Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Target/TargetLibraryInfo.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     23 /// expression.  If so, decompose it, returning some value X, such that Val is
     24 /// X*Scale+Offset.
     25 ///
     26 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     27                                         uint64_t &Offset) {
     28   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     29     Offset = CI->getZExtValue();
     30     Scale  = 0;
     31     return ConstantInt::get(Val->getType(), 0);
     32   }
     33 
     34   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     35     // Cannot look past anything that might overflow.
     36     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     37     if (OBI && !OBI->hasNoUnsignedWrap()) {
     38       Scale = 1;
     39       Offset = 0;
     40       return Val;
     41     }
     42 
     43     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     44       if (I->getOpcode() == Instruction::Shl) {
     45         // This is a value scaled by '1 << the shift amt'.
     46         Scale = UINT64_C(1) << RHS->getZExtValue();
     47         Offset = 0;
     48         return I->getOperand(0);
     49       }
     50 
     51       if (I->getOpcode() == Instruction::Mul) {
     52         // This value is scaled by 'RHS'.
     53         Scale = RHS->getZExtValue();
     54         Offset = 0;
     55         return I->getOperand(0);
     56       }
     57 
     58       if (I->getOpcode() == Instruction::Add) {
     59         // We have X+C.  Check to see if we really have (X*C2)+C1,
     60         // where C1 is divisible by C2.
     61         unsigned SubScale;
     62         Value *SubVal =
     63           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     64         Offset += RHS->getZExtValue();
     65         Scale = SubScale;
     66         return SubVal;
     67       }
     68     }
     69   }
     70 
     71   // Otherwise, we can't look past this.
     72   Scale = 1;
     73   Offset = 0;
     74   return Val;
     75 }
     76 
     77 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     78 /// try to eliminate the cast by moving the type information into the alloc.
     79 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     80                                                    AllocaInst &AI) {
     81   // This requires TargetData to get the alloca alignment and size information.
     82   if (!TD) return 0;
     83 
     84   PointerType *PTy = cast<PointerType>(CI.getType());
     85 
     86   BuilderTy AllocaBuilder(*Builder);
     87   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     88 
     89   // Get the type really allocated and the type casted to.
     90   Type *AllocElTy = AI.getAllocatedType();
     91   Type *CastElTy = PTy->getElementType();
     92   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
     93 
     94   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
     95   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
     96   if (CastElTyAlign < AllocElTyAlign) return 0;
     97 
     98   // If the allocation has multiple uses, only promote it if we are strictly
     99   // increasing the alignment of the resultant allocation.  If we keep it the
    100   // same, we open the door to infinite loops of various kinds.
    101   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
    102 
    103   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
    104   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
    105   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
    106 
    107   // See if we can satisfy the modulus by pulling a scale out of the array
    108   // size argument.
    109   unsigned ArraySizeScale;
    110   uint64_t ArrayOffset;
    111   Value *NumElements = // See if the array size is a decomposable linear expr.
    112     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    113 
    114   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    115   // do the xform.
    116   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    117       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
    118 
    119   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    120   Value *Amt = 0;
    121   if (Scale == 1) {
    122     Amt = NumElements;
    123   } else {
    124     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    125     // Insert before the alloca, not before the cast.
    126     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    127   }
    128 
    129   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    130     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    131                                   Offset, true);
    132     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    133   }
    134 
    135   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    136   New->setAlignment(AI.getAlignment());
    137   New->takeName(&AI);
    138 
    139   // If the allocation has multiple real uses, insert a cast and change all
    140   // things that used it to use the new cast.  This will also hack on CI, but it
    141   // will die soon.
    142   if (!AI.hasOneUse()) {
    143     // New is the allocation instruction, pointer typed. AI is the original
    144     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    145     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    146     ReplaceInstUsesWith(AI, NewCast);
    147   }
    148   return ReplaceInstUsesWith(CI, New);
    149 }
    150 
    151 /// EvaluateInDifferentType - Given an expression that
    152 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    153 /// insert the code to evaluate the expression.
    154 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    155                                              bool isSigned) {
    156   if (Constant *C = dyn_cast<Constant>(V)) {
    157     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    158     // If we got a constantexpr back, try to simplify it with TD info.
    159     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    160       C = ConstantFoldConstantExpression(CE, TD, TLI);
    161     return C;
    162   }
    163 
    164   // Otherwise, it must be an instruction.
    165   Instruction *I = cast<Instruction>(V);
    166   Instruction *Res = 0;
    167   unsigned Opc = I->getOpcode();
    168   switch (Opc) {
    169   case Instruction::Add:
    170   case Instruction::Sub:
    171   case Instruction::Mul:
    172   case Instruction::And:
    173   case Instruction::Or:
    174   case Instruction::Xor:
    175   case Instruction::AShr:
    176   case Instruction::LShr:
    177   case Instruction::Shl:
    178   case Instruction::UDiv:
    179   case Instruction::URem: {
    180     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    181     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    182     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    183     break;
    184   }
    185   case Instruction::Trunc:
    186   case Instruction::ZExt:
    187   case Instruction::SExt:
    188     // If the source type of the cast is the type we're trying for then we can
    189     // just return the source.  There's no need to insert it because it is not
    190     // new.
    191     if (I->getOperand(0)->getType() == Ty)
    192       return I->getOperand(0);
    193 
    194     // Otherwise, must be the same type of cast, so just reinsert a new one.
    195     // This also handles the case of zext(trunc(x)) -> zext(x).
    196     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    197                                       Opc == Instruction::SExt);
    198     break;
    199   case Instruction::Select: {
    200     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    201     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    202     Res = SelectInst::Create(I->getOperand(0), True, False);
    203     break;
    204   }
    205   case Instruction::PHI: {
    206     PHINode *OPN = cast<PHINode>(I);
    207     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    208     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    209       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    210       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    211     }
    212     Res = NPN;
    213     break;
    214   }
    215   default:
    216     // TODO: Can handle more cases here.
    217     llvm_unreachable("Unreachable!");
    218   }
    219 
    220   Res->takeName(I);
    221   return InsertNewInstWith(Res, *I);
    222 }
    223 
    224 
    225 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    226 /// simply extracts arguments and returns what that function returns.
    227 static Instruction::CastOps
    228 isEliminableCastPair(
    229   const CastInst *CI, ///< The first cast instruction
    230   unsigned opcode,       ///< The opcode of the second cast instruction
    231   Type *DstTy,     ///< The target type for the second cast instruction
    232   TargetData *TD         ///< The target data for pointer size
    233 ) {
    234 
    235   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    236   Type *MidTy = CI->getType();                  // B from above
    237 
    238   // Get the opcodes of the two Cast instructions
    239   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    240   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    241 
    242   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    243                                                 DstTy,
    244                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
    245 
    246   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    247   // type that differs from the pointer size.
