Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RABasic function pass, which provides a minimal
     11 // implementation of the basic register allocator.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "RegAllocBase.h"
     17 #include "LiveDebugVariables.h"
     18 #include "RenderMachineFunction.h"
     19 #include "Spiller.h"
     20 #include "VirtRegMap.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/PassAnalysisSupport.h"
     24 #include "llvm/CodeGen/CalcSpillWeights.h"
     25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     26 #include "llvm/CodeGen/LiveRangeEdit.h"
     27 #include "llvm/CodeGen/LiveStackAnalysis.h"
     28 #include "llvm/CodeGen/MachineFunctionPass.h"
     29 #include "llvm/CodeGen/MachineInstr.h"
     30 #include "llvm/CodeGen/MachineLoopInfo.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/Passes.h"
     33 #include "llvm/CodeGen/RegAllocRegistry.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 #include "llvm/Target/TargetOptions.h"
     36 #include "llvm/Target/TargetRegisterInfo.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 
     40 #include <cstdlib>
     41 #include <queue>
     42 
     43 using namespace llvm;
     44 
     45 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
     46                                       createBasicRegisterAllocator);
     47 
     48 namespace {
     49   struct CompSpillWeight {
     50     bool operator()(LiveInterval *A, LiveInterval *B) const {
     51       return A->weight < B->weight;
     52     }
     53   };
     54 }
     55 
     56 namespace {
     57 /// RABasic provides a minimal implementation of the basic register allocation
     58 /// algorithm. It prioritizes live virtual registers by spill weight and spills
     59 /// whenever a register is unavailable. This is not practical in production but
     60 /// provides a useful baseline both for measuring other allocators and comparing
     61 /// the speed of the basic algorithm against other styles of allocators.
     62 class RABasic : public MachineFunctionPass, public RegAllocBase
     63 {
     64   // context
     65   MachineFunction *MF;
     66 
     67   // analyses
     68   LiveStacks *LS;
     69   RenderMachineFunction *RMF;
     70 
     71   // state
     72   std::auto_ptr<Spiller> SpillerInstance;
     73   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
     74                       CompSpillWeight> Queue;
     75 
     76   // Scratch space.  Allocated here to avoid repeated malloc calls in
     77   // selectOrSplit().
     78   BitVector UsableRegs;
     79 
     80 public:
     81   RABasic();
     82 
     83   /// Return the pass name.
     84   virtual const char* getPassName() const {
     85     return "Basic Register Allocator";
     86   }
     87 
     88   /// RABasic analysis usage.
     89   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     90 
     91   virtual void releaseMemory();
     92 
     93   virtual Spiller &spiller() { return *SpillerInstance; }
     94 
     95   virtual float getPriority(LiveInterval *LI) { return LI->weight; }
     96 
     97   virtual void enqueue(LiveInterval *LI) {
     98     Queue.push(LI);
     99   }
    100 
    101   virtual LiveInterval *dequeue() {
    102     if (Queue.empty())
    103       return 0;
    104     LiveInterval *LI = Queue.top();
    105     Queue.pop();
    106     return LI;
    107   }
    108 
    109   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
    110                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
    111 
    112   /// Perform register allocation.
    113   virtual bool runOnMachineFunction(MachineFunction &mf);
    114 
    115   // Helper for spilling all live virtual registers currently unified under preg
    116   // that interfere with the most recently queried lvr.  Return true if spilling
    117   // was successful, and append any new spilled/split intervals to splitLVRs.
