Home | History | Annotate | Download | only in Target
      1 Target Independent Opportunities:
      2 
      3 //===---------------------------------------------------------------------===//
      4 
      5 We should recognized various "overflow detection" idioms and translate them into
      6 llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
      7 
      8 unsigned int mul(unsigned int a,unsigned int b) {
      9  if ((unsigned long long)a*b>0xffffffff)
     10    exit(0);
     11   return a*b;
     12 }
     13 
     14 The legalization code for mul-with-overflow needs to be made more robust before
     15 this can be implemented though.
     16 
     17 //===---------------------------------------------------------------------===//
     18 
     19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
     20 precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
     21 safe in general, even on darwin.  See the libm implementation of hypot for
     22 examples (which special case when x/y are exactly zero to get signed zeros etc
     23 right).
     24 
     25 //===---------------------------------------------------------------------===//
     26 
     27 On targets with expensive 64-bit multiply, we could LSR this:
     28 
     29 for (i = ...; ++i) {
     30    x = 1ULL << i;
     31 
     32 into:
     33  long long tmp = 1;
     34  for (i = ...; ++i, tmp+=tmp)
     35    x = tmp;
     36 
     37 This would be a win on ppc32, but not x86 or ppc64.
     38 
     39 //===---------------------------------------------------------------------===//
     40 
     41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
     42 
     43 //===---------------------------------------------------------------------===//
     44 
     45 Reassociate should turn things like:
     46 
     47 int factorial(int X) {
     48  return X*X*X*X*X*X*X*X;
     49 }
     50 
     51 into llvm.powi calls, allowing the code generator to produce balanced
     52 multiplication trees.
     53 
     54 First, the intrinsic needs to be extended to support integers, and second the
     55 code generator needs to be enhanced to lower these to multiplication trees.
     56 
     57 //===---------------------------------------------------------------------===//
     58 
     59 Interesting? testcase for add/shift/mul reassoc:
     60 
     61 int bar(int x, int y) {
     62   return x*x*x+y+x*x*x*x*x*y*y*y*y;
     63 }
     64 int foo(int z, int n) {
     65   return bar(z, n) + bar(2*z, 2*n);
     66 }
     67 
     68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
     69 is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
     70 which is the same number of multiplies and is canonical, because the 2*X has
     71 multiple uses.  Here's a simple example:
     72 
     73 define i32 @test15(i32 %X1) {
     74   %B = mul i32 %X1, 47   ; X1*47
     75   %C = mul i32 %B, %B
     76   ret i32 %C
     77 }
     78 
     79 
     80 //===---------------------------------------------------------------------===//
     81 
     82 Reassociate should handle the example in GCC PR16157:
     83 
     84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 
     85 void f () {  /* this can be optimized to four additions... */ 
     86         b4 = a4 + a3 + a2 + a1 + a0; 
     87         b3 = a3 + a2 + a1 + a0; 
     88         b2 = a2 + a1 + a0; 
     89         b1 = a1 + a0; 
     90 } 
     91 
     92 This requires reassociating to forms of expressions that are already available,
     93 something that reassoc doesn't think about yet.
     94 
     95 
     96 //===---------------------------------------------------------------------===//
     97 
     98 This function: (derived from GCC PR19988)
     99 double foo(double x, double y) {
    100   return ((x + 0.1234 * y) * (x + -0.1234 * y));
    101 }
    102 
    103 compiles to:
    104 _foo:
    105 	movapd	%xmm1, %xmm2
    106 	mulsd	LCPI1_1(%rip), %xmm1
    107 	mulsd	LCPI1_0(%rip), %xmm2
    108 	addsd	%xmm0, %xmm1
    109 	addsd	%xmm0, %xmm2
    110 	movapd	%xmm1, %xmm0
    111 	mulsd	%xmm2, %xmm0
    112 	ret
    113 
    114 Reassociate should be able to turn it into:
    115 
    116 double foo(double x, double y) {
    117   return ((x + 0.1234 * y) * (x - 0.1234 * y));
    118 }
    119 
    120 Which allows the multiply by constant to be CSE'd, producing:
    121 
    122 _foo:
    123 	mulsd	LCPI1_0(%rip), %xmm1
    124 	movapd	%xmm1, %xmm2
    125 	addsd	%xmm0, %xmm2
    126 	subsd	%xmm1, %xmm0
    127 	mulsd	%xmm2, %xmm0
    128 	ret
    129 
    130 This doesn't need -ffast-math support at all.  This is particularly bad because
    131 the llvm-gcc frontend is canonicalizing the later into the former, but clang
    132 doesn't have this problem.
    133 
    134 //===---------------------------------------------------------------------===//
    135 
    136 These two functions should generate the same code on big-endian systems:
    137 
    138 int g(int *j,int *l)  {  return memcmp(j,l,4);  }
    139 int h(int *j, int *l) {  return *j - *l; }
    140 
    141 this could be done in SelectionDAGISel.cpp, along with other special cases,
    142 for 1,2,4,8 bytes.
    143 
    144 //===---------------------------------------------------------------------===//
    145 
    146 It would be nice to revert this patch:
    147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
    148 
    149 And teach the dag combiner enough to simplify the code expanded before 
    150 legalize.  It seems plausible that this knowledge would let it simplify other
    151 stuff too.
    152 
    153 //===---------------------------------------------------------------------===//
    154 
    155 For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
    156 to the type size. It works but can be overly conservative as the alignment of
    157 specific vector types are target dependent.
    158 
    159 //===---------------------------------------------------------------------===//
    160 
    161 We should produce an unaligned load from code like this:
    162 
    163 v4sf example(float *P) {
    164   return (v4sf){P[0], P[1], P[2], P[3] };
    165 }
    166 
    167 //===---------------------------------------------------------------------===//
    168 
    169 Add support for conditional increments, and other related patterns.  Instead
    170 of:
    171 
    172 	movl 136(%esp), %eax
    173 	cmpl $0, %eax
    174 	je LBB16_2	#cond_next
    175 LBB16_1:	#cond_true
    176 	incl _foo
    177 LBB16_2:	#cond_next
    178 
    179 emit:
    180 	movl	_foo, %eax
    181 	cmpl	$1, %edi
    182 	sbbl	$-1, %eax
    183 	movl	%eax, _foo
    184 
    185 //===---------------------------------------------------------------------===//
    186 
    187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
    188 
    189 Expand these to calls of sin/cos and stores:
    190       double sincos(double x, double *sin, double *cos);
    191       float sincosf(float x, float *sin, float *cos);
    192       long double sincosl(long double x, long double *sin, long double *cos);
    193 
    194 Doing so could allow SROA of the destination pointers.  See also:
    195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
    196 
    197 This is now easily doable with MRVs.  We could even make an intrinsic for this
    198 if anyone cared enough about sincos.
    199 
    200 //===---------------------------------------------------------------------===//
    201 
    202 quantum_sigma_x in 462.libquantum contains the following loop:
    203 
    204       for(i=0; i<reg->size; i++)
    205 	{
    206 	  /* Flip the target bit of each basis state */
    207 	  reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
    208 	} 
    209 
    210 Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
    211 so cool to turn it into something like:
    212 
    213    long long Res = ((MAX_UNSIGNED) 1 << target);
    214    if (target < 32) {
    215      for(i=0; i<reg->size; i++)
    216        reg->node[i].state ^= Res & 0xFFFFFFFFULL;
    217    } else {
    218      for(i=0; i<reg->size; i++)
    219        reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
    220    }
    221    
    222 ... which would only do one 32-bit XOR per loop iteration instead of two.
    223 
    224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
    225 this requires TBAA.
    226 
    227 //===---------------------------------------------------------------------===//
    228 
    229 This isn't recognized as bswap by instcombine (yes, it really is bswap):
    230 
    231 unsigned long reverse(unsigned v) {
    232     unsigned t;
    233     t = v ^ ((v << 16) | (v >> 16));
    234     t &= ~0xff0000;
    235     v = (v << 24) | (v >> 8);
    236     return v ^ (t >> 8);
    237 }
    238 
    239 //===---------------------------------------------------------------------===//
    240 
    241 [LOOP DELETION]
    242 
    243 We don't delete this output free loop, because trip count analysis doesn't
    244 realize that it is finite (if it were infinite, it would be undefined).  Not
    245 having this blocks Loop Idiom from matching strlen and friends.  
    246 
    247 void foo(char *C) {
    248   int x = 0;
    249   while (*C)
    250     ++x,++C;
    251 }
    252 
    253 //===---------------------------------------------------------------------===//
    254 
    255 [LOOP RECOGNITION]
    256 
    257 These idioms should be recognized as popcount (see PR1488):
    258 
    259 unsigned countbits_slow(unsigned v) {
    260   unsigned c;
    261   for (c = 0; v; v >>= 1)
    262     c += v & 1;
    263   return c;
    264 }
    265 unsigned countbits_fast(unsigned v){
    266   unsigned c;
    267   for (c = 0; v; c++)
    268     v &= v - 1; // clear the least significant bit set
    269   return c;
    270 }
    271 
    272 BITBOARD = unsigned long long
    273 int PopCnt(register BITBOARD a) {
    274   register int c=0;
    275   while(a) {
    276     c++;
    277     a &= a - 1;
    278   }
    279   return c;
    280 }
    281 unsigned int popcount(unsigned int input) {
    282   unsigned int count = 0;
    283   for (unsigned int i =  0; i < 4 * 8; i++)
    284     count += (input >> i) & i;
    285   return count;
    286 }
    287 
    288 This should be recognized as CLZ:  rdar://8459039
    289 
    290 unsigned clz_a(unsigned a) {
    291   int i;
    292   for (i=0;i<32;i++)
    293     if (a & (1<<(31-i)))
    294       return i;
    295   return 32;
    296 }
    297 
    298 This sort of thing should be added to the loop idiom pass.
    299 
    300 //===---------------------------------------------------------------------===//
    301 
    302 These should turn into single 16-bit (unaligned?) loads on little/big endian
    303 processors.