    248   if ((Res == Instruction::IntToPtr &&
    249           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
    250       (Res == Instruction::PtrToInt &&
    251           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
    252     Res = 0;
    253 
    254   return Instruction::CastOps(Res);
    255 }
    256 
    257 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    258 /// results in any code being generated and is interesting to optimize out. If
    259 /// the cast can be eliminated by some other simple transformation, we prefer
    260 /// to do the simplification first.
    261 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    262                                       Type *Ty) {
    263   // Noop casts and casts of constants should be eliminated trivially.
    264   if (V->getType() == Ty || isa<Constant>(V)) return false;
    265 
    266   // If this is another cast that can be eliminated, we prefer to have it
    267   // eliminated.
    268   if (const CastInst *CI = dyn_cast<CastInst>(V))
    269     if (isEliminableCastPair(CI, opc, Ty, TD))
    270       return false;
    271 
    272   // If this is a vector sext from a compare, then we don't want to break the
    273   // idiom where each element of the extended vector is either zero or all ones.
    274   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    275     return false;
    276 
    277   return true;
    278 }
    279 
    280 
    281 /// @brief Implement the transforms common to all CastInst visitors.
    282 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    283   Value *Src = CI.getOperand(0);
    284 
    285   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    286   // eliminate it now.
    287   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    288     if (Instruction::CastOps opc =
    289         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
    290       // The first cast (CSrc) is eliminable so we need to fix up or replace
    291       // the second cast (CI). CSrc will then have a good chance of being dead.
    292       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    293     }
    294   }
    295 
    296   // If we are casting a select then fold the cast into the select
    297   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    298     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    299       return NV;
    300 
    301   // If we are casting a PHI then fold the cast into the PHI
    302   if (isa<PHINode>(Src)) {
    303     // We don't do this if this would create a PHI node with an illegal type if
    304     // it is currently legal.
    305     if (!Src->getType()->isIntegerTy() ||
    306         !CI.getType()->isIntegerTy() ||
    307         ShouldChangeType(CI.getType(), Src->getType()))
    308       if (Instruction *NV = FoldOpIntoPhi(CI))
    309         return NV;
    310   }
    311 
    312   return 0;
    313 }
    314 
    315 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    316 /// expression tree as type Ty instead of its larger type, and arrive with the
    317 /// same value.  This is used by code that tries to eliminate truncates.
    318 ///
    319 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    320 /// can be computed by computing V in the smaller type.  If V is an instruction,
    321 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    322 /// makes sense if x and y can be efficiently truncated.
    323 ///
    324 /// This function works on both vectors and scalars.
    325 ///
    326 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    327   // We can always evaluate constants in another type.
    328   if (isa<Constant>(V))
    329     return true;
    330 
    331   Instruction *I = dyn_cast<Instruction>(V);
    332   if (!I) return false;
    333 
    334   Type *OrigTy = V->getType();
    335 
    336   // If this is an extension from the dest type, we can eliminate it, even if it
    337   // has multiple uses.
    338   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    339       I->getOperand(0)->getType() == Ty)
    340     return true;
    341 
    342   // We can't extend or shrink something that has multiple uses: doing so would
    343   // require duplicating the instruction in general, which isn't profitable.
    344   if (!I->hasOneUse()) return false;
    345 
    346   unsigned Opc = I->getOpcode();
    347   switch (Opc) {
    348   case Instruction::Add:
    349   case Instruction::Sub:
    350   case Instruction::Mul:
    351   case Instruction::And:
    352   case Instruction::Or:
    353   case Instruction::Xor:
    354     // These operators can all arbitrarily be extended or truncated.
    355     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    356            CanEvaluateTruncated(I->getOperand(1), Ty);
    357 
    358   case Instruction::UDiv:
    359   case Instruction::URem: {
    360     // UDiv and URem can be truncated if all the truncated bits are zero.
    361     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    362     uint32_t BitWidth = Ty->getScalarSizeInBits();
    363     if (BitWidth < OrigBitWidth) {
    364       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    365       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    366           MaskedValueIsZero(I->getOperand(1), Mask)) {
    367         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    368                CanEvaluateTruncated(I->getOperand(1), Ty);
    369       }
    370     }
    371     break;
    372   }
    373   case Instruction::Shl:
    374     // If we are truncating the result of this SHL, and if it's a shift of a
    375     // constant amount, we can always perform a SHL in a smaller type.
    376     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    377       uint32_t BitWidth = Ty->getScalarSizeInBits();
    378       if (CI->getLimitedValue(BitWidth) < BitWidth)
    379         return CanEvaluateTruncated(I->getOperand(0), Ty);
    380     }
    381     break;
    382   case Instruction::LShr:
    383     // If this is a truncate of a logical shr, we can truncate it to a smaller
    384     // lshr iff we know that the bits we would otherwise be shifting in are
    385     // already zeros.
    386     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    387       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    388       uint32_t BitWidth = Ty->getScalarSizeInBits();
    389       if (MaskedValueIsZero(I->getOperand(0),
    390             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    391           CI->getLimitedValue(BitWidth) < BitWidth) {
    392         return CanEvaluateTruncated(I->getOperand(0), Ty);
    393       }
    394     }
    395     break;
    396   case Instruction::Trunc:
    397     // trunc(trunc(x)) -> trunc(x)
    398     return true;
    399   case Instruction::ZExt:
    400   case Instruction::SExt:
    401     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    402     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    403     return true;
    404   case Instruction::Select: {
    405     SelectInst *SI = cast<SelectInst>(I);
    406     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    407            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    408   }
    409   case Instruction::PHI: {
    410     // We can change a phi if we can change all operands.  Note that we never
    411     // get into trouble with cyclic PHIs here because we only consider
    412     // instructions with a single use.
    413     PHINode *PN = cast<PHINode>(I);
    414     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    415       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    416         return false;
    417     return true;
    418   }
    419   default:
    420     // TODO: Can handle more cases here.
    421     break;
    422   }
    423 
    424   return false;
    425 }
    426 
    427 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    428   if (Instruction *Result = commonCastTransforms(CI))
    429     return Result;
    430 
    431   // See if we can simplify any instructions used by the input whose sole
    432   // purpose is to compute bits we don't care about.
    433   if (SimplifyDemandedInstructionBits(CI))
    434     return &CI;
    435 
    436   Value *Src = CI.getOperand(0);
    437   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    438 
    439   // Attempt to truncate the entire input expression tree to the destination
    440   // type.   Only do this if the dest type is a simple type, don't convert the
    441   // expression tree to something weird like i93 unless the source is also
    442   // strange.
    443   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    444       CanEvaluateTruncated(Src, DestTy)) {
    445 
    446     // If this cast is a truncate, evaluting in a different type always
    447     // eliminates the cast, so it is always a win.
