Home | History | Annotate | Download | only in Utils
      1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements inlining of a function into a call site, resolving
     11 // parameters and the return value as appropriate.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/Cloning.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/Module.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/Intrinsics.h"
     22 #include "llvm/Attributes.h"
     23 #include "llvm/Analysis/CallGraph.h"
     24 #include "llvm/Analysis/DebugInfo.h"
     25 #include "llvm/Analysis/InstructionSimplify.h"
     26 #include "llvm/Target/TargetData.h"
     27 #include "llvm/Transforms/Utils/Local.h"
     28 #include "llvm/ADT/SmallVector.h"
     29 #include "llvm/ADT/StringExtras.h"
     30 #include "llvm/Support/CallSite.h"
     31 #include "llvm/Support/IRBuilder.h"
     32 using namespace llvm;
     33 
     34 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
     35                           bool InsertLifetime) {
     36   return InlineFunction(CallSite(CI), IFI, InsertLifetime);
     37 }
     38 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
     39                           bool InsertLifetime) {
     40   return InlineFunction(CallSite(II), IFI, InsertLifetime);
     41 }
     42 
     43 namespace {
     44   /// A class for recording information about inlining through an invoke.
     45   class InvokeInliningInfo {
     46     BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
     47     BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
     48     LandingPadInst *CallerLPad;  //< LandingPadInst associated with the invoke.
     49     PHINode *InnerEHValuesPHI;   //< PHI for EH values from landingpad insts.
     50     SmallVector<Value*, 8> UnwindDestPHIValues;
     51 
     52   public:
     53     InvokeInliningInfo(InvokeInst *II)
     54       : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
     55         CallerLPad(0), InnerEHValuesPHI(0) {
     56       // If there are PHI nodes in the unwind destination block, we need to keep
     57       // track of which values came into them from the invoke before removing
     58       // the edge from this block.
     59       llvm::BasicBlock *InvokeBB = II->getParent();
     60       BasicBlock::iterator I = OuterResumeDest->begin();
     61       for (; isa<PHINode>(I); ++I) {
     62         // Save the value to use for this edge.
     63         PHINode *PHI = cast<PHINode>(I);
     64         UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
     65       }
     66 
     67       CallerLPad = cast<LandingPadInst>(I);
     68     }
     69 
     70     /// getOuterResumeDest - The outer unwind destination is the target of
     71     /// unwind edges introduced for calls within the inlined function.
     72     BasicBlock *getOuterResumeDest() const {
     73       return OuterResumeDest;
     74     }
     75 
     76     BasicBlock *getInnerResumeDest();
     77 
     78     LandingPadInst *getLandingPadInst() const { return CallerLPad; }
     79 
     80     /// forwardResume - Forward the 'resume' instruction to the caller's landing
     81     /// pad block. When the landing pad block has only one predecessor, this is
     82     /// a simple branch. When there is more than one predecessor, we need to
     83     /// split the landing pad block after the landingpad instruction and jump
     84     /// to there.
     85     void forwardResume(ResumeInst *RI);
     86 
     87     /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
     88     /// destination block for the given basic block, using the values for the
     89     /// original invoke's source block.
     90     void addIncomingPHIValuesFor(BasicBlock *BB) const {
     91       addIncomingPHIValuesForInto(BB, OuterResumeDest);
     92     }
     93 
     94     void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
     95       BasicBlock::iterator I = dest->begin();
     96       for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
     97         PHINode *phi = cast<PHINode>(I);
     98         phi->addIncoming(UnwindDestPHIValues[i], src);
     99       }
    100     }
    101   };
    102 }
    103 
    104 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
    105 BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
    106   if (InnerResumeDest) return InnerResumeDest;
    107 
    108   // Split the landing pad.
    109   BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
    110   InnerResumeDest =
    111     OuterResumeDest->splitBasicBlock(SplitPoint,
    112                                      OuterResumeDest->getName() + ".body");
    113 
    114   // The number of incoming edges we expect to the inner landing pad.
    115   const unsigned PHICapacity = 2;
    116 
    117   // Create corresponding new PHIs for all the PHIs in the outer landing pad.
