Home | History | Annotate | Download | only in X86
      1 //===- X86RegisterInfo.td - Describe the X86 Register File --*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the X86 Register file, defining the registers themselves,
     11 // aliases between the registers, and the register classes built out of the
     12 // registers.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 //===----------------------------------------------------------------------===//
     17 //  Register definitions...
     18 //
     19 let Namespace = "X86" in {
     20 
     21   // Subregister indices.
     22   def sub_8bit    : SubRegIndex;
     23   def sub_8bit_hi : SubRegIndex;
     24   def sub_16bit   : SubRegIndex;
     25   def sub_32bit   : SubRegIndex;
     26 
     27   def sub_ss  : SubRegIndex;
     28   def sub_sd  : SubRegIndex;
     29   def sub_xmm : SubRegIndex;
     30 
     31 
     32   // In the register alias definitions below, we define which registers alias
     33   // which others.  We only specify which registers the small registers alias,
     34   // because the register file generator is smart enough to figure out that
     35   // AL aliases AX if we tell it that AX aliased AL (for example).
     36 
     37   // Dwarf numbering is different for 32-bit and 64-bit, and there are
     38   // variations by target as well. Currently the first entry is for X86-64,
     39   // second - for EH on X86-32/Darwin and third is 'generic' one (X86-32/Linux
     40   // and debug information on X86-32/Darwin)
     41 
     42   // 8-bit registers
     43   // Low registers
     44   def AL : Register<"al">;
     45   def DL : Register<"dl">;
     46   def CL : Register<"cl">;
     47   def BL : Register<"bl">;
     48 
     49   // X86-64 only, requires REX.
     50   let CostPerUse = 1 in {
     51   def SIL : Register<"sil">;
     52   def DIL : Register<"dil">;
     53   def BPL : Register<"bpl">;
     54   def SPL : Register<"spl">;
     55   def R8B  : Register<"r8b">;
     56   def R9B  : Register<"r9b">;
     57   def R10B : Register<"r10b">;
     58   def R11B : Register<"r11b">;
     59   def R12B : Register<"r12b">;
     60   def R13B : Register<"r13b">;
     61   def R14B : Register<"r14b">;
     62   def R15B : Register<"r15b">;
     63   }
     64 
     65   // High registers. On x86-64, these cannot be used in any instruction
     66   // with a REX prefix.
     67   def AH : Register<"ah">;
     68   def DH : Register<"dh">;
     69   def CH : Register<"ch">;
     70   def BH : Register<"bh">;
     71 
     72   // 16-bit registers
     73   let SubRegIndices = [sub_8bit, sub_8bit_hi], CoveredBySubRegs = 1 in {
     74   def AX : RegisterWithSubRegs<"ax", [AL,AH]>;
     75   def DX : RegisterWithSubRegs<"dx", [DL,DH]>;
     76   def CX : RegisterWithSubRegs<"cx", [CL,CH]>;
     77   def BX : RegisterWithSubRegs<"bx", [BL,BH]>;
     78   }
     79   let SubRegIndices = [sub_8bit] in {
     80   def SI : RegisterWithSubRegs<"si", [SIL]>;
     81   def DI : RegisterWithSubRegs<"di", [DIL]>;
     82   def BP : RegisterWithSubRegs<"bp", [BPL]>;
     83   def SP : RegisterWithSubRegs<"sp", [SPL]>;
     84   }
     85   def IP : Register<"ip">;
     86 
     87   // X86-64 only, requires REX.
