Home | History | Annotate | Download | only in AsmPrinter
      1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains support for writing DWARF exception info into asm files.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "DwarfException.h"
     15 #include "llvm/Module.h"
     16 #include "llvm/CodeGen/AsmPrinter.h"
     17 #include "llvm/CodeGen/MachineModuleInfo.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/MC/MCAsmInfo.h"
     21 #include "llvm/MC/MCContext.h"
     22 #include "llvm/MC/MCExpr.h"
     23 #include "llvm/MC/MCSection.h"
     24 #include "llvm/MC/MCStreamer.h"
     25 #include "llvm/MC/MCSymbol.h"
     26 #include "llvm/Target/Mangler.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/Target/TargetFrameLowering.h"
     29 #include "llvm/Target/TargetLoweringObjectFile.h"
     30 #include "llvm/Target/TargetMachine.h"
     31 #include "llvm/Target/TargetOptions.h"
     32 #include "llvm/Target/TargetRegisterInfo.h"
     33 #include "llvm/Support/Dwarf.h"
     34 #include "llvm/Support/ErrorHandling.h"
     35 #include "llvm/Support/FormattedStream.h"
     36 #include "llvm/ADT/SmallString.h"
     37 #include "llvm/ADT/StringExtras.h"
     38 #include "llvm/ADT/Twine.h"
     39 using namespace llvm;
     40 
     41 DwarfException::DwarfException(AsmPrinter *A)
     42   : Asm(A), MMI(Asm->MMI) {}
     43 
     44 DwarfException::~DwarfException() {}
     45 
     46 /// SharedTypeIds - How many leading type ids two landing pads have in common.
     47 unsigned DwarfException::SharedTypeIds(const LandingPadInfo *L,
     48                                        const LandingPadInfo *R) {
     49   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
     50   unsigned LSize = LIds.size(), RSize = RIds.size();
     51   unsigned MinSize = LSize < RSize ? LSize : RSize;
     52   unsigned Count = 0;
     53 
     54   for (; Count != MinSize; ++Count)
     55     if (LIds[Count] != RIds[Count])
     56       return Count;
     57 
     58   return Count;
     59 }
     60 
     61 /// PadLT - Order landing pads lexicographically by type id.
     62 bool DwarfException::PadLT(const LandingPadInfo *L, const LandingPadInfo *R) {
     63   const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
     64   unsigned LSize = LIds.size(), RSize = RIds.size();
     65   unsigned MinSize = LSize < RSize ? LSize : RSize;
     66 
     67   for (unsigned i = 0; i != MinSize; ++i)
     68     if (LIds[i] != RIds[i])
     69       return LIds[i] < RIds[i];
     70 
     71   return LSize < RSize;
     72 }
     73 
     74 /// ComputeActionsTable - Compute the actions table and gather the first action
     75 /// index for each landing pad site.
     76 unsigned DwarfException::
     77 ComputeActionsTable(const SmallVectorImpl<const LandingPadInfo*> &LandingPads,
     78                     SmallVectorImpl<ActionEntry> &Actions,
     79                     SmallVectorImpl<unsigned> &FirstActions) {
     80 
     81   // The action table follows the call-site table in the LSDA. The individual
     82   // records are of two types:
     83   //
     84   //   * Catch clause
     85   //   * Exception specification
     86   //
     87   // The two record kinds have the same format, with only small differences.
     88   // They are distinguished by the "switch value" field: Catch clauses
     89   // (TypeInfos) have strictly positive switch values, and exception
     90   // specifications (FilterIds) have strictly negative switch values. Value 0
     91   // indicates a catch-all clause.
     92   //
     93   // Negative type IDs index into FilterIds. Positive type IDs index into
     94   // TypeInfos.  The value written for a positive type ID is just the type ID
     95   // itself.  For a negative type ID, however, the value written is the
     96   // (negative) byte offset of the corresponding FilterIds entry.  The byte
     97   // offset is usually equal to the type ID (because the FilterIds entries are
     98   // written using a variable width encoding, which outputs one byte per entry
     99   // as long as the value written is not too large) but can differ.  This kind
    100   // of complication does not occur for positive type IDs because type infos are
    101   // output using a fixed width encoding.  FilterOffsets[i] holds the byte
    102   // offset corresponding to FilterIds[i].