    118   BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
    119   BasicBlock::iterator I = OuterResumeDest->begin();
    120   for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
    121     PHINode *OuterPHI = cast<PHINode>(I);
    122     PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
    123                                         OuterPHI->getName() + ".lpad-body",
    124                                         InsertPoint);
    125     OuterPHI->replaceAllUsesWith(InnerPHI);
    126     InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
    127   }
    128 
    129   // Create a PHI for the exception values.
    130   InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
    131                                      "eh.lpad-body", InsertPoint);
    132   CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
    133   InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
    134 
    135   // All done.
    136   return InnerResumeDest;
    137 }
    138 
    139 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
    140 /// block. When the landing pad block has only one predecessor, this is a simple
    141 /// branch. When there is more than one predecessor, we need to split the
    142 /// landing pad block after the landingpad instruction and jump to there.
    143 void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
    144   BasicBlock *Dest = getInnerResumeDest();
    145   BasicBlock *Src = RI->getParent();
    146 
    147   BranchInst::Create(Dest, Src);
    148 
    149   // Update the PHIs in the destination. They were inserted in an order which
    150   // makes this work.
    151   addIncomingPHIValuesForInto(Src, Dest);
    152 
    153   InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
    154   RI->eraseFromParent();
    155 }
    156 
    157 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
    158 /// an invoke, we have to turn all of the calls that can throw into
    159 /// invokes.  This function analyze BB to see if there are any calls, and if so,
    160 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
    161 /// nodes in that block with the values specified in InvokeDestPHIValues.
    162 ///
    163 /// Returns true to indicate that the next block should be skipped.
    164 static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
    165                                                    InvokeInliningInfo &Invoke) {
    166   LandingPadInst *LPI = Invoke.getLandingPadInst();
    167 
    168   for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
    169     Instruction *I = BBI++;
    170 
    171     if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
    172       unsigned NumClauses = LPI->getNumClauses();
    173       L->reserveClauses(NumClauses);
    174       for (unsigned i = 0; i != NumClauses; ++i)
    175         L->addClause(LPI->getClause(i));
    176     }
    177 
    178     // We only need to check for function calls: inlined invoke
    179     // instructions require no special handling.
    180     CallInst *CI = dyn_cast<CallInst>(I);
    181 
    182     // If this call cannot unwind, don't convert it to an invoke.
    183     if (!CI || CI->doesNotThrow())
    184       continue;
    185 
    186     // Convert this function call into an invoke instruction.  First, split the
    187     // basic block.
    188     BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
    189 
    190     // Delete the unconditional branch inserted by splitBasicBlock
    191     BB->getInstList().pop_back();
    192 
    193     // Create the new invoke instruction.
    194     ImmutableCallSite CS(CI);
    195     SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
    196     InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
    197                                         Invoke.getOuterResumeDest(),
    198                                         InvokeArgs, CI->getName(), BB);
    199     II->setCallingConv(CI->getCallingConv());
    200     II->setAttributes(CI->getAttributes());
    201 
    202     // Make sure that anything using the call now uses the invoke!  This also
    203     // updates the CallGraph if present, because it uses a WeakVH.
    204     CI->replaceAllUsesWith(II);
    205 
    206     // Delete the original call
    207     Split->getInstList().pop_front();
    208 
    209     // Update any PHI nodes in the exceptional block to indicate that there is
    210     // now a new entry in them.
    211     Invoke.addIncomingPHIValuesFor(BB);
    212     return false;
    213   }
    214 
    215   return false;
    216 }
    217 
    218 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
    219 /// in the body of the inlined function into invokes.
    220 ///
    221 /// II is the invoke instruction being inlined.  FirstNewBlock is the first
    222 /// block of the inlined code (the last block is the end of the function),
    223 /// and InlineCodeInfo is information about the code that got inlined.
    224 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
    225                                 ClonedCodeInfo &InlinedCodeInfo) {
    226   BasicBlock *InvokeDest = II->getUnwindDest();
    227 
    228   Function *Caller = FirstNewBlock->getParent();
    229 
    230   // The inlined code is currently at the end of the function, scan from the
    231   // start of the inlined code to its end, checking for stuff we need to
    232   // rewrite.  If the code doesn't have calls or unwinds, we know there is
    233   // nothing to rewrite.