    304 
    305 unsigned short read_16_le(const unsigned char *adr) {
    306   return adr[0] | (adr[1] << 8);
    307 }
    308 unsigned short read_16_be(const unsigned char *adr) {
    309   return (adr[0] << 8) | adr[1];
    310 }
    311 
    312 //===---------------------------------------------------------------------===//
    313 
    314 -instcombine should handle this transform:
    315    icmp pred (sdiv X / C1 ), C2
    316 when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands. 
    317 
    318 Currently InstCombine avoids this transform but will do it when the signs of
    319 the operands and the sign of the divide match. See the FIXME in 
    320 InstructionCombining.cpp in the visitSetCondInst method after the switch case 
    321 for Instruction::UDiv (around line 4447) for more details.
    322 
    323 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
    324 this construct. 
    325 
    326 //===---------------------------------------------------------------------===//
    327 
    328 [LOOP OPTIMIZATION]
    329 
    330 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
    331 opportunities in its double_array_divs_variable function: it needs loop
    332 interchange, memory promotion (which LICM already does), vectorization and
    333 variable trip count loop unrolling (since it has a constant trip count). ICC
    334 apparently produces this very nice code with -ffast-math:
    335 
    336 ..B1.70:                        # Preds ..B1.70 ..B1.69
    337        mulpd     %xmm0, %xmm1                                  #108.2
    338        mulpd     %xmm0, %xmm1                                  #108.2
    339        mulpd     %xmm0, %xmm1                                  #108.2
    340        mulpd     %xmm0, %xmm1                                  #108.2
    341        addl      $8, %edx                                      #
    342        cmpl      $131072, %edx                                 #108.2
    343        jb        ..B1.70       # Prob 99%                      #108.2
    344 
    345 It would be better to count down to zero, but this is a lot better than what we
    346 do.
    347 
    348 //===---------------------------------------------------------------------===//
    349 
    350 Consider:
    351 
    352 typedef unsigned U32;
    353 typedef unsigned long long U64;
    354 int test (U32 *inst, U64 *regs) {
    355     U64 effective_addr2;
    356     U32 temp = *inst;
    357     int r1 = (temp >> 20) & 0xf;
    358     int b2 = (temp >> 16) & 0xf;
    359     effective_addr2 = temp & 0xfff;
    360     if (b2) effective_addr2 += regs[b2];
    361     b2 = (temp >> 12) & 0xf;
    362     if (b2) effective_addr2 += regs[b2];
    363     effective_addr2 &= regs[4];
    364      if ((effective_addr2 & 3) == 0)
    365         return 1;
    366     return 0;
    367 }
    368 
    369 Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
    370 we don't eliminate the computation of the top half of effective_addr2 because
    371 we don't have whole-function selection dags.  On x86, this means we use one
    372 extra register for the function when effective_addr2 is declared as U64 than
    373 when it is declared U32.
    374 
    375 PHI Slicing could be extended to do this.
    376 
    377 //===---------------------------------------------------------------------===//
    378 
    379 Tail call elim should be more aggressive, checking to see if the call is
    380 followed by an uncond branch to an exit block.
    381 
    382 ; This testcase is due to tail-duplication not wanting to copy the return
    383 ; instruction into the terminating blocks because there was other code
    384 ; optimized out of the function after the taildup happened.
    385 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
    386 
    387 define i32 @t4(i32 %a) {
    388 entry:
    389 	%tmp.1 = and i32 %a, 1		; <i32> [#uses=1]
    390 	%tmp.2 = icmp ne i32 %tmp.1, 0		; <i1> [#uses=1]
    391 	br i1 %tmp.2, label %then.0, label %else.0
    392 
    393 then.0:		; preds = %entry
    394 	%tmp.5 = add i32 %a, -1		; <i32> [#uses=1]
    395 	%tmp.3 = call i32 @t4( i32 %tmp.5 )		; <i32> [#uses=1]
    396 	br label %return
    397 
    398 else.0:		; preds = %entry
    399 	%tmp.7 = icmp ne i32 %a, 0		; <i1> [#uses=1]
    400 	br i1 %tmp.7, label %then.1, label %return
    401 
    402 then.1:		; preds = %else.0
    403 	%tmp.11 = add i32 %a, -2		; <i32> [#uses=1]
    404 	%tmp.9 = call i32 @t4( i32 %tmp.11 )		; <i32> [#uses=1]
    405 	br label %return
    406 
    407 return:		; preds = %then.1, %else.0, %then.0
    408 	%result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
    409                             [ %tmp.9, %then.1 ]
    410 	ret i32 %result.0
    411 }
    412 
    413 //===---------------------------------------------------------------------===//
    414 
    415 Tail recursion elimination should handle:
    416 
    417 int pow2m1(int n) {
    418  if (n == 0)
    419    return 0;
    420  return 2 * pow2m1 (n - 1) + 1;
    421 }
    422 
    423 Also, multiplies can be turned into SHL's, so they should be handled as if
    424 they were associative.  "return foo() << 1" can be tail recursion eliminated.
    425 
    426 //===---------------------------------------------------------------------===//
    427 
    428 Argument promotion should promote arguments for recursive functions, like 
    429 this:
    430 
    431 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
    432 
    433 define internal i32 @foo(i32* %x) {
    434 entry:
    435 	%tmp = load i32* %x		; <i32> [#uses=0]
    436 	%tmp.foo = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    437 	ret i32 %tmp.foo
    438 }
    439 
    440 define i32 @bar(i32* %x) {
    441 entry:
    442 	%tmp3 = call i32 @foo( i32* %x )		; <i32> [#uses=1]
    443 	ret i32 %tmp3
    444 }
    445 
    446 //===---------------------------------------------------------------------===//
    447 
    448 We should investigate an instruction sinking pass.  Consider this silly
    449 example in pic mode:
    450 
    451 #include <assert.h>
    452 void foo(int x) {
    453   assert(x);
    454   //...
    455 }
    456 
    457 we compile this to:
    458 _foo:
    459 	subl	$28, %esp
    460 	call	"L1$pb"
    461 "L1$pb":
    462 	popl	%eax
    463 	cmpl	$0, 32(%esp)
    464 	je	LBB1_2	# cond_true
    465 LBB1_1:	# return
    466 	# ...
    467 	addl	$28, %esp
    468 	ret
    469 LBB1_2:	# cond_true
    470 ...
    471 
    472 The PIC base computation (call+popl) is only used on one path through the 
    473 code, but is currently always computed in the entry block.  It would be 
    474 better to sink the picbase computation down into the block for the 
    475 assertion, as it is the only one that uses it.  This happens for a lot of 
    476 code with early outs.
    477 
    478 Another example is loads of arguments, which are usually emitted into the 
    479 entry block on targets like x86.  If not used in all paths through a 
    480 function, they should be sunk into the ones that do.
    481 
    482 In this case, whole-function-isel would also handle this.
    483 
    484 //===---------------------------------------------------------------------===//
    485 
    486 Investigate lowering of sparse switch statements into perfect hash tables:
    487 http://burtleburtle.net/bob/hash/perfect.html
    488 
    489 //===---------------------------------------------------------------------===//
    490 
    491 We should turn things like "load+fabs+store" and "load+fneg+store" into the
    492 corresponding integer operations.  On a yonah, this loop:
    493 
    494 double a[256];
    495 void foo() {
    496   int i, b;
    497   for (b = 0; b < 10000000; b++)
    498   for (i = 0; i < 256; i++)
    499     a[i] = -a[i];
    500 }
    501 
    502 is twice as slow as this loop:
    503 
    504 long long a[256];
    505 void foo() {
    506   int i, b;
    507   for (b = 0; b < 10000000; b++)
    508   for (i = 0; i < 256; i++)
    509     a[i] ^= (1ULL << 63);
    510 }
    511 
    512 and I suspect other processors are similar.  On X86 in particular this is a
    513 big win because doing this with integers allows the use of read/modify/write
    514 instructions.
    515 
    516 //===---------------------------------------------------------------------===//
    517 
    518 DAG Combiner should try to combine small loads into larger loads when 
    519 profitable.  For example, we compile this C++ example:
    520 
    521 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
    522 extern THotKey m_HotKey;
    523 THotKey GetHotKey () { return m_HotKey; }
    524 
    525 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
    526 
    527 __Z9GetHotKeyv:                         ## @_Z9GetHotKeyv
    528 	movq	_m_HotKey@GOTPCREL(%rip), %rax
    529 	movzwl	(%rax), %ecx
    530 	movzbl	2(%rax), %edx
    531 	shlq	$16, %rdx
    532 	orq	%rcx, %rdx
    533 	movzbl	3(%rax), %ecx
    534 	shlq	$24, %rcx
    535 	orq	%rdx, %rcx
    536 	movzbl	4(%rax), %eax
    537 	shlq	$32, %rax
    538 	orq	%rcx, %rax
    539 	ret
    540 
    541 //===---------------------------------------------------------------------===//
    542 
    543 We should add an FRINT node to the DAG to model targets that have legal
    544 implementations of ceil/floor/rint.
    545 
    546 //===---------------------------------------------------------------------===//
    547 
    548 Consider:
    549 
    550 int test() {
    551   long long input[8] = {1,0,1,0,1,0,1,0};
    552   foo(input);
    553 }
    554 
    555 Clang compiles this into:
    556 
    557   call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
    558   %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
    559   store i64 1, i64* %0, align 16
    560   %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
    561   store i64 1, i64* %1, align 16
    562   %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
    563   store i64 1, i64* %2, align 16
    564   %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
    565   store i64 1, i64* %3, align 16
    566 
    567 Which gets codegen'd into:
    568 
    569 	pxor	%xmm0, %xmm0
    570 	movaps	%xmm0, -16(%rbp)
    571 	movaps	%xmm0, -32(%rbp)
    572 	movaps	%xmm0, -48(%rbp)
    573 	movaps	%xmm0, -64(%rbp)
    574 	movq	$1, -64(%rbp)
    575 	movq	$1, -48(%rbp)
    576 	movq	$1, -32(%rbp)
    577 	movq	$1, -16(%rbp)
    578 
    579 It would be better to have 4 movq's of 0 instead of the movaps's.
    580 
    581 //===---------------------------------------------------------------------===//
    582 
    583 http://llvm.org/PR717:
    584 
    585 The following code should compile into "ret int undef". Instead, LLVM
    586 produces "ret int 0":
    587 
    588 int f() {
    589   int x = 4;
    590   int y;
    591   if (x == 3) y = 0;
    592   return y;
    593 }
    594 
    595 //===---------------------------------------------------------------------===//
    596 
    597 The loop unroller should partially unroll loops (instead of peeling them)
    598 when code growth isn't too bad and when an unroll count allows simplification
    599 of some code within the loop.  One trivial example is:
    600 
    601 #include <stdio.h>
    602 int main() {
    603     int nRet = 17;
    604     int nLoop;
    605     for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
    606         if ( nLoop & 1 )
    607             nRet += 2;
    608         else
    609             nRet -= 1;
    610     }
    611     return nRet;
    612 }
    613 
    614 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
    615 reduction in code size.  The resultant code would then also be suitable for
    616 exit value computation.
