapping provides more flexibility to the developer of the register 1737 allocator; however, it is more error prone, and demands more implementation 1738 work. Basically, the programmer will have to specify where load and store 1739 instructions should be inserted in the target function being compiled in 1740 order to get and store values in memory. To assign a physical register to a 1741 virtual register present in a given operand, 1742 use <tt>MachineOperand::setReg(p_reg)</tt>. To insert a store instruction, 1743 use <tt>TargetInstrInfo::storeRegToStackSlot(...)</tt>, and to insert a 1744 load instruction, use <tt>TargetInstrInfo::loadRegFromStackSlot</tt>.</p> 1745 1746 <p>The indirect mapping shields the application developer from the complexities 1747 of inserting load and store instructions. In order to map a virtual register 1748 to a physical one, use <tt>VirtRegMap::assignVirt2Phys(vreg, preg)</tt>. In 1749 order to map a certain virtual register to memory, 1750 use <tt>VirtRegMap::assignVirt2StackSlot(vreg)</tt>. This method will return 1751 the stack slot where <tt>vreg</tt>'s value will be located. If it is 1752 necessary to map another virtual register to the same stack slot, 1753 use <tt>VirtRegMap::assignVirt2StackSlot(vreg, stack_location)</tt>. One 1754 important point to consider when using the indirect mapping, is that even if 1755 a virtual register is mapped to memory, it still needs to be mapped to a 1756 physical register. This physical register is the location where the virtual 1757 register is supposed to be found before being stored or after being 1758 reloaded.</p> 1759 1760 <p>If the indirect strategy is used, after all the virtual registers have been 1761 mapped to physical registers or stack slots, it is necessary to use a spiller 1762 object to place load and store instructions in the code. Every virtual that 1763 has been mapped to a stack slot will be stored to memory after been defined 1764 and will be loaded before being used. The implementation of the spiller tries 1765 to recycle load/store instructions, avoiding unnecessary instructions. For an 1766 example of how to invoke the spiller, 1767 see <tt>RegAllocLinearScan::runOnMachineFunction</tt> 1768 in <tt>lib/CodeGen/RegAllocLinearScan.cpp</tt>.</p> 1769 1770 </div> 1771 1772 <!-- _______________________________________________________________________ --> 1773 <h4> 1774 <a name="regAlloc_twoAddr">Handling two address instructions</a> 1775 </h4> 1776 1777 <div> 1778 1779 <p>With very rare exceptions (e.g., function calls), the LLVM machine code 1780 instructions are three address instructions. That is, each instruction is 1781 expected to define at most one register, and to use at most two registers. 1782 However, some architectures use two address instructions. In this case, the 1783 defined register is also one of the used register. For instance, an 1784 instruction such as <tt>ADD %EAX, %EBX</tt>, in X86 is actually equivalent 1785 to <tt>%EAX = %EAX + %EBX</tt>.</p> 1786 1787 <p>In order to produce correct code, LLVM must convert three address 1788 instructions that represent two address instructions into true two address 1789 instructions. LLVM provides the pass <tt>TwoAddressInstructionPass</tt> for 1790 this specific purpose. It must be run before register allocation takes 1791 place. After its execution, the resulting code may no longer be in SSA 1792 form. This happens, for instance, in situations where an instruction such 1793 as <tt>%a = ADD %b %c</tt> is converted to two instructions such as:</p> 1794 1795 <div class="doc_code"> 1796 <pre> 1797 %a = MOVE %b 1798 %a = ADD %a %c 1799 </pre> 1800 </div> 1801 1802 <p>Notice that, internally, the second instruction is represented as 1803 <tt>ADD %a[def/use] %c</tt>. I.e., the register operand <tt>%a</tt> is both 1804 used and defined by the instruction.</p> 1805 1806 </div> 1807 1808 <!-- _______________________________________________________________________ --> 1809 <h4> 1810 <a name="regAlloc_ssaDecon">The SSA deconstruction phase</a> 1811 </h4> 1812 1813 <div> 1814 1815 <p>An important transformation that happens during register allocation is called 1816 the <i>SSA Deconstruction Phase</i>. The SSA form simplifies many analyses 1817 that are performed on the control flow graph of programs. However, 1818 traditional instruction sets do not implement PHI instructions. Thus, in 1819 order to generate executable code, compilers must replace PHI instructions 1820 with other instructions that preserve their semantics.</p> 1821 1822 <p>There are many ways in which PHI instructions can safely be removed from the 1823 target code. The most traditional PHI deconstruction algorithm replaces PHI 1824 instructions with copy instructions. That is the strategy adopted by 1825 LLVM. The SSA deconstruction algorithm is implemented 1826 in <tt>lib/CodeGen/PHIElimination.cpp</tt>. In order to invoke this pass, the 1827 identifier <tt>PHIEliminationID</tt> must be marked as required in the code 1828 of the register allocator.</p> 1829 1830 </div> 1831 1832 <!-- _______________________________________________________________________ --> 1833 <h4> 1834 <a name="regAlloc_fold">Instruction folding</a> 1835 </h4> 1836 1837 <div> 1838 1839 <p><i>Instruction folding</i> is an optimization performed during register 1840 allocation that removes unnecessary copy instructions. For instance, a 1841 sequence of instructions such as:</p> 1842 1843 <div class="doc_code"> 1844 <pre> 1845 %EBX = LOAD %mem_address 1846 %EAX = COPY %EBX 1847 </pre> 1848 </div> 1849 1850 <p>can be safely substituted by the single instruction:</p> 1851 1852 <div class="doc_code"> 1853 <pre> 1854 %EAX = LOAD %mem_address 1855 </pre> 1856 </div> 1857 1858 <p>Instructions can be folded with 1859 the <tt>TargetRegisterInfo::foldMemoryOperand(...)</tt> method. Care must be 1860 taken when folding instructions; a folded instruction can be quite different 1861 from the original 1862 instruction. See <tt>LiveIntervals::addIntervalsForSpills</tt> 1863 in <tt>lib/CodeGen/LiveIntervalAnalysis.cpp</tt> for an example of its 1864 use.</p> 1865 1866 </div> 1867 1868 <!-- _______________________________________________________________________ --> 1869 1870 <h4> 1871 <a name="regAlloc_builtIn">Built in register allocators</a> 1872 </h4> 1873 1874 <div> 1875 1876 <p>The LLVM infrastructure provides the application developer with three 1877 different register allocators:</p> 1878 1879 <ul> 1880 <li><i>Fast</i> — This register allocator is the default for debug 1881 builds. It allocates registers on a basic block level, attempting to keep 1882 values in registers and reusing registers as appropriate.</li> 1883 1884 <li><i>Basic</i> — This is an incremental approach to register 1885 allocation. Live ranges are assigned to registers one at a time in 1886 an order that is driven by heuristics. Since code can be rewritten 1887 on-the-fly during allocation, this framework allows interesting 1888 allocators to be developed as extensions. It is not itself a 1889 production register allocator but is a potentially useful 1890 stand-alone mode for triaging bugs and as a performance baseline. 