    234   if (!InlinedCodeInfo.ContainsCalls) {
    235     // Now that everything is happy, we have one final detail.  The PHI nodes in
    236     // the exception destination block still have entries due to the original
    237     // invoke instruction.  Eliminate these entries (which might even delete the
    238     // PHI node) now.
    239     InvokeDest->removePredecessor(II->getParent());
    240     return;
    241   }
    242 
    243   InvokeInliningInfo Invoke(II);
    244 
    245   for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
    246     if (InlinedCodeInfo.ContainsCalls)
    247       if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
    248         // Honor a request to skip the next block.
    249         ++BB;
    250         continue;
    251       }
    252 
    253     if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
    254       Invoke.forwardResume(RI);
    255   }
    256 
    257   // Now that everything is happy, we have one final detail.  The PHI nodes in
    258   // the exception destination block still have entries due to the original
    259   // invoke instruction.  Eliminate these entries (which might even delete the
    260   // PHI node) now.
    261   InvokeDest->removePredecessor(II->getParent());
    262 }
    263 
    264 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
    265 /// into the caller, update the specified callgraph to reflect the changes we
    266 /// made.  Note that it's possible that not all code was copied over, so only
    267 /// some edges of the callgraph may remain.
    268 static void UpdateCallGraphAfterInlining(CallSite CS,
    269                                          Function::iterator FirstNewBlock,
    270                                          ValueToValueMapTy &VMap,
    271                                          InlineFunctionInfo &IFI) {
    272   CallGraph &CG = *IFI.CG;
    273   const Function *Caller = CS.getInstruction()->getParent()->getParent();
    274   const Function *Callee = CS.getCalledFunction();
    275   CallGraphNode *CalleeNode = CG[Callee];
    276   CallGraphNode *CallerNode = CG[Caller];
    277 
    278   // Since we inlined some uninlined call sites in the callee into the caller,
    279   // add edges from the caller to all of the callees of the callee.
    280   CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
    281 
    282   // Consider the case where CalleeNode == CallerNode.
    283   CallGraphNode::CalledFunctionsVector CallCache;
    284   if (CalleeNode == CallerNode) {
    285     CallCache.assign(I, E);
    286     I = CallCache.begin();
    287     E = CallCache.end();
    288   }
    289 
    290   for (; I != E; ++I) {
    291     const Value *OrigCall = I->first;
    292 
    293     ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
    294     // Only copy the edge if the call was inlined!
    295     if (VMI == VMap.end() || VMI->second == 0)
    296       continue;
    297 
    298     // If the call was inlined, but then constant folded, there is no edge to
    299     // add.  Check for this case.
    300     Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
    301     if (NewCall == 0) continue;
    302 
    303     // Remember that this call site got inlined for the client of
    304     // InlineFunction.
    305     IFI.InlinedCalls.push_back(NewCall);
    306 
    307     // It's possible that inlining the callsite will cause it to go from an
    308     // indirect to a direct call by resolving a function pointer.  If this
    309     // happens, set the callee of the new call site to a more precise
    310     // destination.  This can also happen if the call graph node of the caller
    311     // was just unnecessarily imprecise.
    312     if (I->second->getFunction() == 0)
    313       if (Function *F = CallSite(NewCall).getCalledFunction()) {
    314         // Indirect call site resolved to direct call.
    315         CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
    316 
    317         continue;
    318       }
    319 
    320     CallerNode->addCalledFunction(CallSite(NewCall), I->second);
    321   }
    322 
    323   // Update the call graph by deleting the edge from Callee to Caller.  We must
    324   // do this after the loop above in case Caller and Callee are the same.
    325   CallerNode->removeCallEdgeFor(CS);
    326 }
    327 
    328 /// HandleByValArgument - When inlining a call site that has a byval argument,
    329 /// we have to make the implicit memcpy explicit by adding it.
    330 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
    331                                   const Function *CalledFunc,
    332                                   InlineFunctionInfo &IFI,
    333                                   unsigned ByValAlignment) {
    334   Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
    335 
    336   // If the called function is readonly, then it could not mutate the caller's
    337   // copy of the byval'd memory.  In this case, it is safe to elide the copy and
    338   // temporary.