    617 
    618 //===---------------------------------------------------------------------===//
    619 
    620 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
    621 etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
    622 matching code in dag combine doesn't look through truncates aggressively 
    623 enough.  Here are some testcases reduces from GCC PR17886:
    624 
    625 unsigned long long f5(unsigned long long x, unsigned long long y) {
    626   return (x << 8) | ((y >> 48) & 0xffull);
    627 }
    628 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
    629   switch(z) {
    630   case 1:
    631     return (x << 8) | ((y >> 48) & 0xffull);
    632   case 2:
    633     return (x << 16) | ((y >> 40) & 0xffffull);
    634   case 3:
    635     return (x << 24) | ((y >> 32) & 0xffffffull);
    636   case 4:
    637     return (x << 32) | ((y >> 24) & 0xffffffffull);
    638   default:
    639     return (x << 40) | ((y >> 16) & 0xffffffffffull);
    640   }
    641 }
    642 
    643 //===---------------------------------------------------------------------===//
    644 
    645 This (and similar related idioms):
    646 
    647 unsigned int foo(unsigned char i) {
    648   return i | (i<<8) | (i<<16) | (i<<24);
    649 } 
    650 
    651 compiles into:
    652 
    653 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
    654 entry:
    655   %conv = zext i8 %i to i32
    656   %shl = shl i32 %conv, 8
    657   %shl5 = shl i32 %conv, 16
    658   %shl9 = shl i32 %conv, 24
    659   %or = or i32 %shl9, %conv
    660   %or6 = or i32 %or, %shl5
    661   %or10 = or i32 %or6, %shl
    662   ret i32 %or10
    663 }
    664 
    665 it would be better as:
    666 
    667 unsigned int bar(unsigned char i) {
    668   unsigned int j=i | (i << 8); 
    669   return j | (j<<16);
    670 }
    671 
    672 aka:
    673 
    674 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
    675 entry:
    676   %conv = zext i8 %i to i32
    677   %shl = shl i32 %conv, 8
    678   %or = or i32 %shl, %conv
    679   %shl5 = shl i32 %or, 16
    680   %or6 = or i32 %shl5, %or
    681   ret i32 %or6
    682 }
    683 
    684 or even i*0x01010101, depending on the speed of the multiplier.  The best way to
    685 handle this is to canonicalize it to a multiply in IR and have codegen handle
    686 lowering multiplies to shifts on cpus where shifts are faster.
    687 
    688 //===---------------------------------------------------------------------===//
    689 
    690 We do a number of simplifications in simplify libcalls to strength reduce
    691 standard library functions, but we don't currently merge them together.  For
    692 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
    693 be done safely if "b" isn't modified between the strlen and memcpy of course.
    694 
    695 //===---------------------------------------------------------------------===//
    696 
    697 We compile this program: (from GCC PR11680)
    698 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
    699 
    700 Into code that runs the same speed in fast/slow modes, but both modes run 2x
    701 slower than when compile with GCC (either 4.0 or 4.2):
    702 
    703 $ llvm-g++ perf.cpp -O3 -fno-exceptions
    704 $ time ./a.out fast
    705 1.821u 0.003s 0:01.82 100.0%	0+0k 0+0io 0pf+0w
    706 
    707 $ g++ perf.cpp -O3 -fno-exceptions
    708 $ time ./a.out fast
    709 0.821u 0.001s 0:00.82 100.0%	0+0k 0+0io 0pf+0w
    710 
    711 It looks like we are making the same inlining decisions, so this may be raw
    712 codegen badness or something else (haven't investigated).
    713 
    714 //===---------------------------------------------------------------------===//
    715 
    716 Divisibility by constant can be simplified (according to GCC PR12849) from
    717 being a mulhi to being a mul lo (cheaper).  Testcase:
    718 
    719 void bar(unsigned n) {
    720   if (n % 3 == 0)
    721     true();
    722 }
    723 
    724 This is equivalent to the following, where 2863311531 is the multiplicative
    725 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
    726 void bar(unsigned n) {
    727   if (n * 2863311531U < 1431655766U)
    728     true();
    729 }
    730 
    731 The same transformation can work with an even modulo with the addition of a
    732 rotate: rotate the result of the multiply to the right by the number of bits
    733 which need to be zero for the condition to be true, and shrink the compare RHS
    734 by the same amount.  Unless the target supports rotates, though, that
    735 transformation probably isn't worthwhile.
    736 
    737 The transformation can also easily be made to work with non-zero equality
    738 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
    739 
    740 //===---------------------------------------------------------------------===//
    741 
    742 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
    743 bunch of other stuff from this example (see PR1604): 
    744 
    745 #include <cstdio>
    746 struct test {
    747     int val;
    748     virtual ~test() {}
    749 };
    750 
    751 int main() {
    752     test t;
    753     std::scanf("%d", &t.val);
    754     std::printf("%d\n", t.val);
    755 }
    756 
    757 //===---------------------------------------------------------------------===//
    758 
    759 These functions perform the same computation, but produce different assembly.
    760 
    761 define i8 @select(i8 %x) readnone nounwind {
    762   %A = icmp ult i8 %x, 250
    763   %B = select i1 %A, i8 0, i8 1
    764   ret i8 %B 
    765 }
    766 
    767 define i8 @addshr(i8 %x) readnone nounwind {
    768   %A = zext i8 %x to i9
    769   %B = add i9 %A, 6       ;; 256 - 250 == 6
    770   %C = lshr i9 %B, 8
    771   %D = trunc i9 %C to i8
    772   ret i8 %D
    773 }
    774 
    775 //===---------------------------------------------------------------------===//
    776 
    777 From gcc bug 24696:
    778 int
    779 f (unsigned long a, unsigned long b, unsigned long c)
    780 {
    781   return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
    782 }
    783 int
    784 f (unsigned long a, unsigned long b, unsigned long c)
    785 {
    786   return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
    787 }
    788 Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
    789 "clang -emit-llvm-bc | opt -std-compile-opts".
    790 
    791 //===---------------------------------------------------------------------===//
    792 
    793 From GCC Bug 20192:
    794 #define PMD_MASK    (~((1UL << 23) - 1))
    795 void clear_pmd_range(unsigned long start, unsigned long end)
    796 {
    797    if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
    798        f();
    799 }
    800 The expression should optimize to something like
    801 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
    802 -emit-llvm-bc | opt -std-compile-opts".
    803 
    804 //===---------------------------------------------------------------------===//
    805 
    806 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
    807 i;}
    808 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
    809 These should combine to the same thing.  Currently, the first function
    810 produces better code on X86.
    811 
    812 //===---------------------------------------------------------------------===//
    813 
    814 From GCC Bug 15784:
    815 #define abs(x) x>0?x:-x
    816 int f(int x, int y)
    817 {
    818  return (abs(x)) >= 0;
    819 }
    820 This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
    821 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    822 
    823 //===---------------------------------------------------------------------===//
    824 
    825 From GCC Bug 14753:
    826 void
    827 rotate_cst (unsigned int a)
    828 {
    829  a = (a << 10) | (a >> 22);
    830  if (a == 123)
    831    bar ();
    832 }
    833 void
    834 minus_cst (unsigned int a)
    835 {
    836  unsigned int tem;
    837 
    838  tem = 20 - a;
    839  if (tem == 5)
    840    bar ();
    841 }
    842 void
    843 mask_gt (unsigned int a)
    844 {
    845  /* This is equivalent to a > 15.  */
    846  if ((a & ~7) > 8)
    847    bar ();
    848 }
    849 void
    850 rshift_gt (unsigned int a)
    851 {
    852  /* This is equivalent to a > 23.  */
    853  if ((a >> 2) > 5)
    854    bar ();
    855 }
    856 
    857 All should simplify to a single comparison.  All of these are
    858 currently not optimized with "clang -emit-llvm-bc | opt
    859 -std-compile-opts".
    860 
    861 //===---------------------------------------------------------------------===//
    862 
    863 From GCC Bug 32605:
    864 int c(int* x) {return (char*)x+2 == (char*)x;}
    865 Should combine to 0.  Currently not optimized with "clang
    866 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
    867 
    868 //===---------------------------------------------------------------------===//
    869 
    870 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
    871 Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
    872 with "clang -emit-llvm-bc | opt -std-compile-opts".
    873 
    874 //===---------------------------------------------------------------------===//
    875 
    876 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
    877 Should combine to "x | (y & 3)".  Currently not optimized with "clang
    878 -emit-llvm-bc | opt -std-compile-opts".
    879 
    880 //===---------------------------------------------------------------------===//
    881 
    882 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
    883 Should fold to "(~a & c) | (a & b)".  Currently not optimized with
    884 "clang -emit-llvm-bc | opt -std-compile-opts".
    885 
    886 //===---------------------------------------------------------------------===//
    887 
    888 int a(int a,int b) {return (~(a|b))|a;}
    889 Should fold to "a|~b".  Currently not optimized with "clang
    890 -emit-llvm-bc | opt -std-compile-opts".
    891 
    892 //===---------------------------------------------------------------------===//
    893 
    894 int a(int a, int b) {return (a&&b) || (a&&!b);}
    895 Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
    896 | opt -std-compile-opts".