1891 1892 <li><i>Greedy</i> — <i>The default allocator</i>. This is a 1893 highly tuned implementation of the <i>Basic</i> allocator that 1894 incorporates global live range splitting. This allocator works hard 1895 to minimize the cost of spill code. 1896 1897 <li><i>PBQP</i> — A Partitioned Boolean Quadratic Programming (PBQP) 1898 based register allocator. This allocator works by constructing a PBQP 1899 problem representing the register allocation problem under consideration, 1900 solving this using a PBQP solver, and mapping the solution back to a 1901 register assignment.</li> 1902 </ul> 1903 1904 <p>The type of register allocator used in <tt>llc</tt> can be chosen with the 1905 command line option <tt>-regalloc=...</tt>:</p> 1906 1907 <div class="doc_code"> 1908 <pre> 1909 $ llc -regalloc=linearscan file.bc -o ln.s; 1910 $ llc -regalloc=fast file.bc -o fa.s; 1911 $ llc -regalloc=pbqp file.bc -o pbqp.s; 1912 </pre> 1913 </div> 1914 1915 </div> 1916 1917 </div> 1918 1919 <!-- ======================================================================= --> 1920 <h3> 1921 <a name="proepicode">Prolog/Epilog Code Insertion</a> 1922 </h3> 1923 1924 <div> 1925 1926 <!-- _______________________________________________________________________ --> 1927 <h4> 1928 <a name="compact_unwind">Compact Unwind</a> 1929 </h4> 1930 1931 <div> 1932 1933 <p>Throwing an exception requires <em>unwinding</em> out of a function. The 1934 information on how to unwind a given function is traditionally expressed in 1935 DWARF unwind (a.k.a. frame) info. But that format was originally developed 1936 for debuggers to backtrace, and each Frame Description Entry (FDE) requires 1937 ~20-30 bytes per function. There is also the cost of mapping from an address 1938 in a function to the corresponding FDE at runtime. An alternative unwind 1939 encoding is called <em>compact unwind</em> and requires just 4-bytes per 1940 function.</p> 1941 1942 <p>The compact unwind encoding is a 32-bit value, which is encoded in an 1943 architecture-specific way. It specifies which registers to restore and from 1944 where, and how to unwind out of the function. When the linker creates a final 1945 linked image, it will create a <code>__TEXT,__unwind_info</code> 1946 section. This section is a small and fast way for the runtime to access 1947 unwind info for any given function. If we emit compact unwind info for the 1948 function, that compact unwind info will be encoded in 1949 the <code>__TEXT,__unwind_info</code> section. If we emit DWARF unwind info, 1950 the <code>__TEXT,__unwind_info</code> section will contain the offset of the 1951 FDE in the <code>__TEXT,__eh_frame</code> section in the final linked 1952 image.</p> 1953 1954 <p>For X86, there are three modes for the compact unwind encoding:</p> 1955 1956 <dl> 1957 <dt><i>Function with a Frame Pointer (<code>EBP</code> or <code>RBP</code>)</i></dt> 1958 <dd><p><code>EBP/RBP</code>-based frame, where <code>EBP/RBP</code> is pushed 1959 onto the stack immediately after the return address, 1960 then <code>ESP/RSP</code> is moved to <code>EBP/RBP</code>. Thus to 1961 unwind, <code>ESP/RSP</code> is restored with the 1962 current <code>EBP/RBP</code> value, then <code>EBP/RBP</code> is restored 1963 by popping the stack, and the return is done by popping the stack once 1964 more into the PC. All non-volatile registers that need to be restored must 1965 have been saved in a small range on the stack that 1966 starts <code>EBP-4</code> to <code>EBP-1020</code> (<code>RBP-8</code> 1967 to <code>RBP-1020</code>). The offset (divided by 4 in 32-bit mode and 8 1968 in 64-bit mode) is encoded in bits 16-23 (mask: <code>0x00FF0000</code>). 1969 The registers saved are encoded in bits 0-14 1970 (mask: <code>0x00007FFF</code>) as five 3-bit entries from the following 1971 table:</p> 1972 <table border="1" cellspacing="0"> 1973 <tr> 1974 <th>Compact Number</th> 1975 <th>i386 Register</th> 1976 <th>x86-64 Regiser</th> 1977 </tr> 1978 <tr> 1979 <td>1</td> 1980 <td><code>EBX</code></td> 1981 <td><code>RBX</code></td> 1982 </tr> 1983 <tr> 1984 <td>2</td> 1985 <td><code>ECX</code></td> 1986 <td><code>R12</code></td> 1987 </tr> 1988 <tr> 1989 <td>3</td> 1990 <td><code>EDX</code></td> 1991 <td><code>R13</code></td> 1992 </tr> 1993 <tr> 1994 <td>4</td> 1995 <td><code>EDI</code></td> 1996 <td><code>R14</code></td> 1997 </tr> 1998 <tr> 1999 <td>5</td> 2000 <td><code>ESI</code></td> 2001 <td><code>R15</code></td> 2002 </tr> 2003 <tr> 2004 <td>6</td> 2005 <td><code>EBP</code></td> 2006 <td><code>RBP</code></td> 2007 </tr> 2008 </table> 2009 2010 </dd> 2011 2012 <dt><i>Frameless with a Small Constant Stack Size (<code>EBP</code> 2013 or <code>RBP</code> is not used as a frame pointer)</i></dt> 2014 <dd><p>To return, a constant (encoded in the compact unwind encoding) is added 2015 to the <code>ESP/RSP</code>. Then the return is done by popping the stack 2016 into the PC. All non-volatile registers that need to be restored must have 2017 been saved on the stack immediately after the return address. The stack 2018 size (divided by 4 in 32-bit mode and 8 in 64-bit mode) is encoded in bits 2019 16-23 (mask: <code>0x00FF0000</code>). There is a maximum stack size of 2020 1024 bytes in 32-bit mode and 2048 in 64-bit mode. The number of registers 2021 saved is encoded in bits 9-12 (mask: <code>0x00001C00</code>). Bits 0-9 2022 (mask: <code>0x000003FF</code>) contain which registers were saved and 2023 their order. (See 2024 the <code>encodeCompactUnwindRegistersWithoutFrame()</code> function 2025 in <code>lib/Target/X86FrameLowering.cpp</code> for the encoding 2026 algorithm.)</p></dd> 2027 2028 <dt><i>Frameless with a Large Constant Stack Size (<code>EBP</code> 2029 or <code>RBP</code> is not used as a frame pointer)</i></dt> 2030 <dd><p>This case is like the "Frameless with a Small Constant Stack Size" 2031 case, but the stack size is too large to encode in the compact unwind 2032 encoding. Instead it requires that the function contains "<code>subl 2033 $nnnnnn, %esp</code>" in its prolog. The compact encoding contains the 2034 offset to the <code>$nnnnnn</code> value in the function in bits 9-12 2035 (mask: <code>0x00001C00</code>).</p></dd> 2036 </dl> 2037 2038 </div> 2039 2040 </div> 2041 2042 <!-- ======================================================================= --> 2043 <h3> 2044 <a name="latemco">Late Machine Code Optimizations</a> 2045 </h3> 2046 <div><p>To Be Written</p></div> 2047 2048 <!-- ======================================================================= --> 2049 <h3> 2050 <a name="codeemit">Code Emission</a> 2051 </h3> 2052 2053 <div> 2054 2055 <p>The code emission step of code generation is responsible for lowering from 2056 the code generator abstractions (like <a 2057 href="#machinefunction">MachineFunction</a>, <a 2058 href="#machineinstr">MachineInstr</a>, etc) down 2059 to the abstractions used by the MC layer (<a href="#mcinst">MCInst</a>, 2060 <a href="#mcstreamer">MCStreamer</a>, etc). This is 2061 done with a combination of several different classes: the (misnamed) 2062 target-independent AsmPrinter class, target-specific subclasses of AsmPrinter 2063 (such as SparcAsmPrinter), and the TargetLoweringObjectFile class.