    118   bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
    119                           SmallVectorImpl<LiveInterval*> &SplitVRegs);
    120 
    121   void spillReg(LiveInterval &VirtReg, unsigned PhysReg,
    122                 SmallVectorImpl<LiveInterval*> &SplitVRegs);
    123 
    124   static char ID;
    125 };
    126 
    127 char RABasic::ID = 0;
    128 
    129 } // end anonymous namespace
    130 
    131 RABasic::RABasic(): MachineFunctionPass(ID) {
    132   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    133   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    134   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    135   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    136   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    137   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    138   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    139   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    140   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    141   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    142   initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
    143 }
    144 
    145 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
    146   AU.setPreservesCFG();
    147   AU.addRequired<AliasAnalysis>();
    148   AU.addPreserved<AliasAnalysis>();
    149   AU.addRequired<LiveIntervals>();
    150   AU.addPreserved<SlotIndexes>();
    151   AU.addRequired<LiveDebugVariables>();
    152   AU.addPreserved<LiveDebugVariables>();
    153   AU.addRequired<CalculateSpillWeights>();
    154   AU.addRequired<LiveStacks>();
    155   AU.addPreserved<LiveStacks>();
    156   AU.addRequiredID(MachineDominatorsID);
    157   AU.addPreservedID(MachineDominatorsID);
    158   AU.addRequired<MachineLoopInfo>();
    159   AU.addPreserved<MachineLoopInfo>();
    160   AU.addRequired<VirtRegMap>();
    161   AU.addPreserved<VirtRegMap>();
    162   DEBUG(AU.addRequired<RenderMachineFunction>());
    163   MachineFunctionPass::getAnalysisUsage(AU);
    164 }
    165 
    166 void RABasic::releaseMemory() {
    167   SpillerInstance.reset(0);
    168   RegAllocBase::releaseMemory();
    169 }
    170 
    171 // Helper for spillInterferences() that spills all interfering vregs currently
    172 // assigned to this physical register.
    173 void RABasic::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
    174                        SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    175   LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
    176   assert(Q.seenAllInterferences() && "need collectInterferences()");
    177   const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
    178 
    179   for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
    180          E = PendingSpills.end(); I != E; ++I) {
    181     LiveInterval &SpilledVReg = **I;
    182     DEBUG(dbgs() << "extracting from " <<
    183           TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
    184 
    185     // Deallocate the interfering vreg by removing it from the union.
    186     // A LiveInterval instance may not be in a union during modification!
    187     unassign(SpilledVReg, PhysReg);
    188 
    189     // Spill the extracted interval.
    190     LiveRangeEdit LRE(SpilledVReg, SplitVRegs, *MF, *LIS, VRM);
    191     spiller().spill(LRE);
    192   }
    193   // After extracting segments, the query's results are invalid. But keep the
    194   // contents valid until we're done accessing pendingSpills.
    195   Q.clear();
    196 }
    197 
    198 // Spill or split all live virtual registers currently unified under PhysReg
    199 // that interfere with VirtReg. The newly spilled or split live intervals are
    200 // returned by appending them to SplitVRegs.
    201 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
    202                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    203   // Record each interference and determine if all are spillable before mutating
    204   // either the union or live intervals.
    205   unsigned NumInterferences = 0;
    206   // Collect interferences assigned to any alias of the physical register.
    207   for (const uint16_t *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
    208     LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
    209     NumInterferences += QAlias.collectInterferingVRegs();
    210     if (QAlias.seenUnspillableVReg()) {
    211       return false;
    212     }
    213   }
    214   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
    215         " interferences with " << VirtReg << "\n");
    216   assert(NumInterferences > 0 && "expect interference");
    217 
    218   // Spill each interfering vreg allocated to PhysReg or an alias.
    219   for (const uint16_t *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
    220     spillReg(VirtReg, *AliasI, SplitVRegs);
    221   return true;
    222 }
    223 
    224 // Driver for the register assignment and splitting heuristics.
    225 // Manages iteration over the LiveIntervalUnions.
    226 //
    227 // This is a minimal implementation of register assignment and splitting that
    228 // spills whenever we run out of registers.
    229 //
    230 // selectOrSplit can only be called once per live virtual register. We then do a
    231 // single interference test for each register the correct class until we find an
    232 // available register. So, the number of interference tests in the worst case is
    233 // |vregs| * |machineregs|. And since the number of interference tests is
    234 // minimal, there is no value in caching them outside the scope of
    235 // selectOrSplit().
    236 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
    237                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
    238   // Check for register mask interference.  When live ranges cross calls, the
    239   // set of usable registers is reduced to the callee-saved ones.