    897 
    898 //===---------------------------------------------------------------------===//
    899 
    900 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
    901 Should fold to "a ? b : c", or at least something sane.  Currently not
    902 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    903 
    904 //===---------------------------------------------------------------------===//
    905 
    906 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
    907 Should fold to a && (b || c).  Currently not optimized with "clang
    908 -emit-llvm-bc | opt -std-compile-opts".
    909 
    910 //===---------------------------------------------------------------------===//
    911 
    912 int a(int x) {return x | ((x & 8) ^ 8);}
    913 Should combine to x | 8.  Currently not optimized with "clang
    914 -emit-llvm-bc | opt -std-compile-opts".
    915 
    916 //===---------------------------------------------------------------------===//
    917 
    918 int a(int x) {return x ^ ((x & 8) ^ 8);}
    919 Should also combine to x | 8.  Currently not optimized with "clang
    920 -emit-llvm-bc | opt -std-compile-opts".
    921 
    922 //===---------------------------------------------------------------------===//
    923 
    924 int a(int x) {return ((x | -9) ^ 8) & x;}
    925 Should combine to x & -9.  Currently not optimized with "clang
    926 -emit-llvm-bc | opt -std-compile-opts".
    927 
    928 //===---------------------------------------------------------------------===//
    929 
    930 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
    931 Should combine to "a * 0x88888888 >> 31".  Currently not optimized
    932 with "clang -emit-llvm-bc | opt -std-compile-opts".
    933 
    934 //===---------------------------------------------------------------------===//
    935 
    936 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
    937 There's an unnecessary zext in the generated code with "clang
    938 -emit-llvm-bc | opt -std-compile-opts".
    939 
    940 //===---------------------------------------------------------------------===//
    941 
    942 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
    943 Should combine to "20 * (((unsigned)x) & -2)".  Currently not
    944 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    945 
    946 //===---------------------------------------------------------------------===//
    947 
    948 int g(int x) { return (x - 10) < 0; }
    949 Should combine to "x <= 9" (the sub has nsw).  Currently not
    950 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    951 
    952 //===---------------------------------------------------------------------===//
    953 
    954 int g(int x) { return (x + 10) < 0; }
    955 Should combine to "x < -10" (the add has nsw).  Currently not
    956 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    957 
    958 //===---------------------------------------------------------------------===//
    959 
    960 int f(int i, int j) { return i < j + 1; }
    961 int g(int i, int j) { return j > i - 1; }
    962 Should combine to "i <= j" (the add/sub has nsw).  Currently not
    963 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
    964 
    965 //===---------------------------------------------------------------------===//
    966 
    967 This was noticed in the entryblock for grokdeclarator in 403.gcc:
    968 
    969         %tmp = icmp eq i32 %decl_context, 4          
    970         %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 
    971         %tmp1 = icmp eq i32 %decl_context_addr.0, 1 
    972         %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
    973 
    974 tmp1 should be simplified to something like:
    975   (!tmp || decl_context == 1)
    976 
    977 This allows recursive simplifications, tmp1 is used all over the place in
    978 the function, e.g. by:
    979 
    980         %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
    981         %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
    982         %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
    983 
    984 later.
    985 
    986 //===---------------------------------------------------------------------===//
    987 
    988 [STORE SINKING]
    989 
    990 Store sinking: This code:
    991 
    992 void f (int n, int *cond, int *res) {
    993     int i;
    994     *res = 0;
    995     for (i = 0; i < n; i++)
    996         if (*cond)
    997             *res ^= 234; /* (*) */
    998 }
    999 
   1000 On this function GVN hoists the fully redundant value of *res, but nothing
   1001 moves the store out.  This gives us this code:
   1002 
   1003 bb:		; preds = %bb2, %entry
   1004 	%.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]	
   1005 	%i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
   1006 	%1 = load i32* %cond, align 4
   1007 	%2 = icmp eq i32 %1, 0
   1008 	br i1 %2, label %bb2, label %bb1
   1009 
   1010 bb1:		; preds = %bb
   1011 	%3 = xor i32 %.rle, 234	
   1012 	store i32 %3, i32* %res, align 4
   1013 	br label %bb2
   1014 
   1015 bb2:		; preds = %bb, %bb1
   1016 	%.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]	
   1017 	%indvar.next = add i32 %i.05, 1	
   1018 	%exitcond = icmp eq i32 %indvar.next, %n
   1019 	br i1 %exitcond, label %return, label %bb
   1020 
   1021 DSE should sink partially dead stores to get the store out of the loop.
   1022 
   1023 Here's another partial dead case:
   1024 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
   1025 
   1026 //===---------------------------------------------------------------------===//
   1027 
   1028 Scalar PRE hoists the mul in the common block up to the else:
   1029 
   1030 int test (int a, int b, int c, int g) {
   1031   int d, e;
   1032   if (a)
   1033     d = b * c;
   1034   else
   1035     d = b - c;
   1036   e = b * c + g;
   1037   return d + e;
   1038 }
   1039 
   1040 It would be better to do the mul once to reduce codesize above the if.
   1041 This is GCC PR38204.
   1042 
   1043 
   1044 //===---------------------------------------------------------------------===//
   1045 This simple function from 179.art:
   1046 
   1047 int winner, numf2s;
   1048 struct { double y; int   reset; } *Y;
   1049 
   1050 void find_match() {
   1051    int i;
   1052    winner = 0;
   1053    for (i=0;i<numf2s;i++)
   1054        if (Y[i].y > Y[winner].y)
   1055               winner =i;
   1056 }
   1057 
   1058 Compiles into (with clang TBAA):
   1059 
   1060 for.body:                                         ; preds = %for.inc, %bb.nph
   1061   %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
   1062   %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
   1063   %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
   1064   %tmp5 = load double* %tmp4, align 8, !tbaa !4
   1065   %idxprom7 = sext i32 %i.01718 to i64
   1066   %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
   1067   %tmp11 = load double* %tmp10, align 8, !tbaa !4
   1068   %cmp12 = fcmp ogt double %tmp5, %tmp11
   1069   br i1 %cmp12, label %if.then, label %for.inc
   1070 
   1071 if.then:                                          ; preds = %for.body
   1072   %i.017 = trunc i64 %indvar to i32
   1073   br label %for.inc
   1074 
   1075 for.inc:                                          ; preds = %for.body, %if.then
   1076   %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
   1077   %indvar.next = add i64 %indvar, 1
   1078   %exitcond = icmp eq i64 %indvar.next, %tmp22
   1079   br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
   1080 
   1081 
   1082 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
   1083 sunk the store to winner out.
   1084 
   1085 However, this is awful on several levels: the conditional truncate in the loop
   1086 (-indvars at fault? why can't we completely promote the IV to i64?).
   1087 
   1088 Beyond that, we have a partially redundant load in the loop: if "winner" (aka 
   1089 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
   1090 Similarly, the addressing that feeds it (including the sext) is redundant. In
   1091 the end we get this generated assembly:
   1092 
   1093 LBB0_2:                                 ## %for.body
   1094                                         ## =>This Inner Loop Header: Depth=1
   1095 	movsd	(%rdi), %xmm0
   1096 	movslq	%edx, %r8
   1097 	shlq	$4, %r8
   1098 	ucomisd	(%rcx,%r8), %xmm0
   1099 	jbe	LBB0_4
   1100 	movl	%esi, %edx
   1101 LBB0_4:                                 ## %for.inc
   1102 	addq	$16, %rdi
   1103 	incq	%rsi
   1104 	cmpq	%rsi, %rax
   1105 	jne	LBB0_2
   1106 
   1107 All things considered this isn't too bad, but we shouldn't need the movslq or
   1108 the shlq instruction, or the load folded into ucomisd every time through the
   1109 loop.
   1110 
   1111 On an x86-specific topic, if the loop can't be restructure, the movl should be a
   1112 cmov.
   1113 
   1114 //===---------------------------------------------------------------------===//
   1115 
   1116 [STORE SINKING]
   1117 
   1118 GCC PR37810 is an interesting case where we should sink load/store reload
   1119 into the if block and outside the loop, so we don't reload/store it on the
   1120 non-call path.
   1121 
   1122 for () {
   1123   *P += 1;
   1124   if ()
   1125     call();
   1126   else
   1127     ...
   1128 ->
   1129 tmp = *P
   1130 for () {
   1131   tmp += 1;
   1132   if () {
   1133     *P = tmp;
   1134     call();
   1135     tmp = *P;
   1136   } else ...
   1137 }
   1138 *P = tmp;
   1139 
   1140 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
   1141 we don't sink the store.  We need partially dead store sinking.
   1142 
   1143 //===---------------------------------------------------------------------===//
   1144 
   1145 [LOAD PRE CRIT EDGE SPLITTING]
   1146 
   1147 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
   1148 leading to excess stack traffic. This could be handled by GVN with some crazy
   1149 symbolic phi translation.  The code we get looks like (g is on the stack):
   1150 
   1151 bb2:		; preds = %bb1
   1152 ..
   1153 	%9 = getelementptr %struct.f* %g, i32 0, i32 0		
   1154 	store i32 %8, i32* %9, align  bel %bb3
   1155 
   1156 bb3:		; preds = %bb1, %bb2, %bb
   1157 	%c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
   1158 	%b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
   1159 	%10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
   1160 	%11 = load i32* %10, align 4
   1161 
   1162 %11 is partially redundant, an in BB2 it should have the value %8.
   1163 
   1164 GCC PR33344 and PR35287 are similar cases.
   1165 
   1166 
   1167 //===---------------------------------------------------------------------===//
   1168 
   1169 [LOAD PRE]
   1170 
   1171 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
   1172 GCC testsuite, ones we don't get yet are (checked through loadpre25):
   1173 
   1174 [CRIT EDGE BREAKING]
   1175 loadpre3.c predcom-4.c
   1176 
   1177 [PRE OF READONLY CALL]
   1178 loadpre5.c
   1179 
   1180 [TURN SELECT INTO BRANCH]
   1181 loadpre14.c loadpre15.c 
   1182 
   1183 actually a conditional increment: loadpre18.c loadpre19.c
   1184 
   1185 //===---------------------------------------------------------------------===//
   1186 
   1187 [LOAD PRE / STORE SINKING / SPEC HACK]
   1188 
   1189 This is a chunk of code from 456.hmmer:
   1190 
   1191 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
   1192      int *tpdm, int xmb, int *bp, int *ms) {
   1193  int k, sc;
   1194  for (k = 1; k <= M; k++) {
   1195      mc[k] = mpp[k-1]   + tpmm[k-1];
   1196      if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
   1197      if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
   1198      if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
   1199      mc[k] += ms[k];
   1200    }
   1201 }
   1202 
   1203 It is very profitable for this benchmark to turn the conditional stores to mc[k]
   1204 into a conditional move (select instr in IR) and allow the final store to do the
   1205 store.  See GCC PR27313 for more details.  Note that this is valid to xform even
   1206 with the new C++ memory model, since mc[k] is previously loaded and later
   1207 stored.