    448     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    449           " to avoid cast: " << CI << '\n');
    450     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    451     assert(Res->getType() == DestTy);
    452     return ReplaceInstUsesWith(CI, Res);
    453   }
    454 
    455   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    456   if (DestTy->getScalarSizeInBits() == 1) {
    457     Constant *One = ConstantInt::get(Src->getType(), 1);
    458     Src = Builder->CreateAnd(Src, One);
    459     Value *Zero = Constant::getNullValue(Src->getType());
    460     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    461   }
    462 
    463   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    464   Value *A = 0; ConstantInt *Cst = 0;
    465   if (Src->hasOneUse() &&
    466       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    467     // We have three types to worry about here, the type of A, the source of
    468     // the truncate (MidSize), and the destination of the truncate. We know that
    469     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    470     // between ASize and ResultSize.
    471     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    472 
    473     // If the shift amount is larger than the size of A, then the result is
    474     // known to be zero because all the input bits got shifted out.
    475     if (Cst->getZExtValue() >= ASize)
    476       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    477 
    478     // Since we're doing an lshr and a zero extend, and know that the shift
    479     // amount is smaller than ASize, it is always safe to do the shift in A's
    480     // type, then zero extend or truncate to the result.
    481     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    482     Shift->takeName(Src);
    483     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    484   }
    485 
    486   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    487   // type isn't non-native.
    488   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    489       ShouldChangeType(Src->getType(), CI.getType()) &&
    490       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    491     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    492     return BinaryOperator::CreateAnd(NewTrunc,
    493                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    494   }
    495 
    496   return 0;
    497 }
    498 
    499 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    500 /// in order to eliminate the icmp.
    501 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    502                                              bool DoXform) {
    503   // If we are just checking for a icmp eq of a single bit and zext'ing it
    504   // to an integer, then shift the bit to the appropriate place and then
    505   // cast to integer to avoid the comparison.
    506   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    507     const APInt &Op1CV = Op1C->getValue();
    508 
    509     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    510     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    511     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    512         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    513       if (!DoXform) return ICI;
    514 
    515       Value *In = ICI->getOperand(0);
    516       Value *Sh = ConstantInt::get(In->getType(),
    517                                    In->getType()->getScalarSizeInBits()-1);
    518       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    519       if (In->getType() != CI.getType())
    520         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
    521 
    522       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    523         Constant *One = ConstantInt::get(In->getType(), 1);
    524         In = Builder->CreateXor(In, One, In->getName()+".not");
    525       }
    526 
    527       return ReplaceInstUsesWith(CI, In);
    528     }
    529 
    530     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    531     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    532     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    533     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    534     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    535     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    536     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    537     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    538     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    539         // This only works for EQ and NE
    540         ICI->isEquality()) {
    541       // If Op1C some other power of two, convert:
    542       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    543       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    544       ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
    545 
    546       APInt KnownZeroMask(~KnownZero);
    547       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    548         if (!DoXform) return ICI;
    549 
    550         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    551         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    552           // (X&4) == 2 --> false
    553           // (X&4) != 2 --> true
    554           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    555                                            isNE);
    556           Res = ConstantExpr::getZExt(Res, CI.getType());
    557           return ReplaceInstUsesWith(CI, Res);
    558         }
    559 
    560         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    561         Value *In = ICI->getOperand(0);
    562         if (ShiftAmt) {
    563           // Perform a logical shr by shiftamt.
    564           // Insert the shift to put the result in the low bit.
    565           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    566                                    In->getName()+".lobit");
    567         }
    568 
    569         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    570           Constant *One = ConstantInt::get(In->getType(), 1);
    571           In = Builder->CreateXor(In, One);
    572         }
    573 
    574         if (CI.getType() == In->getType())
    575           return ReplaceInstUsesWith(CI, In);
    576         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    577       }
    578     }
    579   }
    580 
    581   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    582   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    583   // may lead to additional simplifications.
    584   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    585     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    586       uint32_t BitWidth = ITy->getBitWidth();
    587       Value *LHS = ICI->getOperand(0);
    588       Value *RHS = ICI->getOperand(1);
    589 
    590       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    591       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    592       ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
    593       ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
    594 
    595       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    596         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    597         APInt UnknownBit = ~KnownBits;
    598         if (UnknownBit.countPopulation() == 1) {
    599           if (!DoXform) return ICI;
    600 
    601           Value *Result = Builder->CreateXor(LHS, RHS);
    602 
    603           // Mask off any bits that are set and won't be shifted away.
    604           if (KnownOneLHS.uge(UnknownBit))
    605             Result = Builder->CreateAnd(Result,
    606                                         ConstantInt::get(ITy, UnknownBit));
    607 
    608           // Shift the bit we're testing down to the lsb.
    609           Result = Builder->CreateLShr(
    610                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    611 
    612           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    613             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    614           Result->takeName(ICI);
    615           return ReplaceInstUsesWith(CI, Result);
    616         }
    617       }
    618     }
    619   }
    620 
    621   return 0;
    622 }
    623 
    624 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    625 /// specified wider type and produce the same low bits.  If not, return false.
    626 ///
    627 /// If this function returns true, it can also return a non-zero number of bits
    628 /// (in BitsToClear) which indicates that the value it computes is correct for
    629 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    630 /// out.  For example, to promote something like:
    631 ///
    632 ///   %B = trunc i64 %A to i32
    633 ///   %C = lshr i32 %B, 8
    634 ///   %E = zext i32 %C to i64
    635 ///
    636 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    637 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    638 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    639 /// clear the top bits anyway, doing this has no extra cost.
    640 ///
    641 /// This function works on both vectors and scalars.
    642 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    643   BitsToClear = 0;
    644   if (isa<Constant>(V))
    645     return true;
    646 
    647   Instruction *I = dyn_cast<Instruction>(V);
    648   if (!I) return false;
    649 
    650   // If the input is a truncate from the destination type, we can trivially
    651   // eliminate it, even if it has multiple uses.
    652   // FIXME: This is currently disabled until codegen can handle this without
    653   // pessimizing code, PR5997.
    654   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    655     return true;
    656 
    657   // We can't extend or shrink something that has multiple uses: doing so would
    658   // require duplicating the instruction in general, which isn't profitable.
    659   if (!I->hasOneUse()) return false;
    660 
    661   unsigned Opc = I->getOpcode(), Tmp;
    662   switch (Opc) {
    663   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    664   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    665   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    666     return true;
    667   case Instruction::And:
    668   case Instruction::Or:
    669   case Instruction::Xor:
    670   case Instruction::Add:
    671   case Instruction::Sub:
    672   case Instruction::Mul:
    673   case Instruction::Shl:
    674     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    675         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    676       return false;
    677     // These can all be promoted if neither operand has 'bits to clear'.
    678     if (BitsToClear == 0 && Tmp == 0)
    679       return true;
    680 
    681     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    682     // other side, BitsToClear is ok.
    683     if (Tmp == 0 &&
    684         (Opc == Instruction::And || Opc == Instruction::Or ||
    685          Opc == Instruction::Xor)) {
    686       // We use MaskedValueIsZero here for generality, but the case we care
    687       // about the most is constant RHS.
