Home | History | Annotate | Download | only in Scalar
      1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a trivial dead store elimination that only considers
     11 // basic-block local redundant stores.
     12 //
     13 // FIXME: This should eventually be extended to be a post-dominator tree
     14 // traversal.  Doing so would be pretty trivial.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "dse"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/CaptureTracking.h"
     28 #include "llvm/Analysis/Dominators.h"
     29 #include "llvm/Analysis/MemoryBuiltins.h"
     30 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     31 #include "llvm/Analysis/ValueTracking.h"
     32 #include "llvm/Target/TargetData.h"
     33 #include "llvm/Transforms/Utils/Local.h"
     34 #include "llvm/Support/Debug.h"
     35 #include "llvm/ADT/SmallPtrSet.h"
     36 #include "llvm/ADT/Statistic.h"
     37 #include "llvm/ADT/STLExtras.h"
     38 using namespace llvm;
     39 
     40 STATISTIC(NumFastStores, "Number of stores deleted");
     41 STATISTIC(NumFastOther , "Number of other instrs removed");
     42 
     43 namespace {
     44   struct DSE : public FunctionPass {
     45     AliasAnalysis *AA;
     46     MemoryDependenceAnalysis *MD;
     47     DominatorTree *DT;
     48 
     49     static char ID; // Pass identification, replacement for typeid
     50     DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
     51       initializeDSEPass(*PassRegistry::getPassRegistry());
     52     }
     53 
     54     virtual bool runOnFunction(Function &F) {
     55       AA = &getAnalysis<AliasAnalysis>();
     56       MD = &getAnalysis<MemoryDependenceAnalysis>();
     57       DT = &getAnalysis<DominatorTree>();
     58 
     59       bool Changed = false;
     60       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
     61         // Only check non-dead blocks.  Dead blocks may have strange pointer
     62         // cycles that will confuse alias analysis.
     63         if (DT->isReachableFromEntry(I))
     64           Changed |= runOnBasicBlock(*I);
     65 
     66       AA = 0; MD = 0; DT = 0;
     67       return Changed;
     68     }
     69 
     70     bool runOnBasicBlock(BasicBlock &BB);
     71     bool HandleFree(CallInst *F);
     72     bool handleEndBlock(BasicBlock &BB);
     73     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
     74                                SmallPtrSet<Value*, 16> &DeadStackObjects);
     75 
     76     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     77       AU.setPreservesCFG();
     78       AU.addRequired<DominatorTree>();
     79       AU.addRequired<AliasAnalysis>();
     80       AU.addRequired<MemoryDependenceAnalysis>();
     81       AU.addPreserved<AliasAnalysis>();
     82       AU.addPreserved<DominatorTree>();
     83       AU.addPreserved<MemoryDependenceAnalysis>();
     84     }
     85   };
     86 }
     87 
     88 char DSE::ID = 0;
     89 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
     90 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     91 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
     92 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     93 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
     94 
     95 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
     96 
     97 //===----------------------------------------------------------------------===//
     98 // Helper functions
     99 //===----------------------------------------------------------------------===//
    100 
    101 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
    102 /// and zero out all the operands of this instruction.  If any of them become
    103 /// dead, delete them and the computation tree that feeds them.
    104 ///
    105 /// If ValueSet is non-null, remove any deleted instructions from it as well.
    106 ///
    107 static void DeleteDeadInstruction(Instruction *I,
    108                                   MemoryDependenceAnalysis &MD,
    109                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
    110   SmallVector<Instruction*, 32> NowDeadInsts;
    111 
    112   NowDeadInsts.push_back(I);
    113   --NumFastOther;
    114 
    115   // Before we touch this instruction, remove it from memdep!
    116   do {
    117     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    118     ++NumFastOther;
    119 
    120     // This instruction is dead, zap it, in stages.  Start by removing it from
    121     // MemDep, which needs to know the operands and needs it to be in the
    122     // function.
    123     MD.removeInstruction(DeadInst);
    124 
    125     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    126       Value *Op = DeadInst->getOperand(op);
    127       DeadInst->setOperand(op, 0);
    128 
    129       // If this operand just became dead, add it to the NowDeadInsts list.
