Home | History | Annotate | Download | only in docs
      1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
      2                       "http://www.w3.org/TR/html4/strict.dtd">
      3 <html>
      4 <head>
      5   <meta http-equiv="Content-Type" Content="text/html; charset=UTF-8" >
      6   <title>Accurate Garbage Collection with LLVM</title>
      7   <link rel="stylesheet" href="llvm.css" type="text/css">
      8   <style type="text/css">
      9     .rowhead { text-align: left; background: inherit; }
     10     .indent { padding-left: 1em; }
     11     .optl { color: #BFBFBF; }
     12   </style>
     13 </head>
     14 <body>
     15 
     16 <h1>
     17   Accurate Garbage Collection with LLVM
     18 </h1>
     19 
     20 <ol>
     21   <li><a href="#introduction">Introduction</a>
     22     <ul>
     23     <li><a href="#feature">Goals and non-goals</a></li>
     24     </ul>
     25   </li>
     26 
     27   <li><a href="#quickstart">Getting started</a>
     28     <ul>
     29     <li><a href="#quickstart-compiler">In your compiler</a></li>
     30     <li><a href="#quickstart-runtime">In your runtime library</a></li>
     31     <li><a href="#shadow-stack">About the shadow stack</a></li>
     32     </ul>
     33   </li>
     34 
     35   <li><a href="#core">Core support</a>
     36     <ul>
     37     <li><a href="#gcattr">Specifying GC code generation:
     38       <tt>gc "..."</tt></a></li>
     39     <li><a href="#gcroot">Identifying GC roots on the stack:
     40       <tt>llvm.gcroot</tt></a></li>
     41     <li><a href="#barriers">Reading and writing references in the heap</a>
     42       <ul>
     43       <li><a href="#gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a></li>
     44       <li><a href="#gcread">Read barrier: <tt>llvm.gcread</tt></a></li>
     45       </ul>
     46     </li>
     47     </ul>
     48   </li>
     49   
     50   <li><a href="#plugin">Compiler plugin interface</a>
     51     <ul>
     52     <li><a href="#collector-algos">Overview of available features</a></li>
     53     <li><a href="#stack-map">Computing stack maps</a></li>
     54     <li><a href="#init-roots">Initializing roots to null:
     55       <tt>InitRoots</tt></a></li>
     56     <li><a href="#custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
     57       <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a></li>
     58     <li><a href="#safe-points">Generating safe points:
     59       <tt>NeededSafePoints</tt></a></li>
     60     <li><a href="#assembly">Emitting assembly code:
     61       <tt>GCMetadataPrinter</tt></a></li>
     62     </ul>
     63   </li>
     64 
     65   <li><a href="#runtime-impl">Implementing a collector runtime</a>
     66     <ul>
     67       <li><a href="#gcdescriptors">Tracing GC pointers from heap
     68       objects</a></li>
     69     </ul>
     70   </li>
     71   
     72   <li><a href="#references">References</a></li>
     73   
     74 </ol>
     75 
     76 <div class="doc_author">
     77   <p>Written by <a href="mailto:sabre (a] nondot.org">Chris Lattner</a> and
     78      Gordon Henriksen</p>
     79 </div>
     80 
     81 <!-- *********************************************************************** -->
     82 <h2>
     83   <a name="introduction">Introduction</a>
     84 </h2>
     85 <!-- *********************************************************************** -->
     86 
     87 <div>
     88 
     89 <p>Garbage collection is a widely used technique that frees the programmer from
     90 having to know the lifetimes of heap objects, making software easier to produce
     91 and maintain. Many programming languages rely on garbage collection for
     92 automatic memory management. There are two primary forms of garbage collection:
     93 conservative and accurate.</p>
     94 
     95 <p>Conservative garbage collection often does not require any special support
     96 from either the language or the compiler: it can handle non-type-safe
     97 programming languages (such as C/C++) and does not require any special
     98 information from the compiler. The
     99 <a href="http://www.hpl.hp.com/personal/Hans_Boehm/gc/">Boehm collector</a> is
    100 an example of a state-of-the-art conservative collector.</p>
    101 
    102 <p>Accurate garbage collection requires the ability to identify all pointers in
    103 the program at run-time (which requires that the source-language be type-safe in
    104 most cases). Identifying pointers at run-time requires compiler support to
    105 locate all places that hold live pointer variables at run-time, including the
    106 <a href="#gcroot">processor stack and registers</a>.</p>
    107 
    108 <p>Conservative garbage collection is attractive because it does not require any
    109 special compiler support, but it does have problems. In particular, because the
    110 conservative garbage collector cannot <i>know</i> that a particular word in the
    111 machine is a pointer, it cannot move live objects in the heap (preventing the
    112 use of compacting and generational GC algorithms) and it can occasionally suffer
    113 from memory leaks due to integer values that happen to point to objects in the
    114 program. In addition, some aggressive compiler transformations can break
    115 conservative garbage collectors (though these seem rare in practice).</p>
    116 
    117 <p>Accurate garbage collectors do not suffer from any of these problems, but
    118 they can suffer from degraded scalar optimization of the program. In particular,
    119 because the runtime must be able to identify and update all pointers active in
    120 the program, some optimizations are less effective. In practice, however, the
    121 locality and performance benefits of using aggressive garbage collection
    122 techniques dominates any low-level losses.</p>
    123 
    124 <p>This document describes the mechanisms and interfaces provided by LLVM to
    125 support accurate garbage collection.</p>
    126 
    127 <!-- ======================================================================= -->
    128 <h3>
    129   <a name="feature">Goals and non-goals</a>
    130 </h3>
    131 
    132 <div>
    133 
    134 <p>LLVM's intermediate representation provides <a href="#intrinsics">garbage
    135 collection intrinsics</a> that offer support for a broad class of
    136 collector models. For instance, the intrinsics permit:</p>
    137 
    138 <ul>
    139   <li>semi-space collectors</li>
    140   <li>mark-sweep collectors</li>
    141   <li>generational collectors</li>
    142   <li>reference counting</li>
    143   <li>incremental collectors</li>
    144   <li>concurrent collectors</li>
    145   <li>cooperative collectors</li>
    146 </ul>
    147 
    148 <p>We hope that the primitive support built into the LLVM IR is sufficient to
    149 support a broad class of garbage collected languages including Scheme, ML, Java,
    150 C#, Perl, Python, Lua, Ruby, other scripting languages, and more.</p>
    151 
    152 <p>However, LLVM does not itself provide a garbage collector&mdash;this should
    153 be part of your language's runtime library. LLVM provides a framework for
    154 compile time <a href="#plugin">code generation plugins</a>. The role of these
    155 plugins is to generate code and data structures which conforms to the <em>binary
    156 interface</em> specified by the <em>runtime library</em>. This is similar to the
    157 relationship between LLVM and DWARF debugging info, for example. The
    158 difference primarily lies in the lack of an established standard in the domain
    159 of garbage collection&mdash;thus the plugins.</p>
    160 
    161 <p>The aspects of the binary interface with which LLVM's GC support is
    162 concerned are:</p>
    163 
    164 <ul>
    165   <li>Creation of GC-safe points within code where collection is allowed to