    688       unsigned VSize = V->getType()->getScalarSizeInBits();
    689       if (MaskedValueIsZero(I->getOperand(1),
    690                             APInt::getHighBitsSet(VSize, BitsToClear)))
    691         return true;
    692     }
    693 
    694     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    695     return false;
    696 
    697   case Instruction::LShr:
    698     // We can promote lshr(x, cst) if we can promote x.  This requires the
    699     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    700     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    701       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    702         return false;
    703       BitsToClear += Amt->getZExtValue();
    704       if (BitsToClear > V->getType()->getScalarSizeInBits())
    705         BitsToClear = V->getType()->getScalarSizeInBits();
    706       return true;
    707     }
    708     // Cannot promote variable LSHR.
    709     return false;
    710   case Instruction::Select:
    711     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    712         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    713         // TODO: If important, we could handle the case when the BitsToClear are
    714         // known zero in the disagreeing side.
    715         Tmp != BitsToClear)
    716       return false;
    717     return true;
    718 
    719   case Instruction::PHI: {
    720     // We can change a phi if we can change all operands.  Note that we never
    721     // get into trouble with cyclic PHIs here because we only consider
    722     // instructions with a single use.
    723     PHINode *PN = cast<PHINode>(I);
    724     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    725       return false;
    726     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    727       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    728           // TODO: If important, we could handle the case when the BitsToClear
    729           // are known zero in the disagreeing input.
    730           Tmp != BitsToClear)
    731         return false;
    732     return true;
    733   }
    734   default:
    735     // TODO: Can handle more cases here.
    736     return false;
    737   }
    738 }
    739 
    740 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    741   // If this zero extend is only used by a truncate, let the truncate by
    742   // eliminated before we try to optimize this zext.
    743   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
    744     return 0;
    745 
    746   // If one of the common conversion will work, do it.
    747   if (Instruction *Result = commonCastTransforms(CI))
    748     return Result;
    749 
    750   // See if we can simplify any instructions used by the input whose sole
    751   // purpose is to compute bits we don't care about.
    752   if (SimplifyDemandedInstructionBits(CI))
    753     return &CI;
    754 
    755   Value *Src = CI.getOperand(0);
    756   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    757 
    758   // Attempt to extend the entire input expression tree to the destination
    759   // type.   Only do this if the dest type is a simple type, don't convert the
    760   // expression tree to something weird like i93 unless the source is also
    761   // strange.
    762   unsigned BitsToClear;
    763   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    764       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    765     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    766            "Unreasonable BitsToClear");
    767 
    768     // Okay, we can transform this!  Insert the new expression now.
    769     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    770           " to avoid zero extend: " << CI);
    771     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    772     assert(Res->getType() == DestTy);
    773 
    774     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    775     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    776 
    777     // If the high bits are already filled with zeros, just replace this
    778     // cast with the result.
    779     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    780                                                      DestBitSize-SrcBitsKept)))
    781       return ReplaceInstUsesWith(CI, Res);
    782 
    783     // We need to emit an AND to clear the high bits.
    784     Constant *C = ConstantInt::get(Res->getType(),
    785                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    786     return BinaryOperator::CreateAnd(Res, C);
    787   }
    788 
    789   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    790   // types and if the sizes are just right we can convert this into a logical
    791   // 'and' which will be much cheaper than the pair of casts.
    792   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    793     // TODO: Subsume this into EvaluateInDifferentType.
    794 
    795     // Get the sizes of the types involved.  We know that the intermediate type
    796     // will be smaller than A or C, but don't know the relation between A and C.
    797     Value *A = CSrc->getOperand(0);
    798     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    799     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    800     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    801     // If we're actually extending zero bits, then if
    802     // SrcSize <  DstSize: zext(a & mask)
    803     // SrcSize == DstSize: a & mask
    804     // SrcSize  > DstSize: trunc(a) & mask
    805     if (SrcSize < DstSize) {
    806       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    807       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    808       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    809       return new ZExtInst(And, CI.getType());
    810     }
    811 
    812     if (SrcSize == DstSize) {
    813       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    814       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    815                                                            AndValue));
    816     }
    817     if (SrcSize > DstSize) {
    818       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
    819       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    820       return BinaryOperator::CreateAnd(Trunc,
    821                                        ConstantInt::get(Trunc->getType(),
    822                                                         AndValue));
    823     }
    824   }
    825 
    826   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    827     return transformZExtICmp(ICI, CI);
    828 
    829   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    830   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    831     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    832     // of the (zext icmp) will be transformed.
    833     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    834     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    835     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    836         (transformZExtICmp(LHS, CI, false) ||
    837          transformZExtICmp(RHS, CI, false))) {
    838       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    839       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    840       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    841     }
    842   }
    843 
    844   // zext(trunc(t) & C) -> (t & zext(C)).
    845   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
    846     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    847       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
    848         Value *TI0 = TI->getOperand(0);
    849         if (TI0->getType() == CI.getType())
    850           return
    851             BinaryOperator::CreateAnd(TI0,
    852                                 ConstantExpr::getZExt(C, CI.getType()));
    853       }
    854 
    855   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
    856   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
    857     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    858       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
    859         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
    860             And->getOperand(1) == C)
    861           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
    862             Value *TI0 = TI->getOperand(0);
    863             if (TI0->getType() == CI.getType()) {
    864               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    865               Value *NewAnd = Builder->CreateAnd(TI0, ZC);
    866               return BinaryOperator::CreateXor(NewAnd, ZC);
    867             }
    868           }
    869 
    870   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    871   Value *X;
    872   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
    873       match(SrcI, m_Not(m_Value(X))) &&
    874       (!X->hasOneUse() || !isa<CmpInst>(X))) {
    875     Value *New = Builder->CreateZExt(X, CI.getType());
    876     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    877   }
    878 
    879   return 0;
    880 }
    881 
    882 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    883 /// in order to eliminate the icmp.
    884 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    885   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    886   ICmpInst::Predicate Pred = ICI->getPredicate();
    887 
    888   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    889     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    890     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    891     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
    892         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    893 
    894       Value *Sh = ConstantInt::get(Op0->getType(),
    895                                    Op0->getType()->getScalarSizeInBits()-1);
    896       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    897       if (In->getType() != CI.getType())
    898         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
    899 
    900       if (Pred == ICmpInst::ICMP_SGT)
    901         In = Builder->CreateNot(In, In->getName()+".not");
    902       return ReplaceInstUsesWith(CI, In);
    903     }
    904 
    905     // If we know that only one bit of the LHS of the icmp can be set and we
    906     // have an equality comparison with zero or a power of 2, we can transform
    907     // the icmp and sext into bitwise/integer operations.
    908     if (ICI->hasOneUse() &&
    909         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    910       unsigned BitWidth = Op1C->getType()->getBitWidth();
    911       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    912       ComputeMaskedBits(Op0, KnownZero, KnownOne);
    913 
    914       APInt KnownZeroMask(~KnownZero);
    915       if (KnownZeroMask.isPowerOf2()) {
    916         Value *In = ICI->getOperand(0);
    917 
    918         // If the icmp tests for a known zero bit we can constant fold it.