    130       if (!Op->use_empty()) continue;
    131 
    132       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    133         if (isInstructionTriviallyDead(OpI))
    134           NowDeadInsts.push_back(OpI);
    135     }
    136 
    137     DeadInst->eraseFromParent();
    138 
    139     if (ValueSet) ValueSet->erase(DeadInst);
    140   } while (!NowDeadInsts.empty());
    141 }
    142 
    143 
    144 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
    145 /// true for things that we can analyze with other helpers below.
    146 static bool hasMemoryWrite(Instruction *I) {
    147   if (isa<StoreInst>(I))
    148     return true;
    149   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    150     switch (II->getIntrinsicID()) {
    151     default:
    152       return false;
    153     case Intrinsic::memset:
    154     case Intrinsic::memmove:
    155     case Intrinsic::memcpy:
    156     case Intrinsic::init_trampoline:
    157     case Intrinsic::lifetime_end:
    158       return true;
    159     }
    160   }
    161   return false;
    162 }
    163 
    164 /// getLocForWrite - Return a Location stored to by the specified instruction.
    165 /// If isRemovable returns true, this function and getLocForRead completely
    166 /// describe the memory operations for this instruction.
    167 static AliasAnalysis::Location
    168 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
    169   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    170     return AA.getLocation(SI);
    171 
    172   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    173     // memcpy/memmove/memset.
    174     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
    175     // If we don't have target data around, an unknown size in Location means
    176     // that we should use the size of the pointee type.  This isn't valid for
    177     // memset/memcpy, which writes more than an i8.
    178     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
    179       return AliasAnalysis::Location();
    180     return Loc;
    181   }
    182 
    183   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    184   if (II == 0) return AliasAnalysis::Location();
    185 
    186   switch (II->getIntrinsicID()) {
    187   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
    188   case Intrinsic::init_trampoline:
    189     // If we don't have target data around, an unknown size in Location means
    190     // that we should use the size of the pointee type.  This isn't valid for
    191     // init.trampoline, which writes more than an i8.
    192     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
    193 
    194     // FIXME: We don't know the size of the trampoline, so we can't really
    195     // handle it here.
    196     return AliasAnalysis::Location(II->getArgOperand(0));
    197   case Intrinsic::lifetime_end: {
    198     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    199     return AliasAnalysis::Location(II->getArgOperand(1), Len);
    200   }
    201   }
    202 }
    203 
    204 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
    205 /// instruction if any.
    206 static AliasAnalysis::Location
    207 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
    208   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
    209 
    210   // The only instructions that both read and write are the mem transfer
    211   // instructions (memcpy/memmove).
    212   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
    213     return AA.getLocationForSource(MTI);
    214   return AliasAnalysis::Location();
    215 }
    216 
    217 
    218 /// isRemovable - If the value of this instruction and the memory it writes to
    219 /// is unused, may we delete this instruction?
    220 static bool isRemovable(Instruction *I) {
    221   // Don't remove volatile/atomic stores.
    222   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    223     return SI->isUnordered();
    224 
    225   IntrinsicInst *II = cast<IntrinsicInst>(I);
    226   switch (II->getIntrinsicID()) {
    227   default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
    228   case Intrinsic::lifetime_end:
    229     // Never remove dead lifetime_end's, e.g. because it is followed by a
    230     // free.
    231     return false;
    232   case Intrinsic::init_trampoline:
    233     // Always safe to remove init_trampoline.
    234     return true;
    235 
    236   case Intrinsic::memset:
    237   case Intrinsic::memmove:
    238   case Intrinsic::memcpy:
    239     // Don't remove volatile memory intrinsics.
    240     return !cast<MemIntrinsic>(II)->isVolatile();
    241   }
    242 }
    243 
    244 
    245 /// isShortenable - Returns true if this instruction can be safely shortened in
    246 /// length.
    247 static bool isShortenable(Instruction *I) {
    248   // Don't shorten stores for now
    249   if (isa<StoreInst>(I))
    250     return false;
    251 
    252   IntrinsicInst *II = cast<IntrinsicInst>(I);
    253   switch (II->getIntrinsicID()) {
    254     default: return false;
    255     case Intrinsic::memset:
    256     case Intrinsic::memcpy:
    257       // Do shorten memory intrinsics.