   1208 
   1209 //===---------------------------------------------------------------------===//
   1210 
   1211 [SCALAR PRE]
   1212 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
   1213 GCC testsuite.
   1214 
   1215 //===---------------------------------------------------------------------===//
   1216 
   1217 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
   1218 GCC testsuite.  For example, we get the first example in predcom-1.c, but 
   1219 miss the second one:
   1220 
   1221 unsigned fib[1000];
   1222 unsigned avg[1000];
   1223 
   1224 __attribute__ ((noinline))
   1225 void count_averages(int n) {
   1226   int i;
   1227   for (i = 1; i < n; i++)
   1228     avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
   1229 }
   1230 
   1231 which compiles into two loads instead of one in the loop.
   1232 
   1233 predcom-2.c is the same as predcom-1.c
   1234 
   1235 predcom-3.c is very similar but needs loads feeding each other instead of
   1236 store->load.
   1237 
   1238 
   1239 //===---------------------------------------------------------------------===//
   1240 
   1241 [ALIAS ANALYSIS]
   1242 
   1243 Type based alias analysis:
   1244 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
   1245 
   1246 We should do better analysis of posix_memalign.  At the least it should
   1247 no-capture its pointer argument, at best, we should know that the out-value
   1248 result doesn't point to anything (like malloc).  One example of this is in
   1249 SingleSource/Benchmarks/Misc/dt.c
   1250 
   1251 //===---------------------------------------------------------------------===//
   1252 
   1253 Interesting missed case because of control flow flattening (should be 2 loads):
   1254 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
   1255 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 
   1256              opt -mem2reg -gvn -instcombine | llvm-dis
   1257 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
   1258 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
   1259 
   1260 //===---------------------------------------------------------------------===//
   1261 
   1262 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
   1263 We could eliminate the branch condition here, loading from null is undefined:
   1264 
   1265 struct S { int w, x, y, z; };
   1266 struct T { int r; struct S s; };
   1267 void bar (struct S, int);
   1268 void foo (int a, struct T b)
   1269 {
   1270   struct S *c = 0;
   1271   if (a)
   1272     c = &b.s;
   1273   bar (*c, a);
   1274 }
   1275 
   1276 //===---------------------------------------------------------------------===//
   1277 
   1278 simplifylibcalls should do several optimizations for strspn/strcspn:
   1279 
   1280 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
   1281 
   1282 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
   1283                      int __reject3) {
   1284   register size_t __result = 0;
   1285   while (__s[__result] != '\0' && __s[__result] != __reject1 &&
   1286          __s[__result] != __reject2 && __s[__result] != __reject3)
   1287     ++__result;
   1288   return __result;
   1289 }
   1290 
   1291 This should turn into a switch on the character.  See PR3253 for some notes on
   1292 codegen.
   1293 
   1294 456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
   1295 
   1296 //===---------------------------------------------------------------------===//
   1297 
   1298 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
   1299 
   1300 char buf1[6], buf2[6], buf3[4], buf4[4];
   1301 int i;
   1302 
   1303 int foo (void) {
   1304   int ret = snprintf (buf1, sizeof buf1, "abcde");
   1305   ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
   1306   ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
   1307   ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
   1308   return ret;
   1309 }
   1310 
   1311 //===---------------------------------------------------------------------===//
   1312 
   1313 "gas" uses this idiom:
   1314   else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
   1315 ..
   1316   else if (strchr ("<>", *intel_parser.op_string)
   1317 
   1318 Those should be turned into a switch.
   1319 
   1320 //===---------------------------------------------------------------------===//
   1321 
   1322 252.eon contains this interesting code:
   1323 
   1324         %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
   1325         %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
   1326         %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
   1327         %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
   1328         call void @llvm.memcpy.i32(i8* %endptr, 
   1329           i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
   1330         %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 
   1331         
   1332 This is interesting for a couple reasons.  First, in this:
   1333 
   1334 The memcpy+strlen strlen can be replaced with:
   1335 
   1336         %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 
   1337 
   1338 Because the destination was just copied into the specified memory buffer.  This,
   1339 in turn, can be constant folded to "4".
   1340 
   1341 In other code, it contains:
   1342 
   1343         %endptr6978 = bitcast i8* %endptr69 to i32*            
   1344         store i32 7107374, i32* %endptr6978, align 1
   1345         %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly    
   1346 
   1347 Which could also be constant folded.  Whatever is producing this should probably
   1348 be fixed to leave this as a memcpy from a string.
   1349 
   1350 Further, eon also has an interesting partially redundant strlen call:
   1351 
   1352 bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
   1353         %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
   1354         %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
   1355         %684 = load i8* %683, align 1           ; <i8> [#uses=1]
   1356         %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
   1357         br i1 %685, label %bb10, label %bb9
   1358 
   1359 bb9:            ; preds = %bb8
   1360         %686 = call i32 @strlen(i8* %683) nounwind readonly          
   1361         %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
   1362         br i1 %687, label %bb10, label %bb11
   1363 
   1364 bb10:           ; preds = %bb9, %bb8
   1365         %688 = call i32 @strlen(i8* %683) nounwind readonly          
   1366 
   1367 This could be eliminated by doing the strlen once in bb8, saving code size and
   1368 improving perf on the bb8->9->10 path.
   1369 
   1370 //===---------------------------------------------------------------------===//
   1371 
   1372 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
   1373 which looks like:
   1374        %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 
   1375  
   1376 
   1377 bb62:           ; preds = %bb55, %bb53
   1378         %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]             
   1379         %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1380         %172 = add i32 %171, -1         ; <i32> [#uses=1]
   1381         %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172       
   1382 
   1383 ...  no stores ...
   1384        br i1 %or.cond, label %bb65, label %bb72
   1385 
   1386 bb65:           ; preds = %bb62
   1387         store i8 0, i8* %173, align 1
   1388         br label %bb72
   1389 
   1390 bb72:           ; preds = %bb65, %bb62
   1391         %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]            
   1392         %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
   1393 
   1394 Note that on the bb62->bb72 path, that the %177 strlen call is partially
   1395 redundant with the %171 call.  At worst, we could shove the %177 strlen call
   1396 up into the bb65 block moving it out of the bb62->bb72 path.   However, note
   1397 that bb65 stores to the string, zeroing out the last byte.  This means that on
   1398 that path the value of %177 is actually just %171-1.  A sub is cheaper than a
   1399 strlen!
   1400 
   1401 This pattern repeats several times, basically doing:
   1402 
   1403   A = strlen(P);
   1404   P[A-1] = 0;
   1405   B = strlen(P);
   1406   where it is "obvious" that B = A-1.
   1407 
   1408 //===---------------------------------------------------------------------===//
   1409 
   1410 186.crafty has this interesting pattern with the "out.4543" variable:
   1411 
   1412 call void @llvm.memcpy.i32(
   1413         i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
   1414        i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 
   1415 %101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind 
   1416 
   1417 It is basically doing:
   1418 
   1419   memcpy(globalarray, "string");
   1420   printf(...,  globalarray);
   1421   
   1422 Anyway, by knowing that printf just reads the memory and forward substituting
   1423 the string directly into the printf, this eliminates reads from globalarray.
   1424 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
   1425 other similar functions) there are many stores to "out".  Once all the printfs
   1426 stop using "out", all that is left is the memcpy's into it.  This should allow
   1427 globalopt to remove the "stored only" global.
   1428 
   1429 //===---------------------------------------------------------------------===//
   1430 
   1431 This code:
   1432 
   1433 define inreg i32 @foo(i8* inreg %p) nounwind {
   1434   %tmp0 = load i8* %p
   1435   %tmp1 = ashr i8 %tmp0, 5
   1436   %tmp2 = sext i8 %tmp1 to i32
   1437   ret i32 %tmp2
   1438 }
   1439 
   1440 could be dagcombine'd to a sign-extending load with a shift.
   1441 For example, on x86 this currently gets this:
   1442 
   1443 	movb	(%eax), %al
   1444 	sarb	$5, %al
   1445 	movsbl	%al, %eax
   1446 
   1447 while it could get this:
   1448 
   1449 	movsbl	(%eax), %eax
   1450 	sarl	$5, %eax
   1451 
   1452 //===---------------------------------------------------------------------===//
   1453 
   1454 GCC PR31029:
   1455 
   1456 int test(int x) { return 1-x == x; }     // --> return false
   1457 int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
   1458 
   1459 Always foldable for odd constants, what is the rule for even?
   1460 
   1461 //===---------------------------------------------------------------------===//
   1462 
   1463 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
   1464 for next field in struct (which is at same address).
   1465 
   1466 For example: store of float into { {{}}, float } could be turned into a store to
   1467 the float directly.
   1468 
   1469 //===---------------------------------------------------------------------===//
   1470 
   1471 The arg promotion pass should make use of nocapture to make its alias analysis
   1472 stuff much more precise.