    166       execute safely.</li>
    167   <li>Computation of the stack map. For each safe point in the code, object
    168       references within the stack frame must be identified so that the
    169       collector may traverse and perhaps update them.</li>
    170   <li>Write barriers when storing object references to the heap. These are
    171       commonly used to optimize incremental scans in generational
    172       collectors.</li>
    173   <li>Emission of read barriers when loading object references. These are
    174       useful for interoperating with concurrent collectors.</li>
    175 </ul>
    176 
    177 <p>There are additional areas that LLVM does not directly address:</p>
    178 
    179 <ul>
    180   <li>Registration of global roots with the runtime.</li>
    181   <li>Registration of stack map entries with the runtime.</li>
    182   <li>The functions used by the program to allocate memory, trigger a
    183       collection, etc.</li>
    184   <li>Computation or compilation of type maps, or registration of them with
    185       the runtime. These are used to crawl the heap for object
    186       references.</li>
    187 </ul>
    188 
    189 <p>In general, LLVM's support for GC does not include features which can be
    190 adequately addressed with other features of the IR and does not specify a
    191 particular binary interface. On the plus side, this means that you should be
    192 able to integrate LLVM with an existing runtime. On the other hand, it leaves
    193 a lot of work for the developer of a novel language. However, it's easy to get
    194 started quickly and scale up to a more sophisticated implementation as your
    195 compiler matures.</p>
    196 
    197 </div>
    198 
    199 </div>
    200 
    201 <!-- *********************************************************************** -->
    202 <h2>
    203   <a name="quickstart">Getting started</a>
    204 </h2>
    205 <!-- *********************************************************************** -->
    206 
    207 <div>
    208 
    209 <p>Using a GC with LLVM implies many things, for example:</p>
    210 
    211 <ul>
    212   <li>Write a runtime library or find an existing one which implements a GC
    213       heap.<ol>
    214     <li>Implement a memory allocator.</li>
    215     <li>Design a binary interface for the stack map, used to identify
    216         references within a stack frame on the machine stack.*</li>
    217     <li>Implement a stack crawler to discover functions on the call stack.*</li>
    218     <li>Implement a registry for global roots.</li>
    219     <li>Design a binary interface for type maps, used to identify references
    220         within heap objects.</li>
    221     <li>Implement a collection routine bringing together all of the above.</li>
    222   </ol></li>
    223   <li>Emit compatible code from your compiler.<ul>
    224     <li>Initialization in the main function.</li>
    225     <li>Use the <tt>gc "..."</tt> attribute to enable GC code generation
    226         (or <tt>F.setGC("...")</tt>).</li>
    227     <li>Use <tt>@llvm.gcroot</tt> to mark stack roots.</li>
    228     <li>Use <tt>@llvm.gcread</tt> and/or <tt>@llvm.gcwrite</tt> to
    229         manipulate GC references, if necessary.</li>
    230     <li>Allocate memory using the GC allocation routine provided by the
    231         runtime library.</li>
    232     <li>Generate type maps according to your runtime's binary interface.</li>
    233   </ul></li>
    234   <li>Write a compiler plugin to interface LLVM with the runtime library.*<ul>
    235     <li>Lower <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> to appropriate
    236         code sequences.*</li>
    237     <li>Compile LLVM's stack map to the binary form expected by the
    238         runtime.</li>
    239   </ul></li>
    240   <li>Load the plugin into the compiler. Use <tt>llc -load</tt> or link the
    241       plugin statically with your language's compiler.*</li>
    242   <li>Link program executables with the runtime.</li>
    243 </ul>
    244 
    245 <p>To help with several of these tasks (those indicated with a *), LLVM
    246 includes a highly portable, built-in ShadowStack code generator. It is compiled
    247 into <tt>llc</tt> and works even with the interpreter and C backends.</p>
    248 
    249 <!-- ======================================================================= -->
    250 <h3>
    251   <a name="quickstart-compiler">In your compiler</a>
    252 </h3>
    253 
    254 <div>
    255 
    256 <p>To turn the shadow stack on for your functions, first call:</p>
    257 
    258 <div class="doc_code"><pre
    259 >F.setGC("shadow-stack");</pre></div>
    260 
    261 <p>for each function your compiler emits. Since the shadow stack is built into
    262 LLVM, you do not need to load a plugin.</p>
    263 
    264 <p>Your compiler must also use <tt>@llvm.gcroot</tt> as documented.
    265 Don't forget to create a root for each intermediate value that is generated
    266 when evaluating an expression. In <tt>h(f(), g())</tt>, the result of
    267 <tt>f()</tt> could easily be collected if evaluating <tt>g()</tt> triggers a
    268 collection.</p>
    269 
    270 <p>There's no need to use <tt>@llvm.gcread</tt> and <tt>@llvm.gcwrite</tt> over
    271 plain <tt>load</tt> and <tt>store</tt> for now. You will need them when
    272 switching to a more advanced GC.</p>
    273 
    274 </div>
    275 
    276 <!-- ======================================================================= -->
    277 <h3>
    278   <a name="quickstart-runtime">In your runtime</a>
    279 </h3>
    280 
    281 <div>
    282 
    283 <p>The shadow stack doesn't imply a memory allocation algorithm. A semispace
    284 collector or building atop <tt>malloc</tt> are great places to start, and can
    285 be implemented with very little code.</p>
    286 
    287 <p>When it comes time to collect, however, your runtime needs to traverse the
    288 stack roots, and for this it needs to integrate with the shadow stack. Luckily,
    289 doing so is very simple. (This code is heavily commented to help you
    290 understand the data structure, but there are only 20 lines of meaningful
    291 code.)</p>
    292 
    293 <pre class="doc_code">
    294 /// @brief The map for a single function's stack frame. One of these is
    295 ///        compiled as constant data into the executable for each function.
    296 /// 
    297 /// Storage of metadata values is elided if the %metadata parameter to
    298 /// @llvm.gcroot is null.
    299 struct FrameMap {
    300   int32_t NumRoots;    //&lt; Number of roots in stack frame.
    301   int32_t NumMeta;     //&lt; Number of metadata entries. May be &lt; NumRoots.
    302   const void *Meta[0]; //&lt; Metadata for each root.
    303 };
    304 
    305 /// @brief A link in the dynamic shadow stack. One of these is embedded in the
    306 ///        stack frame of each function on the call stack.
    307 struct StackEntry {
    308   StackEntry *Next;    //&lt; Link to next stack entry (the caller's).
    309   const FrameMap *Map; //&lt; Pointer to constant FrameMap.
    310   void *Roots[0];      //&lt; Stack roots (in-place array).
    311 };
    312 
    313 /// @brief The head of the singly-linked list of StackEntries. Functions push
    314 ///        and pop onto this in their prologue and epilogue.
    315 /// 
    316 /// Since there is only a global list, this technique is not threadsafe.
    317 StackEntry *llvm_gc_root_chain;
    318 
    319 /// @brief Calls Visitor(root, meta) for each GC root on the stack.
    320 ///        root and meta are exactly the values passed to
    321 ///        <tt>@llvm.gcroot</tt>.
    322 /// 
    323 /// Visitor could be a function to recursively mark live objects. Or it
    324 /// might copy them to another heap or generation.