    103 
    104   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    105   SmallVector<int, 16> FilterOffsets;
    106   FilterOffsets.reserve(FilterIds.size());
    107   int Offset = -1;
    108 
    109   for (std::vector<unsigned>::const_iterator
    110          I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
    111     FilterOffsets.push_back(Offset);
    112     Offset -= MCAsmInfo::getULEB128Size(*I);
    113   }
    114 
    115   FirstActions.reserve(LandingPads.size());
    116 
    117   int FirstAction = 0;
    118   unsigned SizeActions = 0;
    119   const LandingPadInfo *PrevLPI = 0;
    120 
    121   for (SmallVectorImpl<const LandingPadInfo *>::const_iterator
    122          I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
    123     const LandingPadInfo *LPI = *I;
    124     const std::vector<int> &TypeIds = LPI->TypeIds;
    125     unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
    126     unsigned SizeSiteActions = 0;
    127 
    128     if (NumShared < TypeIds.size()) {
    129       unsigned SizeAction = 0;
    130       unsigned PrevAction = (unsigned)-1;
    131 
    132       if (NumShared) {
    133         unsigned SizePrevIds = PrevLPI->TypeIds.size();
    134         assert(Actions.size());
    135         PrevAction = Actions.size() - 1;
    136         SizeAction =
    137           MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
    138           MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    139 
    140         for (unsigned j = NumShared; j != SizePrevIds; ++j) {
    141           assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
    142           SizeAction -=
    143             MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
    144           SizeAction += -Actions[PrevAction].NextAction;
    145           PrevAction = Actions[PrevAction].Previous;
    146         }
    147       }
    148 
    149       // Compute the actions.
    150       for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
    151         int TypeID = TypeIds[J];
    152         assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
    153         int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
    154         unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
    155 
    156         int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
    157         SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
    158         SizeSiteActions += SizeAction;
    159 
    160         ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
    161         Actions.push_back(Action);
    162         PrevAction = Actions.size() - 1;
    163       }
    164 
    165       // Record the first action of the landing pad site.
    166       FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
    167     } // else identical - re-use previous FirstAction
    168 
    169     // Information used when created the call-site table. The action record
    170     // field of the call site record is the offset of the first associated
    171     // action record, relative to the start of the actions table. This value is
    172     // biased by 1 (1 indicating the start of the actions table), and 0
    173     // indicates that there are no actions.
    174     FirstActions.push_back(FirstAction);
    175 
    176     // Compute this sites contribution to size.
    177     SizeActions += SizeSiteActions;
    178 
    179     PrevLPI = LPI;
    180   }
    181 
    182   return SizeActions;
    183 }
    184 
    185 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
    186 /// marked `nounwind'. Return `false' otherwise.
    187 bool DwarfException::CallToNoUnwindFunction(const MachineInstr *MI) {
    188   assert(MI->isCall() && "This should be a call instruction!");
    189 
    190   bool MarkedNoUnwind = false;
    191   bool SawFunc = false;
    192 
    193   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
    194     const MachineOperand &MO = MI->getOperand(I);
    195 
    196     if (!MO.isGlobal()) continue;
    197 
    198     const Function *F = dyn_cast<Function>(MO.getGlobal());
    199     if (F == 0) continue;
    200 
    201     if (SawFunc) {
    202       // Be conservative. If we have more than one function operand for this
    203       // call, then we can't make the assumption that it's the callee and
    204       // not a parameter to the call.
    205       //
    206       // FIXME: Determine if there's a way to say that `F' is the callee or
    207       // parameter.