    258       return true;
    259   }
    260 }
    261 
    262 /// getStoredPointerOperand - Return the pointer that is being written to.
    263 static Value *getStoredPointerOperand(Instruction *I) {
    264   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    265     return SI->getPointerOperand();
    266   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    267     return MI->getDest();
    268 
    269   IntrinsicInst *II = cast<IntrinsicInst>(I);
    270   switch (II->getIntrinsicID()) {
    271   default: llvm_unreachable("Unexpected intrinsic!");
    272   case Intrinsic::init_trampoline:
    273     return II->getArgOperand(0);
    274   }
    275 }
    276 
    277 static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
    278   const TargetData *TD = AA.getTargetData();
    279 
    280   if (const CallInst *CI = extractMallocCall(V)) {
    281     if (const ConstantInt *C = dyn_cast<ConstantInt>(CI->getArgOperand(0)))
    282       return C->getZExtValue();
    283   }
    284 
    285   if (TD == 0)
    286     return AliasAnalysis::UnknownSize;
    287 
    288   if (const AllocaInst *A = dyn_cast<AllocaInst>(V)) {
    289     // Get size information for the alloca
    290     if (const ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
    291       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
    292   }
    293 
    294   if (const Argument *A = dyn_cast<Argument>(V)) {
    295     if (A->hasByValAttr())
    296       if (PointerType *PT = dyn_cast<PointerType>(A->getType()))
    297         return TD->getTypeAllocSize(PT->getElementType());
    298   }
    299 
    300   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    301     if (!GV->mayBeOverridden())
    302       return TD->getTypeAllocSize(GV->getType()->getElementType());
    303   }
    304 
    305   return AliasAnalysis::UnknownSize;
    306 }
    307 
    308 namespace {
    309   enum OverwriteResult
    310   {
    311     OverwriteComplete,
    312     OverwriteEnd,
    313     OverwriteUnknown
    314   };
    315 }
    316 
    317 /// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
    318 /// completely overwrites a store to the 'Earlier' location.
    319 /// 'OverwriteEnd' if the end of the 'Earlier' location is completely
    320 /// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
    321 static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
    322                                    const AliasAnalysis::Location &Earlier,
    323                                    AliasAnalysis &AA,
    324                                    int64_t &EarlierOff,
    325                                    int64_t &LaterOff) {
    326   const Value *P1 = Earlier.Ptr->stripPointerCasts();
    327   const Value *P2 = Later.Ptr->stripPointerCasts();
    328 
    329   // If the start pointers are the same, we just have to compare sizes to see if
    330   // the later store was larger than the earlier store.
    331   if (P1 == P2) {
    332     // If we don't know the sizes of either access, then we can't do a
    333     // comparison.
    334     if (Later.Size == AliasAnalysis::UnknownSize ||
    335         Earlier.Size == AliasAnalysis::UnknownSize) {
    336       // If we have no TargetData information around, then the size of the store
    337       // is inferrable from the pointee type.  If they are the same type, then
    338       // we know that the store is safe.
    339       if (AA.getTargetData() == 0 &&
    340           Later.Ptr->getType() == Earlier.Ptr->getType())
    341         return OverwriteComplete;
    342 
    343       return OverwriteUnknown;
    344     }
    345 
    346     // Make sure that the Later size is >= the Earlier size.
    347     if (Later.Size >= Earlier.Size)
    348       return OverwriteComplete;
    349   }
    350 
    351   // Otherwise, we have to have size information, and the later store has to be
    352   // larger than the earlier one.
    353   if (Later.Size == AliasAnalysis::UnknownSize ||
    354       Earlier.Size == AliasAnalysis::UnknownSize ||
    355       AA.getTargetData() == 0)
    356     return OverwriteUnknown;
    357 
    358   // Check to see if the later store is to the entire object (either a global,
    359   // an alloca, or a byval argument).  If so, then it clearly overwrites any
    360   // other store to the same object.
    361   const TargetData &TD = *AA.getTargetData();
    362 
    363   const Value *UO1 = GetUnderlyingObject(P1, &TD),
    364               *UO2 = GetUnderlyingObject(P2, &TD);
    365 
    366   // If we can't resolve the same pointers to the same object, then we can't
    367   // analyze them at all.