     88   let SubRegIndices = [sub_8bit], CostPerUse = 1 in {
     89   def R8W  : RegisterWithSubRegs<"r8w", [R8B]>;
     90   def R9W  : RegisterWithSubRegs<"r9w", [R9B]>;
     91   def R10W : RegisterWithSubRegs<"r10w", [R10B]>;
     92   def R11W : RegisterWithSubRegs<"r11w", [R11B]>;
     93   def R12W : RegisterWithSubRegs<"r12w", [R12B]>;
     94   def R13W : RegisterWithSubRegs<"r13w", [R13B]>;
     95   def R14W : RegisterWithSubRegs<"r14w", [R14B]>;
     96   def R15W : RegisterWithSubRegs<"r15w", [R15B]>;
     97   }
     98   // 32-bit registers
     99   let SubRegIndices = [sub_16bit] in {
    100   def EAX : RegisterWithSubRegs<"eax", [AX]>, DwarfRegNum<[-2, 0, 0]>;
    101   def EDX : RegisterWithSubRegs<"edx", [DX]>, DwarfRegNum<[-2, 2, 2]>;
    102   def ECX : RegisterWithSubRegs<"ecx", [CX]>, DwarfRegNum<[-2, 1, 1]>;
    103   def EBX : RegisterWithSubRegs<"ebx", [BX]>, DwarfRegNum<[-2, 3, 3]>;
    104   def ESI : RegisterWithSubRegs<"esi", [SI]>, DwarfRegNum<[-2, 6, 6]>;
    105   def EDI : RegisterWithSubRegs<"edi", [DI]>, DwarfRegNum<[-2, 7, 7]>;
    106   def EBP : RegisterWithSubRegs<"ebp", [BP]>, DwarfRegNum<[-2, 4, 5]>;
    107   def ESP : RegisterWithSubRegs<"esp", [SP]>, DwarfRegNum<[-2, 5, 4]>;
    108   def EIP : RegisterWithSubRegs<"eip", [IP]>, DwarfRegNum<[-2, 8, 8]>;
    109 
    110   // X86-64 only, requires REX
    111   let CostPerUse = 1 in {
    112   def R8D  : RegisterWithSubRegs<"r8d", [R8W]>;
    113   def R9D  : RegisterWithSubRegs<"r9d", [R9W]>;
    114   def R10D : RegisterWithSubRegs<"r10d", [R10W]>;
    115   def R11D : RegisterWithSubRegs<"r11d", [R11W]>;
    116   def R12D : RegisterWithSubRegs<"r12d", [R12W]>;
    117   def R13D : RegisterWithSubRegs<"r13d", [R13W]>;
    118   def R14D : RegisterWithSubRegs<"r14d", [R14W]>;
    119   def R15D : RegisterWithSubRegs<"r15d", [R15W]>;
    120   }}
    121 
    122   // 64-bit registers, X86-64 only
    123   let SubRegIndices = [sub_32bit] in {
    124   def RAX : RegisterWithSubRegs<"rax", [EAX]>, DwarfRegNum<[0, -2, -2]>;
    125   def RDX : RegisterWithSubRegs<"rdx", [EDX]>, DwarfRegNum<[1, -2, -2]>;
    126   def RCX : RegisterWithSubRegs<"rcx", [ECX]>, DwarfRegNum<[2, -2, -2]>;
    127   def RBX : RegisterWithSubRegs<"rbx", [EBX]>, DwarfRegNum<[3, -2, -2]>;
    128   def RSI : RegisterWithSubRegs<"rsi", [ESI]>, DwarfRegNum<[4, -2, -2]>;
    129   def RDI : RegisterWithSubRegs<"rdi", [EDI]>, DwarfRegNum<[5, -2, -2]>;
    130   def RBP : RegisterWithSubRegs<"rbp", [EBP]>, DwarfRegNum<[6, -2, -2]>;
    131   def RSP : RegisterWithSubRegs<"rsp", [ESP]>, DwarfRegNum<[7, -2, -2]>;
    132 
    133   // These also require REX.