    240   bool CrossRegMasks = LIS->checkRegMaskInterference(VirtReg, UsableRegs);
    241 
    242   // Populate a list of physical register spill candidates.
    243   SmallVector<unsigned, 8> PhysRegSpillCands;
    244 
    245   // Check for an available register in this class.
    246   ArrayRef<unsigned> Order =
    247     RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
    248   for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
    249        ++I) {
    250     unsigned PhysReg = *I;
    251 
    252     // If PhysReg is clobbered by a register mask, it isn't useful for
    253     // allocation or spilling.
    254     if (CrossRegMasks && !UsableRegs.test(PhysReg))
    255       continue;
    256 
    257     // Check interference and as a side effect, intialize queries for this
    258     // VirtReg and its aliases.
    259     unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
    260     if (interfReg == 0) {
    261       // Found an available register.
    262       return PhysReg;
    263     }
    264     LiveIntervalUnion::Query &IntfQ = query(VirtReg, interfReg);
    265     IntfQ.collectInterferingVRegs(1);
    266     LiveInterval *interferingVirtReg = IntfQ.interferingVRegs().front();
    267 
    268     // The current VirtReg must either be spillable, or one of its interferences
    269     // must have less spill weight.
    270     if (interferingVirtReg->weight < VirtReg.weight ) {
    271       PhysRegSpillCands.push_back(PhysReg);
    272     }
    273   }
    274   // Try to spill another interfering reg with less spill weight.
    275   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
    276          PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
    277 
    278     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
    279 
    280     assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
    281            "Interference after spill.");
    282     // Tell the caller to allocate to this newly freed physical register.
    283     return *PhysRegI;
    284   }
    285 
    286   // No other spill candidates were found, so spill the current VirtReg.
    287   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
    288   if (!VirtReg.isSpillable())
    289     return ~0u;
    290   LiveRangeEdit LRE(VirtReg, SplitVRegs, *MF, *LIS, VRM);
    291   spiller().spill(LRE);
    292 
    293   // The live virtual register requesting allocation was spilled, so tell
    294   // the caller not to allocate anything during this round.
    295   return 0;
    296 }
    297 
    298 bool RABasic::runOnMachineFunction(MachineFunction &mf) {
    299   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
    300                << "********** Function: "
    301                << ((Value*)mf.getFunction())->getName() << '\n');
    302 
    303   MF = &mf;
    304   DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
    305 
    306   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
    307   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
    308 
    309   allocatePhysRegs();
    310 
    311   addMBBLiveIns(MF);
    312 
    313   // Diagnostic output before rewriting
    314   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
    315 
    316   // optional HTML output
    317   DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
    318 
    319   // FIXME: Verification currently must run before VirtRegRewriter. We should
    320   // make the rewriter a separate pass and override verifyAnalysis instead. When
    321   // that happens, verification naturally falls under VerifyMachineCode.
    322 #ifndef NDEBUG
    323   if (VerifyEnabled) {
    324     // Verify accuracy of LiveIntervals. The standard machine code verifier
    325     // ensures that each LiveIntervals covers all uses of the virtual reg.
    326 
    327     // FIXME: MachineVerifier is badly broken when using the standard
    328     // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
    329     // inline spiller, some tests fail to verify because the coalescer does not
    330     // always generate verifiable code.
    331     MF->verify(this, "In RABasic::verify");
    332 
    333     // Verify that LiveIntervals are partitioned into unions and disjoint within
    334     // the unions.
    335     verify();
    336   }
    337 #endif // !NDEBUG
    338 
    339   // Run rewriter
    340   VRM->rewrite(LIS->getSlotIndexes());
    341 
    342   // Write out new DBG_VALUE instructions.
    343   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
    344 
    345   // All machine operands and other references to virtual registers have been
    346   // replaced. Remove the virtual registers and release all the transient data.
    347   VRM->clearAllVirt();
    348   MRI->clearVirtRegs();
    349   releaseMemory();
    350 
    351   return true;
    352 }
    353 
    354 FunctionPass* llvm::createBasicRegisterAllocator()
    355 {
    356   return new RABasic();
    357 }
    358