    339   if (CalledFunc->onlyReadsMemory()) {
    340     // If the byval argument has a specified alignment that is greater than the
    341     // passed in pointer, then we either have to round up the input pointer or
    342     // give up on this transformation.
    343     if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
    344       return Arg;
    345 
    346     // If the pointer is already known to be sufficiently aligned, or if we can
    347     // round it up to a larger alignment, then we don't need a temporary.
    348     if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
    349                                    IFI.TD) >= ByValAlignment)
    350       return Arg;
    351 
    352     // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
    353     // for code quality, but rarely happens and is required for correctness.
    354   }
    355 
    356   LLVMContext &Context = Arg->getContext();
    357 
    358   Type *VoidPtrTy = Type::getInt8PtrTy(Context);
    359 
    360   // Create the alloca.  If we have TargetData, use nice alignment.
    361   unsigned Align = 1;
    362   if (IFI.TD)
    363     Align = IFI.TD->getPrefTypeAlignment(AggTy);
    364 
    365   // If the byval had an alignment specified, we *must* use at least that
    366   // alignment, as it is required by the byval argument (and uses of the
    367   // pointer inside the callee).
    368   Align = std::max(Align, ByValAlignment);
    369 
    370   Function *Caller = TheCall->getParent()->getParent();
    371 
    372   Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
    373                                     &*Caller->begin()->begin());
    374   // Emit a memcpy.
    375   Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
    376   Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
    377                                                  Intrinsic::memcpy,
    378                                                  Tys);
    379   Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
    380   Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
    381 
    382   Value *Size;
    383   if (IFI.TD == 0)
    384     Size = ConstantExpr::getSizeOf(AggTy);
    385   else
    386     Size = ConstantInt::get(Type::getInt64Ty(Context),
    387                             IFI.TD->getTypeStoreSize(AggTy));
    388 
    389   // Always generate a memcpy of alignment 1 here because we don't know
    390   // the alignment of the src pointer.  Other optimizations can infer
    391   // better alignment.
    392   Value *CallArgs[] = {
    393     DestCast, SrcCast, Size,
    394     ConstantInt::get(Type::getInt32Ty(Context), 1),
    395     ConstantInt::getFalse(Context) // isVolatile
    396   };
    397   IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
    398 
    399   // Uses of the argument in the function should use our new alloca
    400   // instead.
    401   return NewAlloca;
    402 }
    403 
    404 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
    405 // intrinsic.
    406 static bool isUsedByLifetimeMarker(Value *V) {
    407   for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
    408        ++UI) {
    409     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
    410       switch (II->getIntrinsicID()) {
    411       default: break;
    412       case Intrinsic::lifetime_start:
    413       case Intrinsic::lifetime_end:
    414         return true;
    415       }
    416     }
    417   }
    418   return false;
    419 }
    420 
    421 // hasLifetimeMarkers - Check whether the given alloca already has
    422 // lifetime.start or lifetime.end intrinsics.
    423 static bool hasLifetimeMarkers(AllocaInst *AI) {
    424   Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
    425   if (AI->getType() == Int8PtrTy)
    426     return isUsedByLifetimeMarker(AI);
    427 
    428   // Do a scan to find all the casts to i8*.
    429   for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
    430        ++I) {
    431     if (I->getType() != Int8PtrTy) continue;
    432     if (I->stripPointerCasts() != AI) continue;
    433     if (isUsedByLifetimeMarker(*I))
    434       return true;
    435   }
    436   return false;
    437 }
    438 
    439 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
    440 /// recursively update InlinedAtEntry of a DebugLoc.
    441 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
    442                                     const DebugLoc &InlinedAtDL,
    443                                     LLVMContext &Ctx) {
    444   if (MDNode *IA = DL.getInlinedAt(Ctx)) {
    445     DebugLoc NewInlinedAtDL
    446       = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
    447     return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
    448                          NewInlinedAtDL.getAsMDNode(Ctx));
    449   }
    450 
    451   return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
    452                        InlinedAtDL.getAsMDNode(Ctx));
    453 }
    454 
    455 /// fixupLineNumbers - Update inlined instructions' line numbers to
    456 /// to encode location where these instructions are inlined.