</p> 2064 2065 <p>Since the MC layer works at the level of abstraction of object files, it 2066 doesn't have a notion of functions, global variables etc. Instead, it thinks 2067 about labels, directives, and instructions. A key class used at this time is 2068 the MCStreamer class. This is an abstract API that is implemented in different 2069 ways (e.g. to output a .s file, output an ELF .o file, etc) that is effectively 2070 an "assembler API". MCStreamer has one method per directive, such as EmitLabel, 2071 EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly 2072 level directives. 2073 </p> 2074 2075 <p>If you are interested in implementing a code generator for a target, there 2076 are three important things that you have to implement for your target:</p> 2077 2078 <ol> 2079 <li>First, you need a subclass of AsmPrinter for your target. This class 2080 implements the general lowering process converting MachineFunction's into MC 2081 label constructs. The AsmPrinter base class provides a number of useful methods 2082 and routines, and also allows you to override the lowering process in some 2083 important ways. You should get much of the lowering for free if you are 2084 implementing an ELF, COFF, or MachO target, because the TargetLoweringObjectFile 2085 class implements much of the common logic.</li> 2086 2087 <li>Second, you need to implement an instruction printer for your target. The 2088 instruction printer takes an <a href="#mcinst">MCInst</a> and renders it to a 2089 raw_ostream as text. Most of this is automatically generated from the .td file 2090 (when you specify something like "<tt>add $dst, $src1, $src2</tt>" in the 2091 instructions), but you need to implement routines to print operands.</li> 2092 2093 <li>Third, you need to implement code that lowers a <a 2094 href="#machineinstr">MachineInstr</a> to an MCInst, usually implemented in 2095 "<target>MCInstLower.cpp". This lowering process is often target 2096 specific, and is responsible for turning jump table entries, constant pool 2097 indices, global variable addresses, etc into MCLabels as appropriate. This 2098 translation layer is also responsible for expanding pseudo ops used by the code 2099 generator into the actual machine instructions they correspond to. The MCInsts 2100 that are generated by this are fed into the instruction printer or the encoder. 2101 </li> 2102 2103 </ol> 2104 2105 <p>Finally, at your choosing, you can also implement an subclass of 2106 MCCodeEmitter which lowers MCInst's into machine code bytes and relocations. 2107 This is important if you want to support direct .o file emission, or would like 2108 to implement an assembler for your target.</p> 2109 2110 </div> 2111 2112 <!-- ======================================================================= --> 2113 <h3> 2114 <a name="vliw_packetizer">VLIW Packetizer</a> 2115 </h3> 2116 2117 <div> 2118 2119 <p>In a Very Long Instruction Word (VLIW) architecture, the compiler is 2120 responsible for mapping instructions to functional-units available on 2121 the architecture. To that end, the compiler creates groups of instructions 2122 called <i>packets</i> or <i>bundles</i>. The VLIW packetizer in LLVM is 2123 a target-independent mechanism to enable the packetization of machine 2124 instructions.</p> 2125 2126 <!-- _______________________________________________________________________ --> 2127 2128 <h4> 2129 <a name="vliw_mapping">Mapping from instructions to functional units</a> 2130 </h4> 2131 2132 <div> 2133 2134 <p>Instructions in a VLIW target can typically be mapped to multiple functional 2135 units. During the process of packetizing, the compiler must be able to reason 2136 about whether an instruction can be added to a packet. This decision can be 2137 complex since the compiler has to examine all possible mappings of instructions 2138 to functional units. Therefore to alleviate compilation-time complexity, the 2139 VLIW packetizer parses the instruction classes of a target and generates tables 2140 at compiler build time. These tables can then be queried by the provided 2141 machine-independent API to determine if an instruction can be accommodated in a 2142 packet.</p> 2143 </div> 2144 2145 <!-- ======================================================================= --> 2146 <h4> 2147 <a name="vliw_repr"> 2148 How the packetization tables are generated and used 2149 </a> 2150 </h4> 2151 2152 <div> 2153 2154 <p>The packetizer reads instruction classes from a target's itineraries and 2155 creates a deterministic finite automaton (DFA) to represent the state of a 2156 packet. A DFA consists of three major elements: inputs, states, and 2157 transitions. The set of inputs for the generated DFA represents the instruction 2158 being added to a packet. The states represent the possible consumption 2159 of functional units by instructions in a packet. In the DFA, transitions from 2160 one state to another occur on the addition of an instruction to an existing 2161 packet. If there is a legal mapping of functional units to instructions, then 2162 the DFA contains a corresponding transition. The absence of a transition 2163 indicates that a legal mapping does not exist and that the instruction cannot 2164 be added to the packet.</p> 2165 2166 <p>To generate tables for a VLIW target, add <i>Target</i>GenDFAPacketizer.inc 2167 as a target to the Makefile in the target directory. The exported API provides 2168 three functions: <tt>DFAPacketizer::clearResources()</tt>, 2169 <tt>DFAPacketizer::reserveResources(MachineInstr *MI)</tt>, and 2170 <tt>DFAPacketizer::canReserveResources(MachineInstr *MI)</tt>. These functions 2171 allow a target packetizer to add an instruction to an existing packet and to 2172 check whether an instruction can be added to a packet. See 2173 <tt>llvm/CodeGen/DFAPacketizer.h</tt> for more information.</p> 2174 2175 </div> 2176 2177 </div> 2178 2179 </div> 2180 2181 <!-- *********************************************************************** --> 2182 <h2> 2183 <a name="nativeassembler">Implementing a Native Assembler</a> 2184 </h2> 2185 <!-- *********************************************************************** --> 2186 2187 <div> 2188 2189 <p>Though you're probably reading this because you want to write or maintain a 2190 compiler backend, LLVM also fully supports building a native assemblers too. 2191 We've tried hard to automate the generation of the assembler from the .td files 2192 (in particular the instruction syntax and encodings), which means that a large 2193 part of the manual and repetitive data entry can be factored and shared with the 2194 compiler.</p> 2195 2196 <!-- ======================================================================= --> 2197 <h3 id="na_instparsing">Instruction Parsing</h3> 2198 2199 <div><p>To Be Written</p></div> 2200 2201 2202 <!-- ======================================================================= --> 2203 <h3 id="na_instaliases"> 2204 Instruction Alias Processing 2205 </h3> 2206 2207 <div> 2208 <p>Once the instruction is parsed, it enters the MatchInstructionImpl function. 