    208       MarkedNoUnwind = false;
    209       break;
    210     }
    211 
    212     MarkedNoUnwind = F->doesNotThrow();
    213     SawFunc = true;
    214   }
    215 
    216   return MarkedNoUnwind;
    217 }
    218 
    219 /// ComputeCallSiteTable - Compute the call-site table.  The entry for an invoke
    220 /// has a try-range containing the call, a non-zero landing pad, and an
    221 /// appropriate action.  The entry for an ordinary call has a try-range
    222 /// containing the call and zero for the landing pad and the action.  Calls
    223 /// marked 'nounwind' have no entry and must not be contained in the try-range
    224 /// of any entry - they form gaps in the table.  Entries must be ordered by
    225 /// try-range address.
    226 void DwarfException::
    227 ComputeCallSiteTable(SmallVectorImpl<CallSiteEntry> &CallSites,
    228                      const RangeMapType &PadMap,
    229                      const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
    230                      const SmallVectorImpl<unsigned> &FirstActions) {
    231   // The end label of the previous invoke or nounwind try-range.
    232   MCSymbol *LastLabel = 0;
    233 
    234   // Whether there is a potentially throwing instruction (currently this means
    235   // an ordinary call) between the end of the previous try-range and now.
    236   bool SawPotentiallyThrowing = false;
    237 
    238   // Whether the last CallSite entry was for an invoke.
    239   bool PreviousIsInvoke = false;
    240 
    241   // Visit all instructions in order of address.
    242   for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
    243        I != E; ++I) {
    244     for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
    245          MI != E; ++MI) {
    246       if (!MI->isLabel()) {
    247         if (MI->isCall())
    248           SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
    249         continue;
    250       }
    251 
    252       // End of the previous try-range?
    253       MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
    254       if (BeginLabel == LastLabel)
    255         SawPotentiallyThrowing = false;
    256 
    257       // Beginning of a new try-range?
    258       RangeMapType::const_iterator L = PadMap.find(BeginLabel);
    259       if (L == PadMap.end())
    260         // Nope, it was just some random label.
    261         continue;
    262 
    263       const PadRange &P = L->second;
    264       const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
    265       assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
    266              "Inconsistent landing pad map!");
    267 
    268       // For Dwarf exception handling (SjLj handling doesn't use this). If some
    269       // instruction between the previous try-range and this one may throw,
    270       // create a call-site entry with no landing pad for the region between the
    271       // try-ranges.
    272       if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    273         CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
    274         CallSites.push_back(Site);
    275         PreviousIsInvoke = false;
    276       }
    277 
    278       LastLabel = LandingPad->EndLabels[P.RangeIndex];
    279       assert(BeginLabel && LastLabel && "Invalid landing pad!");
    280 
    281       if (!LandingPad->LandingPadLabel) {
    282         // Create a gap.
    283         PreviousIsInvoke = false;
    284       } else {
    285         // This try-range is for an invoke.
    286         CallSiteEntry Site = {
    287           BeginLabel,
    288           LastLabel,
    289           LandingPad->LandingPadLabel,
    290           FirstActions[P.PadIndex]
    291         };
    292 
    293         // Try to merge with the previous call-site. SJLJ doesn't do this
    294         if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
    295           CallSiteEntry &Prev = CallSites.back();
    296           if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
    297             // Extend the range of the previous entry.
    298             Prev.EndLabel = Site.EndLabel;
    299             continue;
    300           }
    301         }
    302 
    303         // Otherwise, create a new call-site.
    304         if (Asm->MAI->isExceptionHandlingDwarf())
    305           CallSites.push_back(Site);
    306         else {
    307           // SjLj EH must maintain the call sites in the order assigned
    308           // to them by the SjLjPrepare pass.
    309           unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
    310           if (CallSites.size() < SiteNo)
    311             CallSites.resize(SiteNo);
    312           CallSites[SiteNo - 1] = Site;
    313         }
    314         PreviousIsInvoke = true;
    315       }
    316     }
    317   }
    318 
    319   // If some instruction between the previous try-range and the end of the
    320   // function may throw, create a call-site entry with no landing pad for the
    321   // region following the try-range.
    322   if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
    323     CallSiteEntry Site = { LastLabel, 0, 0, 0 };
    324     CallSites.push_back(Site);
    325   }
    326 }
    327 
    328 /// EmitExceptionTable - Emit landing pads and actions.