    134   let CostPerUse = 1 in {
    135   def R8  : RegisterWithSubRegs<"r8", [R8D]>, DwarfRegNum<[8, -2, -2]>;
    136   def R9  : RegisterWithSubRegs<"r9", [R9D]>, DwarfRegNum<[9, -2, -2]>;
    137   def R10 : RegisterWithSubRegs<"r10", [R10D]>, DwarfRegNum<[10, -2, -2]>;
    138   def R11 : RegisterWithSubRegs<"r11", [R11D]>, DwarfRegNum<[11, -2, -2]>;
    139   def R12 : RegisterWithSubRegs<"r12", [R12D]>, DwarfRegNum<[12, -2, -2]>;
    140   def R13 : RegisterWithSubRegs<"r13", [R13D]>, DwarfRegNum<[13, -2, -2]>;
    141   def R14 : RegisterWithSubRegs<"r14", [R14D]>, DwarfRegNum<[14, -2, -2]>;
    142   def R15 : RegisterWithSubRegs<"r15", [R15D]>, DwarfRegNum<[15, -2, -2]>;
    143   def RIP : RegisterWithSubRegs<"rip", [EIP]>,  DwarfRegNum<[16, -2, -2]>;
    144   }}
    145 
    146   // MMX Registers. These are actually aliased to ST0 .. ST7
    147   def MM0 : Register<"mm0">, DwarfRegNum<[41, 29, 29]>;
    148   def MM1 : Register<"mm1">, DwarfRegNum<[42, 30, 30]>;
    149   def MM2 : Register<"mm2">, DwarfRegNum<[43, 31, 31]>;
    150   def MM3 : Register<"mm3">, DwarfRegNum<[44, 32, 32]>;
    151   def MM4 : Register<"mm4">, DwarfRegNum<[45, 33, 33]>;
    152   def MM5 : Register<"mm5">, DwarfRegNum<[46, 34, 34]>;
    153   def MM6 : Register<"mm6">, DwarfRegNum<[47, 35, 35]>;
    154   def MM7 : Register<"mm7">, DwarfRegNum<[48, 36, 36]>;
    155 
    156   // Pseudo Floating Point registers
    157   def FP0 : Register<"fp0">;
    158   def FP1 : Register<"fp1">;
    159   def FP2 : Register<"fp2">;
    160   def FP3 : Register<"fp3">;
    161   def FP4 : Register<"fp4">;
    162   def FP5 : Register<"fp5">;
    163   def FP6 : Register<"fp6">;
    164 
    165   // XMM Registers, used by the various SSE instruction set extensions.
    166   // The sub_ss and sub_sd subregs are the same registers with another regclass.
    167   let CompositeIndices = [(sub_ss), (sub_sd)] in {
    168   def XMM0: Register<"xmm0">, DwarfRegNum<[17, 21, 21]>;
    169   def XMM1: Register<"xmm1">, DwarfRegNum<[18, 22, 22]>;
    170   def XMM2: Register<"xmm2">, DwarfRegNum<[19, 23, 23]>;
    171   def XMM3: Register<"xmm3">, DwarfRegNum<[20, 24, 24]>;
    172   def XMM4: Register<"xmm4">, DwarfRegNum<[21, 25, 25]>;
    173   def XMM5: Register<"xmm5">, DwarfRegNum<[22, 26, 26]>;
    174   def XMM6: Register<"xmm6">, DwarfRegNum<[23, 27, 27]>;
    175   def XMM7: Register<"xmm7">, DwarfRegNum<[24, 28, 28]>;
    176 
    177   // X86-64 only
    178   let CostPerUse = 1 in {
    179   def XMM8:  Register<"xmm8">,  DwarfRegNum<[25, -2, -2]>;
    180   def XMM9:  Register<"xmm9">,  DwarfRegNum<[26, -2, -2]>;
    181   def XMM10: Register<"xmm10">, DwarfRegNum<[27, -2, -2]>;
    182   def XMM11: Register<"xmm11">, DwarfRegNum<[28, -2, -2]>;
    183   def XMM12: Register<"xmm12">, DwarfRegNum<[29, -2, -2]>;
    184   def XMM13: Register<"xmm13">, DwarfRegNum<[30, -2, -2]>;
    185   def XMM14: Register<"xmm14">, DwarfRegNum<[31, -2, -2]>;
    186   def XMM15: Register<"xmm15">, DwarfRegNum<[32, -2, -2]>;
    187   }}
    188 
    189   // YMM Registers, used by AVX instructions
    190   let SubRegIndices = [sub_xmm] in {
    191   def YMM0: RegisterWithSubRegs<"ymm0", [XMM0]>, DwarfRegAlias<XMM0>;
    192   def YMM1: RegisterWithSubRegs<"ymm1", [XMM1]>, DwarfRegAlias<XMM1>;
    193   def YMM2: RegisterWithSubRegs<"ymm2", [XMM2]>, DwarfRegAlias<XMM2>;
    194   def YMM3: RegisterWithSubRegs<"ymm3", [XMM3]>, DwarfRegAlias<XMM3>;
    195   def YMM4: RegisterWithSubRegs<"ymm4", [XMM4]>, DwarfRegAlias<XMM4>;
    196   def YMM5: RegisterWithSubRegs<"ymm5", [XMM5]>, DwarfRegAlias<XMM5>;