   1473 
   1474 //===---------------------------------------------------------------------===//
   1475 
   1476 The following functions should be optimized to use a select instead of a
   1477 branch (from gcc PR40072):
   1478 
   1479 char char_int(int m) {if(m>7) return 0; return m;}
   1480 int int_char(char m) {if(m>7) return 0; return m;}
   1481 
   1482 //===---------------------------------------------------------------------===//
   1483 
   1484 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
   1485 
   1486 Generates this:
   1487 
   1488 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1489 entry:
   1490   %0 = and i32 %a, 128                            ; <i32> [#uses=1]
   1491   %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
   1492   %2 = or i32 %b, 128                             ; <i32> [#uses=1]
   1493   %3 = and i32 %b, -129                           ; <i32> [#uses=1]
   1494   %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
   1495   ret i32 %b_addr.0
   1496 }
   1497 
   1498 However, it's functionally equivalent to:
   1499 
   1500          b = (b & ~0x80) | (a & 0x80);
   1501 
   1502 Which generates this:
   1503 
   1504 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
   1505 entry:
   1506   %0 = and i32 %b, -129                           ; <i32> [#uses=1]
   1507   %1 = and i32 %a, 128                            ; <i32> [#uses=1]
   1508   %2 = or i32 %0, %1                              ; <i32> [#uses=1]
   1509   ret i32 %2
   1510 }
   1511 
   1512 This can be generalized for other forms:
   1513 
   1514      b = (b & ~0x80) | (a & 0x40) << 1;
   1515 
   1516 //===---------------------------------------------------------------------===//
   1517 
   1518 These two functions produce different code. They shouldn't:
   1519 
   1520 #include <stdint.h>
   1521  
   1522 uint8_t p1(uint8_t b, uint8_t a) {
   1523   b = (b & ~0xc0) | (a & 0xc0);
   1524   return (b);
   1525 }
   1526  
   1527 uint8_t p2(uint8_t b, uint8_t a) {
   1528   b = (b & ~0x40) | (a & 0x40);
   1529   b = (b & ~0x80) | (a & 0x80);
   1530   return (b);
   1531 }
   1532 
   1533 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1534 entry:
   1535   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1536   %1 = and i8 %a, -64                             ; <i8> [#uses=1]
   1537   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1538   ret i8 %2
   1539 }
   1540 
   1541 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
   1542 entry:
   1543   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
   1544   %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
   1545   %1 = and i8 %a, -128                            ; <i8> [#uses=1]
   1546   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
   1547   %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
   1548   ret i8 %3
   1549 }
   1550 
   1551 //===---------------------------------------------------------------------===//
   1552 
   1553 IPSCCP does not currently propagate argument dependent constants through
   1554 functions where it does not not all of the callers.  This includes functions
   1555 with normal external linkage as well as templates, C99 inline functions etc.
   1556 Specifically, it does nothing to:
   1557 
   1558 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
   1559 entry:
   1560   %0 = add nsw i32 %y, %z                         
   1561   %1 = mul i32 %0, %x                             
   1562   %2 = mul i32 %y, %z                             
   1563   %3 = add nsw i32 %1, %2                         
   1564   ret i32 %3
   1565 }
   1566 
   1567 define i32 @test2() nounwind {
   1568 entry:
   1569   %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
   1570   ret i32 %0
   1571 }
   1572 
   1573 It would be interesting extend IPSCCP to be able to handle simple cases like
   1574 this, where all of the arguments to a call are constant.  Because IPSCCP runs
   1575 before inlining, trivial templates and inline functions are not yet inlined.
   1576 The results for a function + set of constant arguments should be memoized in a
   1577 map.
   1578 
   1579 //===---------------------------------------------------------------------===//
   1580 
   1581 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
   1582 libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
   1583 handle simple things like this:
   1584 
   1585 static int foo(const char *X) { return strlen(X); }
   1586 int bar() { return foo("abcd"); }
   1587 
   1588 //===---------------------------------------------------------------------===//
   1589 
   1590 functionattrs doesn't know much about memcpy/memset.  This function should be
   1591 marked readnone rather than readonly, since it only twiddles local memory, but
   1592 functionattrs doesn't handle memset/memcpy/memmove aggressively:
   1593 
   1594 struct X { int *p; int *q; };
   1595 int foo() {
   1596  int i = 0, j = 1;
   1597  struct X x, y;
   1598  int **p;
   1599  y.p = &i;
   1600  x.q = &j;
   1601  p = __builtin_memcpy (&x, &y, sizeof (int *));
   1602  return **p;
   1603 }
   1604 
   1605 This can be seen at:
   1606 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
   1607 
   1608 
   1609 //===---------------------------------------------------------------------===//
   1610 
   1611 Missed instcombine transformation:
   1612 define i1 @a(i32 %x) nounwind readnone {
   1613 entry:
   1614   %cmp = icmp eq i32 %x, 30
   1615   %sub = add i32 %x, -30
   1616   %cmp2 = icmp ugt i32 %sub, 9
   1617   %or = or i1 %cmp, %cmp2
   1618   ret i1 %or
   1619 }
   1620 This should be optimized to a single compare.  Testcase derived from gcc.
   1621 
   1622 //===---------------------------------------------------------------------===//
   1623 
   1624 Missed instcombine or reassociate transformation:
   1625 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
   1626 
   1627 The sgt and slt should be combined into a single comparison. Testcase derived
   1628 from gcc.
   1629 
   1630 //===---------------------------------------------------------------------===//
   1631 
   1632 Missed instcombine transformation:
   1633 
   1634   %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
   1635   %383 = zext i32 %382 to i64                     ; [#uses=1]
   1636   %384 = shl i64 %381, %383                       ; [#uses=1]
   1637   %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
   1638 
   1639 The srem can be transformed to an and because if %tmp14.i is negative, the
   1640 shift is undefined.  Testcase derived from 403.gcc.
   1641 
   1642 //===---------------------------------------------------------------------===//
   1643 
   1644 This is a range comparison on a divided result (from 403.gcc):
   1645 
   1646   %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
   1647   %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
   1648   %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
   1649   
   1650 We already catch this (removing the sdiv) if there isn't an add, we should
   1651 handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
   1652 C testcase:
   1653 
   1654 int a(int x) { return (unsigned)(x/16+7) < 15; }
   1655 
   1656 Another similar case involves truncations on 64-bit targets:
   1657 
   1658   %361 = sdiv i64 %.046, 8                        ; [#uses=1]
   1659   %362 = trunc i64 %361 to i32                    ; [#uses=2]
   1660 ...
   1661   %367 = icmp eq i32 %362, 0                      ; [#uses=1]
   1662 
   1663 //===---------------------------------------------------------------------===//
   1664 
   1665 Missed instcombine/dagcombine transformation:
   1666 define void @lshift_lt(i8 zeroext %a) nounwind {
   1667 entry:
   1668   %conv = zext i8 %a to i32
   1669   %shl = shl i32 %conv, 3
   1670   %cmp = icmp ult i32 %shl, 33
   1671   br i1 %cmp, label %if.then, label %if.end
   1672 
   1673 if.then:
   1674   tail call void @bar() nounwind
   1675   ret void
   1676 
   1677 if.end:
   1678   ret void
   1679 }
   1680 declare void @bar() nounwind
   1681 
   1682 The shift should be eliminated.  Testcase derived from gcc.
   1683 
   1684 //===---------------------------------------------------------------------===//
   1685 
   1686 These compile into different code, one gets recognized as a switch and the
   1687 other doesn't due to phase ordering issues (PR6212):
   1688 
   1689 int test1(int mainType, int subType) {
   1690   if (mainType == 7)
   1691     subType = 4;
   1692   else if (mainType == 9)
   1693     subType = 6;
   1694   else if (mainType == 11)
   1695     subType = 9;
   1696   return subType;
   1697 }
   1698 
   1699 int test2(int mainType, int subType) {
   1700   if (mainType == 7)
   1701     subType = 4;
   1702   if (mainType == 9)
   1703     subType = 6;
   1704   if (mainType == 11)
   1705     subType = 9;
   1706   return subType;
   1707 }
   1708 
   1709 //===---------------------------------------------------------------------===//
   1710 
   1711 The following test case (from PR6576):
   1712 
   1713 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1714 entry:
   1715  %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
   1716  br i1 %cond1, label %exit, label %bb.nph
   1717 bb.nph:                                           ; preds = %entry
   1718  %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
   1719  ret i32 %tmp
   1720 exit:                                             ; preds = %entry
   1721  ret i32 0
   1722 }
   1723 
   1724 could be reduced to:
   1725 
   1726 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
   1727 entry:
   1728  %tmp = mul i32 %b, %a
   1729  ret i32 %tmp
   1730 }
   1731 
   1732 //===---------------------------------------------------------------------===//
   1733 
   1734 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
   1735 See GCC PR34949
   1736 
   1737 Another interesting case is that something related could be used for variables
   1738 that go const after their ctor has finished.  In these cases, globalopt (which
   1739 can statically run the constructor) could mark the global const (so it gets put
   1740 in the readonly section).  A testcase would be:
   1741 
   1742 #include <complex>
   1743 using namespace std;
   1744 const complex<char> should_be_in_rodata (42,-42);
   1745 complex<char> should_be_in_data (42,-42);
   1746 complex<char> should_be_in_bss;
   1747 
   1748 Where we currently evaluate the ctors but the globals don't become const because
   1749 the optimizer doesn't know they "become const" after the ctor is done.  See
   1750 GCC PR4131 for more examples.
   1751 
   1752 //===---------------------------------------------------------------------===//
   1753 
   1754 In this code:
   1755 
   1756 long foo(long x) {
   1757   return x > 1 ? x : 1;
   1758 }
   1759 
   1760 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
   1761 and cheaper on most targets.
   1762 
   1763 LLVM prefers comparisons with zero over non-zero in general, but in this
   1764 case it choses instead to keep the max operation obvious.