    329 ///
    330 /// The general organization of the table is complex, but the basic concepts are
    331 /// easy.  First there is a header which describes the location and organization
    332 /// of the three components that follow.
    333 ///
    334 ///  1. The landing pad site information describes the range of code covered by
    335 ///     the try.  In our case it's an accumulation of the ranges covered by the
    336 ///     invokes in the try.  There is also a reference to the landing pad that
    337 ///     handles the exception once processed.  Finally an index into the actions
    338 ///     table.
    339 ///  2. The action table, in our case, is composed of pairs of type IDs and next
    340 ///     action offset.  Starting with the action index from the landing pad
    341 ///     site, each type ID is checked for a match to the current exception.  If
    342 ///     it matches then the exception and type id are passed on to the landing
    343 ///     pad.  Otherwise the next action is looked up.  This chain is terminated
    344 ///     with a next action of zero.  If no type id is found then the frame is
    345 ///     unwound and handling continues.
    346 ///  3. Type ID table contains references to all the C++ typeinfo for all
    347 ///     catches in the function.  This tables is reverse indexed base 1.
    348 void DwarfException::EmitExceptionTable() {
    349   const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
    350   const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
    351   const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
    352 
    353   // Sort the landing pads in order of their type ids.  This is used to fold
    354   // duplicate actions.
    355   SmallVector<const LandingPadInfo *, 64> LandingPads;
    356   LandingPads.reserve(PadInfos.size());
    357 
    358   for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
    359     LandingPads.push_back(&PadInfos[i]);
    360 
    361   std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
    362 
    363   // Compute the actions table and gather the first action index for each
    364   // landing pad site.
    365   SmallVector<ActionEntry, 32> Actions;
    366   SmallVector<unsigned, 64> FirstActions;
    367   unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
    368 
    369   // Invokes and nounwind calls have entries in PadMap (due to being bracketed
    370   // by try-range labels when lowered).  Ordinary calls do not, so appropriate
    371   // try-ranges for them need be deduced when using DWARF exception handling.
    372   RangeMapType PadMap;
    373   for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
    374     const LandingPadInfo *LandingPad = LandingPads[i];
    375     for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
    376       MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
    377       assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
    378       PadRange P = { i, j };
    379       PadMap[BeginLabel] = P;
    380     }
    381   }
    382 
    383   // Compute the call-site table.
    384   SmallVector<CallSiteEntry, 64> CallSites;
    385   ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
    386 
    387   // Final tallies.
    388 
    389   // Call sites.
    390   bool IsSJLJ = Asm->MAI->getExceptionHandlingType() == ExceptionHandling::SjLj;
    391   bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
    392 
    393   unsigned CallSiteTableLength;
    394   if (IsSJLJ)
    395     CallSiteTableLength = 0;
    396   else {
    397     unsigned SiteStartSize  = 4; // dwarf::DW_EH_PE_udata4
    398     unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
    399     unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
    400     CallSiteTableLength =
    401       CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
    402   }
    403 
    404   for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
    405     CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
    406     if (IsSJLJ)
    407       CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
    408   }
    409 
    410   // Type infos.
    411   const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
    412   unsigned TTypeEncoding;
    413   unsigned TypeFormatSize;
    414 
    415   if (!HaveTTData) {
    416     // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
    417     // that we're omitting that bit.
    418     TTypeEncoding = dwarf::DW_EH_PE_omit;
    419     // dwarf::DW_EH_PE_absptr
    420     TypeFormatSize = Asm->getTargetData().getPointerSize();
    421   } else {
    422     // Okay, we have actual filters or typeinfos to emit.  As such, we need to
    423     // pick a type encoding for them.  We're about to emit a list of pointers to
    424     // typeinfo objects at the end of the LSDA.  However, unless we're in static
    425     // mode, this reference will require a relocation by the dynamic linker.
    426     //
    427     // Because of this, we have a couple of options:
    428     //
    429     //   1) If we are in -static mode, we can always use an absolute reference
    430     //      from the LSDA, because the static linker will resolve it.