    457 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
    458                              Instruction *TheCall) {
    459   DebugLoc TheCallDL = TheCall->getDebugLoc();
    460   if (TheCallDL.isUnknown())
    461     return;
    462 
    463   for (; FI != Fn->end(); ++FI) {
    464     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
    465          BI != BE; ++BI) {
    466       DebugLoc DL = BI->getDebugLoc();
    467       if (!DL.isUnknown()) {
    468         BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
    469         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
    470           LLVMContext &Ctx = BI->getContext();
    471           MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
    472           DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
    473                                                    InlinedAt, Ctx));
    474         }
    475       }
    476     }
    477   }
    478 }
    479 
    480 /// InlineFunction - This function inlines the called function into the basic
    481 /// block of the caller.  This returns false if it is not possible to inline
    482 /// this call.  The program is still in a well defined state if this occurs
    483 /// though.
    484 ///
    485 /// Note that this only does one level of inlining.  For example, if the
    486 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
    487 /// exists in the instruction stream.  Similarly this will inline a recursive
    488 /// function by one level.
    489 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
    490                           bool InsertLifetime) {
    491   Instruction *TheCall = CS.getInstruction();
    492   assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
    493          "Instruction not in function!");
    494 
    495   // If IFI has any state in it, zap it before we fill it in.
    496   IFI.reset();
    497 
    498   const Function *CalledFunc = CS.getCalledFunction();
    499   if (CalledFunc == 0 ||          // Can't inline external function or indirect
    500       CalledFunc->isDeclaration() || // call, or call to a vararg function!
    501       CalledFunc->getFunctionType()->isVarArg()) return false;
    502 
    503   // If the call to the callee is not a tail call, we must clear the 'tail'
    504   // flags on any calls that we inline.
    505   bool MustClearTailCallFlags =
    506     !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
    507 
    508   // If the call to the callee cannot throw, set the 'nounwind' flag on any
    509   // calls that we inline.
    510   bool MarkNoUnwind = CS.doesNotThrow();
    511 
    512   BasicBlock *OrigBB = TheCall->getParent();
    513   Function *Caller = OrigBB->getParent();
    514 
    515   // GC poses two hazards to inlining, which only occur when the callee has GC:
    516   //  1. If the caller has no GC, then the callee's GC must be propagated to the
    517   //     caller.
    518   //  2. If the caller has a differing GC, it is invalid to inline.
    519   if (CalledFunc->hasGC()) {
    520     if (!Caller->hasGC())
    521       Caller->setGC(CalledFunc->getGC());
    522     else if (CalledFunc->getGC() != Caller->getGC())
    523       return false;
    524   }
    525 
    526   // Get the personality function from the callee if it contains a landing pad.
    527   Value *CalleePersonality = 0;
    528   for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
    529        I != E; ++I)
    530     if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
    531       const BasicBlock *BB = II->getUnwindDest();
    532       const LandingPadInst *LP = BB->getLandingPadInst();
    533       CalleePersonality = LP->getPersonalityFn();
    534       break;
    535     }
    536 
    537   // Find the personality function used by the landing pads of the caller. If it
    538   // exists, then check to see that it matches the personality function used in
    539   // the callee.
    540   if (CalleePersonality) {
    541     for (Function::const_iterator I = Caller->begin(), E = Caller->end();
    542          I != E; ++I)
    543       if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
    544         const BasicBlock *BB = II->getUnwindDest();
    545         const LandingPadInst *LP = BB->getLandingPadInst();
    546 
    547         // If the personality functions match, then we can perform the
    548         // inlining. Otherwise, we can't inline.
    549         // TODO: This isn't 100% true. Some personality functions are proper
    550         //       supersets of others and can be used in place of the other.
    551         if (LP->getPersonalityFn() != CalleePersonality)
    552           return false;
    553 
    554         break;
    555       }
    556   }
    557 
    558   // Get an iterator to the last basic block in the function, which will have
    559   // the new function inlined after it.
    560   Function::iterator LastBlock = &Caller->back();
    561 
    562   // Make sure to capture all of the return instructions from the cloned
    563   // function.