   1765 
   1766 //===---------------------------------------------------------------------===//
   1767 
   1768 define void @a(i32 %x) nounwind {
   1769 entry:
   1770   switch i32 %x, label %if.end [
   1771     i32 0, label %if.then
   1772     i32 1, label %if.then
   1773     i32 2, label %if.then
   1774     i32 3, label %if.then
   1775     i32 5, label %if.then
   1776   ]
   1777 if.then:
   1778   tail call void @foo() nounwind
   1779   ret void
   1780 if.end:
   1781   ret void
   1782 }
   1783 declare void @foo()
   1784 
   1785 Generated code on x86-64 (other platforms give similar results):
   1786 a:
   1787 	cmpl	$5, %edi
   1788 	ja	LBB2_2
   1789 	cmpl	$4, %edi
   1790 	jne	LBB2_3
   1791 .LBB0_2:
   1792 	ret
   1793 .LBB0_3:
   1794 	jmp	foo  # TAILCALL
   1795 
   1796 If we wanted to be really clever, we could simplify the whole thing to
   1797 something like the following, which eliminates a branch:
   1798 	xorl    $1, %edi
   1799 	cmpl	$4, %edi
   1800 	ja	.LBB0_2
   1801 	ret
   1802 .LBB0_2:
   1803 	jmp	foo  # TAILCALL
   1804 
   1805 //===---------------------------------------------------------------------===//
   1806 
   1807 We compile this:
   1808 
   1809 int foo(int a) { return (a & (~15)) / 16; }
   1810 
   1811 Into:
   1812 
   1813 define i32 @foo(i32 %a) nounwind readnone ssp {
   1814 entry:
   1815   %and = and i32 %a, -16
   1816   %div = sdiv i32 %and, 16
   1817   ret i32 %div
   1818 }
   1819 
   1820 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
   1821 should be instcombined into just "a >> 4".
   1822 
   1823 We do get this at the codegen level, so something knows about it, but 
   1824 instcombine should catch it earlier:
   1825 
   1826 _foo:                                   ## @foo
   1827 ## BB#0:                                ## %entry
   1828 	movl	%edi, %eax
   1829 	sarl	$4, %eax
   1830 	ret
   1831 
   1832 //===---------------------------------------------------------------------===//
   1833 
   1834 This code (from GCC PR28685):
   1835 
   1836 int test(int a, int b) {
   1837   int lt = a < b;
   1838   int eq = a == b;
   1839   if (lt)
   1840     return 1;
   1841   return eq;
   1842 }
   1843 
   1844 Is compiled to:
   1845 
   1846 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
   1847 entry:
   1848   %cmp = icmp slt i32 %a, %b
   1849   br i1 %cmp, label %return, label %if.end
   1850 
   1851 if.end:                                           ; preds = %entry
   1852   %cmp5 = icmp eq i32 %a, %b
   1853   %conv6 = zext i1 %cmp5 to i32
   1854   ret i32 %conv6
   1855 
   1856 return:                                           ; preds = %entry
   1857   ret i32 1
   1858 }
   1859 
   1860 it could be:
   1861 
   1862 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
   1863 entry:
   1864   %0 = icmp sle i32 %a, %b
   1865   %retval = zext i1 %0 to i32
   1866   ret i32 %retval
   1867 }
   1868 
   1869 //===---------------------------------------------------------------------===//
   1870 
   1871 This code can be seen in viterbi:
   1872 
   1873   %64 = call noalias i8* @malloc(i64 %62) nounwind
   1874 ...
   1875   %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
   1876   %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
   1877 
   1878 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
   1879 fold to %62.  This is a security win (overflows of malloc will get caught)
   1880 and also a performance win by exposing more memsets to the optimizer.
   1881 
   1882 This occurs several times in viterbi.
   1883 
   1884 Note that this would change the semantics of @llvm.objectsize which by its
   1885 current definition always folds to a constant. We also should make sure that
   1886 we remove checking in code like
   1887 
   1888   char *p = malloc(strlen(s)+1);
   1889   __strcpy_chk(p, s, __builtin_objectsize(p, 0));
   1890 
   1891 //===---------------------------------------------------------------------===//
   1892 
   1893 This code (from Benchmarks/Dhrystone/dry.c):
   1894 
   1895 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1896 entry:
   1897   %sext = shl i32 %0, 24
   1898   %conv = ashr i32 %sext, 24
   1899   %sext6 = shl i32 %1, 24
   1900   %conv4 = ashr i32 %sext6, 24
   1901   %cmp = icmp eq i32 %conv, %conv4
   1902   %. = select i1 %cmp, i32 10000, i32 0
   1903   ret i32 %.
   1904 }
   1905 
   1906 Should be simplified into something like:
   1907 
   1908 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1909 entry:
   1910   %sext = shl i32 %0, 24
   1911   %conv = and i32 %sext, 0xFF000000
   1912   %sext6 = shl i32 %1, 24
   1913   %conv4 = and i32 %sext6, 0xFF000000
   1914   %cmp = icmp eq i32 %conv, %conv4
   1915   %. = select i1 %cmp, i32 10000, i32 0
   1916   ret i32 %.
   1917 }
   1918 
   1919 and then to:
   1920 
   1921 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
   1922 entry:
   1923   %conv = and i32 %0, 0xFF
   1924   %conv4 = and i32 %1, 0xFF
   1925   %cmp = icmp eq i32 %conv, %conv4
   1926   %. = select i1 %cmp, i32 10000, i32 0
   1927   ret i32 %.
   1928 }
   1929 //===---------------------------------------------------------------------===//
   1930 
   1931 clang -O3 currently compiles this code
   1932 
   1933 int g(unsigned int a) {
   1934   unsigned int c[100];
   1935   c[10] = a;
   1936   c[11] = a;
   1937   unsigned int b = c[10] + c[11];
   1938   if(b > a*2) a = 4;
   1939   else a = 8;
   1940   return a + 7;
   1941 }
   1942 
   1943 into
   1944 
   1945 define i32 @g(i32 a) nounwind readnone {
   1946   %add = shl i32 %a, 1
   1947   %mul = shl i32 %a, 1
   1948   %cmp = icmp ugt i32 %add, %mul
   1949   %a.addr.0 = select i1 %cmp, i32 11, i32 15
   1950   ret i32 %a.addr.0
   1951 }
   1952 
   1953 The icmp should fold to false. This CSE opportunity is only available
   1954 after GVN and InstCombine have run.
   1955 
   1956 //===---------------------------------------------------------------------===//
   1957 
   1958 memcpyopt should turn this:
   1959 
   1960 define i8* @test10(i32 %x) {
   1961   %alloc = call noalias i8* @malloc(i32 %x) nounwind
   1962   call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
   1963   ret i8* %alloc
   1964 }
   1965 
   1966 into a call to calloc.  We should make sure that we analyze calloc as
   1967 aggressively as malloc though.
   1968 
   1969 //===---------------------------------------------------------------------===//
   1970 
   1971 clang -O3 doesn't optimize this:
   1972 
   1973 void f1(int* begin, int* end) {
   1974   std::fill(begin, end, 0);
   1975 }
   1976 
   1977 into a memset.  This is PR8942.
   1978 
   1979 //===---------------------------------------------------------------------===//
   1980 
   1981 clang -O3 -fno-exceptions currently compiles this code:
   1982 
   1983 void f(int N) {
   1984   std::vector<int> v(N);
   1985 
   1986   extern void sink(void*); sink(&v);
   1987 }
   1988 
   1989 into
   1990 
   1991 define void @_Z1fi(i32 %N) nounwind {
   1992 entry:
   1993   %v2 = alloca [3 x i32*], align 8
   1994   %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
   1995   %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
   1996   %conv = sext i32 %N to i64
   1997   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   1998   %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
   1999   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   2000   %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
   2001   store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   2002   %cmp.i.i.i.i = icmp eq i32 %N, 0
   2003   br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
   2004 
   2005 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
   2006   store i32* null, i32** %v2.sub, align 8, !tbaa !0
   2007   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   2008   %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
   2009   store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   2010   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   2011 
   2012 cond.true.i.i.i.i:                                ; preds = %entry
   2013   %cmp.i.i.i.i.i = icmp slt i32 %N, 0
   2014   br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
   2015 
   2016 if.then.i.i.i.i.i:                                ; preds = %cond.true.i.i.i.i
   2017   call void @_ZSt17__throw_bad_allocv() noreturn nounwind
   2018   unreachable
   2019 
   2020 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i:    ; preds = %cond.true.i.i.i.i
   2021   %mul.i.i.i.i.i = shl i64 %conv, 2
   2022   %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
   2023   %0 = bitcast i8* %call3.i.i.i.i.i to i32*
   2024   store i32* %0, i32** %v2.sub, align 8, !tbaa !0
   2025   store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
   2026   %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
   2027   store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
   2028   call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
   2029   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
   2030 
   2031 This is just the handling the construction of the vector. Most surprising here
   2032 is the fact that all three null stores in %entry are dead (because we do no
   2033 cross-block DSE).
   2034 
   2035 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
   2036 This is a because the client of LazyValueInfo doesn't simplify all instruction
   2037 operands, just selected ones.
   2038 
   2039 //===---------------------------------------------------------------------===//
   2040 
   2041 clang -O3 -fno-exceptions currently compiles this code:
   2042 
   2043 void f(char* a, int n) {
   2044   __builtin_memset(a, 0, n);
   2045   for (int i = 0; i < n; ++i)
   2046     a[i] = 0;
   2047 }
   2048 
   2049 into:
   2050 
   2051 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
   2052 entry:
   2053   %conv = sext i32 %n to i64
   2054   tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
   2055   %cmp8 = icmp sgt i32 %n, 0
   2056   br i1 %cmp8, label %for.body.lr.ph, label %for.end
   2057 
   2058 for.body.lr.ph:                                   ; preds = %entry
   2059   %tmp10 = add i32 %n, -1
   2060   %tmp11 = zext i32 %tmp10 to i64
   2061   %tmp12 = add i64 %tmp11, 1
   2062   call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
   2063   ret void
   2064 
   2065 for.end:                                          ; preds = %entry
   2066   ret void
   2067 }
   2068 
   2069 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
   2070 the two memset's together.
   2071 
   2072 The issue with the addition only occurs in 64-bit mode, and appears to be at
   2073 least partially caused by Scalar Evolution not keeping its cache updated: it
   2074 returns the "wrong" result immediately after indvars runs, but figures out the
   2075 expected result if it is run from scratch on IR resulting from running indvars.
   2076 
   2077 //===---------------------------------------------------------------------===//
   2078 
   2079 clang -O3 -fno-exceptions currently compiles this code:
   2080 
   2081 struct S {
   2082   unsigned short m1, m2;
   2083   unsigned char m3, m4;
   2084 };
   2085 
   2086 void f(int N) {
   2087   std::vector<S> v(N);
   2088   extern void sink(void*); sink(&v);
   2089 }
   2090 
   2091 into poor code for zero-initializing 'v' when N is >0. The problem is that
   2092 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
   2093 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
   2094 a memset.