    919         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    920           Value *V = Pred == ICmpInst::ICMP_NE ?
    921                        ConstantInt::getAllOnesValue(CI.getType()) :
    922                        ConstantInt::getNullValue(CI.getType());
    923           return ReplaceInstUsesWith(CI, V);
    924         }
    925 
    926         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    927           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    928           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    929           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    930           // Perform a right shift to place the desired bit in the LSB.
    931           if (ShiftAmt)
    932             In = Builder->CreateLShr(In,
    933                                      ConstantInt::get(In->getType(), ShiftAmt));
    934 
    935           // At this point "In" is either 1 or 0. Subtract 1 to turn
    936           // {1, 0} -> {0, -1}.
    937           In = Builder->CreateAdd(In,
    938                                   ConstantInt::getAllOnesValue(In->getType()),
    939                                   "sext");
    940         } else {
    941           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    942           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    943           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    944           // Perform a left shift to place the desired bit in the MSB.
    945           if (ShiftAmt)
    946             In = Builder->CreateShl(In,
    947                                     ConstantInt::get(In->getType(), ShiftAmt));
    948 
    949           // Distribute the bit over the whole bit width.
    950           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    951                                                         BitWidth - 1), "sext");
    952         }
    953 
    954         if (CI.getType() == In->getType())
    955           return ReplaceInstUsesWith(CI, In);
    956         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    957       }
    958     }
    959   }
    960 
    961   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
    962   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
    963     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
    964         Op0->getType() == CI.getType()) {
    965       Type *EltTy = VTy->getElementType();
    966 
    967       // splat the shift constant to a constant vector.
    968       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
    969       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
    970       return ReplaceInstUsesWith(CI, In);
    971     }
    972   }
    973 
    974   return 0;
    975 }
    976 
    977 /// CanEvaluateSExtd - Return true if we can take the specified value
    978 /// and return it as type Ty without inserting any new casts and without
    979 /// changing the value of the common low bits.  This is used by code that tries
    980 /// to promote integer operations to a wider types will allow us to eliminate
    981 /// the extension.
    982 ///
    983 /// This function works on both vectors and scalars.
    984 ///
    985 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
    986   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
    987          "Can't sign extend type to a smaller type");
    988   // If this is a constant, it can be trivially promoted.
    989   if (isa<Constant>(V))
    990     return true;
    991 
    992   Instruction *I = dyn_cast<Instruction>(V);
    993   if (!I) return false;
    994 
    995   // If this is a truncate from the dest type, we can trivially eliminate it,
    996   // even if it has multiple uses.
    997   // FIXME: This is currently disabled until codegen can handle this without
    998   // pessimizing code, PR5997.
    999   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
   1000     return true;
   1001 
   1002   // We can't extend or shrink something that has multiple uses: doing so would
   1003   // require duplicating the instruction in general, which isn't profitable.
   1004   if (!I->hasOneUse()) return false;
   1005 
   1006   switch (I->getOpcode()) {
   1007   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1008   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1009   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1010     return true;
   1011   case Instruction::And:
   1012   case Instruction::Or:
   1013   case Instruction::Xor:
   1014   case Instruction::Add:
   1015   case Instruction::Sub:
   1016   case Instruction::Mul:
   1017     // These operators can all arbitrarily be extended if their inputs can.
   1018     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1019            CanEvaluateSExtd(I->getOperand(1), Ty);
   1020 
   1021   //case Instruction::Shl:   TODO
   1022   //case Instruction::LShr:  TODO
   1023 
   1024   case Instruction::Select:
   1025     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1026            CanEvaluateSExtd(I->getOperand(2), Ty);
   1027 
   1028   case Instruction::PHI: {
   1029     // We can change a phi if we can change all operands.  Note that we never
   1030     // get into trouble with cyclic PHIs here because we only consider
   1031     // instructions with a single use.
   1032     PHINode *PN = cast<PHINode>(I);
   1033     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1034       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1035     return true;
   1036   }
   1037   default:
   1038     // TODO: Can handle more cases here.
   1039     break;
   1040   }
   1041 
   1042   return false;
   1043 }
   1044 
   1045 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1046   // If this sign extend is only used by a truncate, let the truncate by
   1047   // eliminated before we try to optimize this zext.
   1048   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
   1049     return 0;
   1050 
   1051   if (Instruction *I = commonCastTransforms(CI))
   1052     return I;
   1053 
   1054   // See if we can simplify any instructions used by the input whose sole
   1055   // purpose is to compute bits we don't care about.
   1056   if (SimplifyDemandedInstructionBits(CI))
   1057     return &CI;
   1058 
   1059   Value *Src = CI.getOperand(0);
   1060   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1061 
   1062   // Attempt to extend the entire input expression tree to the destination
   1063   // type.   Only do this if the dest type is a simple type, don't convert the
   1064   // expression tree to something weird like i93 unless the source is also
   1065   // strange.
   1066   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1067       CanEvaluateSExtd(Src, DestTy)) {
   1068     // Okay, we can transform this!  Insert the new expression now.
   1069     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1070           " to avoid sign extend: " << CI);
   1071     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1072     assert(Res->getType() == DestTy);
   1073 
   1074     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1075     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1076 
   1077     // If the high bits are already filled with sign bit, just replace this
   1078     // cast with the result.
   1079     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1080       return ReplaceInstUsesWith(CI, Res);
   1081 
   1082     // We need to emit a shl + ashr to do the sign extend.
   1083     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1084     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1085                                       ShAmt);
   1086   }
   1087 
   1088   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1089   // into shifts.
   1090   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1091     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1092       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1093       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1094 
   1095       // We need to emit a shl + ashr to do the sign extend.
   1096       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1097       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1098       return BinaryOperator::CreateAShr(Res, ShAmt);
   1099     }
   1100 
   1101   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1102     return transformSExtICmp(ICI, CI);
   1103 
   1104   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1105   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1106   // integers, we could turn this into a truncate to the smaller bit and then
   1107   // use a sext for the whole extension.  Since we don't, look deeper and check
   1108   // for a truncate.  If the source and dest are the same type, eliminate the
   1109   // trunc and extend and just do shifts.  For example, turn:
   1110   //   %a = trunc i32 %i to i8
   1111   //   %b = shl i8 %a, 6
   1112   //   %c = ashr i8 %b, 6
   1113   //   %d = sext i8 %c to i32
   1114   // into:
   1115   //   %a = shl i32 %i, 30
   1116   //   %d = ashr i32 %a, 30
   1117   Value *A = 0;
   1118   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1119   ConstantInt *BA = 0, *CA = 0;
   1120   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1121                         m_ConstantInt(CA))) &&
   1122       BA == CA && A->getType() == CI.getType()) {
   1123     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1124     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1125     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1126     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1127     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1128     return BinaryOperator::CreateAShr(A, ShAmtV);
   1129   }
   1130 
   1131   return 0;
   1132 }
   1133 
   1134 
   1135 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1136 /// in the specified FP type without changing its value.