2209 The MatchInstructionImpl function performs alias processing and then does 2210 actual matching.</p> 2211 2212 <p>Alias processing is the phase that canonicalizes different lexical forms of 2213 the same instructions down to one representation. There are several different 2214 kinds of alias that are possible to implement and they are listed below in the 2215 order that they are processed (which is in order from simplest/weakest to most 2216 complex/powerful). Generally you want to use the first alias mechanism that 2217 meets the needs of your instruction, because it will allow a more concise 2218 description.</p> 2219 2220 <!-- _______________________________________________________________________ --> 2221 <h4>Mnemonic Aliases</h4> 2222 2223 <div> 2224 2225 <p>The first phase of alias processing is simple instruction mnemonic 2226 remapping for classes of instructions which are allowed with two different 2227 mnemonics. This phase is a simple and unconditionally remapping from one input 2228 mnemonic to one output mnemonic. It isn't possible for this form of alias to 2229 look at the operands at all, so the remapping must apply for all forms of a 2230 given mnemonic. Mnemonic aliases are defined simply, for example X86 has: 2231 </p> 2232 2233 <div class="doc_code"> 2234 <pre> 2235 def : MnemonicAlias<"cbw", "cbtw">; 2236 def : MnemonicAlias<"smovq", "movsq">; 2237 def : MnemonicAlias<"fldcww", "fldcw">; 2238 def : MnemonicAlias<"fucompi", "fucomip">; 2239 def : MnemonicAlias<"ud2a", "ud2">; 2240 </pre> 2241 </div> 2242 2243 <p>... and many others. With a MnemonicAlias definition, the mnemonic is 2244 remapped simply and directly. Though MnemonicAlias's can't look at any aspect 2245 of the instruction (such as the operands) they can depend on global modes (the 2246 same ones supported by the matcher), through a Requires clause:</p> 2247 2248 <div class="doc_code"> 2249 <pre> 2250 def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; 2251 def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; 2252 </pre> 2253 </div> 2254 2255 <p>In this example, the mnemonic gets mapped into different a new one depending 2256 on the current instruction set.</p> 2257 2258 </div> 2259 2260 <!-- _______________________________________________________________________ --> 2261 <h4>Instruction Aliases</h4> 2262 2263 <div> 2264 2265 <p>The most general phase of alias processing occurs while matching is 2266 happening: it provides new forms for the matcher to match along with a specific 2267 instruction to generate. An instruction alias has two parts: the string to 2268 match and the instruction to generate. For example: 2269 </p> 2270 2271 <div class="doc_code"> 2272 <pre> 2273 def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8 :$src)>; 2274 def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>; 2275 def : InstAlias<"movsx $src, $dst", (MOVSX32rr8 GR32:$dst, GR8 :$src)>; 2276 def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)>; 2277 def : InstAlias<"movsx $src, $dst", (MOVSX64rr8 GR64:$dst, GR8 :$src)>; 2278 def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)>; 2279 def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)>; 2280 </pre> 2281 </div> 2282 2283 <p>This shows a powerful example of the instruction aliases, matching the 2284 same mnemonic in multiple different ways depending on what operands are present 2285 in the assembly. The result of instruction aliases can include operands in a 2286 different order than the destination instruction, and can use an input 2287 multiple times, for example:</p> 2288 2289 <div class="doc_code"> 2290 <pre> 2291 def : InstAlias<"clrb $reg", (XOR8rr GR8 :$reg, GR8 :$reg)>; 2292 def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>; 2293 def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>; 2294 def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>; 2295 </pre> 2296 </div> 2297 2298 <p>This example also shows that tied operands are only listed once. In the X86 2299 backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied 2300 to the output). InstAliases take a flattened operand list without duplicates 2301 for tied operands. The result of an instruction alias can also use immediates 2302 and fixed physical registers which are added as simple immediate operands in the 2303 result, for example:</p> 2304 2305 <div class="doc_code"> 2306 <pre> 2307 // Fixed Immediate operand. 2308 def : InstAlias<"aad", (AAD8i8 10)>; 2309 2310 // Fixed register operand. 2311 def : InstAlias<"fcomi", (COM_FIr ST1)>; 2312 2313 // Simple alias. 2314 def : InstAlias<"fcomi $reg", (COM_FIr RST:$reg)>; 2315 </pre> 2316 </div> 2317 2318 2319 <p>Instruction aliases can also have a Requires clause to make them 2320 subtarget specific.</p> 2321 2322 <p>If the back-end supports it, the instruction printer can automatically emit 2323 the alias rather than what's being aliased. It typically leads to better, 2324 more readable code. If it's better to print out what's being aliased, then 2325 pass a '0' as the third parameter to the InstAlias definition.</p> 2326 2327 </div> 2328 2329 </div> 2330 2331 <!-- ======================================================================= --> 2332 <h3 id="na_matching">Instruction Matching</h3> 2333 2334 <div><p>To Be Written</p></div> 2335 2336 </div> 2337 2338 <!-- *********************************************************************** --> 2339 <h2> 2340 <a name="targetimpls">Target-specific Implementation Notes</a> 2341 </h2> 2342 <!-- *********************************************************************** --> 2343 2344 <div> 2345 2346 <p>This section of the document explains features or design decisions that are 2347 specific to the code generator for a particular target. First we start 2348 with a table that summarizes what features are supported by each target.</p> 2349 2350 <!-- ======================================================================= --> 2351 <h3> 2352 <a name="targetfeatures">Target Feature Matrix</a> 2353 </h3> 2354 2355 <div> 2356 2357 <p>Note that this table does not include the C backend or Cpp backends, since 2358 they do not use the target independent code generator infrastructure. It also 2359 doesn't list features that are not supported fully by any target yet. It 2360 considers a feature to be supported if at least one subtarget supports it. A 2361 feature being supported means that it is useful and works for most cases, it 2362 does not indicate that there are zero known bugs in the implementation. Here 2363 is the key:</p> 2364 2365 2366 <table border="1" cellspacing="0"> 2367 <tr> 2368 <th>Unknown</th> 2369 <th>No support</th> 2370 <th>Partial Support</th> 2371 <th>Complete Support</th> 2372 </tr> 2373 <tr> 2374 <td class="unknown"></td> 2375 <td class="no"></td> 2376 <td class="partial"></td> 2377 <td class="yes"></td> 2378 </tr> 2379 </table> 2380 2381 <p>Here is the table:</p> 2382 2383 <table width="689" border="1" cellspacing="0"> 2384 <tr><td></td> 2385 <td colspan="13" align="center" style="background-color:#ffc">Target</td> 2386 </tr> 2387 <tr> 2388 <th>Feature</th> 2389 <th>ARM</th> 2390 <th>CellSPU</th> 2391 <th>Hexagon</th> 2392 <th>MBlaze</th> 2393 <th>MSP430</th> 2394 <th>Mips</th> 2395 <th>PTX</th> 2396 <th>PowerPC</th> 2397 <th>Sparc</th> 2398 <th>X86</th> 2399 <th>XCore</th> 2400 </tr> 2401 2402 <tr> 2403 <td><a href="#feat_reliable">is generally reliable</a></td> 2404 <td class="yes"></td> <!