   2095 
   2096 In order to handle this we have to:
   2097   A) Teach clang to generate metadata for memsets of structs that have holes in
   2098      them.
   2099   B) Teach clang to use such a memset for zero init of this struct (since it has
   2100      a hole), instead of doing elementwise zeroing.
   2101 
   2102 //===---------------------------------------------------------------------===//
   2103 
   2104 clang -O3 currently compiles this code:
   2105 
   2106 extern const int magic;
   2107 double f() { return 0.0 * magic; }
   2108 
   2109 into
   2110 
   2111 @magic = external constant i32
   2112 
   2113 define double @_Z1fv() nounwind readnone {
   2114 entry:
   2115   %tmp = load i32* @magic, align 4, !tbaa !0
   2116   %conv = sitofp i32 %tmp to double
   2117   %mul = fmul double %conv, 0.000000e+00
   2118   ret double %mul
   2119 }
   2120 
   2121 We should be able to fold away this fmul to 0.0.  More generally, fmul(x,0.0)
   2122 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
   2123 not an INF.  The CannotBeNegativeZero predicate in value tracking should be
   2124 extended to support general "fpclassify" operations that can return 
   2125 yes/no/unknown for each of these predicates.
   2126 
   2127 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
   2128 we know that it isn't +/-Inf if the floating point type has enough exponent bits
   2129 to represent the largest integer value as < inf.
   2130 
   2131 //===---------------------------------------------------------------------===//
   2132 
   2133 When optimizing a transformation that can change the sign of 0.0 (such as the
   2134 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
   2135 expression doesn't matter.  For example, by the above rules, we can't transform
   2136 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
   2137 expression is defined to be -0.0.
   2138 
   2139 If we look at the uses of the fmul for example, we might be able to prove that
   2140 all uses don't care about the sign of zero.  For example, if we have:
   2141 
   2142   fadd(fmul(sitofp(x), 0.0), 2.0)
   2143 
   2144 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
   2145 transform the fmul to 0.0, and then the fadd to 2.0.
   2146 
   2147 //===---------------------------------------------------------------------===//
   2148 
   2149 We should enhance memcpy/memcpy/memset to allow a metadata node on them
   2150 indicating that some bytes of the transfer are undefined.  This is useful for
   2151 frontends like clang when lowering struct copies, when some elements of the
   2152 struct are undefined.  Consider something like this:
   2153 
   2154 struct x {
   2155   char a;
   2156   int b[4];
   2157 };
   2158 void foo(struct x*P);
   2159 struct x testfunc() {
   2160   struct x V1, V2;
   2161   foo(&V1);
   2162   V2 = V1;
   2163 
   2164   return V2;
   2165 }
   2166 
   2167 We currently compile this to:
   2168 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
   2169 
   2170 
   2171 %struct.x = type { i8, [4 x i32] }
   2172 
   2173 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
   2174 entry:
   2175   %V1 = alloca %struct.x, align 4
   2176   call void @foo(%struct.x* %V1)
   2177   %tmp1 = bitcast %struct.x* %V1 to i8*
   2178   %0 = bitcast %struct.x* %V1 to i160*
   2179   %srcval1 = load i160* %0, align 4
   2180   %tmp2 = bitcast %struct.x* %agg.result to i8*
   2181   %1 = bitcast %struct.x* %agg.result to i160*
   2182   store i160 %srcval1, i160* %1, align 4
   2183   ret void
   2184 }
   2185 
   2186 This happens because SRoA sees that the temp alloca has is being memcpy'd into
   2187 and out of and it has holes and it has to be conservative.  If we knew about the
   2188 holes, then this could be much much better.
   2189 
   2190 Having information about these holes would also improve memcpy (etc) lowering at
   2191 llc time when it gets inlined, because we can use smaller transfers.  This also
   2192 avoids partial register stalls in some important cases.
   2193 
   2194 //===---------------------------------------------------------------------===//
   2195 
   2196 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
   2197 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
   2198 example:
   2199 
   2200  %indvar.next90 = add i64 %indvar89, 1     ;; Has 2 uses
   2201  %tmp96 = add i64 %tmp95, 1                ;; Has 1 use
   2202  %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
   2203 
   2204 We don't fold this because we don't want to introduce an overlapped live range
   2205 of the ivar.  However if we can make this more aggressive without causing
   2206 performance issues in two ways:
   2207 
   2208 1. If *either* the LHS or RHS has a single use, we can definitely do the
   2209    transformation.  In the overlapping liverange case we're trading one register
   2210    use for one fewer operation, which is a reasonable trade.  Before doing this
   2211    we should verify that the llc output actually shrinks for some benchmarks.
   2212 2. If both ops have multiple uses, we can still fold it if the operations are
   2213    both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
   2214    increase register pressure.
   2215 
   2216 There are a ton of icmp's we aren't simplifying because of the reg pressure
   2217 concern.  Care is warranted here though because many of these are induction
   2218 variables and other cases that matter a lot to performance, like the above.
   2219 Here's a blob of code that you can drop into the bottom of visitICmp to see some
   2220 missed cases:
   2221 
   2222   { Value *A, *B, *C, *D;
   2223     if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 
   2224         match(Op1, m_Add(m_Value(C), m_Value(D))) &&
   2225         (A == C || A == D || B == C || B == D)) {
   2226       errs() << "OP0 = " << *Op0 << "  U=" << Op0->getNumUses() << "\n";
   2227       errs() << "OP1 = " << *Op1 << "  U=" << Op1->getNumUses() << "\n";
   2228       errs() << "CMP = " << I << "\n\n";
   2229     }
   2230   }
   2231 
   2232 //===---------------------------------------------------------------------===//
   2233 
   2234 define i1 @test1(i32 %x) nounwind {
   2235   %and = and i32 %x, 3
   2236   %cmp = icmp ult i32 %and, 2
   2237   ret i1 %cmp
   2238 }
   2239 
   2240 Can be folded to (x & 2) == 0.
   2241 
   2242 define i1 @test2(i32 %x) nounwind {
   2243   %and = and i32 %x, 3
   2244   %cmp = icmp ugt i32 %and, 1
   2245   ret i1 %cmp
   2246 }
   2247 
   2248 Can be folded to (x & 2) != 0.
   2249 
   2250 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
   2251 icmp transform.
   2252 
   2253 //===---------------------------------------------------------------------===//
   2254 
   2255 This code:
   2256 
   2257 typedef struct {
   2258 int f1:1;
   2259 int f2:1;
   2260 int f3:1;
   2261 int f4:29;
   2262 } t1;
   2263 
   2264 typedef struct {
   2265 int f1:1;
   2266 int f2:1;
   2267 int f3:30;
   2268 } t2;
   2269 
   2270 t1 s1;
   2271 t2 s2;
   2272 
   2273 void func1(void)
   2274 {
   2275 s1.f1 = s2.f1;
   2276 s1.f2 = s2.f2;
   2277 }
   2278 
   2279 Compiles into this IR (on x86-64 at least):
   2280 
   2281 %struct.t1 = type { i8, [3 x i8] }
   2282 @s2 = global %struct.t1 zeroinitializer, align 4
   2283 @s1 = global %struct.t1 zeroinitializer, align 4
   2284 define void @func1() nounwind ssp noredzone {
   2285 entry:
   2286   %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
   2287   %bf.val.sext5 = and i32 %0, 1
   2288   %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2289   %2 = and i32 %1, -4
   2290   %3 = or i32 %2, %bf.val.sext5
   2291   %bf.val.sext26 = and i32 %0, 2
   2292   %4 = or i32 %3, %bf.val.sext26
   2293   store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
   2294   ret void
   2295 }
   2296 
   2297 The two or/and's should be merged into one each.
   2298 
   2299 //===---------------------------------------------------------------------===//
   2300 
   2301 Machine level code hoisting can be useful in some cases.  For example, PR9408
   2302 is about:
   2303 
   2304 typedef union {
   2305  void (*f1)(int);
   2306  void (*f2)(long);
   2307 } funcs;
   2308 
   2309 void foo(funcs f, int which) {
   2310  int a = 5;
   2311  if (which) {
   2312    f.f1(a);
   2313  } else {
   2314    f.f2(a);
   2315  }
   2316 }
   2317 
   2318 which we compile to:
   2319 
   2320 foo:                                    # @foo
   2321 # BB#0:                                 # %entry
   2322        pushq   %rbp
   2323        movq    %rsp, %rbp
   2324        testl   %esi, %esi
   2325        movq    %rdi, %rax
   2326        je      .LBB0_2
   2327 # BB#1:                                 # %if.then
   2328        movl    $5, %edi
   2329        callq   *%rax
   2330        popq    %rbp
   2331        ret
   2332 .LBB0_2:                                # %if.else
   2333        movl    $5, %edi
   2334        callq   *%rax
   2335        popq    %rbp
   2336        ret
   2337 
   2338 Note that bb1 and bb2 are the same.  This doesn't happen at the IR level
   2339 because one call is passing an i32 and the other is passing an i64.
   2340 
   2341 //===---------------------------------------------------------------------===//
   2342 
   2343 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
   2344 store_bit_field).  The rem should be replaced with a multiply and subtract:
   2345 
   2346   %3 = sdiv i32 %A, %B
   2347   %4 = srem i32 %A, %B
   2348 
   2349 Similarly for udiv/urem.  Note that this shouldn't be done on X86 or ARM,
   2350 which can do this in a single operation (instruction or libcall).  It is
   2351 probably best to do this in the code generator.
   2352 
   2353 //===---------------------------------------------------------------------===//
   2354 
   2355 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
   2356 should fold to (x & y) == 0.
   2357 
   2358 //===---------------------------------------------------------------------===//
   2359 
   2360 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
   2361 should fold to x > y.
   2362 
   2363 //===---------------------------------------------------------------------===//
   2364 
   2365 int f(double x) { return __builtin_fabs(x) < 0.0; }
   2366 should fold to false.
   2367 
   2368 //===---------------------------------------------------------------------===//
   2369