    564   SmallVector<ReturnInst*, 8> Returns;
    565   ClonedCodeInfo InlinedFunctionInfo;
    566   Function::iterator FirstNewBlock;
    567 
    568   { // Scope to destroy VMap after cloning.
    569     ValueToValueMapTy VMap;
    570 
    571     assert(CalledFunc->arg_size() == CS.arg_size() &&
    572            "No varargs calls can be inlined!");
    573 
    574     // Calculate the vector of arguments to pass into the function cloner, which
    575     // matches up the formal to the actual argument values.
    576     CallSite::arg_iterator AI = CS.arg_begin();
    577     unsigned ArgNo = 0;
    578     for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
    579          E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
    580       Value *ActualArg = *AI;
    581 
    582       // When byval arguments actually inlined, we need to make the copy implied
    583       // by them explicit.  However, we don't do this if the callee is readonly
    584       // or readnone, because the copy would be unneeded: the callee doesn't
    585       // modify the struct.
    586       if (CS.isByValArgument(ArgNo)) {
    587         ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
    588                                         CalledFunc->getParamAlignment(ArgNo+1));
    589 
    590         // Calls that we inline may use the new alloca, so we need to clear
    591         // their 'tail' flags if HandleByValArgument introduced a new alloca and
    592         // the callee has calls.
    593         MustClearTailCallFlags |= ActualArg != *AI;
    594       }
    595 
    596       VMap[I] = ActualArg;
    597     }
    598 
    599     // We want the inliner to prune the code as it copies.  We would LOVE to
    600     // have no dead or constant instructions leftover after inlining occurs
    601     // (which can happen, e.g., because an argument was constant), but we'll be
    602     // happy with whatever the cloner can do.
    603     CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
    604                               /*ModuleLevelChanges=*/false, Returns, ".i",
    605                               &InlinedFunctionInfo, IFI.TD, TheCall);
    606 
    607     // Remember the first block that is newly cloned over.
    608     FirstNewBlock = LastBlock; ++FirstNewBlock;
    609 
    610     // Update the callgraph if requested.
    611     if (IFI.CG)
    612       UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
    613 
    614     // Update inlined instructions' line number information.
    615     fixupLineNumbers(Caller, FirstNewBlock, TheCall);
    616   }
    617 
    618   // If there are any alloca instructions in the block that used to be the entry
    619   // block for the callee, move them to the entry block of the caller.  First
    620   // calculate which instruction they should be inserted before.  We insert the
    621   // instructions at the end of the current alloca list.
    622   {
    623     BasicBlock::iterator InsertPoint = Caller->begin()->begin();
    624     for (BasicBlock::iterator I = FirstNewBlock->begin(),
    625          E = FirstNewBlock->end(); I != E; ) {
    626       AllocaInst *AI = dyn_cast<AllocaInst>(I++);
    627       if (AI == 0) continue;
    628 
    629       // If the alloca is now dead, remove it.  This often occurs due to code
    630       // specialization.
    631       if (AI->use_empty()) {
    632         AI->eraseFromParent();
    633         continue;
    634       }
    635 
    636       if (!isa<Constant>(AI->getArraySize()))
    637         continue;
    638 
    639       // Keep track of the static allocas that we inline into the caller.
    640       IFI.StaticAllocas.push_back(AI);
    641 
    642       // Scan for the block of allocas that we can move over, and move them
    643       // all at once.
    644       while (isa<AllocaInst>(I) &&
    645              isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
    646         IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
    647         ++I;
    648       }
    649 
    650       // Transfer all of the allocas over in a block.  Using splice means
    651       // that the instructions aren't removed from the symbol table, then
    652       // reinserted.
    653       Caller->getEntryBlock().getInstList().splice(InsertPoint,
    654                                                    FirstNewBlock->getInstList(),
    655                                                    AI, I);
    656     }
    657   }
    658 
    659   // Leave lifetime markers for the static alloca's, scoping them to the
    660   // function we just inlined.
    661   if (InsertLifetime && !IFI.StaticAllocas.empty()) {
    662     IRBuilder<> builder(FirstNewBlock->begin());
    663     for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
    664       AllocaInst *AI = IFI.StaticAllocas[ai];
    665 
    666       // If the alloca is already scoped to something smaller than the whole
    667       // function then there's no need to add redundant, less accurate markers.