    325 /// 
    326 /// @param Visitor A function to invoke for every GC root on the stack.
    327 void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
    328   for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
    329     unsigned i = 0;
    330     
    331     // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
    332     for (unsigned e = R->Map->NumMeta; i != e; ++i)
    333       Visitor(&amp;R->Roots[i], R->Map->Meta[i]);
    334     
    335     // For roots [NumMeta, NumRoots), the metadata pointer is null.
    336     for (unsigned e = R->Map->NumRoots; i != e; ++i)
    337       Visitor(&amp;R->Roots[i], NULL);
    338   }
    339 }</pre>
    340 
    341 </div>
    342 
    343 <!-- ======================================================================= -->
    344 <h3>
    345   <a name="shadow-stack">About the shadow stack</a>
    346 </h3>
    347 
    348 <div>
    349 
    350 <p>Unlike many GC algorithms which rely on a cooperative code generator to
    351 compile stack maps, this algorithm carefully maintains a linked list of stack
    352 roots [<a href="#henderson02">Henderson2002</a>]. This so-called "shadow stack"
    353 mirrors the machine stack. Maintaining this data structure is slower than using
    354 a stack map compiled into the executable as constant data, but has a significant
    355 portability advantage because it requires no special support from the target
    356 code generator, and does not require tricky platform-specific code to crawl
    357 the machine stack.</p>
    358 
    359 <p>The tradeoff for this simplicity and portability is:</p>
    360 
    361 <ul>
    362   <li>High overhead per function call.</li>
    363   <li>Not thread-safe.</li>
    364 </ul>
    365 
    366 <p>Still, it's an easy way to get started. After your compiler and runtime are
    367 up and running, writing a <a href="#plugin">plugin</a> will allow you to take
    368 advantage of <a href="#collector-algos">more advanced GC features</a> of LLVM
    369 in order to improve performance.</p>
    370 
    371 </div>
    372 
    373 </div>
    374 
    375 <!-- *********************************************************************** -->
    376 <h2>
    377   <a name="core">IR features</a><a name="intrinsics"></a>
    378 </h2>
    379 <!-- *********************************************************************** -->
    380 
    381 <div>
    382 
    383 <p>This section describes the garbage collection facilities provided by the
    384 <a href="LangRef.html">LLVM intermediate representation</a>. The exact behavior
    385 of these IR features is specified by the binary interface implemented by a
    386 <a href="#plugin">code generation plugin</a>, not by this document.</p>
    387 
    388 <p>These facilities are limited to those strictly necessary; they are not
    389 intended to be a complete interface to any garbage collector. A program will
    390 need to interface with the GC library using the facilities provided by that
    391 program.</p>
    392 
    393 <!-- ======================================================================= -->
    394 <h3>
    395   <a name="gcattr">Specifying GC code generation: <tt>gc "..."</tt></a>
    396 </h3>
    397 
    398 <div>
    399 
    400 <div class="doc_code"><tt>
    401   define <i>ty</i> @<i>name</i>(...) <span style="text-decoration: underline">gc "<i>name</i>"</span> { ...
    402 </tt></div>
    403 
    404 <p>The <tt>gc</tt> function attribute is used to specify the desired GC style
    405 to the compiler. Its programmatic equivalent is the <tt>setGC</tt> method of
    406 <tt>Function</tt>.</p>
    407 
    408 <p>Setting <tt>gc "<i>name</i>"</tt> on a function triggers a search for a
    409 matching code generation plugin "<i>name</i>"; it is that plugin which defines
    410 the exact nature of the code generated to support GC. If none is found, the
    411 compiler will raise an error.</p>
    412 
    413 <p>Specifying the GC style on a per-function basis allows LLVM to link together
    414 programs that use different garbage collection algorithms (or none at all).</p>
    415 
    416 </div>
    417 
    418 <!-- ======================================================================= -->
    419 <h3>
    420   <a name="gcroot">Identifying GC roots on the stack: <tt>llvm.gcroot</tt></a>
    421 </h3>
    422 
    423 <div>
    424 
    425 <div class="doc_code"><tt>
    426   void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
    427 </tt></div>
    428 
    429 <p>The <tt>llvm.gcroot</tt> intrinsic is used to inform LLVM that a stack
    430 variable references an object on the heap and is to be tracked for garbage
    431 collection. The exact impact on generated code is specified by a <a
    432 href="#plugin">compiler plugin</a>. All calls to <tt>llvm.gcroot</tt> <b>must</b> reside
    433  inside the first basic block.</p>
    434 
    435 <p>A compiler which uses mem2reg to raise imperative code using <tt>alloca</tt>
    436 into SSA form need only add a call to <tt>@llvm.gcroot</tt> for those variables
    437 which a pointers into the GC heap.</p>
    438 
    439 <p>It is also important to mark intermediate values with <tt>llvm.gcroot</tt>.
    440 For example, consider <tt>h(f(), g())</tt>. Beware leaking the result of
    441 <tt>f()</tt> in the case that <tt>g()</tt> triggers a collection. Note, that
    442 stack variables must be initialized and marked with <tt>llvm.gcroot</tt> in
    443 function's prologue.</p>
    444 
    445 <p>The first argument <b>must</b> be a value referring to an alloca instruction
    446 or a bitcast of an alloca. The second contains a pointer to metadata that
    447 should be associated with the pointer, and <b>must</b> be a constant or global
    448 value address. If your target collector uses tags, use a null pointer for
    449 metadata.</p>
    450 
    451 <p>The <tt>%metadata</tt> argument can be used to avoid requiring heap objects
    452 to have 'isa' pointers or tag bits. [<a href="#appel89">Appel89</a>, <a
    453 href="#goldberg91">Goldberg91</a>, <a href="#tolmach94">Tolmach94</a>] If
    454 specified, its value will be tracked along with the location of the pointer in
    455 the stack frame.</p>
    456 
    457 <p>Consider the following fragment of Java code:</p>
    458 
    459 <pre class="doc_code">
    460        {
    461          Object X;   // A null-initialized reference to an object
    462          ...
    463        }
    464 </pre>
    465 
    466 <p>This block (which may be located in the middle of a function or in a loop
    467 nest), could be compiled to this LLVM code:</p>
    468 
    469 <pre class="doc_code">
    470 Entry:
    471    ;; In the entry block for the function, allocate the
    472    ;; stack space for X, which is an LLVM pointer.
    473    %X = alloca %Object*
    474    
    475    ;; Tell LLVM that the stack space is a stack root.
    476    ;; Java has type-tags on objects, so we pass null as metadata.
    477    %tmp = bitcast %Object** %X to i8**
    478    call void @llvm.gcroot(i8** %X, i8* null)
    479    ...
    480 
    481    ;; "CodeBlock" is the block corresponding to the start
    482    ;;  of the scope above.
    483 CodeBlock:
    484    ;; Java null-initializes pointers.
    485    store %Object* null, %Object** %X
    486 
    487    ...
    488 
    489    ;; As the pointer goes out of scope, store a null value into
    490    ;; it, to indicate that the value is no longer live.
    491    store %Object* null, %Object** %X
    492    ...