    197   def YMM6: RegisterWithSubRegs<"ymm6", [XMM6]>, DwarfRegAlias<XMM6>;
    198   def YMM7: RegisterWithSubRegs<"ymm7", [XMM7]>, DwarfRegAlias<XMM7>;
    199   def YMM8:  RegisterWithSubRegs<"ymm8", [XMM8]>, DwarfRegAlias<XMM8>;
    200   def YMM9:  RegisterWithSubRegs<"ymm9", [XMM9]>, DwarfRegAlias<XMM9>;
    201   def YMM10: RegisterWithSubRegs<"ymm10", [XMM10]>, DwarfRegAlias<XMM10>;
    202   def YMM11: RegisterWithSubRegs<"ymm11", [XMM11]>, DwarfRegAlias<XMM11>;
    203   def YMM12: RegisterWithSubRegs<"ymm12", [XMM12]>, DwarfRegAlias<XMM12>;
    204   def YMM13: RegisterWithSubRegs<"ymm13", [XMM13]>, DwarfRegAlias<XMM13>;
    205   def YMM14: RegisterWithSubRegs<"ymm14", [XMM14]>, DwarfRegAlias<XMM14>;
    206   def YMM15: RegisterWithSubRegs<"ymm15", [XMM15]>, DwarfRegAlias<XMM15>;
    207   }
    208 
    209   class STRegister<string Name, list<Register> A> : Register<Name> {
    210     let Aliases = A;
    211   }
    212 
    213   // Floating point stack registers. These don't map one-to-one to the FP
    214   // pseudo registers, but we still mark them as aliasing FP registers. That
    215   // way both kinds can be live without exceeding the stack depth. ST registers
    216   // are only live around inline assembly.
    217   def ST0 : STRegister<"st(0)", []>, DwarfRegNum<[33, 12, 11]>;
    218   def ST1 : STRegister<"st(1)", [FP6]>, DwarfRegNum<[34, 13, 12]>;
    219   def ST2 : STRegister<"st(2)", [FP5]>, DwarfRegNum<[35, 14, 13]>;
    220   def ST3 : STRegister<"st(3)", [FP4]>, DwarfRegNum<[36, 15, 14]>;
    221   def ST4 : STRegister<"st(4)", [FP3]>, DwarfRegNum<[37, 16, 15]>;
    222   def ST5 : STRegister<"st(5)", [FP2]>, DwarfRegNum<[38, 17, 16]>;
    223   def ST6 : STRegister<"st(6)", [FP1]>, DwarfRegNum<[39, 18, 17]>;
    224   def ST7 : STRegister<"st(7)", [FP0]>, DwarfRegNum<[40, 19, 18]>;
    225 
    226   // Status flags register
    227   def EFLAGS : Register<"flags">;
    228 
    229   // Segment registers
    230   def CS : Register<"cs">;
    231   def DS : Register<"ds">;
    232   def SS : Register<"ss">;
    233   def ES : Register<"es">;
    234   def FS : Register<"fs">;
    235   def GS : Register<"gs">;
    236 
    237   // Debug registers
    238   def DR0 : Register<"dr0">;
    239   def DR1 : Register<"dr1">;
    240   def DR2 : Register<"dr2">;
    241   def DR3 : Register<"dr3">;
    242   def DR4 : Register<"dr4">;
    243   def DR5 : Register<"dr5">;
    244   def DR6 : Register<"dr6">;
    245   def DR7 : Register<"dr7">;
    246 
    247   // Control registers
    248   def CR0 : Register<"cr0">;
    249   def CR1 : Register<"cr1">;
    250   def CR2 : Register<"cr2">;
    251   def CR3 : Register<"cr3">;
    252   def CR4 : Register<"cr4">;
    253   def CR5 : Register<"cr5">;
    254   def CR6 : Register<"cr6">;
    255   def CR7 : Register<"cr7">;
    256   def CR8 : Register<"cr8">;
    257   def CR9 : Register<"cr9">;
    258   def CR10 : Register<"cr10">;
    259   def CR11 : Register<"cr11">;
    260   def CR12 : Register<"cr12">;
    261   def CR13 : Register<"cr13">;
    262   def CR14 : Register<"cr14">;
    263   def CR15 : Register<"cr15">;
    264 
    265   // Pseudo index registers
    266   def EIZ : Register<"eiz">;
    267   def RIZ : Register<"riz">;
    268 }
    269 
    270 
    271 //===----------------------------------------------------------------------===//
    272 // Register Class Definitions... now that we have all of the pieces, define the
    273 // top-level register classes.  The order specified in the register list is
    274 // implicitly defined to be the register allocation order.