-- ARM --> 2405 <td class="no"></td> <!-- CellSPU --> 2406 <td class="yes"></td> <!-- Hexagon --> 2407 <td class="no"></td> <!-- MBlaze --> 2408 <td class="unknown"></td> <!-- MSP430 --> 2409 <td class="yes"></td> <!-- Mips --> 2410 <td class="no"></td> <!-- PTX --> 2411 <td class="yes"></td> <!-- PowerPC --> 2412 <td class="yes"></td> <!-- Sparc --> 2413 <td class="yes"></td> <!-- X86 --> 2414 <td class="unknown"></td> <!-- XCore --> 2415 </tr> 2416 2417 <tr> 2418 <td><a href="#feat_asmparser">assembly parser</a></td> 2419 <td class="no"></td> <!-- ARM --> 2420 <td class="no"></td> <!-- CellSPU --> 2421 <td class="no"></td> <!-- Hexagon --> 2422 <td class="yes"></td> <!-- MBlaze --> 2423 <td class="no"></td> <!-- MSP430 --> 2424 <td class="no"></td> <!-- Mips --> 2425 <td class="no"></td> <!-- PTX --> 2426 <td class="no"></td> <!-- PowerPC --> 2427 <td class="no"></td> <!-- Sparc --> 2428 <td class="yes"></td> <!-- X86 --> 2429 <td class="no"></td> <!-- XCore --> 2430 </tr> 2431 2432 <tr> 2433 <td><a href="#feat_disassembler">disassembler</a></td> 2434 <td class="yes"></td> <!-- ARM --> 2435 <td class="no"></td> <!-- CellSPU --> 2436 <td class="no"></td> <!-- Hexagon --> 2437 <td class="yes"></td> <!-- MBlaze --> 2438 <td class="no"></td> <!-- MSP430 --> 2439 <td class="no"></td> <!-- Mips --> 2440 <td class="no"></td> <!-- PTX --> 2441 <td class="no"></td> <!-- PowerPC --> 2442 <td class="no"></td> <!-- Sparc --> 2443 <td class="yes"></td> <!-- X86 --> 2444 <td class="no"></td> <!-- XCore --> 2445 </tr> 2446 2447 <tr> 2448 <td><a href="#feat_inlineasm">inline asm</a></td> 2449 <td class="yes"></td> <!-- ARM --> 2450 <td class="no"></td> <!-- CellSPU --> 2451 <td class="yes"></td> <!-- Hexagon --> 2452 <td class="yes"></td> <!-- MBlaze --> 2453 <td class="unknown"></td> <!-- MSP430 --> 2454 <td class="no"></td> <!-- Mips --> 2455 <td class="unknown"></td> <!-- PTX --> 2456 <td class="yes"></td> <!-- PowerPC --> 2457 <td class="unknown"></td> <!-- Sparc --> 2458 <td class="yes"></td> <!-- X86 --> 2459 <td class="unknown"></td> <!-- XCore --> 2460 </tr> 2461 2462 <tr> 2463 <td><a href="#feat_jit">jit</a></td> 2464 <td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM --> 2465 <td class="no"></td> <!-- CellSPU --> 2466 <td class="no"></td> <!-- Hexagon --> 2467 <td class="no"></td> <!-- MBlaze --> 2468 <td class="unknown"></td> <!-- MSP430 --> 2469 <td class="yes"></td> <!-- Mips --> 2470 <td class="unknown"></td> <!-- PTX --> 2471 <td class="yes"></td> <!-- PowerPC --> 2472 <td class="unknown"></td> <!-- Sparc --> 2473 <td class="yes"></td> <!-- X86 --> 2474 <td class="unknown"></td> <!-- XCore --> 2475 </tr> 2476 2477 <tr> 2478 <td><a href="#feat_objectwrite">.o file writing</a></td> 2479 <td class="no"></td> <!-- ARM --> 2480 <td class="no"></td> <!-- CellSPU --> 2481 <td class="no"></td> <!-- Hexagon --> 2482 <td class="yes"></td> <!-- MBlaze --> 2483 <td class="no"></td> <!-- MSP430 --> 2484 <td class="no"></td> <!-- Mips --> 2485 <td class="no"></td> <!-- PTX --> 2486 <td class="no"></td> <!-- PowerPC --> 2487 <td class="no"></td> <!-- Sparc --> 2488 <td class="yes"></td> <!-- X86 --> 2489 <td class="no"></td> <!-- XCore --> 2490 </tr> 2491 2492 <tr> 2493 <td><a href="#feat_tailcall">tail calls</a></td> 2494 <td class="yes"></td> <!-- ARM --> 2495 <td class="no"></td> <!-- CellSPU --> 2496 <td class="yes"></td> <!-- Hexagon --> 2497 <td class="no"></td> <!-- MBlaze --> 2498 <td class="unknown"></td> <!-- MSP430 --> 2499 <td class="no"></td> <!-- Mips --> 2500 <td class="unknown"></td> <!-- PTX --> 2501 <td class="yes"></td> <!-- PowerPC --> 2502 <td class="unknown"></td> <!-- Sparc --> 2503 <td class="yes"></td> <!-- X86 --> 2504 <td class="unknown"></td> <!-- XCore --> 2505 </tr> 2506 2507 <tr> 2508 <td><a href="#feat_segstacks">segmented stacks</a></td> 2509 <td class="no"></td> <!-- ARM --> 2510 <td class="no"></td> <!-- CellSPU --> 2511 <td class="no"></td> <!-- Hexagon --> 2512 <td class="no"></td> <!-- MBlaze --> 2513 <td class="no"></td> <!-- MSP430 --> 2514 <td class="no"></td> <!-- Mips --> 2515 <td class="no"></td> <!-- PTX --> 2516 <td class="no"></td> <!-- PowerPC --> 2517 <td class="no"></td> <!-- Sparc --> 2518 <td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 --> 2519 <td class="no"></td> <!-- XCore --> 2520 </tr> 2521 2522 2523 </table> 2524 2525 <!-- _______________________________________________________________________ --> 2526 <h4 id="feat_reliable">Is Generally Reliable</h4> 2527 2528 <div> 2529 <p>This box indicates whether the target is considered to be production quality. 2530 This indicates that the target has been used as a static compiler to 2531 compile large amounts of code by a variety of different people and is in 2532 continuous use.</p> 2533 </div> 2534 2535 <!-- _______________________________________________________________________ --> 2536 <h4 id="feat_asmparser">Assembly Parser</h4> 2537 2538 <div> 2539 <p>This box indicates whether the target supports parsing target specific .s 2540 files by implementing the MCAsmParser interface. This is required for llvm-mc 2541 to be able to act as a native assembler and is required for inline assembly 2542 support in the native .o file writer.</p> 2543 2544 </div> 2545 2546 2547 <!-- _______________________________________________________________________ --> 2548 <h4 id="feat_disassembler">Disassembler</h4> 2549 2550 <div> 2551 <p>This box indicates whether the target supports the MCDisassembler API for 2552 disassembling machine opcode bytes into MCInst's.</p> 2553 2554 </div> 2555 2556 <!-- _______________________________________________________________________ --> 2557 <h4 id="feat_inlineasm">Inline Asm</h4> 2558 2559 <div> 2560 <p>This box indicates whether the target supports most popular inline assembly 2561 constraints and modifiers.</p> 2562 2563 </div> 2564 2565 <!-- _______________________________________________________________________ --> 2566 <h4 id="feat_jit">JIT Support</h4> 2567 2568 <div> 2569 <p>This box indicates whether the target supports the JIT compiler through 2570 the ExecutionEngine interface.</p> 2571 2572 <p id="feat_jit_arm">The ARM backend has basic support for integer code 2573 in ARM codegen mode, but lacks NEON and full Thumb support.</p> 2574 2575 </div> 2576 2577 <!-- _______________________________________________________________________ --> 2578 <h4 id="feat_objectwrite">.o File Writing</h4> 2579 2580 <div> 2581 2582 <p>This box indicates whether the target supports writing .o files (e.g. MachO, 2583 ELF, and/or COFF) files directly from the target. Note that the target also 2584 must include an assembly parser and general inline assembly support for full 2585 inline assembly support in the .o writer.</p> 2586 2587 <p>Targets that don't support this feature can obviously still write out .o 2588 files, they just rely on having an external assembler to translate from a .s 2589 file to a .o file (as is the case for many C compilers).