    493 </pre>
    494 
    495 </div>
    496 
    497 <!-- ======================================================================= -->
    498 <h3>
    499   <a name="barriers">Reading and writing references in the heap</a>
    500 </h3>
    501 
    502 <div>
    503 
    504 <p>Some collectors need to be informed when the mutator (the program that needs
    505 garbage collection) either reads a pointer from or writes a pointer to a field
    506 of a heap object. The code fragments inserted at these points are called
    507 <em>read barriers</em> and <em>write barriers</em>, respectively. The amount of
    508 code that needs to be executed is usually quite small and not on the critical
    509 path of any computation, so the overall performance impact of the barrier is
    510 tolerable.</p>
    511 
    512 <p>Barriers often require access to the <em>object pointer</em> rather than the
    513 <em>derived pointer</em> (which is a pointer to the field within the
    514 object). Accordingly, these intrinsics take both pointers as separate arguments
    515 for completeness. In this snippet, <tt>%object</tt> is the object pointer, and 
    516 <tt>%derived</tt> is the derived pointer:</p>
    517 
    518 <blockquote><pre>
    519     ;; An array type.
    520     %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
    521     ...
    522 
    523     ;; Load the object pointer from a gcroot.
    524     %object = load %class.Array** %object_addr
    525 
    526     ;; Compute the derived pointer.
    527     %derived = getelementptr %object, i32 0, i32 2, i32 %n</pre></blockquote>
    528 
    529 <p>LLVM does not enforce this relationship between the object and derived
    530 pointer (although a <a href="#plugin">plugin</a> might). However, it would be
    531 an unusual collector that violated it.</p>
    532 
    533 <p>The use of these intrinsics is naturally optional if the target GC does
    534 require the corresponding barrier. Such a GC plugin will replace the intrinsic
    535 calls with the corresponding <tt>load</tt> or <tt>store</tt> instruction if they
    536 are used.</p>
    537 
    538 <!-- ======================================================================= -->
    539 <h4>
    540   <a name="gcwrite">Write barrier: <tt>llvm.gcwrite</tt></a>
    541 </h4>
    542 
    543 <div>
    544 
    545 <div class="doc_code"><tt>
    546 void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
    547 </tt></div>
    548 
    549 <p>For write barriers, LLVM provides the <tt>llvm.gcwrite</tt> intrinsic
    550 function. It has exactly the same semantics as a non-volatile <tt>store</tt> to
    551 the derived pointer (the third argument). The exact code generated is specified
    552 by a <a href="#plugin">compiler plugin</a>.</p>
    553 
    554 <p>Many important algorithms require write barriers, including generational
    555 and concurrent collectors. Additionally, write barriers could be used to
    556 implement reference counting.</p>
    557 
    558 </div>
    559 
    560 <!-- ======================================================================= -->
    561 <h4>
    562   <a name="gcread">Read barrier: <tt>llvm.gcread</tt></a>
    563 </h4>
    564 
    565 <div>
    566 
    567 <div class="doc_code"><tt>
    568 i8* @llvm.gcread(i8* %object, i8** %derived)<br>
    569 </tt></div>
    570 
    571 <p>For read barriers, LLVM provides the <tt>llvm.gcread</tt> intrinsic function.
    572 It has exactly the same semantics as a non-volatile <tt>load</tt> from the
    573 derived pointer (the second argument). The exact code generated is specified by
    574 a <a href="#plugin">compiler plugin</a>.</p>
    575 
    576 <p>Read barriers are needed by fewer algorithms than write barriers, and may
    577 have a greater performance impact since pointer reads are more frequent than
    578 writes.</p>
    579 
    580 </div>
    581 
    582 </div>
    583 
    584 </div>
    585 
    586 <!-- *********************************************************************** -->
    587 <h2>
    588   <a name="plugin">Implementing a collector plugin</a>
    589 </h2>
    590 <!-- *********************************************************************** -->
    591 
    592 <div>
    593 
    594 <p>User code specifies which GC code generation to use with the <tt>gc</tt>
    595 function attribute or, equivalently, with the <tt>setGC</tt> method of
    596 <tt>Function</tt>.</p>
    597 
    598 <p>To implement a GC plugin, it is necessary to subclass
    599 <tt>llvm::GCStrategy</tt>, which can be accomplished in a few lines of
    600 boilerplate code. LLVM's infrastructure provides access to several important
    601 algorithms. For an uncontroversial collector, all that remains may be to
    602 compile LLVM's computed stack map to assembly code (using the binary
    603 representation expected by the runtime library). This can be accomplished in
    604 about 100 lines of code.</p>
    605 
    606 <p>This is not the appropriate place to implement a garbage collected heap or a
    607 garbage collector itself. That code should exist in the language's runtime
    608 library. The compiler plugin is responsible for generating code which
    609 conforms to the binary interface defined by library, most essentially the
    610 <a href="#stack-map">stack map</a>.</p>
    611 
    612 <p>To subclass <tt>llvm::GCStrategy</tt> and register it with the compiler:</p>
    613 
    614 <blockquote><pre>// lib/MyGC/MyGC.cpp - Example LLVM GC plugin
    615 
    616 #include "llvm/CodeGen/GCStrategy.h"
    617 #include "llvm/CodeGen/GCMetadata.h"
    618 #include "llvm/Support/Compiler.h"
    619 
    620 using namespace llvm;
    621 
    622 namespace {
    623   class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
    624   public:
    625     MyGC() {}
    626   };
    627   
    628   GCRegistry::Add&lt;MyGC&gt;
    629   X("mygc", "My bespoke garbage collector.");
    630 }</pre></blockquote>
    631 
    632 <p>This boilerplate collector does nothing. More specifically:</p>
    633 
    634 <ul>
    635   <li><tt>llvm.gcread</tt> calls are replaced with the corresponding
    636       <tt>load</tt> instruction.</li>
    637   <li><tt>llvm.gcwrite</tt> calls are replaced with the corresponding
    638       <tt>store</tt> instruction.</li>
    639   <li>No safe points are added to the code.</li>
    640   <li>The stack map is not compiled into the executable.</li>
    641 </ul>
    642 
    643 <p>Using the LLVM makefiles (like the <a
    644 href="http://llvm.org/viewvc/llvm-project/llvm/trunk/projects/sample/">sample