    275 //
    276 
    277 // List call-clobbered registers before callee-save registers. RBX, RBP, (and
    278 // R12, R13, R14, and R15 for X86-64) are callee-save registers.
    279 // In 64-mode, there are 12 additional i8 registers, SIL, DIL, BPL, SPL, and
    280 // R8B, ... R15B.
    281 // Allocate R12 and R13 last, as these require an extra byte when
    282 // encoded in x86_64 instructions.
    283 // FIXME: Allow AH, CH, DH, BH to be used as general-purpose registers in
    284 // 64-bit mode. The main complication is that they cannot be encoded in an
    285 // instruction requiring a REX prefix, while SIL, DIL, BPL, R8D, etc.
    286 // require a REX prefix. For example, "addb %ah, %dil" and "movzbl %ah, %r8d"
    287 // cannot be encoded.
    288 def GR8 : RegisterClass<"X86", [i8],  8,
    289                         (add AL, CL, DL, AH, CH, DH, BL, BH, SIL, DIL, BPL, SPL,
    290                              R8B, R9B, R10B, R11B, R14B, R15B, R12B, R13B)> {
    291   let AltOrders = [(sub GR8, AH, BH, CH, DH)];
    292   let AltOrderSelect = [{
    293     return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
    294   }];
    295 }
    296 
    297 def GR16 : RegisterClass<"X86", [i16], 16,
    298                          (add AX, CX, DX, SI, DI, BX, BP, SP,
    299                               R8W, R9W, R10W, R11W, R14W, R15W, R12W, R13W)> {
    300   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi)];
    301 }
    302 
    303 def GR32 : RegisterClass<"X86", [i32], 32,
    304                          (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP,
    305                               R8D, R9D, R10D, R11D, R14D, R15D, R12D, R13D)> {
    306   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
    307 }
    308 
    309 // GR64 - 64-bit GPRs. This oddly includes RIP, which isn't accurate, since
    310 // RIP isn't really a register and it can't be used anywhere except in an
    311 // address, but it doesn't cause trouble.
    312 def GR64 : RegisterClass<"X86", [i64], 64,
    313                          (add RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
    314                               RBX, R14, R15, R12, R13, RBP, RSP, RIP)> {
    315   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
    316                        (GR16 sub_16bit),
    317                        (GR32 sub_32bit)];
    318 }
    319 
    320 // Segment registers for use by MOV instructions (and others) that have a
    321 //   segment register as one operand.  Always contain a 16-bit segment
    322 //   descriptor.
    323 def SEGMENT_REG : RegisterClass<"X86", [i16], 16, (add CS, DS, SS, ES, FS, GS)>;
    324 
    325 // Debug registers.
    326 def DEBUG_REG : RegisterClass<"X86", [i32], 32, (sequence "DR%u", 0, 7)>;
    327 
    328 // Control registers.