   1137 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1138   bool losesInfo;
   1139   APFloat F = CFP->getValueAPF();
   1140   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1141   if (!losesInfo)
   1142     return ConstantFP::get(CFP->getContext(), F);
   1143   return 0;
   1144 }
   1145 
   1146 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1147 /// through it until we get the source value.
   1148 static Value *LookThroughFPExtensions(Value *V) {
   1149   if (Instruction *I = dyn_cast<Instruction>(V))
   1150     if (I->getOpcode() == Instruction::FPExt)
   1151       return LookThroughFPExtensions(I->getOperand(0));
   1152 
   1153   // If this value is a constant, return the constant in the smallest FP type
   1154   // that can accurately represent it.  This allows us to turn
   1155   // (float)((double)X+2.0) into x+2.0f.
   1156   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1157     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1158       return V;  // No constant folding of this.
   1159     // See if the value can be truncated to half and then reextended.
   1160     if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
   1161       return V;
   1162     // See if the value can be truncated to float and then reextended.
   1163     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1164       return V;
   1165     if (CFP->getType()->isDoubleTy())
   1166       return V;  // Won't shrink.
   1167     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1168       return V;
   1169     // Don't try to shrink to various long double types.
   1170   }
   1171 
   1172   return V;
   1173 }
   1174 
   1175 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1176   if (Instruction *I = commonCastTransforms(CI))
   1177     return I;
   1178 
   1179   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
   1180   // smaller than the destination type, we can eliminate the truncate by doing
   1181   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
   1182   // as many builtins (sqrt, etc).
   1183   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1184   if (OpI && OpI->hasOneUse()) {
   1185     switch (OpI->getOpcode()) {
   1186     default: break;
   1187     case Instruction::FAdd:
   1188     case Instruction::FSub:
   1189     case Instruction::FMul:
   1190     case Instruction::FDiv:
   1191     case Instruction::FRem:
   1192       Type *SrcTy = OpI->getType();
   1193       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
   1194       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
   1195       if (LHSTrunc->getType() != SrcTy &&
   1196           RHSTrunc->getType() != SrcTy) {
   1197         unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1198         // If the source types were both smaller than the destination type of
   1199         // the cast, do this xform.
   1200         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
   1201             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
   1202           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
   1203           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
   1204           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
   1205         }
   1206       }
   1207       break;
   1208     }
   1209   }
   1210 
   1211   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1212   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1213   if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
   1214       Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
   1215       Call->getNumArgOperands() == 1 &&
   1216       Call->hasOneUse()) {
   1217     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1218     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1219         CI.getType()->isFloatTy() &&
   1220         Call->getType()->isDoubleTy() &&
   1221         Arg->getType()->isDoubleTy() &&
   1222         Arg->getOperand(0)->getType()->isFloatTy()) {
   1223       Function *Callee = Call->getCalledFunction();
   1224       Module *M = CI.getParent()->getParent()->getParent();
   1225       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
   1226                                                    Callee->getAttributes(),
   1227                                                    Builder->getFloatTy(),
   1228                                                    Builder->getFloatTy(),
   1229                                                    NULL);
   1230       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1231                                        "sqrtfcall");
   1232       ret->setAttributes(Callee->getAttributes());
   1233 
   1234 
   1235       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1236       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1237       EraseInstFromFunction(*Call);
   1238       return ret;
   1239     }
   1240   }
   1241 
   1242   return 0;
   1243 }
   1244 
   1245 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1246   return commonCastTransforms(CI);
   1247 }
   1248 
   1249 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1250   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1251   if (OpI == 0)
   1252     return commonCastTransforms(FI);
   1253 
   1254   // fptoui(uitofp(X)) --> X
   1255   // fptoui(sitofp(X)) --> X
   1256   // This is safe if the intermediate type has enough bits in its mantissa to
   1257   // accurately represent all values of X.  For example, do not do this with
   1258   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1259   // 'X' value would cause an undefined result for the fptoui.
   1260   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1261       OpI->getOperand(0)->getType() == FI.getType() &&
   1262       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1263                     OpI->getType()->getFPMantissaWidth())
   1264     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1265 
   1266   return commonCastTransforms(FI);
   1267 }
   1268 
   1269 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1270   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1271   if (OpI == 0)
   1272     return commonCastTransforms(FI);
   1273 
   1274   // fptosi(sitofp(X)) --> X
   1275   // fptosi(uitofp(X)) --> X
   1276   // This is safe if the intermediate type has enough bits in its mantissa to
   1277   // accurately represent all values of X.  For example, do not do this with
   1278   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1279   // 'X' value would cause an undefined result for the fptoui.
   1280   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1281       OpI->getOperand(0)->getType() == FI.getType() &&
   1282       (int)FI.getType()->getScalarSizeInBits() <=
   1283                     OpI->getType()->getFPMantissaWidth())
   1284     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1285 
   1286   return commonCastTransforms(FI);
   1287 }
   1288 
   1289 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1290   return commonCastTransforms(CI);
   1291 }
   1292 
   1293 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1294   return commonCastTransforms(CI);
   1295 }
   1296 
   1297 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1298   // If the source integer type is not the intptr_t type for this target, do a
   1299   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1300   // cast to be exposed to other transforms.
   1301   if (TD) {
   1302     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
   1303         TD->getPointerSizeInBits()) {
   1304       Value *P = Builder->CreateTrunc(CI.getOperand(0),
   1305                                       TD->getIntPtrType(CI.getContext()));
   1306       return new IntToPtrInst(P, CI.getType());
   1307     }
   1308     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
   1309         TD->getPointerSizeInBits()) {
   1310       Value *P = Builder->CreateZExt(CI.getOperand(0),
   1311                                      TD->getIntPtrType(CI.getContext()));
   1312       return new IntToPtrInst(P, CI.getType());
   1313     }
   1314   }
   1315 
   1316   if (Instruction *I = commonCastTransforms(CI))
   1317     return I;
   1318 
   1319   return 0;
   1320 }
   1321 
   1322 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1323 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1324   Value *Src = CI.getOperand(0);
   1325 
   1326   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1327     // If casting the result of a getelementptr instruction with no offset, turn
   1328     // this into a cast of the original pointer!
   1329     if (GEP->hasAllZeroIndices()) {
   1330       // Changing the cast operand is usually not a good idea but it is safe
   1331       // here because the pointer operand is being replaced with another
   1332       // pointer operand so the opcode doesn't need to change.
   1333       Worklist.Add(GEP);
   1334       CI.setOperand(0, GEP->getOperand(0));
   1335       return &CI;
   1336     }
   1337 
   1338     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1339     // GEP computes a constant offset, see if we can convert these three
   1340     // instructions into fewer.  This typically happens with unions and other
   1341     // non-type-safe code.