    645 project</a>), this code can be compiled as a plugin using a simple
    646 makefile:</p>
    647 
    648 <blockquote><pre
    649 ># lib/MyGC/Makefile
    650 
    651 LEVEL := ../..
    652 LIBRARYNAME = <var>MyGC</var>
    653 LOADABLE_MODULE = 1
    654 
    655 include $(LEVEL)/Makefile.common</pre></blockquote>
    656 
    657 <p>Once the plugin is compiled, code using it may be compiled using <tt>llc
    658 -load=<var>MyGC.so</var></tt> (though <var>MyGC.so</var> may have some other
    659 platform-specific extension):</p>
    660 
    661 <blockquote><pre
    662 >$ cat sample.ll
    663 define void @f() gc "mygc" {
    664 entry:
    665         ret void
    666 }
    667 $ llvm-as &lt; sample.ll | llc -load=MyGC.so</pre></blockquote>
    668 
    669 <p>It is also possible to statically link the collector plugin into tools, such
    670 as a language-specific compiler front-end.</p>
    671 
    672 <!-- ======================================================================= -->
    673 <h3>
    674   <a name="collector-algos">Overview of available features</a>
    675 </h3>
    676 
    677 <div>
    678 
    679 <p><tt>GCStrategy</tt> provides a range of features through which a plugin
    680 may do useful work. Some of these are callbacks, some are algorithms that can
    681 be enabled, disabled, or customized. This matrix summarizes the supported (and
    682 planned) features and correlates them with the collection techniques which
    683 typically require them.</p>
    684 
    685 <table>
    686   <tr>
    687     <th>Algorithm</th>
    688     <th>Done</th>
    689     <th>shadow stack</th>
    690     <th>refcount</th>
    691     <th>mark-sweep</th>
    692     <th>copying</th>
    693     <th>incremental</th>
    694     <th>threaded</th>
    695     <th>concurrent</th>
    696   </tr>
    697   <tr>
    698     <th class="rowhead"><a href="#stack-map">stack map</a></th>
    699     <td>&#10004;</td>
    700     <td></td>
    701     <td></td>
    702     <td>&#10008;</td>
    703     <td>&#10008;</td>
    704     <td>&#10008;</td>
    705     <td>&#10008;</td>
    706     <td>&#10008;</td>
    707   </tr>
    708   <tr>
    709     <th class="rowhead"><a href="#init-roots">initialize roots</a></th>
    710     <td>&#10004;</td>
    711     <td>&#10008;</td>
    712     <td>&#10008;</td>
    713     <td>&#10008;</td>
    714     <td>&#10008;</td>
    715     <td>&#10008;</td>
    716     <td>&#10008;</td>
    717     <td>&#10008;</td>
    718   </tr>
    719   <tr class="doc_warning">
    720     <th class="rowhead">derived pointers</th>
    721     <td>NO</td>
    722     <td></td>
    723     <td></td>
    724     <td></td>
    725     <td></td>
    726     <td></td>
    727     <td>&#10008;*</td>
    728     <td>&#10008;*</td>
    729   </tr>
    730   <tr>
    731     <th class="rowhead"><em><a href="#custom">custom lowering</a></em></th>
    732     <td>&#10004;</td>
    733     <th></th>
    734     <th></th>
    735     <th></th>
    736     <th></th>
    737     <th></th>
    738     <th></th>
    739     <th></th>
    740   </tr>
    741   <tr>
    742     <th class="rowhead indent">gcroot</th>
    743     <td>&#10004;</td>
    744     <td>&#10008;</td>
    745     <td>&#10008;</td>
    746     <td></td>
    747     <td></td>
    748     <td></td>
    749     <td></td>
    750     <td></td>
    751   </tr>
    752   <tr>
    753     <th class="rowhead indent">gcwrite</th>
    754     <td>&#10004;</td>
    755     <td></td>
    756     <td>&#10008;</td>
    757     <td></td>
    758     <td></td>
    759     <td>&#10008;</td>
    760     <td></td>
    761     <td>&#10008;</td>
    762   </tr>
    763   <tr>
    764     <th class="rowhead indent">gcread</th>
    765     <td>&#10004;</td>
    766     <td></td>
    767     <td></td>
    768     <td></td>
    769     <td></td>
    770     <td></td>
    771     <td></td>
    772     <td>&#10008;</td>
    773   </tr>
    774   <tr>
    775     <th class="rowhead"><em><a href="#safe-points">safe points</a></em></th>
    776     <td></td>
    777     <th></th>
    778     <th></th>
    779     <th></th>
    780     <th></th>
    781     <th></th>
    782     <th></th>
    783     <th></th>
    784   </tr>
    785   <tr>
    786     <th class="rowhead indent">in calls</th>
    787     <td>&#10004;</td>
    788     <td></td>
    789     <td></td>
    790     <td>&#10008;</td>
    791     <td>&#10008;</td>
    792     <td>&#10008;</td>
    793     <td>&#10008;</td>
    794     <td>&#10008;</td>
    795   </tr>
    796   <tr>
    797     <th class="rowhead indent">before calls</th>
    798     <td>&#10004;</td>
    799     <td></td>
    800     <td></td>
    801     <td></td>
    802     <td></td>
    803     <td></td>
    804     <td>&#10008;</td>
    805     <td>&#10008;</td>
    806   </tr>
    807   <tr class="doc_warning">
    808     <th class="rowhead indent">for loops</th>
    809     <td>NO</td>
    810     <td></td>
    811     <td></td>
    812     <td></td>
    813     <td></td>
    814     <td></td>
    815     <td>&#10008;</td>
    816     <td>&#10008;</td>
    817   </tr>
    818   <tr>
    819     <th class="rowhead indent">before escape</th>
    820     <td>&#10004;</td>
    821     <td></td>
    822     <td></td>
    823     <td></td>
    824     <td></td>
    825     <td></td>
    826     <td>&#10008;</td>
    827     <td>&#10008;</td>
    828   </tr>
    829   <tr class="doc_warning">
    830     <th class="rowhead">emit code at safe points</th>
    831     <td>NO</td>
    832     <td></td>
    833     <td></td>
    834     <td></td>
    835     <td></td>
    836     <td></td>
    837     <td>&#10008;</td>
    838     <td>&#10008;</td>
    839   </tr>
    840   <tr>
    841     <th class="rowhead"><em>output</em></th>
    842     <td></td>
    843     <th></th>
    844     <th></th>
    845     <th></th>
    846     <th></th>
    847     <th></th>
    848     <th></th>
    849     <th></th>
    850   </tr>
    851   <tr>
    852     <th class="rowhead indent"><a href="#assembly">assembly</a></th>
    853     <td>&#10004;</td>
    854     <td></td>
    855     <td></td>
    856     <td>&#10008;</td>
    857     <td>&#10008;</td>
    858     <td>&#10008;</td>
    859     <td>&#10008;</td>
    860     <td>&#10008;</td>
    861   </tr>
    862   <tr class="doc_warning">
    863     <th class="rowhead indent">JIT</th>
    864     <td>NO</td>
    865     <td></td>
    866     <td></td>
    867     <td class="optl">&#10008;</td>
    868     <td class="optl">&#10008;</td>
    869     <td class="optl">&#10008;</td>
    870     <td class="optl">&#10008;</td>
    871     <td class="optl">&#10008;</td>
    872   </tr>
    873   <tr class="doc_warning">
    874     <th class="rowhead indent">obj</th>
    875     <td>NO</td>
    876     <td></td>
    877     <td></td>
    878     <td class="optl">&#10008;</td>
    879     <td class="optl">&#10008;</td>
    880     <td class="optl">&#10008;</td>
    881     <td class="optl">&#10008;</td>
    882     <td class="optl">&#10008;</td>
    883   </tr>
    884   <tr class="doc_warning">
    885     <th class="rowhead">live analysis</th>
    886     <td>NO</td>
    887     <td></td>
    888     <td></td>
    889     <td class="optl">&#10008;</td>
    890     <td class="optl">&#10008;</td>
    891     <td class="optl">&#10008;</td>
    892     <td class="optl">&#10008;</td>
    893     <td class="optl">&#10008;</td>
    894   </tr>
    895   <tr class="doc_warning">
    896     <th class="rowhead">register map</th>
    897     <td>NO</td>
    898     <td></td>
    899     <td></td>
    900     <td class="optl">&#10008;</td>
    901     <td class="optl">&#10008;</td>
    902     <td class="optl">&#10008;</td>
    903     <td class="optl">&#10008;</td>
    904     <td class="optl">&#10008;</td>
    905   </tr>
    906   <tr>
    907     <td colspan="10">
    908       <div><span class="doc_warning">*</span> Derived pointers only pose a
    909            hazard to copying collectors.</div>
    910       <div><span class="optl">&#10008;</span> in gray denotes a feature which