    329 def CONTROL_REG : RegisterClass<"X86", [i64], 64, (sequence "CR%u", 0, 15)>;
    330 
    331 // GR8_ABCD_L, GR8_ABCD_H, GR16_ABCD, GR32_ABCD, GR64_ABCD - Subclasses of
    332 // GR8, GR16, GR32, and GR64 which contain just the "a" "b", "c", and "d"
    333 // registers. On x86-32, GR16_ABCD and GR32_ABCD are classes for registers
    334 // that support 8-bit subreg operations. On x86-64, GR16_ABCD, GR32_ABCD,
    335 // and GR64_ABCD are classes for registers that support 8-bit h-register
    336 // operations.
    337 def GR8_ABCD_L : RegisterClass<"X86", [i8], 8, (add AL, CL, DL, BL)>;
    338 def GR8_ABCD_H : RegisterClass<"X86", [i8], 8, (add AH, CH, DH, BH)>;
    339 def GR16_ABCD : RegisterClass<"X86", [i16], 16, (add AX, CX, DX, BX)> {
    340   let SubRegClasses = [(GR8_ABCD_L sub_8bit), (GR8_ABCD_H sub_8bit_hi)];
    341 }
    342 def GR32_ABCD : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX, EBX)> {
    343   let SubRegClasses = [(GR8_ABCD_L sub_8bit),
    344                        (GR8_ABCD_H sub_8bit_hi),
    345                        (GR16_ABCD sub_16bit)];
    346 }
    347 def GR64_ABCD : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RBX)> {
    348   let SubRegClasses = [(GR8_ABCD_L sub_8bit),
    349                        (GR8_ABCD_H sub_8bit_hi),
    350                        (GR16_ABCD sub_16bit),
    351                        (GR32_ABCD sub_32bit)];
    352 }
    353 def GR32_TC   : RegisterClass<"X86", [i32], 32, (add EAX, ECX, EDX)> {
    354   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
    355 }
    356 def GR64_TC   : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX, RSI, RDI,
    357                                                      R8, R9, R11, RIP)> {
    358   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
    359                        (GR16 sub_16bit),
    360                        (GR32_TC sub_32bit)];
    361 }
    362 
    363 def GR64_TCW64 : RegisterClass<"X86", [i64], 64, (add RAX, RCX, RDX,
    364                                                       R8, R9, R11)>;
    365 
    366 // GR8_NOREX - GR8 registers which do not require a REX prefix.
    367 def GR8_NOREX : RegisterClass<"X86", [i8], 8,
    368                               (add AL, CL, DL, AH, CH, DH, BL, BH)> {
    369   let AltOrders = [(sub GR8_NOREX, AH, BH, CH, DH)];
    370   let AltOrderSelect = [{
    371     return MF.getTarget().getSubtarget<X86Subtarget>().is64Bit();
    372   }];
    373 }
    374 // GR16_NOREX - GR16 registers which do not require a REX prefix.
    375 def GR16_NOREX : RegisterClass<"X86", [i16], 16,
    376                                (add AX, CX, DX, SI, DI, BX, BP, SP)> {
    377   let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi)];
    378 }
    379 // GR32_NOREX - GR32 registers which do not require a REX prefix.
    380 def GR32_NOREX : RegisterClass<"X86", [i32], 32,
    381                                (add EAX, ECX, EDX, ESI, EDI, EBX, EBP, ESP)> {
    382   let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
    383                        (GR16_NOREX sub_16bit)];
    384 }
    385 // GR64_NOREX - GR64 registers which do not require a REX prefix.
    386 def GR64_NOREX : RegisterClass<"X86", [i64], 64,
    387                             (add RAX, RCX, RDX, RSI, RDI, RBX, RBP, RSP, RIP)> {
    388   let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
    389                        (GR16_NOREX sub_16bit),
    390                        (GR32_NOREX sub_32bit)];
    391 }
    392 
    393 // GR32_NOAX - GR32 registers except EAX. Used by AddRegFrm of XCHG32 in 64-bit
    394 // mode to prevent encoding using the 0x90 NOP encoding. xchg %eax, %eax needs
    395 // to clear upper 32-bits of RAX so is not a NOP.