    668       if (hasLifetimeMarkers(AI))
    669         continue;
    670 
    671       builder.CreateLifetimeStart(AI);
    672       for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
    673         IRBuilder<> builder(Returns[ri]);
    674         builder.CreateLifetimeEnd(AI);
    675       }
    676     }
    677   }
    678 
    679   // If the inlined code contained dynamic alloca instructions, wrap the inlined
    680   // code with llvm.stacksave/llvm.stackrestore intrinsics.
    681   if (InlinedFunctionInfo.ContainsDynamicAllocas) {
    682     Module *M = Caller->getParent();
    683     // Get the two intrinsics we care about.
    684     Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
    685     Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
    686 
    687     // Insert the llvm.stacksave.
    688     CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
    689       .CreateCall(StackSave, "savedstack");
    690 
    691     // Insert a call to llvm.stackrestore before any return instructions in the
    692     // inlined function.
    693     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
    694       IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
    695     }
    696   }
    697 
    698   // If we are inlining tail call instruction through a call site that isn't
    699   // marked 'tail', we must remove the tail marker for any calls in the inlined
    700   // code.  Also, calls inlined through a 'nounwind' call site should be marked
    701   // 'nounwind'.
    702   if (InlinedFunctionInfo.ContainsCalls &&
    703       (MustClearTailCallFlags || MarkNoUnwind)) {
    704     for (Function::iterator BB = FirstNewBlock, E = Caller->end();
    705          BB != E; ++BB)
    706       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    707         if (CallInst *CI = dyn_cast<CallInst>(I)) {
    708           if (MustClearTailCallFlags)
    709             CI->setTailCall(false);
    710           if (MarkNoUnwind)
    711             CI->setDoesNotThrow();
    712         }
    713   }
    714 
    715   // If we are inlining for an invoke instruction, we must make sure to rewrite
    716   // any call instructions into invoke instructions.
    717   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    718     HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
    719 
    720   // If we cloned in _exactly one_ basic block, and if that block ends in a
    721   // return instruction, we splice the body of the inlined callee directly into
    722   // the calling basic block.
    723   if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
    724     // Move all of the instructions right before the call.
    725     OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
    726                                  FirstNewBlock->begin(), FirstNewBlock->end());
    727     // Remove the cloned basic block.
    728     Caller->getBasicBlockList().pop_back();
    729 
    730     // If the call site was an invoke instruction, add a branch to the normal
    731     // destination.
    732     if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
    733       BranchInst::Create(II->getNormalDest(), TheCall);
    734 
    735     // If the return instruction returned a value, replace uses of the call with
    736     // uses of the returned value.
    737     if (!TheCall->use_empty()) {
    738       ReturnInst *R = Returns[0];
    739       if (TheCall == R->getReturnValue())
    740         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
    741       else
    742         TheCall->replaceAllUsesWith(R->getReturnValue());
    743     }
    744     // Since we are now done with the Call/Invoke, we can delete it.
    745     TheCall->eraseFromParent();
    746 
    747     // Since we are now done with the return instruction, delete it also.
    748     Returns[0]->eraseFromParent();
    749 
    750     // We are now done with the inlining.
    751     return true;
    752   }
    753 
    754   // Otherwise, we have the normal case, of more than one block to inline or
    755   // multiple return sites.
    756 
    757   // We want to clone the entire callee function into the hole between the
    758   // "starter" and "ender" blocks.  How we accomplish this depends on whether
    759   // this is an invoke instruction or a call instruction.
    760   BasicBlock *AfterCallBB;
    761   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
    762 
    763     // Add an unconditional branch to make this look like the CallInst case...
    764     BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
    765 
    766     // Split the basic block.  This guarantees that no PHI nodes will have to be
    767     // updated due to new incoming edges, and make the invoke case more
    768     // symmetric to the call case.
    769     AfterCallBB = OrigBB->splitBasicBlock(NewBr,
    770                                           CalledFunc->getName()+".exit");
    771 
    772   } else {  // It's a call
    773     // If this is a call instruction, we need to split the basic block that
    774     // the call lives in.