    368   if (UO1 != UO2)
    369     return OverwriteUnknown;
    370 
    371   // If the "Later" store is to a recognizable object, get its size.
    372   uint64_t ObjectSize = getPointerSize(UO2, AA);
    373   if (ObjectSize != AliasAnalysis::UnknownSize)
    374     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
    375       return OverwriteComplete;
    376 
    377   // Okay, we have stores to two completely different pointers.  Try to
    378   // decompose the pointer into a "base + constant_offset" form.  If the base
    379   // pointers are equal, then we can reason about the two stores.
    380   EarlierOff = 0;
    381   LaterOff = 0;
    382   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
    383   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
    384 
    385   // If the base pointers still differ, we have two completely different stores.
    386   if (BP1 != BP2)
    387     return OverwriteUnknown;
    388 
    389   // The later store completely overlaps the earlier store if:
    390   //
    391   // 1. Both start at the same offset and the later one's size is greater than
    392   //    or equal to the earlier one's, or
    393   //
    394   //      |--earlier--|
    395   //      |--   later   --|
    396   //
    397   // 2. The earlier store has an offset greater than the later offset, but which
    398   //    still lies completely within the later store.
    399   //
    400   //        |--earlier--|
    401   //    |-----  later  ------|
    402   //
    403   // We have to be careful here as *Off is signed while *.Size is unsigned.
    404   if (EarlierOff >= LaterOff &&
    405       Later.Size > Earlier.Size &&
    406       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    407     return OverwriteComplete;
    408 
    409   // The other interesting case is if the later store overwrites the end of
    410   // the earlier store
    411   //
    412   //      |--earlier--|
    413   //                |--   later   --|
    414   //
    415   // In this case we may want to trim the size of earlier to avoid generating
    416   // writes to addresses which will definitely be overwritten later
    417   if (LaterOff > EarlierOff &&
    418       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
    419       int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
    420     return OverwriteEnd;
    421 
    422   // Otherwise, they don't completely overlap.
    423   return OverwriteUnknown;
    424 }
    425 
    426 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
    427 /// memory region into an identical pointer) then it doesn't actually make its
    428 /// input dead in the traditional sense.  Consider this case:
    429 ///
    430 ///   memcpy(A <- B)
    431 ///   memcpy(A <- A)
    432 ///
    433 /// In this case, the second store to A does not make the first store to A dead.
    434 /// The usual situation isn't an explicit A<-A store like this (which can be
    435 /// trivially removed) but a case where two pointers may alias.
    436 ///
    437 /// This function detects when it is unsafe to remove a dependent instruction
    438 /// because the DSE inducing instruction may be a self-read.
    439 static bool isPossibleSelfRead(Instruction *Inst,
    440                                const AliasAnalysis::Location &InstStoreLoc,
    441                                Instruction *DepWrite, AliasAnalysis &AA) {
    442   // Self reads can only happen for instructions that read memory.  Get the
    443   // location read.
    444   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
    445   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
    446 
    447   // If the read and written loc obviously don't alias, it isn't a read.
    448   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
    449 
    450   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
    451   // DepWrite instruction if we can prove that it reads from the same location
    452   // as Inst.  This handles useful cases like:
    453   //   memcpy(A <- B)
    454   //   memcpy(A <- B)
    455   // Here we don't know if A/B may alias, but we do know that B/B are must
    456   // aliases, so removing the first memcpy is safe (assuming it writes <= #
    457   // bytes as the second one.
    458   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
    459 
    460   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
    461     return false;
    462 
    463   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
    464   // then it can't be considered dead.
    465   return true;
    466 }
    467 
    468 
    469 //===----------------------------------------------------------------------===//
    470 // DSE Pass
    471 //===----------------------------------------------------------------------===//
    472 
    473 bool DSE::runOnBasicBlock(BasicBlock &BB) {
    474   bool MadeChange = false;
    475 
    476   // Do a top-down walk on the BB.
    477   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    478     Instruction *Inst = BBI++;
    479 
    480     // Handle 'free' calls specially.
    481     if (CallInst *F = isFreeCall(Inst)) {
    482       MadeChange |= HandleFree(F);
    483       continue;
    484     }
    485 
    486     // If we find something that writes memory, get its memory dependence.