    911            could be utilized if available.</div>
    912     </td>
    913   </tr>
    914 </table>
    915 
    916 <p>To be clear, the collection techniques above are defined as:</p>
    917 
    918 <dl>
    919   <dt>Shadow Stack</dt>
    920   <dd>The mutator carefully maintains a linked list of stack roots.</dd>
    921   <dt>Reference Counting</dt>
    922   <dd>The mutator maintains a reference count for each object and frees an
    923       object when its count falls to zero.</dd>
    924   <dt>Mark-Sweep</dt>
    925   <dd>When the heap is exhausted, the collector marks reachable objects starting
    926       from the roots, then deallocates unreachable objects in a sweep
    927       phase.</dd>
    928   <dt>Copying</dt>
    929   <dd>As reachability analysis proceeds, the collector copies objects from one
    930       heap area to another, compacting them in the process. Copying collectors
    931       enable highly efficient "bump pointer" allocation and can improve locality
    932       of reference.</dd>
    933   <dt>Incremental</dt>
    934   <dd>(Including generational collectors.) Incremental collectors generally have
    935       all the properties of a copying collector (regardless of whether the
    936       mature heap is compacting), but bring the added complexity of requiring
    937       write barriers.</dd>
    938   <dt>Threaded</dt>
    939   <dd>Denotes a multithreaded mutator; the collector must still stop the mutator
    940       ("stop the world") before beginning reachability analysis. Stopping a
    941       multithreaded mutator is a complicated problem. It generally requires
    942       highly platform specific code in the runtime, and the production of
    943       carefully designed machine code at safe points.</dd>
    944   <dt>Concurrent</dt>
    945   <dd>In this technique, the mutator and the collector run concurrently, with
    946       the goal of eliminating pause times. In a <em>cooperative</em> collector,
    947       the mutator further aids with collection should a pause occur, allowing
    948       collection to take advantage of multiprocessor hosts. The "stop the world"
    949       problem of threaded collectors is generally still present to a limited
    950       extent. Sophisticated marking algorithms are necessary. Read barriers may
    951       be necessary.</dd>
    952 </dl>
    953 
    954 <p>As the matrix indicates, LLVM's garbage collection infrastructure is already
    955 suitable for a wide variety of collectors, but does not currently extend to
    956 multithreaded programs. This will be added in the future as there is
    957 interest.</p>
    958 
    959 </div>
    960 
    961 <!-- ======================================================================= -->
    962 <h3>
    963   <a name="stack-map">Computing stack maps</a>
    964 </h3>
    965 
    966 <div>
    967 
    968 <p>LLVM automatically computes a stack map. One of the most important features
    969 of a <tt>GCStrategy</tt> is to compile this information into the executable in
    970 the binary representation expected by the runtime library.</p>
    971 
    972 <p>The stack map consists of the location and identity of each GC root in the
    973 each function in the module. For each root:</p>
    974 
    975 <ul>
    976   <li><tt>RootNum</tt>: The index of the root.</li>
    977   <li><tt>StackOffset</tt>: The offset of the object relative to the frame
    978       pointer.</li>
    979   <li><tt>RootMetadata</tt>: The value passed as the <tt>%metadata</tt>
    980       parameter to the <a href="#gcroot"><tt>@llvm.gcroot</tt></a> intrinsic.</li>
    981 </ul>
    982 
    983 <p>Also, for the function as a whole:</p>
    984 
    985 <ul>
    986   <li><tt>getFrameSize()</tt>: The overall size of the function's initial
    987       stack frame, not accounting for any dynamic allocation.</li>
    988   <li><tt>roots_size()</tt>: The count of roots in the function.</li>
    989 </ul>
    990 
    991 <p>To access the stack map, use <tt>GCFunctionMetadata::roots_begin()</tt> and
    992 -<tt>end()</tt> from the <tt><a
    993 href="#assembly">GCMetadataPrinter</a></tt>:</p>
    994 
    995 <blockquote><pre
    996 >for (iterator I = begin(), E = end(); I != E; ++I) {
    997   GCFunctionInfo *FI = *I;
    998   unsigned FrameSize = FI-&gt;getFrameSize();
    999   size_t RootCount = FI-&gt;roots_size();
   1000 
   1001   for (GCFunctionInfo::roots_iterator RI = FI-&gt;roots_begin(),
   1002                                       RE = FI-&gt;roots_end();
   1003                                       RI != RE; ++RI) {
   1004     int RootNum = RI->Num;
   1005     int RootStackOffset = RI->StackOffset;
   1006     Constant *RootMetadata = RI->Metadata;
   1007   }
   1008 }</pre></blockquote>
   1009 
   1010 <p>If the <tt>llvm.gcroot</tt> intrinsic is eliminated before code generation by
   1011 a custom lowering pass, LLVM will compute an empty stack map. This may be useful
   1012 for collector plugins which implement reference counting or a shadow stack.</p>
   1013 
   1014 </div>
   1015 
   1016 
   1017 <!-- ======================================================================= -->
   1018 <h3>
   1019   <a name="init-roots">Initializing roots to null: <tt>InitRoots</tt></a>
   1020 </h3>
   1021 
   1022 <div>
   1023 
   1024 <blockquote><pre
   1025 >MyGC::MyGC() {
   1026   InitRoots = true;
   1027 }</pre></blockquote>
   1028 
   1029 <p>When set, LLVM will automatically initialize each root to <tt>null</tt> upon
   1030 entry to the function. This prevents the GC's sweep phase from visiting
   1031 uninitialized pointers, which will almost certainly cause it to crash. This
   1032 initialization occurs before custom lowering, so the two may be used
   1033 together.</p>
   1034 
   1035 <p>Since LLVM does not yet compute liveness information, there is no means of
   1036 distinguishing an uninitialized stack root from an initialized one. Therefore,
   1037 this feature should be used by all GC plugins. It is enabled by default.</p>
   1038 
   1039 </div>
   1040 
   1041 
   1042 <!-- ======================================================================= -->
   1043 <h3>
   1044   <a name="custom">Custom lowering of intrinsics: <tt>CustomRoots</tt>, 
   1045     <tt>CustomReadBarriers</tt>, and <tt>CustomWriteBarriers</tt></a>
   1046 </h3>
   1047 
   1048 <div>
   1049 
   1050 <p>For GCs which use barriers or unusual treatment of stack roots, these
   1051 flags allow the collector to perform arbitrary transformations of the LLVM
   1052 IR:</p>
   1053 
   1054 <blockquote><pre
   1055 >class MyGC : public GCStrategy {
   1056 public:
   1057   MyGC() {
   1058     CustomRoots = true;
   1059     CustomReadBarriers = true;
   1060     CustomWriteBarriers = true;
   1061   }
   1062   
   1063   virtual bool initializeCustomLowering(Module &amp;M);
   1064   virtual bool performCustomLowering(Function &amp;F);
   1065 };</pre></blockquote>
   1066 
   1067 <p>If any of these flags are set, then LLVM suppresses its default lowering for
   1068 the corresponding intrinsics and instead calls
   1069 <tt>performCustomLowering</tt>.</p>
   1070 
   1071 <p>LLVM's default action for each intrinsic is as follows:</p>
   1072 
   1073 <ul>
   1074   <li><tt>llvm.gcroot</tt>: Leave it alone. The code generator must see it
   1075                             or the stack map will not be computed.</li>
   1076   <li><tt>llvm.gcread</tt>: Substitute a <tt>load</tt> instruction.</li>
   1077   <li><tt>llvm.gcwrite</tt>: Substitute a <tt>store</tt> instruction.</li>
   1078 </ul>
   1079 
   1080 <p>If <tt>CustomReadBarriers</tt> or <tt>CustomWriteBarriers</tt> are specified,
   1081 then <tt>performCustomLowering</tt> <strong>must</strong> eliminate the
   1082 corresponding barriers.</p>
   1083 
   1084 <p><tt>performCustomLowering</tt> must comply with the same restrictions as <a
   1085 href="WritingAnLLVMPass.html#runOnFunction"><tt
   1086 >FunctionPass::runOnFunction</tt></a>.