    775     //
    776     AfterCallBB = OrigBB->splitBasicBlock(TheCall,
    777                                           CalledFunc->getName()+".exit");
    778   }
    779 
    780   // Change the branch that used to go to AfterCallBB to branch to the first
    781   // basic block of the inlined function.
    782   //
    783   TerminatorInst *Br = OrigBB->getTerminator();
    784   assert(Br && Br->getOpcode() == Instruction::Br &&
    785          "splitBasicBlock broken!");
    786   Br->setOperand(0, FirstNewBlock);
    787 
    788 
    789   // Now that the function is correct, make it a little bit nicer.  In
    790   // particular, move the basic blocks inserted from the end of the function
    791   // into the space made by splitting the source basic block.
    792   Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
    793                                      FirstNewBlock, Caller->end());
    794 
    795   // Handle all of the return instructions that we just cloned in, and eliminate
    796   // any users of the original call/invoke instruction.
    797   Type *RTy = CalledFunc->getReturnType();
    798 
    799   PHINode *PHI = 0;
    800   if (Returns.size() > 1) {
    801     // The PHI node should go at the front of the new basic block to merge all
    802     // possible incoming values.
    803     if (!TheCall->use_empty()) {
    804       PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
    805                             AfterCallBB->begin());
    806       // Anything that used the result of the function call should now use the
    807       // PHI node as their operand.
    808       TheCall->replaceAllUsesWith(PHI);
    809     }
    810 
    811     // Loop over all of the return instructions adding entries to the PHI node
    812     // as appropriate.
    813     if (PHI) {
    814       for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
    815         ReturnInst *RI = Returns[i];
    816         assert(RI->getReturnValue()->getType() == PHI->getType() &&
    817                "Ret value not consistent in function!");
    818         PHI->addIncoming(RI->getReturnValue(), RI->getParent());
    819       }
    820     }
    821 
    822 
    823     // Add a branch to the merge points and remove return instructions.
    824     for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
    825       ReturnInst *RI = Returns[i];
    826       BranchInst::Create(AfterCallBB, RI);
    827       RI->eraseFromParent();
    828     }
    829   } else if (!Returns.empty()) {
    830     // Otherwise, if there is exactly one return value, just replace anything
    831     // using the return value of the call with the computed value.
    832     if (!TheCall->use_empty()) {
    833       if (TheCall == Returns[0]->getReturnValue())
    834         TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
    835       else
    836         TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
    837     }
    838 
    839     // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
    840     BasicBlock *ReturnBB = Returns[0]->getParent();
    841     ReturnBB->replaceAllUsesWith(AfterCallBB);
    842 
    843     // Splice the code from the return block into the block that it will return
    844     // to, which contains the code that was after the call.
    845     AfterCallBB->getInstList().splice(AfterCallBB->begin(),
    846                                       ReturnBB->getInstList());
    847 
    848     // Delete the return instruction now and empty ReturnBB now.
    849     Returns[0]->eraseFromParent();
    850     ReturnBB->eraseFromParent();
    851   } else if (!TheCall->use_empty()) {
    852     // No returns, but something is using the return value of the call.  Just
    853     // nuke the result.
    854     TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
    855   }
    856 
    857   // Since we are now done with the Call/Invoke, we can delete it.
    858   TheCall->eraseFromParent();
    859 
    860   // We should always be able to fold the entry block of the function into the
    861   // single predecessor of the block...
    862   assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
    863   BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
    864 
    865   // Splice the code entry block into calling block, right before the
    866   // unconditional branch.
    867   CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
    868   OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
    869 
    870   // Remove the unconditional branch.
    871   OrigBB->getInstList().erase(Br);
    872 
    873   // Now we can remove the CalleeEntry block, which is now empty.
    874   Caller->getBasicBlockList().erase(CalleeEntry);
    875 
    876   // If we inserted a phi node, check to see if it has a single value (e.g. all
    877   // the entries are the same or undef).  If so, remove the PHI so it doesn't
    878   // block other optimizations.
    879   if (PHI) {
    880     if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
    881       PHI->replaceAllUsesWith(V);
    882       PHI->eraseFromParent();
    883     }
    884   }
    885 
    886   return true;
    887 }
    888