</p> 2590 2591 </div> 2592 2593 <!-- _______________________________________________________________________ --> 2594 <h4 id="feat_tailcall">Tail Calls</h4> 2595 2596 <div> 2597 2598 <p>This box indicates whether the target supports guaranteed tail calls. These 2599 are calls marked "<a href="LangRef.html#i_call">tail</a>" and use the fastcc 2600 calling convention. Please see the <a href="#tailcallopt">tail call section 2601 more more details</a>.</p> 2602 2603 </div> 2604 2605 <!-- _______________________________________________________________________ --> 2606 <h4 id="feat_segstacks">Segmented Stacks</h4> 2607 2608 <div> 2609 2610 <p>This box indicates whether the target supports segmented stacks. This 2611 replaces the traditional large C stack with many linked segments. It 2612 is compatible with the <a href="http://gcc.gnu.org/wiki/SplitStacks">gcc 2613 implementation</a> used by the Go front end.</p> 2614 2615 <p id="feat_segstacks_x86">Basic support exists on the X86 backend. Currently 2616 vararg doesn't work and the object files are not marked the way the gold 2617 linker expects, but simple Go programs can be built by dragonegg.</p> 2618 2619 </div> 2620 2621 </div> 2622 2623 <!-- ======================================================================= --> 2624 <h3> 2625 <a name="tailcallopt">Tail call optimization</a> 2626 </h3> 2627 2628 <div> 2629 2630 <p>Tail call optimization, callee reusing the stack of the caller, is currently 2631 supported on x86/x86-64 and PowerPC. It is performed if:</p> 2632 2633 <ul> 2634 <li>Caller and callee have the calling convention <tt>fastcc</tt> or 2635 <tt>cc 10</tt> (GHC call convention).</li> 2636 2637 <li>The call is a tail call - in tail position (ret immediately follows call 2638 and ret uses value of call or is void).</li> 2639 2640 <li>Option <tt>-tailcallopt</tt> is enabled.</li> 2641 2642 <li>Platform specific constraints are met.</li> 2643 </ul> 2644 2645 <p>x86/x86-64 constraints:</p> 2646 2647 <ul> 2648 <li>No variable argument lists are used.</li> 2649 2650 <li>On x86-64 when generating GOT/PIC code only module-local calls (visibility 2651 = hidden or protected) are supported.</li> 2652 </ul> 2653 2654 <p>PowerPC constraints:</p> 2655 2656 <ul> 2657 <li>No variable argument lists are used.</li> 2658 2659 <li>No byval parameters are used.</li> 2660 2661 <li>On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected) are supported.</li> 2662 </ul> 2663 2664 <p>Example:</p> 2665 2666 <p>Call as <tt>llc -tailcallopt test.ll</tt>.</p> 2667 2668 <div class="doc_code"> 2669 <pre> 2670 declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4) 2671 2672 define fastcc i32 @tailcaller(i32 %in1, i32 %in2) { 2673 %l1 = add i32 %in1, %in2 2674 %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1) 2675 ret i32 %tmp 2676 } 2677 </pre> 2678 </div> 2679 2680 <p>Implications of <tt>-tailcallopt</tt>:</p> 2681 2682 <p>To support tail call optimization in situations where the callee has more 2683 arguments than the caller a 'callee pops arguments' convention is used. This 2684 currently causes each <tt>fastcc</tt> call that is not tail call optimized 2685 (because one or more of above constraints are not met) to be followed by a 2686 readjustment of the stack. So performance might be worse in such cases.</p> 2687 2688 </div> 2689 <!-- ======================================================================= --> 2690 <h3> 2691 <a name="sibcallopt">Sibling call optimization</a> 2692 </h3> 2693 2694 <div> 2695 2696 <p>Sibling call optimization is a restricted form of tail call optimization. 2697 Unlike tail call optimization described in the previous section, it can be 2698 performed automatically on any tail calls when <tt>-tailcallopt</tt> option 2699 is not specified.</p> 2700 2701 <p>Sibling call optimization is currently performed on x86/x86-64 when the 2702 following constraints are met:</p> 2703 2704 <ul> 2705 <li>Caller and callee have the same calling convention. It can be either 2706 <tt>c</tt> or <tt>fastcc</tt>. 2707 2708 <li>The call is a tail call - in tail position (ret immediately follows call 2709 and ret uses value of call or is void).</li> 2710 2711 <li>Caller and callee have matching return type or the callee result is not 2712 used. 2713 2714 <li>If any of the callee arguments are being passed in stack, they must be 2715 available in caller's own incoming argument stack and the frame offsets 2716 must be the same. 2717 </ul> 2718 2719 <p>Example:</p> 2720 <div class="doc_code"> 2721 <pre> 2722 declare i32 @bar(i32, i32) 2723 2724 define i32 @foo(i32 %a, i32 %b, i32 %c) { 2725 entry: 2726 %0 = tail call i32 @bar(i32 %a, i32 %b) 2727 ret i32 %0 2728 } 2729 </pre> 2730 </div> 2731 2732 </div> 2733 <!-- ======================================================================= --> 2734 <h3> 2735 <a name="x86">The X86 backend</a> 2736 </h3> 2737 2738 <div> 2739 2740 <p>The X86 code generator lives in the <tt>lib/Target/X86</tt> directory. This 2741 code generator is capable of targeting a variety of x86-32 and x86-64 2742 processors, and includes support for ISA extensions such as MMX and SSE.</p> 2743 2744 <!-- _______________________________________________________________________ --> 2745 <h4> 2746 <a name="x86_tt">X86 Target Triples supported</a> 2747 </h4> 2748 2749 <div> 2750 2751 <p>The following are the known target triples that are supported by the X86 2752 backend. This is not an exhaustive list, and it would be useful to add those 2753 that people test.</p> 2754 2755 <ul> 2756 <li><b>i686-pc-linux-gnu</b> — Linux</li> 2757 2758 <li><b>i386-unknown-freebsd5.3</b> — FreeBSD 5.3</li> 2759 2760 <li><b>i686-pc-cygwin</b> — Cygwin on Win32</li> 2761 2762 <li><b>i686-pc-mingw32</b> — MingW on Win32</li> 2763 2764 <li><b>i386-pc-mingw32msvc</b> — MingW crosscompiler on Linux</li> 2765 2766 <li><b>i686-apple-darwin*</b> — Apple Darwin on X86</li> 2767 2768 <li><b>x86_64-unknown-linux-gnu</b> — Linux</li> 2769 </ul> 2770 2771 </div> 2772 2773 <!-- _______________________________________________________________________ --> 2774 <h4> 2775 <a name="x86_cc">X86 Calling Conventions supported</a> 2776 </h4> 2777 2778 2779 <div> 2780 2781 <p>The following target-specific calling conventions are known to backend:</p> 2782 2783 <ul> 2784 <li><b>x86_StdCall</b> — stdcall calling convention seen on Microsoft 2785 Windows platform (CC ID = 64).</li> 2786 <li><b>x86_FastCall</b> — fastcall calling convention seen on Microsoft 2787 Windows platform (CC ID = 65).</li> 2788 <li><b>x86_ThisCall</b> — Similar to X86_StdCall. Passes first argument 2789 in ECX, others via stack. Callee is responsible for stack cleaning. This 2790 convention is used by MSVC by default for methods in its ABI 2791 (CC ID = 70).</li> 2792 </ul> 2793 2794 </div> 2795 2796 <!