    487     if (!hasMemoryWrite(Inst))
    488       continue;
    489 
    490     MemDepResult InstDep = MD->getDependency(Inst);
    491 
    492     // Ignore any store where we can't find a local dependence.
    493     // FIXME: cross-block DSE would be fun. :)
    494     if (!InstDep.isDef() && !InstDep.isClobber())
    495       continue;
    496 
    497     // If we're storing the same value back to a pointer that we just
    498     // loaded from, then the store can be removed.
    499     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    500       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
    501         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
    502             SI->getOperand(0) == DepLoad && isRemovable(SI)) {
    503           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
    504                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
    505 
    506           // DeleteDeadInstruction can delete the current instruction.  Save BBI
    507           // in case we need it.
    508           WeakVH NextInst(BBI);
    509 
    510           DeleteDeadInstruction(SI, *MD);
    511 
    512           if (NextInst == 0)  // Next instruction deleted.
    513             BBI = BB.begin();
    514           else if (BBI != BB.begin())  // Revisit this instruction if possible.
    515             --BBI;
    516           ++NumFastStores;
    517           MadeChange = true;
    518           continue;
    519         }
    520       }
    521     }
    522 
    523     // Figure out what location is being stored to.
    524     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
    525 
    526     // If we didn't get a useful location, fail.
    527     if (Loc.Ptr == 0)
    528       continue;
    529 
    530     while (InstDep.isDef() || InstDep.isClobber()) {
    531       // Get the memory clobbered by the instruction we depend on.  MemDep will
    532       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
    533       // end up depending on a may- or must-aliased load, then we can't optimize
    534       // away the store and we bail out.  However, if we depend on on something
    535       // that overwrites the memory location we *can* potentially optimize it.
    536       //
    537       // Find out what memory location the dependent instruction stores.
    538       Instruction *DepWrite = InstDep.getInst();
    539       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
    540       // If we didn't get a useful location, or if it isn't a size, bail out.
    541       if (DepLoc.Ptr == 0)
    542         break;
    543 
    544       // If we find a write that is a) removable (i.e., non-volatile), b) is
    545       // completely obliterated by the store to 'Loc', and c) which we know that
    546       // 'Inst' doesn't load from, then we can remove it.
    547       if (isRemovable(DepWrite) &&
    548           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
    549         int64_t InstWriteOffset, DepWriteOffset;
    550         OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
    551                                          DepWriteOffset, InstWriteOffset);
    552         if (OR == OverwriteComplete) {
    553           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
    554                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
    555 
    556           // Delete the store and now-dead instructions that feed it.
    557           DeleteDeadInstruction(DepWrite, *MD);
    558           ++NumFastStores;
    559           MadeChange = true;
    560 
    561           // DeleteDeadInstruction can delete the current instruction in loop
    562           // cases, reset BBI.
    563           BBI = Inst;
    564           if (BBI != BB.begin())
    565             --BBI;
    566           break;
    567         } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
    568           // TODO: base this on the target vector size so that if the earlier
    569           // store was too small to get vector writes anyway then its likely
    570           // a good idea to shorten it
    571           // Power of 2 vector writes are probably always a bad idea to optimize
    572           // as any store/memset/memcpy is likely using vector instructions so
    573           // shortening it to not vector size is likely to be slower
    574           MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
    575           unsigned DepWriteAlign = DepIntrinsic->getAlignment();
    576           if (llvm::isPowerOf2_64(InstWriteOffset) ||
    577               ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
    578 
    579             DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
    580                   << *DepWrite << "\n  KILLER (offset "
    581                   << InstWriteOffset << ", "
    582                   << DepLoc.Size << ")"
    583                   << *Inst << '\n');
    584 
    585             Value* DepWriteLength = DepIntrinsic->getLength();
    586             Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
    587                                                     InstWriteOffset -
    588                                                     DepWriteOffset);
    589             DepIntrinsic->setLength(TrimmedLength);
    590             MadeChange = true;
    591           }
    592         }
    593       }
    594 
    595       // If this is a may-aliased store that is clobbering the store value, we
    596       // can keep searching past it for another must-aliased pointer that stores
    597       // to the same location.  For example, in:
    598       //   store -> P
    599       //   store -> Q
    600       //   store -> P
    601       // we can remove the first store to P even though we don't know if P and Q
    602       // alias.