   1342     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
   1343         GEP->hasAllConstantIndices()) {
   1344       // We are guaranteed to get a constant from EmitGEPOffset.
   1345       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
   1346       int64_t Offset = OffsetV->getSExtValue();
   1347 
   1348       // Get the base pointer input of the bitcast, and the type it points to.
   1349       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
   1350       Type *GEPIdxTy =
   1351       cast<PointerType>(OrigBase->getType())->getElementType();
   1352       SmallVector<Value*, 8> NewIndices;
   1353       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
   1354         // If we were able to index down into an element, create the GEP
   1355         // and bitcast the result.  This eliminates one bitcast, potentially
   1356         // two.
   1357         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1358         Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
   1359         Builder->CreateGEP(OrigBase, NewIndices);
   1360         NGEP->takeName(GEP);
   1361 
   1362         if (isa<BitCastInst>(CI))
   1363           return new BitCastInst(NGEP, CI.getType());
   1364         assert(isa<PtrToIntInst>(CI));
   1365         return new PtrToIntInst(NGEP, CI.getType());
   1366       }
   1367     }
   1368   }
   1369 
   1370   return commonCastTransforms(CI);
   1371 }
   1372 
   1373 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1374   // If the destination integer type is not the intptr_t type for this target,
   1375   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1376   // to be exposed to other transforms.
   1377   if (TD) {
   1378     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
   1379       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1380                                          TD->getIntPtrType(CI.getContext()));
   1381       return new TruncInst(P, CI.getType());
   1382     }
   1383     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
   1384       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1385                                          TD->getIntPtrType(CI.getContext()));
   1386       return new ZExtInst(P, CI.getType());
   1387     }
   1388   }
   1389 
   1390   return commonPointerCastTransforms(CI);
   1391 }
   1392 
   1393 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1394 /// is being zero extended or truncated to the specified vector type.  Try to
   1395 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1396 ///
   1397 /// The source and destination vector types may have different element types.
   1398 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1399                                          InstCombiner &IC) {
   1400   // We can only do this optimization if the output is a multiple of the input
   1401   // element size, or the input is a multiple of the output element size.
   1402   // Convert the input type to have the same element type as the output.
   1403   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1404 
   1405   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1406     // The input types don't need to be identical, but for now they must be the
   1407     // same size.  There is no specific reason we couldn't handle things like
   1408     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1409     // there yet.
   1410     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1411         DestTy->getElementType()->getPrimitiveSizeInBits())
   1412       return 0;
   1413 
   1414     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1415     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1416   }
   1417 
   1418   // Now that the element types match, get the shuffle mask and RHS of the
   1419   // shuffle to use, which depends on whether we're increasing or decreasing the
   1420   // size of the input.
   1421   SmallVector<uint32_t, 16> ShuffleMask;
   1422   Value *V2;
   1423 
   1424   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1425     // If we're shrinking the number of elements, just shuffle in the low
   1426     // elements from the input and use undef as the second shuffle input.
   1427     V2 = UndefValue::get(SrcTy);
   1428     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1429       ShuffleMask.push_back(i);
   1430 
   1431   } else {
   1432     // If we're increasing the number of elements, shuffle in all of the
   1433     // elements from InVal and fill the rest of the result elements with zeros
   1434     // from a constant zero.
   1435     V2 = Constant::getNullValue(SrcTy);
   1436     unsigned SrcElts = SrcTy->getNumElements();
   1437     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1438       ShuffleMask.push_back(i);
   1439 
   1440     // The excess elements reference the first element of the zero input.
   1441     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
   1442       ShuffleMask.push_back(SrcElts);
   1443   }
   1444 
   1445   return new ShuffleVectorInst(InVal, V2,
   1446                                ConstantDataVector::get(V2->getContext(),
   1447                                                        ShuffleMask));
   1448 }
   1449 
   1450 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1451   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1452 }
   1453 
   1454 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1455   return Value / Ty->getPrimitiveSizeInBits();
   1456 }
   1457 
   1458 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1459 /// VecEltTy.  Look through the value to see if we can decompose it into
   1460 /// insertions into the vector.  See the example in the comment for
   1461 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1462 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1463 ///
   1464 /// This returns false if the pattern can't be matched or true if it can,
   1465 /// filling in Elements with the elements found here.
   1466 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
   1467                                      SmallVectorImpl<Value*> &Elements,
   1468                                      Type *VecEltTy) {
   1469   // Undef values never contribute useful bits to the result.
   1470   if (isa<UndefValue>(V)) return true;
   1471 
   1472   // If we got down to a value of the right type, we win, try inserting into the
   1473   // right element.
   1474   if (V->getType() == VecEltTy) {
   1475     // Inserting null doesn't actually insert any elements.
   1476     if (Constant *C = dyn_cast<Constant>(V))
   1477       if (C->isNullValue())
   1478         return true;
   1479 
   1480     // Fail if multiple elements are inserted into this slot.
   1481     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
   1482       return false;
   1483 
   1484     Elements[ElementIndex] = V;
   1485     return true;
   1486   }
   1487 
   1488   if (Constant *C = dyn_cast<Constant>(V)) {
   1489     // Figure out the # elements this provides, and bitcast it or slice it up
   1490     // as required.
   1491     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1492                                         VecEltTy);
   1493     // If the constant is the size of a vector element, we just need to bitcast
   1494     // it to the right type so it gets properly inserted.
   1495     if (NumElts == 1)
   1496       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1497                                       ElementIndex, Elements, VecEltTy);
   1498 
   1499     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1500     // pieces and insert each element-sized piece into the vector.
   1501     if (!isa<IntegerType>(C->getType()))
   1502       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1503                                        C->getType()->getPrimitiveSizeInBits()));
   1504     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1505     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1506 
   1507     for (unsigned i = 0; i != NumElts; ++i) {
   1508       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1509                                                                i*ElementSize));
   1510       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1511       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
   1512         return false;
   1513     }
   1514     return true;
   1515   }
   1516 
   1517   if (!V->hasOneUse()) return false;
   1518 
   1519   Instruction *I = dyn_cast<Instruction>(V);
   1520   if (I == 0) return false;
   1521   switch (I->getOpcode()) {
   1522   default: return false; // Unhandled case.
   1523   case Instruction::BitCast:
   1524     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1525                                     Elements, VecEltTy);
   1526   case Instruction::ZExt:
   1527     if (!isMultipleOfTypeSize(
   1528                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1529                               VecEltTy))
   1530       return false;
   1531     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1532                                     Elements, VecEltTy);
   1533   case Instruction::Or:
   1534     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1535                                     Elements, VecEltTy) &&
   1536            CollectInsertionElements(I->getOperand(1), ElementIndex,
   1537                                     Elements, VecEltTy);
   1538   case Instruction::Shl: {
   1539     // Must be shifting by a constant that is a multiple of the element size.