    431     //
    432     //   2) Otherwise, if the LSDA section is writable, we can output the direct
    433     //      reference to the typeinfo and allow the dynamic linker to relocate
    434     //      it.  Since it is in a writable section, the dynamic linker won't
    435     //      have a problem.
    436     //
    437     //   3) Finally, if we're in PIC mode and the LDSA section isn't writable,
    438     //      we need to use some form of indirection.  For example, on Darwin,
    439     //      we can output a statically-relocatable reference to a dyld stub. The
    440     //      offset to the stub is constant, but the contents are in a section
    441     //      that is updated by the dynamic linker.  This is easy enough, but we
    442     //      need to tell the personality function of the unwinder to indirect
    443     //      through the dyld stub.
    444     //
    445     // FIXME: When (3) is actually implemented, we'll have to emit the stubs
    446     // somewhere.  This predicate should be moved to a shared location that is
    447     // in target-independent code.
    448     //
    449     TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
    450     TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
    451   }
    452 
    453   // Begin the exception table.
    454   // Sometimes we want not to emit the data into separate section (e.g. ARM
    455   // EHABI). In this case LSDASection will be NULL.
    456   if (LSDASection)
    457     Asm->OutStreamer.SwitchSection(LSDASection);
    458   Asm->EmitAlignment(2);
    459 
    460   // Emit the LSDA.
    461   MCSymbol *GCCETSym =
    462     Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
    463                                       Twine(Asm->getFunctionNumber()));
    464   Asm->OutStreamer.EmitLabel(GCCETSym);
    465   Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
    466                                                 Asm->getFunctionNumber()));
    467 
    468   if (IsSJLJ)
    469     Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("_LSDA_",
    470                                                   Asm->getFunctionNumber()));
    471 
    472   // Emit the LSDA header.
    473   Asm->EmitEncodingByte(dwarf::DW_EH_PE_omit, "@LPStart");
    474   Asm->EmitEncodingByte(TTypeEncoding, "@TType");
    475 
    476   // The type infos need to be aligned. GCC does this by inserting padding just
    477   // before the type infos. However, this changes the size of the exception
    478   // table, so you need to take this into account when you output the exception
    479   // table size. However, the size is output using a variable length encoding.
    480   // So by increasing the size by inserting padding, you may increase the number
    481   // of bytes used for writing the size. If it increases, say by one byte, then
    482   // you now need to output one less byte of padding to get the type infos
    483   // aligned. However this decreases the size of the exception table. This
    484   // changes the value you have to output for the exception table size. Due to
    485   // the variable length encoding, the number of bytes used for writing the
    486   // length may decrease. If so, you then have to increase the amount of
    487   // padding. And so on. If you look carefully at the GCC code you will see that
    488   // it indeed does this in a loop, going on and on until the values stabilize.
    489   // We chose another solution: don't output padding inside the table like GCC
    490   // does, instead output it before the table.
    491   unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
    492   unsigned CallSiteTableLengthSize =
    493     MCAsmInfo::getULEB128Size(CallSiteTableLength);
    494   unsigned TTypeBaseOffset =
    495     sizeof(int8_t) +                            // Call site format
    496     CallSiteTableLengthSize +                   // Call site table length size
    497     CallSiteTableLength +                       // Call site table length
    498     SizeActions +                               // Actions size
    499     SizeTypes;
    500   unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
    501   unsigned TotalSize =
    502     sizeof(int8_t) +                            // LPStart format
    503     sizeof(int8_t) +                            // TType format
    504     (HaveTTData ? TTypeBaseOffsetSize : 0) +    // TType base offset size
    505     TTypeBaseOffset;                            // TType base offset
    506   unsigned SizeAlign = (4 - TotalSize) & 3;
    507 
    508   if (HaveTTData) {
    509     // Account for any extra padding that will be added to the call site table
    510     // length.