-- _______________________________________________________________________ --> 2797 <h4> 2798 <a name="x86_memory">Representing X86 addressing modes in MachineInstrs</a> 2799 </h4> 2800 2801 <div> 2802 2803 <p>The x86 has a very flexible way of accessing memory. It is capable of 2804 forming memory addresses of the following expression directly in integer 2805 instructions (which use ModR/M addressing):</p> 2806 2807 <div class="doc_code"> 2808 <pre> 2809 SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32 2810 </pre> 2811 </div> 2812 2813 <p>In order to represent this, LLVM tracks no less than 5 operands for each 2814 memory operand of this form. This means that the "load" form of 2815 '<tt>mov</tt>' has the following <tt>MachineOperand</tt>s in this order:</p> 2816 2817 <div class="doc_code"> 2818 <pre> 2819 Index: 0 | 1 2 3 4 5 2820 Meaning: DestReg, | BaseReg, Scale, IndexReg, Displacement Segment 2821 OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg, SignExtImm PhysReg 2822 </pre> 2823 </div> 2824 2825 <p>Stores, and all other instructions, treat the four memory operands in the 2826 same way and in the same order. If the segment register is unspecified 2827 (regno = 0), then no segment override is generated. "Lea" operations do not 2828 have a segment register specified, so they only have 4 operands for their 2829 memory reference.</p> 2830 2831 </div> 2832 2833 <!-- _______________________________________________________________________ --> 2834 <h4> 2835 <a name="x86_memory">X86 address spaces supported</a> 2836 </h4> 2837 2838 <div> 2839 2840 <p>x86 has a feature which provides 2841 the ability to perform loads and stores to different address spaces 2842 via the x86 segment registers. A segment override prefix byte on an 2843 instruction causes the instruction's memory access to go to the specified 2844 segment. LLVM address space 0 is the default address space, which includes 2845 the stack, and any unqualified memory accesses in a program. Address spaces 2846 1-255 are currently reserved for user-defined code. The GS-segment is 2847 represented by address space 256, while the FS-segment is represented by 2848 address space 257. Other x86 segments have yet to be allocated address space 2849 numbers.</p> 2850 2851 <p>While these address spaces may seem similar to TLS via the 2852 <tt>thread_local</tt> keyword, and often use the same underlying hardware, 2853 there are some fundamental differences.</p> 2854 2855 <p>The <tt>thread_local</tt> keyword applies to global variables and 2856 specifies that they are to be allocated in thread-local memory. There are 2857 no type qualifiers involved, and these variables can be pointed to with 2858 normal pointers and accessed with normal loads and stores. 2859 The <tt>thread_local</tt> keyword is target-independent at the LLVM IR 2860 level (though LLVM doesn't yet have implementations of it for some 2861 configurations).<p> 2862 2863 <p>Special address spaces, in contrast, apply to static types. Every 2864 load and store has a particular address space in its address operand type, 2865 and this is what determines which address space is accessed. 2866 LLVM ignores these special address space qualifiers on global variables, 2867 and does not provide a way to directly allocate storage in them. 2868 At the LLVM IR level, the behavior of these special address spaces depends 2869 in part on the underlying OS or runtime environment, and they are specific 2870 to x86 (and LLVM doesn't yet handle them correctly in some cases).</p> 2871 2872 <p>Some operating systems and runtime environments use (or may in the future 2873 use) the FS/GS-segment registers for various low-level purposes, so care 2874 should be taken when considering them.</p> 2875 2876 </div> 2877 2878 <!-- _______________________________________________________________________ --> 2879 <h4> 2880 <a name="x86_names">Instruction naming</a> 2881 </h4> 2882 2883 <div> 2884 2885 <p>An instruction name consists of the base name, a default operand size, and a 2886 a character per operand with an optional special size. For example:</p> 2887 2888 <div class="doc_code"> 2889 <pre> 2890 ADD8rr -> add, 8-bit register, 8-bit register 2891 IMUL16rmi -> imul, 16-bit register, 16-bit memory, 16-bit immediate 2892 IMUL16rmi8 -> imul, 16-bit register, 16-bit memory, 8-bit immediate 2893 MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory 2894 </pre> 2895 </div> 2896 2897 </div> 2898 2899 </div> 2900 2901 <!-- ======================================================================= --> 2902 <h3> 2903 <a name="ppc">The PowerPC backend</a> 2904 </h3> 2905 2906 <div> 2907 2908 <p>The PowerPC code generator lives in the lib/Target/PowerPC directory. The 2909 code generation is retargetable to several variations or <i>subtargets</i> of 2910 the PowerPC ISA; including ppc32, ppc64 and altivec.</p> 2911 2912 <!-- _______________________________________________________________________ --> 2913 <h4> 2914 <a name="ppc_abi">LLVM PowerPC ABI</a> 2915 </h4> 2916 2917 <div> 2918 2919 <p>LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC 2920 relative (PIC) or static addressing for accessing global values, so no TOC 2921 (r2) is used. Second, r31 is used as a frame pointer to allow dynamic growth 2922 of a stack frame. LLVM takes advantage of having no TOC to provide space to 2923 save the frame pointer in the PowerPC linkage area of the caller frame. 2924 Other details of PowerPC ABI can be found at <a href= 2925 "http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html" 2926 >PowerPC ABI.</a> Note: This link describes the 32 bit ABI. The 64 bit ABI 2927 is similar except space for GPRs are 8 bytes wide (not 4) and r13 is reserved 2928 for system use.</p> 2929 2930 </div> 2931 2932 <!-- _______________________________________________________________________ --> 2933 <h4> 2934 <a name="ppc_frame">Frame Layout</a> 2935 </h4> 2936 2937 <div> 2938 2939 <p>The size of a PowerPC frame is usually fixed for the duration of a 2940 function's invocation. Since the frame is fixed size, all references 2941 into the frame can be accessed via fixed offsets from the stack pointer. The 2942 exception to this is when dynamic alloca or variable sized arrays are 2943 present, then a base pointer (r31) is used as a proxy for the stack pointer 2944 and stack pointer is free to grow or shrink. A base pointer is also used if 2945 llvm-gcc is not passed the -fomit-frame-pointer flag. The stack pointer is 2946 always aligned to 16 bytes, so that space allocated for altivec vectors will 2947 be properly aligned.</p> 2948 2949 <p>An invocation frame is laid out as follows (low memory at top);</p> 2950 2951 <table class="layout"> 2952 <tr> 2953 <td>Linkage<br><br></td> 2954 </tr> 2955 <tr> 2956 <td>Parameter area<br><br></td> 2957 </tr> 2958 <tr> 2959 <td>Dynamic area<br><br></td> 2960 </tr> 2961 <tr> 2962 <td>Locals area<br><br></td> 2963 </tr> 2964 <tr> 2965 <td>Saved registers area<br><br></td> 2966 </tr> 2967 <tr style="border-style: none hidden none hidden;"> 2968 <td><br></td> 2969 </tr> 2970 <tr> 2971 <td>Previous Frame<br><br></td> 2972 </tr> 2973 </table> 2974 2975 <p>The <i>linkage</i> area is used by a callee to save special registers prior 2976 to allocating its own frame. Only three entries are relevant to LLVM. The 2977 first entry is the previous stack pointer (sp), aka link. This allows 2978 probing tools like gdb or exception handlers to quickly scan the frames in 2979 the stack. A function epilog can also use the link to pop the frame from the 2980 stack. The third entry in the linkage area is used to save the return 2981 address from the lr register. Finally, as mentioned above, the last entry is 2982 used to save the previous frame pointer (r31.) The entries in the linkage 2983 area are the size of a GPR, thus the linkage area is 24 bytes long in 32 bit 2984 mode and 48 bytes in 64 bit mode.