   1540     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1541     if (CI == 0) return false;
   1542     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
   1543     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
   1544 
   1545     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
   1546                                     Elements, VecEltTy);
   1547   }
   1548 
   1549   }
   1550 }
   1551 
   1552 
   1553 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1554 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1555 /// Try to rip the code out and replace it with insertelements.  This is to
   1556 /// optimize code like this:
   1557 ///
   1558 ///    %tmp37 = bitcast float %inc to i32
   1559 ///    %tmp38 = zext i32 %tmp37 to i64
   1560 ///    %tmp31 = bitcast float %inc5 to i32
   1561 ///    %tmp32 = zext i32 %tmp31 to i64
   1562 ///    %tmp33 = shl i64 %tmp32, 32
   1563 ///    %ins35 = or i64 %tmp33, %tmp38
   1564 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1565 ///
   1566 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1567 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1568                                                 InstCombiner &IC) {
   1569   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1570   Value *IntInput = CI.getOperand(0);
   1571 
   1572   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1573   if (!CollectInsertionElements(IntInput, 0, Elements,
   1574                                 DestVecTy->getElementType()))
   1575     return 0;
   1576 
   1577   // If we succeeded, we know that all of the element are specified by Elements
   1578   // or are zero if Elements has a null entry.  Recast this as a set of
   1579   // insertions.
   1580   Value *Result = Constant::getNullValue(CI.getType());
   1581   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1582     if (Elements[i] == 0) continue;  // Unset element.
   1583 
   1584     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1585                                              IC.Builder->getInt32(i));
   1586   }
   1587 
   1588   return Result;
   1589 }
   1590 
   1591 
   1592 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1593 /// bitcast.  The various long double bitcasts can't get in here.
   1594 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1595   Value *Src = CI.getOperand(0);
   1596   Type *DestTy = CI.getType();
   1597 
   1598   // If this is a bitcast from int to float, check to see if the int is an
   1599   // extraction from a vector.
   1600   Value *VecInput = 0;
   1601   // bitcast(trunc(bitcast(somevector)))
   1602   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1603       isa<VectorType>(VecInput->getType())) {
   1604     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1605     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1606 
   1607     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1608       // If the element type of the vector doesn't match the result type,
   1609       // bitcast it to be a vector type we can extract from.
   1610       if (VecTy->getElementType() != DestTy) {
   1611         VecTy = VectorType::get(DestTy,
   1612                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1613         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1614       }
   1615 
   1616       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
   1617     }
   1618   }
   1619 
   1620   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1621   ConstantInt *ShAmt = 0;
   1622   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1623                                 m_ConstantInt(ShAmt)))) &&
   1624       isa<VectorType>(VecInput->getType())) {
   1625     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1626     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1627     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1628         ShAmt->getZExtValue() % DestWidth == 0) {
   1629       // If the element type of the vector doesn't match the result type,
   1630       // bitcast it to be a vector type we can extract from.
   1631       if (VecTy->getElementType() != DestTy) {
   1632         VecTy = VectorType::get(DestTy,
   1633                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1634         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1635       }
   1636 
   1637       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1638       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1639     }
   1640   }
   1641   return 0;
   1642 }
   1643 
   1644 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1645   // If the operands are integer typed then apply the integer transforms,
   1646   // otherwise just apply the common ones.
   1647   Value *Src = CI.getOperand(0);
   1648   Type *SrcTy = Src->getType();
   1649   Type *DestTy = CI.getType();
   1650 
   1651   // Get rid of casts from one type to the same type. These are useless and can
   1652   // be replaced by the operand.
   1653   if (DestTy == Src->getType())
   1654     return ReplaceInstUsesWith(CI, Src);
   1655 
   1656   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1657     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1658     Type *DstElTy = DstPTy->getElementType();
   1659     Type *SrcElTy = SrcPTy->getElementType();
   1660 
   1661     // If the address spaces don't match, don't eliminate the bitcast, which is
   1662     // required for changing types.
   1663     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
   1664       return 0;
   1665 
   1666     // If we are casting a alloca to a pointer to a type of the same
   1667     // size, rewrite the allocation instruction to allocate the "right" type.
   1668     // There is no need to modify malloc calls because it is their bitcast that
   1669     // needs to be cleaned up.
   1670     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1671       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1672         return V;
   1673 
   1674     // If the source and destination are pointers, and this cast is equivalent
   1675     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1676     // This can enhance SROA and other transforms that want type-safe pointers.
   1677     Constant *ZeroUInt =
   1678       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1679     unsigned NumZeros = 0;
   1680     while (SrcElTy != DstElTy &&
   1681            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1682            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1683       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1684       ++NumZeros;
   1685     }
   1686 
   1687     // If we found a path from the src to dest, create the getelementptr now.
   1688     if (SrcElTy == DstElTy) {
   1689       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1690       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   1691     }
   1692   }
   1693 
   1694   // Try to optimize int -> float bitcasts.
   1695   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1696     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1697       return I;
   1698 
   1699   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1700     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1701       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1702       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1703                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1704       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1705     }
   1706 
   1707     if (isa<IntegerType>(SrcTy)) {
   1708       // If this is a cast from an integer to vector, check to see if the input
   1709       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1710       // the casts with a shuffle and (potentially) a bitcast.
   1711       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1712         CastInst *SrcCast = cast<CastInst>(Src);
   1713         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1714           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1715             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1716                                                cast<VectorType>(DestTy), *this))
   1717               return I;
   1718       }
   1719 
   1720       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1721       // assemble the elements of the vector manually.  Try to rip the code out
   1722       // and replace it with insertelements.
   1723       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1724         return ReplaceInstUsesWith(CI, V);
   1725     }
   1726   }
   1727 
   1728   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1729     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
   1730       Value *Elem =
   1731         Builder->CreateExtractElement(Src,
   1732                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1733       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1734     }
   1735   }
   1736 
   1737   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1738     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1739     // a bitcast to a vector with the same # elts.
   1740     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1741         cast<VectorType>(DestTy)->getNumElements() ==
   1742               SVI->getType()->getNumElements() &&
   1743         SVI->getType()->getNumElements() ==
   1744           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
   1745       BitCastInst *Tmp;
   1746       // If either of the operands is a cast from CI.getType(), then
   1747       // evaluating the shuffle in the casted destination's type will allow
   1748       // us to eliminate at least one cast.
   1749       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1750            Tmp->getOperand(0)->getType() == DestTy) ||
   1751           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1752            Tmp->getOperand(0)->getType() == DestTy)) {
   1753         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1754         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1755         // Return a new shuffle vector.  Use the same element ID's, as we
   1756         // know the vector types match #elts.
   1757         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1758       }
   1759     }
   1760   }
   1761 
   1762   if (SrcTy->isPointerTy())
   1763     return commonPointerCastTransforms(CI);
   1764   return commonCastTransforms(CI);
   1765 }
   1766