    511     Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
    512     SizeAlign = 0;
    513   }
    514 
    515   bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
    516 
    517   // SjLj Exception handling
    518   if (IsSJLJ) {
    519     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    520 
    521     // Add extra padding if it wasn't added to the TType base offset.
    522     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    523 
    524     // Emit the landing pad site information.
    525     unsigned idx = 0;
    526     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    527          I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
    528       const CallSiteEntry &S = *I;
    529 
    530       // Offset of the landing pad, counted in 16-byte bundles relative to the
    531       // @LPStart address.
    532       if (VerboseAsm) {
    533         Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
    534         Asm->OutStreamer.AddComment("  On exception at call site "+Twine(idx));
    535       }
    536       Asm->EmitULEB128(idx);
    537 
    538       // Offset of the first associated action record, relative to the start of
    539       // the action table. This value is biased by 1 (1 indicates the start of
    540       // the action table), and 0 indicates that there are no actions.
    541       if (VerboseAsm) {
    542         if (S.Action == 0)
    543           Asm->OutStreamer.AddComment("  Action: cleanup");
    544         else
    545           Asm->OutStreamer.AddComment("  Action: " +
    546                                       Twine((S.Action - 1) / 2 + 1));
    547       }
    548       Asm->EmitULEB128(S.Action);
    549     }
    550   } else {
    551     // DWARF Exception handling
    552     assert(Asm->MAI->isExceptionHandlingDwarf());
    553 
    554     // The call-site table is a list of all call sites that may throw an
    555     // exception (including C++ 'throw' statements) in the procedure
    556     // fragment. It immediately follows the LSDA header. Each entry indicates,
    557     // for a given call, the first corresponding action record and corresponding
    558     // landing pad.
    559     //
    560     // The table begins with the number of bytes, stored as an LEB128
    561     // compressed, unsigned integer. The records immediately follow the record
    562     // count. They are sorted in increasing call-site address. Each record
    563     // indicates:
    564     //
    565     //   * The position of the call-site.
    566     //   * The position of the landing pad.
    567     //   * The first action record for that call site.
    568     //
    569     // A missing entry in the call-site table indicates that a call is not
    570     // supposed to throw.
    571 
    572     // Emit the landing pad call site table.
    573     Asm->EmitEncodingByte(dwarf::DW_EH_PE_udata4, "Call site");
    574 
    575     // Add extra padding if it wasn't added to the TType base offset.
    576     Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
    577 
    578     unsigned Entry = 0;
    579     for (SmallVectorImpl<CallSiteEntry>::const_iterator
    580          I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
    581       const CallSiteEntry &S = *I;
    582 
    583       MCSymbol *EHFuncBeginSym =
    584         Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
    585 
    586       MCSymbol *BeginLabel = S.BeginLabel;
    587       if (BeginLabel == 0)
    588         BeginLabel = EHFuncBeginSym;
    589       MCSymbol *EndLabel = S.EndLabel;
    590       if (EndLabel == 0)
    591         EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
    592 
    593 
    594       // Offset of the call site relative to the previous call site, counted in
    595       // number of 16-byte bundles. The first call site is counted relative to
    596       // the start of the procedure fragment.
    597       if (VerboseAsm)
    598         Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
    599       Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
    600       if (VerboseAsm)
    601         Asm->OutStreamer.AddComment(Twine("  Call between ") +
    602                                     BeginLabel->getName() + " and " +
    603                                     EndLabel->getName());
    604       Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
    605 
    606       // Offset of the landing pad, counted in 16-byte bundles relative to the
    607       // @LPStart address.
    608       if (!S.PadLabel) {
    609         if (VerboseAsm)
    610           Asm->OutStreamer.AddComment("    has no landing pad");
    611         Asm->OutStreamer.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
    612       } else {
    613         if (VerboseAsm)
    614           Asm->OutStreamer.AddComment(Twine("    jumps to ") +
    615                                       S.PadLabel->getName());
    616         Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
    617       }
    618 
    619       // Offset of the first associated action record, relative to the start of
    620       // the action table. This value is biased by 1 (1 indicates the start of
    621       // the action table), and 0 indicates that there are no actions.