</p> 2985 2986 <p>32 bit linkage area</p> 2987 2988 <table class="layout"> 2989 <tr> 2990 <td>0</td> 2991 <td>Saved SP (r1)</td> 2992 </tr> 2993 <tr> 2994 <td>4</td> 2995 <td>Saved CR</td> 2996 </tr> 2997 <tr> 2998 <td>8</td> 2999 <td>Saved LR</td> 3000 </tr> 3001 <tr> 3002 <td>12</td> 3003 <td>Reserved</td> 3004 </tr> 3005 <tr> 3006 <td>16</td> 3007 <td>Reserved</td> 3008 </tr> 3009 <tr> 3010 <td>20</td> 3011 <td>Saved FP (r31)</td> 3012 </tr> 3013 </table> 3014 3015 <p>64 bit linkage area</p> 3016 3017 <table class="layout"> 3018 <tr> 3019 <td>0</td> 3020 <td>Saved SP (r1)</td> 3021 </tr> 3022 <tr> 3023 <td>8</td> 3024 <td>Saved CR</td> 3025 </tr> 3026 <tr> 3027 <td>16</td> 3028 <td>Saved LR</td> 3029 </tr> 3030 <tr> 3031 <td>24</td> 3032 <td>Reserved</td> 3033 </tr> 3034 <tr> 3035 <td>32</td> 3036 <td>Reserved</td> 3037 </tr> 3038 <tr> 3039 <td>40</td> 3040 <td>Saved FP (r31)</td> 3041 </tr> 3042 </table> 3043 3044 <p>The <i>parameter area</i> is used to store arguments being passed to a callee 3045 function. Following the PowerPC ABI, the first few arguments are actually 3046 passed in registers, with the space in the parameter area unused. However, 3047 if there are not enough registers or the callee is a thunk or vararg 3048 function, these register arguments can be spilled into the parameter area. 3049 Thus, the parameter area must be large enough to store all the parameters for 3050 the largest call sequence made by the caller. The size must also be 3051 minimally large enough to spill registers r3-r10. This allows callees blind 3052 to the call signature, such as thunks and vararg functions, enough space to 3053 cache the argument registers. Therefore, the parameter area is minimally 32 3054 bytes (64 bytes in 64 bit mode.) Also note that since the parameter area is 3055 a fixed offset from the top of the frame, that a callee can access its spilt 3056 arguments using fixed offsets from the stack pointer (or base pointer.)</p> 3057 3058 <p>Combining the information about the linkage, parameter areas and alignment. A 3059 stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit 3060 mode.</p> 3061 3062 <p>The <i>dynamic area</i> starts out as size zero. If a function uses dynamic 3063 alloca then space is added to the stack, the linkage and parameter areas are 3064 shifted to top of stack, and the new space is available immediately below the 3065 linkage and parameter areas. The cost of shifting the linkage and parameter 3066 areas is minor since only the link value needs to be copied. The link value 3067 can be easily fetched by adding the original frame size to the base pointer. 3068 Note that allocations in the dynamic space need to observe 16 byte 3069 alignment.</p> 3070 3071 <p>The <i>locals area</i> is where the llvm compiler reserves space for local 3072 variables.</p> 3073 3074 <p>The <i>saved registers area</i> is where the llvm compiler spills callee 3075 saved registers on entry to the callee.</p> 3076 3077 </div> 3078 3079 <!-- _______________________________________________________________________ --> 3080 <h4> 3081 <a name="ppc_prolog">Prolog/Epilog</a> 3082 </h4> 3083 3084 <div> 3085 3086 <p>The llvm prolog and epilog are the same as described in the PowerPC ABI, with 3087 the following exceptions. Callee saved registers are spilled after the frame 3088 is created. This allows the llvm epilog/prolog support to be common with 3089 other targets. The base pointer callee saved register r31 is saved in the 3090 TOC slot of linkage area. This simplifies allocation of space for the base 3091 pointer and makes it convenient to locate programatically and during 3092 debugging.</p> 3093 3094 </div> 3095 3096 <!-- _______________________________________________________________________ --> 3097 <h4> 3098 <a name="ppc_dynamic">Dynamic Allocation</a> 3099 </h4> 3100 3101 <div> 3102 3103 <p><i>TODO - More to come.</i></p> 3104 3105 </div> 3106 3107 </div> 3108 3109 <!-- ======================================================================= --> 3110 <h3> 3111 <a name="ptx">The PTX backend</a> 3112 </h3> 3113 3114 <div> 3115 3116 <p>The PTX code generator lives in the lib/Target/PTX directory. It is 3117 currently a work-in-progress, but already supports most of the code 3118 generation functionality needed to generate correct PTX kernels for 3119 CUDA devices.</p> 3120 3121 <p>The code generator can target PTX 2.0+, and shader model 1.0+. The 3122 PTX ISA Reference Manual is used as the primary source of ISA 3123 information, though an effort is made to make the output of the code 3124 generator match the output of the NVidia nvcc compiler, whenever 3125 possible.</p> 3126 3127 <p>Code Generator Options:</p> 3128 <table border="1" cellspacing="0"> 3129 <tr> 3130 <th>Option</th> 3131 <th>Description</th> 3132 </tr> 3133 <tr> 3134 <td><code>double</code></td> 3135 <td align="left">If enabled, the map_f64_to_f32 directive is 3136 disabled in the PTX output, allowing native double-precision 3137 arithmetic</td> 3138 </tr> 3139 <tr> 3140 <td><code>no-fma</code></td> 3141 <td align="left">Disable generation of Fused-Multiply Add 3142 instructions, which may be beneficial for some devices</td> 3143 </tr> 3144 <tr> 3145 <td><code>smxy / computexy</code></td> 3146 <td align="left">Set shader model/compute capability to x.y, 3147 e.g. sm20 or compute13</td> 3148 </tr> 3149 </table> 3150 3151 <p>Working:</p> 3152 <ul> 3153 <li>Arithmetic instruction selection (including combo FMA)</li> 3154 <li>Bitwise instruction selection</li> 3155 <li>Control-flow instruction selection</li> 3156 <li>Function calls (only on SM 2.0+ and no return arguments)</li> 3157 <li>Addresses spaces (0 = global, 1 = constant, 2 = local, 4 = 3158 shared)</li> 3159 <li>Thread synchronization (bar.sync)</li> 3160 <li>Special register reads ([N]TID, [N]CTAID, PMx, CLOCK, etc.)</li> 3161 </ul> 3162 3163 <p>In Progress:</p> 3164 <ul> 3165 <li>Robust call instruction selection</li> 3166 <li>Stack frame allocation</li> 3167 <li>Device-specific instruction scheduling optimizations</li> 3168 </ul> 3169 3170 3171 </div> 3172 3173 </div> 3174 3175 <!-- *********************************************************************** --> 3176 <hr> 3177 <address> 3178 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img 3179 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> 3180 <a href="http://validator.w3.org/check/referer"><img 3181 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> 3182 3183 <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br> 3184 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br> 3185 Last modified: $Date$ 3186 </address> 3187 3188 </body> 3189 </html> 3190