   1087 Likewise, <tt>initializeCustomLowering</tt> has the same semantics as <a
   1088 href="WritingAnLLVMPass.html#doInitialization_mod"><tt
   1089 >Pass::doInitialization(Module&amp;)</tt></a>.</p>
   1090 
   1091 <p>The following can be used as a template:</p>
   1092 
   1093 <blockquote><pre
   1094 >#include "llvm/Module.h"
   1095 #include "llvm/IntrinsicInst.h"
   1096 
   1097 bool MyGC::initializeCustomLowering(Module &amp;M) {
   1098   return false;
   1099 }
   1100 
   1101 bool MyGC::performCustomLowering(Function &amp;F) {
   1102   bool MadeChange = false;
   1103   
   1104   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1105     for (BasicBlock::iterator II = BB-&gt;begin(), E = BB-&gt;end(); II != E; )
   1106       if (IntrinsicInst *CI = dyn_cast&lt;IntrinsicInst&gt;(II++))
   1107         if (Function *F = CI-&gt;getCalledFunction())
   1108           switch (F-&gt;getIntrinsicID()) {
   1109           case Intrinsic::gcwrite:
   1110             // Handle llvm.gcwrite.
   1111             CI-&gt;eraseFromParent();
   1112             MadeChange = true;
   1113             break;
   1114           case Intrinsic::gcread:
   1115             // Handle llvm.gcread.
   1116             CI-&gt;eraseFromParent();
   1117             MadeChange = true;
   1118             break;
   1119           case Intrinsic::gcroot:
   1120             // Handle llvm.gcroot.
   1121             CI-&gt;eraseFromParent();
   1122             MadeChange = true;
   1123             break;
   1124           }
   1125   
   1126   return MadeChange;
   1127 }</pre></blockquote>
   1128 
   1129 </div>
   1130 
   1131 
   1132 <!-- ======================================================================= -->
   1133 <h3>
   1134   <a name="safe-points">Generating safe points: <tt>NeededSafePoints</tt></a>
   1135 </h3>
   1136 
   1137 <div>
   1138 
   1139 <p>LLVM can compute four kinds of safe points:</p>
   1140 
   1141 <blockquote><pre
   1142 >namespace GC {
   1143   /// PointKind - The type of a collector-safe point.
   1144   /// 
   1145   enum PointKind {
   1146     Loop,    //&lt; Instr is a loop (backwards branch).
   1147     Return,  //&lt; Instr is a return instruction.
   1148     PreCall, //&lt; Instr is a call instruction.
   1149     PostCall //&lt; Instr is the return address of a call.
   1150   };
   1151 }</pre></blockquote>
   1152 
   1153 <p>A collector can request any combination of the four by setting the 
   1154 <tt>NeededSafePoints</tt> mask:</p>
   1155 
   1156 <blockquote><pre
   1157 >MyGC::MyGC() {
   1158   NeededSafePoints = 1 &lt;&lt; GC::Loop
   1159                    | 1 &lt;&lt; GC::Return
   1160                    | 1 &lt;&lt; GC::PreCall
   1161                    | 1 &lt;&lt; GC::PostCall;
   1162 }</pre></blockquote>
   1163 
   1164 <p>It can then use the following routines to access safe points.</p>
   1165 
   1166 <blockquote><pre
   1167 >for (iterator I = begin(), E = end(); I != E; ++I) {
   1168   GCFunctionInfo *MD = *I;
   1169   size_t PointCount = MD-&gt;size();
   1170 
   1171   for (GCFunctionInfo::iterator PI = MD-&gt;begin(),
   1172                                 PE = MD-&gt;end(); PI != PE; ++PI) {
   1173     GC::PointKind PointKind = PI-&gt;Kind;
   1174     unsigned PointNum = PI-&gt;Num;
   1175   }
   1176 }
   1177 </pre></blockquote>
   1178 
   1179 <p>Almost every collector requires <tt>PostCall</tt> safe points, since these
   1180 correspond to the moments when the function is suspended during a call to a
   1181 subroutine.</p>
   1182 
   1183 <p>Threaded programs generally require <tt>Loop</tt> safe points to guarantee
   1184 that the application will reach a safe point within a bounded amount of time,
   1185 even if it is executing a long-running loop which contains no function
   1186 calls.</p>
   1187 
   1188 <p>Threaded collectors may also require <tt>Return</tt> and <tt>PreCall</tt>
   1189 safe points to implement "stop the world" techniques using self-modifying code,
   1190 where it is important that the program not exit the function without reaching a
   1191 safe point (because only the topmost function has been patched).</p>
   1192 
   1193 </div>
   1194 
   1195 
   1196 <!-- ======================================================================= -->
   1197 <h3>
   1198   <a name="assembly">Emitting assembly code: <tt>GCMetadataPrinter</tt></a>
   1199 </h3>
   1200 
   1201 <div>
   1202 
   1203 <p>LLVM allows a plugin to print arbitrary assembly code before and after the
   1204 rest of a module's assembly code. At the end of the module, the GC can compile
   1205 the LLVM stack map into assembly code. (At the beginning, this information is not
   1206 yet computed.)</p>
   1207 
   1208 <p>Since AsmWriter and CodeGen are separate components of LLVM, a separate
   1209 abstract base class and registry is provided for printing assembly code, the
   1210 <tt>GCMetadaPrinter</tt> and <tt>GCMetadataPrinterRegistry</tt>. The AsmWriter
   1211 will look for such a subclass if the <tt>GCStrategy</tt> sets
   1212 <tt>UsesMetadata</tt>:</p>
   1213 
   1214 <blockquote><pre
   1215 >MyGC::MyGC() {
   1216   UsesMetadata = true;
   1217 }</pre></blockquote>
   1218 
   1219 <p>This separation allows JIT-only clients to be smaller.</p>
   1220 
   1221 <p>Note that LLVM does not currently have analogous APIs to support code
   1222 generation in the JIT, nor using the object writers.</p>
   1223 
   1224 <blockquote><pre
   1225 >// lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
   1226 
   1227 #include "llvm/CodeGen/GCMetadataPrinter.h"
   1228 #include "llvm/Support/Compiler.h"
   1229 
   1230 using namespace llvm;
   1231 
   1232 namespace {
   1233   class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
   1234   public:
   1235     virtual void beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
   1236                                const TargetAsmInfo &amp;TAI);
   1237   
   1238     virtual void finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
   1239                                 const TargetAsmInfo &amp;TAI);
   1240   };
   1241   
   1242   GCMetadataPrinterRegistry::Add&lt;MyGCPrinter&gt;
   1243   X("mygc", "My bespoke garbage collector.");
   1244 }</pre></blockquote>
   1245 
   1246 <p>The collector should use <tt>AsmPrinter</tt> and <tt>TargetAsmInfo</tt> to
   1247 print portable assembly code to the <tt>std::ostream</tt>. The collector itself
   1248 contains the stack map for the entire module, and may access the
   1249 <tt>GCFunctionInfo</tt> using its own <tt>begin()</tt> and <tt>end()</tt>
   1250 methods. Here's a realistic example:</p>
   1251 
   1252 <blockquote><pre
   1253 >#include "llvm/CodeGen/AsmPrinter.h"
   1254 #include "llvm/Function.h"
   1255 #include "llvm/Target/TargetMachine.h"
   1256 #include "llvm/Target/TargetData.h"
   1257 #include "llvm/Target/TargetAsmInfo.h"
   1258 
   1259 void MyGCPrinter::beginAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
   1260                                 const TargetAsmInfo &amp;TAI) {
   1261   // Nothing to do.