    603       if (DepWrite == &BB.front()) break;
    604 
    605       // Can't look past this instruction if it might read 'Loc'.
    606       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
    607         break;
    608 
    609       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
    610     }
    611   }
    612 
    613   // If this block ends in a return, unwind, or unreachable, all allocas are
    614   // dead at its end, which means stores to them are also dead.
    615   if (BB.getTerminator()->getNumSuccessors() == 0)
    616     MadeChange |= handleEndBlock(BB);
    617 
    618   return MadeChange;
    619 }
    620 
    621 /// Find all blocks that will unconditionally lead to the block BB and append
    622 /// them to F.
    623 static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
    624                                    BasicBlock *BB, DominatorTree *DT) {
    625   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    626     BasicBlock *Pred = *I;
    627     if (Pred == BB) continue;
    628     TerminatorInst *PredTI = Pred->getTerminator();
    629     if (PredTI->getNumSuccessors() != 1)
    630       continue;
    631 
    632     if (DT->isReachableFromEntry(Pred))
    633       Blocks.push_back(Pred);
    634   }
    635 }
    636 
    637 /// HandleFree - Handle frees of entire structures whose dependency is a store
    638 /// to a field of that structure.
    639 bool DSE::HandleFree(CallInst *F) {
    640   bool MadeChange = false;
    641 
    642   AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
    643   SmallVector<BasicBlock *, 16> Blocks;
    644   Blocks.push_back(F->getParent());
    645 
    646   while (!Blocks.empty()) {
    647     BasicBlock *BB = Blocks.pop_back_val();
    648     Instruction *InstPt = BB->getTerminator();
    649     if (BB == F->getParent()) InstPt = F;
    650 
    651     MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
    652     while (Dep.isDef() || Dep.isClobber()) {
    653       Instruction *Dependency = Dep.getInst();
    654       if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
    655         break;
    656 
    657       Value *DepPointer =
    658         GetUnderlyingObject(getStoredPointerOperand(Dependency));
    659 
    660       // Check for aliasing.
    661       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
    662         break;
    663 
    664       Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
    665 
    666       // DCE instructions only used to calculate that store
    667       DeleteDeadInstruction(Dependency, *MD);
    668       ++NumFastStores;
    669       MadeChange = true;
    670 
    671       // Inst's old Dependency is now deleted. Compute the next dependency,
    672       // which may also be dead, as in
    673       //    s[0] = 0;
    674       //    s[1] = 0; // This has just been deleted.
    675       //    free(s);
    676       Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
    677     }
    678 
    679     if (Dep.isNonLocal())
    680       FindUnconditionalPreds(Blocks, BB, DT);
    681   }
    682 
    683   return MadeChange;
    684 }
    685 
    686 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
    687 /// function end block.  Ex:
    688 /// %A = alloca i32
    689 /// ...
    690 /// store i32 1, i32* %A
    691 /// ret void
    692 bool DSE::handleEndBlock(BasicBlock &BB) {
    693   bool MadeChange = false;
    694 
    695   // Keep track of all of the stack objects that are dead at the end of the
    696   // function.
    697   SmallPtrSet<Value*, 16> DeadStackObjects;
    698 
    699   // Find all of the alloca'd pointers in the entry block.
    700   BasicBlock *Entry = BB.getParent()->begin();
    701   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
    702     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
    703       DeadStackObjects.insert(AI);
    704 
    705     // Okay, so these are dead heap objects, but if the pointer never escapes
    706     // then it's leaked by this function anyways.
    707     if (CallInst *CI = extractMallocCall(I))
    708       if (!PointerMayBeCaptured(CI, true, true))
    709         DeadStackObjects.insert(CI);
    710   }
    711 
    712   // Treat byval arguments the same, stores to them are dead at the end of the
    713   // function.
    714   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
    715        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    716     if (AI->hasByValAttr())
    717       DeadStackObjects.insert(AI);
    718 
    719   // Scan the basic block backwards
    720   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    721     --BBI;
    722 
    723     // If we find a store, check to see if it points into a dead stack value.