    396 def GR32_NOAX : RegisterClass<"X86", [i32], 32, (sub GR32, EAX)> {
    397   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
    398 }
    399 
    400 // GR32_NOSP - GR32 registers except ESP.
    401 def GR32_NOSP : RegisterClass<"X86", [i32], 32, (sub GR32, ESP)> {
    402   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi), (GR16 sub_16bit)];
    403 }
    404 
    405 // GR64_NOSP - GR64 registers except RSP (and RIP).
    406 def GR64_NOSP : RegisterClass<"X86", [i64], 64, (sub GR64, RSP, RIP)> {
    407   let SubRegClasses = [(GR8 sub_8bit, sub_8bit_hi),
    408                        (GR16 sub_16bit),
    409                        (GR32_NOSP sub_32bit)];
    410 }
    411 
    412 // GR32_NOREX_NOSP - GR32 registers which do not require a REX prefix except
    413 // ESP.
    414 def GR32_NOREX_NOSP : RegisterClass<"X86", [i32], 32,
    415                                     (and GR32_NOREX, GR32_NOSP)> {
    416   let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
    417                        (GR16_NOREX sub_16bit)];
    418 }
    419 
    420 // GR64_NOREX_NOSP - GR64_NOREX registers except RSP.
    421 def GR64_NOREX_NOSP : RegisterClass<"X86", [i64], 64,
    422                                     (and GR64_NOREX, GR64_NOSP)> {
    423   let SubRegClasses = [(GR8_NOREX sub_8bit, sub_8bit_hi),
    424                        (GR16_NOREX sub_16bit),
    425                        (GR32_NOREX_NOSP sub_32bit)];
    426 }
    427 
    428 // A class to support the 'A' assembler constraint: EAX then EDX.
    429 def GR32_AD : RegisterClass<"X86", [i32], 32, (add EAX, EDX)> {
    430   let SubRegClasses = [(GR8_ABCD_L sub_8bit),
    431                        (GR8_ABCD_H sub_8bit_hi),
    432                        (GR16_ABCD sub_16bit)];
    433 }
    434 
    435 // Scalar SSE2 floating point registers.
    436 def FR32 : RegisterClass<"X86", [f32], 32, (sequence "XMM%u", 0, 15)>;
    437 
    438 def FR64 : RegisterClass<"X86", [f64], 64, (add FR32)>;
    439 
    440 
    441 // FIXME: This sets up the floating point register files as though they are f64
    442 // values, though they really are f80 values.  This will cause us to spill
    443 // values as 64-bit quantities instead of 80-bit quantities, which is much much
    444 // faster on common hardware.  In reality, this should be controlled by a
    445 // command line option or something.
    446 
    447 def RFP32 : RegisterClass<"X86",[f32], 32, (sequence "FP%u", 0, 6)>;
    448 def RFP64 : RegisterClass<"X86",[f64], 32, (add RFP32)>;
    449 def RFP80 : RegisterClass<"X86",[f80], 32, (add RFP32)>;
    450 
    451 // Floating point stack registers (these are not allocatable by the
    452 // register allocator - the floating point stackifier is responsible
    453 // for transforming FPn allocations to STn registers)
    454 def RST : RegisterClass<"X86", [f80, f64, f32], 32, (sequence "ST%u", 0, 7)> {
    455   let isAllocatable = 0;
    456 }
    457 
    458 // Generic vector registers: VR64 and VR128.
    459 def VR64: RegisterClass<"X86", [x86mmx], 64, (sequence "MM%u", 0, 7)>;
    460 def VR128 : RegisterClass<"X86", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
    461                           128, (add FR32)> {
    462   let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd)];
    463 }
    464 
    465 def VR256 : RegisterClass<"X86", [v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
    466                           256, (sequence "YMM%u", 0, 15)> {
    467   let SubRegClasses = [(FR32 sub_ss), (FR64 sub_sd), (VR128 sub_xmm)];
    468 }
    469 
    470 // Status flags registers.
    471 def CCR : RegisterClass<"X86", [i32], 32, (add EFLAGS)> {
    472   let CopyCost = -1;  // Don't allow copying of status registers.
    473   let isAllocatable = 0;
    474 }
    475