    622       if (VerboseAsm) {
    623         if (S.Action == 0)
    624           Asm->OutStreamer.AddComment("  On action: cleanup");
    625         else
    626           Asm->OutStreamer.AddComment("  On action: " +
    627                                       Twine((S.Action - 1) / 2 + 1));
    628       }
    629       Asm->EmitULEB128(S.Action);
    630     }
    631   }
    632 
    633   // Emit the Action Table.
    634   int Entry = 0;
    635   for (SmallVectorImpl<ActionEntry>::const_iterator
    636          I = Actions.begin(), E = Actions.end(); I != E; ++I) {
    637     const ActionEntry &Action = *I;
    638 
    639     if (VerboseAsm) {
    640       // Emit comments that decode the action table.
    641       Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
    642     }
    643 
    644     // Type Filter
    645     //
    646     //   Used by the runtime to match the type of the thrown exception to the
    647     //   type of the catch clauses or the types in the exception specification.
    648     if (VerboseAsm) {
    649       if (Action.ValueForTypeID > 0)
    650         Asm->OutStreamer.AddComment("  Catch TypeInfo " +
    651                                     Twine(Action.ValueForTypeID));
    652       else if (Action.ValueForTypeID < 0)
    653         Asm->OutStreamer.AddComment("  Filter TypeInfo " +
    654                                     Twine(Action.ValueForTypeID));
    655       else
    656         Asm->OutStreamer.AddComment("  Cleanup");
    657     }
    658     Asm->EmitSLEB128(Action.ValueForTypeID);
    659 
    660     // Action Record
    661     //
    662     //   Self-relative signed displacement in bytes of the next action record,
    663     //   or 0 if there is no next action record.
    664     if (VerboseAsm) {
    665       if (Action.NextAction == 0) {
    666         Asm->OutStreamer.AddComment("  No further actions");
    667       } else {
    668         unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
    669         Asm->OutStreamer.AddComment("  Continue to action "+Twine(NextAction));
    670       }
    671     }
    672     Asm->EmitSLEB128(Action.NextAction);
    673   }
    674 
    675   // Emit the Catch TypeInfos.
    676   if (VerboseAsm && !TypeInfos.empty()) {
    677     Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
    678     Asm->OutStreamer.AddBlankLine();
    679     Entry = TypeInfos.size();
    680   }
    681 
    682   for (std::vector<const GlobalVariable *>::const_reverse_iterator
    683          I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
    684     const GlobalVariable *GV = *I;
    685     if (VerboseAsm)
    686       Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
    687     if (GV)
    688       Asm->EmitReference(GV, TTypeEncoding);
    689     else
    690       Asm->OutStreamer.EmitIntValue(0,Asm->GetSizeOfEncodedValue(TTypeEncoding),
    691                                     0);
    692   }
    693 
    694   // Emit the Exception Specifications.
    695   if (VerboseAsm && !FilterIds.empty()) {
    696     Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
    697     Asm->OutStreamer.AddBlankLine();
    698     Entry = 0;
    699   }
    700   for (std::vector<unsigned>::const_iterator
    701          I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
    702     unsigned TypeID = *I;
    703     if (VerboseAsm) {
    704       --Entry;
    705       if (TypeID != 0)
    706         Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
    707     }
    708 
    709     Asm->EmitULEB128(TypeID);
    710   }
    711 
    712   Asm->EmitAlignment(2);
    713 }
    714 
    715 /// EndModule - Emit all exception information that should come after the
    716 /// content.
    717 void DwarfException::EndModule() {
    718   llvm_unreachable("Should be implemented");
    719 }
    720 
    721 /// BeginFunction - Gather pre-function exception information. Assumes it's
    722 /// being emitted immediately after the function entry point.
    723 void DwarfException::BeginFunction(const MachineFunction *MF) {
    724   llvm_unreachable("Should be implemented");
    725 }
    726 
    727 /// EndFunction - Gather and emit post-function exception information.
    728 ///
    729 void DwarfException::EndFunction() {
    730   llvm_unreachable("Should be implemented");
    731 }
    732