    724     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
    725       // See through pointer-to-pointer bitcasts
    726       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
    727 
    728       // Stores to stack values are valid candidates for removal.
    729       if (DeadStackObjects.count(Pointer)) {
    730         Instruction *Dead = BBI++;
    731 
    732         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
    733                      << *Dead << "\n  Object: " << *Pointer << '\n');
    734 
    735         // DCE instructions only used to calculate that store.
    736         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
    737         ++NumFastStores;
    738         MadeChange = true;
    739         continue;
    740       }
    741     }
    742 
    743     // Remove any dead non-memory-mutating instructions.
    744     if (isInstructionTriviallyDead(BBI)) {
    745       Instruction *Inst = BBI++;
    746       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
    747       ++NumFastOther;
    748       MadeChange = true;
    749       continue;
    750     }
    751 
    752     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
    753       DeadStackObjects.erase(A);
    754       continue;
    755     }
    756 
    757     if (CallInst *CI = extractMallocCall(BBI)) {
    758       DeadStackObjects.erase(CI);
    759       continue;
    760     }
    761 
    762     if (CallSite CS = cast<Value>(BBI)) {
    763       // If this call does not access memory, it can't be loading any of our
    764       // pointers.
    765       if (AA->doesNotAccessMemory(CS))
    766         continue;
    767 
    768       // If the call might load from any of our allocas, then any store above
    769       // the call is live.
    770       SmallVector<Value*, 8> LiveAllocas;
    771       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    772            E = DeadStackObjects.end(); I != E; ++I) {
    773         // See if the call site touches it.
    774         AliasAnalysis::ModRefResult A =
    775           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
    776 
    777         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
    778           LiveAllocas.push_back(*I);
    779       }
    780 
    781       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
    782            E = LiveAllocas.end(); I != E; ++I)
    783         DeadStackObjects.erase(*I);
    784 
    785       // If all of the allocas were clobbered by the call then we're not going
    786       // to find anything else to process.
    787       if (DeadStackObjects.empty())
    788         return MadeChange;
    789 
    790       continue;
    791     }
    792 
    793     AliasAnalysis::Location LoadedLoc;
    794 
    795     // If we encounter a use of the pointer, it is no longer considered dead
    796     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
    797       if (!L->isUnordered()) // Be conservative with atomic/volatile load
    798         break;
    799       LoadedLoc = AA->getLocation(L);
    800     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    801       LoadedLoc = AA->getLocation(V);
    802     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
    803       LoadedLoc = AA->getLocationForSource(MTI);
    804     } else if (!BBI->mayReadFromMemory()) {
    805       // Instruction doesn't read memory.  Note that stores that weren't removed
    806       // above will hit this case.
    807       continue;
    808     } else {
    809       // Unknown inst; assume it clobbers everything.
    810       break;
    811     }
    812 
    813     // Remove any allocas from the DeadPointer set that are loaded, as this
    814     // makes any stores above the access live.
    815     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
    816 
    817     // If all of the allocas were clobbered by the access then we're not going
    818     // to find anything else to process.
    819     if (DeadStackObjects.empty())
    820       break;
    821   }
    822 
    823   return MadeChange;
    824 }
    825 
    826 /// RemoveAccessedObjects - Check to see if the specified location may alias any
    827 /// of the stack objects in the DeadStackObjects set.  If so, they become live
    828 /// because the location is being loaded.
    829 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
    830                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
    831   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
    832 
    833   // A constant can't be in the dead pointer set.
    834   if (isa<Constant>(UnderlyingPointer))
    835     return;
    836 
    837   // If the kill pointer can be easily reduced to an alloca, don't bother doing
    838   // extraneous AA queries.
    839   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    840     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
    841     return;
    842   }
    843 
    844   SmallVector<Value*, 16> NowLive;
    845   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    846        E = DeadStackObjects.end(); I != E; ++I) {
    847     // See if the loaded location could alias the stack location.
    848     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
    849     if (!AA->isNoAlias(StackLoc, LoadedLoc))
    850       NowLive.push_back(*I);
    851   }
    852 
    853   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
    854        I != E; ++I)
    855     DeadStackObjects.erase(*I);
    856 }
    857