   1262 }
   1263 
   1264 void MyGCPrinter::finishAssembly(std::ostream &amp;OS, AsmPrinter &amp;AP,
   1265                                  const TargetAsmInfo &amp;TAI) {
   1266   // Set up for emitting addresses.
   1267   const char *AddressDirective;
   1268   int AddressAlignLog;
   1269   if (AP.TM.getTargetData()->getPointerSize() == sizeof(int32_t)) {
   1270     AddressDirective = TAI.getData32bitsDirective();
   1271     AddressAlignLog = 2;
   1272   } else {
   1273     AddressDirective = TAI.getData64bitsDirective();
   1274     AddressAlignLog = 3;
   1275   }
   1276   
   1277   // Put this in the data section.
   1278   AP.SwitchToDataSection(TAI.getDataSection());
   1279   
   1280   // For each function...
   1281   for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
   1282     GCFunctionInfo &amp;MD = **FI;
   1283     
   1284     // Emit this data structure:
   1285     // 
   1286     // struct {
   1287     //   int32_t PointCount;
   1288     //   struct {
   1289     //     void *SafePointAddress;
   1290     //     int32_t LiveCount;
   1291     //     int32_t LiveOffsets[LiveCount];
   1292     //   } Points[PointCount];
   1293     // } __gcmap_&lt;FUNCTIONNAME&gt;;
   1294     
   1295     // Align to address width.
   1296     AP.EmitAlignment(AddressAlignLog);
   1297     
   1298     // Emit the symbol by which the stack map entry can be found.
   1299     std::string Symbol;
   1300     Symbol += TAI.getGlobalPrefix();
   1301     Symbol += "__gcmap_";
   1302     Symbol += MD.getFunction().getName();
   1303     if (const char *GlobalDirective = TAI.getGlobalDirective())
   1304       OS &lt;&lt; GlobalDirective &lt;&lt; Symbol &lt;&lt; "\n";
   1305     OS &lt;&lt; TAI.getGlobalPrefix() &lt;&lt; Symbol &lt;&lt; ":\n";
   1306     
   1307     // Emit PointCount.
   1308     AP.EmitInt32(MD.size());
   1309     AP.EOL("safe point count");
   1310     
   1311     // And each safe point...
   1312     for (GCFunctionInfo::iterator PI = MD.begin(),
   1313                                      PE = MD.end(); PI != PE; ++PI) {
   1314       // Align to address width.
   1315       AP.EmitAlignment(AddressAlignLog);
   1316       
   1317       // Emit the address of the safe point.
   1318       OS &lt;&lt; AddressDirective
   1319          &lt;&lt; TAI.getPrivateGlobalPrefix() &lt;&lt; "label" &lt;&lt; PI-&gt;Num;
   1320       AP.EOL("safe point address");
   1321       
   1322       // Emit the stack frame size.
   1323       AP.EmitInt32(MD.getFrameSize());
   1324       AP.EOL("stack frame size");
   1325       
   1326       // Emit the number of live roots in the function.
   1327       AP.EmitInt32(MD.live_size(PI));
   1328       AP.EOL("live root count");
   1329       
   1330       // And for each live root...
   1331       for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
   1332                                             LE = MD.live_end(PI);
   1333                                             LI != LE; ++LI) {
   1334         // Print its offset within the stack frame.
   1335         AP.EmitInt32(LI-&gt;StackOffset);
   1336         AP.EOL("stack offset");
   1337       }
   1338     }
   1339   }
   1340 }
   1341 </pre></blockquote>
   1342 
   1343 </div>
   1344 
   1345 </div>
   1346 
   1347 <!-- *********************************************************************** -->
   1348 <h2>
   1349   <a name="references">References</a>
   1350 </h2>
   1351 <!-- *********************************************************************** -->
   1352 
   1353 <div>
   1354 
   1355 <p><a name="appel89">[Appel89]</a> Runtime Tags Aren't Necessary. Andrew
   1356 W. Appel. Lisp and Symbolic Computation 19(7):703-705, July 1989.</p>
   1357 
   1358 <p><a name="goldberg91">[Goldberg91]</a> Tag-free garbage collection for
   1359 strongly typed programming languages. Benjamin Goldberg. ACM SIGPLAN
   1360 PLDI'91.</p>
   1361 
   1362 <p><a name="tolmach94">[Tolmach94]</a> Tag-free garbage collection using
   1363 explicit type parameters. Andrew Tolmach. Proceedings of the 1994 ACM
   1364 conference on LISP and functional programming.</p>
   1365 
   1366 <p><a name="henderson02">[Henderson2002]</a> <a
   1367 href="http://citeseer.ist.psu.edu/henderson02accurate.html">
   1368 Accurate Garbage Collection in an Uncooperative Environment</a>.
   1369 Fergus Henderson. International Symposium on Memory Management 2002.</p>
   1370 
   1371 </div>
   1372 
   1373 
   1374 <!-- *********************************************************************** -->
   1375 
   1376 <hr>
   1377 <address>
   1378   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
   1379   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
   1380   <a href="http://validator.w3.org/check/referer"><img
   1381   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
   1382 
   1383   <a href="mailto:sabre (a] nondot.org">Chris Lattner</a><br>
   1384   <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
   1385   Last modified: $Date$
   1386 </address>
   1387 
   1388 </body>
   1389 </html>
   1390