Home | History | Annotate | Download | only in Utils
      1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Peephole optimize the CFG.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "simplifycfg"
     15 #include "llvm/Transforms/Utils/Local.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/GlobalVariable.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/LLVMContext.h"
     22 #include "llvm/Metadata.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/Type.h"
     25 #include "llvm/Analysis/InstructionSimplify.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/Target/TargetData.h"
     28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SetVector.h"
     31 #include "llvm/ADT/SmallVector.h"
     32 #include "llvm/ADT/SmallPtrSet.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/ADT/STLExtras.h"
     35 #include "llvm/Support/CFG.h"
     36 #include "llvm/Support/CommandLine.h"
     37 #include "llvm/Support/ConstantRange.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/IRBuilder.h"
     40 #include "llvm/Support/NoFolder.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include <algorithm>
     43 #include <set>
     44 #include <map>
     45 using namespace llvm;
     46 
     47 static cl::opt<unsigned>
     48 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
     49    cl::desc("Control the amount of phi node folding to perform (default = 1)"));
     50 
     51 static cl::opt<bool>
     52 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
     53        cl::desc("Duplicate return instructions into unconditional branches"));
     54 
     55 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
     56 
     57 namespace {
     58 class SimplifyCFGOpt {
     59   const TargetData *const TD;
     60 
     61   Value *isValueEqualityComparison(TerminatorInst *TI);
     62   BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
     63     std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases);
     64   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
     65                                                      BasicBlock *Pred,
     66                                                      IRBuilder<> &Builder);
     67   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
     68                                            IRBuilder<> &Builder);
     69 
     70   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
     71   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
     72   bool SimplifyUnreachable(UnreachableInst *UI);
     73   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
     74   bool SimplifyIndirectBr(IndirectBrInst *IBI);
     75   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
     76   bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
     77 
     78 public:
     79   explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
     80   bool run(BasicBlock *BB);
     81 };
     82 }
     83 
     84 /// SafeToMergeTerminators - Return true if it is safe to merge these two
     85 /// terminator instructions together.
     86 ///
     87 static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
     88   if (SI1 == SI2) return false;  // Can't merge with self!
     89 
     90   // It is not safe to merge these two switch instructions if they have a common
     91   // successor, and if that successor has a PHI node, and if *that* PHI node has
     92   // conflicting incoming values from the two switch blocks.
     93   BasicBlock *SI1BB = SI1->getParent();
     94   BasicBlock *SI2BB = SI2->getParent();
     95   SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
     96 
     97   for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
     98     if (SI1Succs.count(*I))
     99       for (BasicBlock::iterator BBI = (*I)->begin();
    100            isa<PHINode>(BBI); ++BBI) {
    101         PHINode *PN = cast<PHINode>(BBI);
    102         if (PN->getIncomingValueForBlock(SI1BB) !=
    103             PN->getIncomingValueForBlock(SI2BB))
    104           return false;
    105       }
    106 
    107   return true;
    108 }
    109 
    110 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
    111 /// now be entries in it from the 'NewPred' block.  The values that will be
    112 /// flowing into the PHI nodes will be the same as those coming in from
    113 /// ExistPred, an existing predecessor of Succ.
    114 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
    115                                   BasicBlock *ExistPred) {
    116   if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
    117 
    118   PHINode *PN;
    119   for (BasicBlock::iterator I = Succ->begin();
    120        (PN = dyn_cast<PHINode>(I)); ++I)
    121     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
    122 }
    123 
    124 
    125 /// GetIfCondition - Given a basic block (BB) with two predecessors (and at
    126 /// least one PHI node in it), check to see if the merge at this block is due
    127 /// to an "if condition".  If so, return the boolean condition that determines
    128 /// which entry into BB will be taken.  Also, return by references the block
    129 /// that will be entered from if the condition is true, and the block that will
    130 /// be entered if the condition is false.
    131 ///
    132 /// This does no checking to see if the true/false blocks have large or unsavory
    133 /// instructions in them.
    134 static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    135                              BasicBlock *&IfFalse) {
    136   PHINode *SomePHI = cast<PHINode>(BB->begin());
    137   assert(SomePHI->getNumIncomingValues() == 2 &&
    138          "Function can only handle blocks with 2 predecessors!");
    139   BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
    140   BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
    141 
    142   // We can only handle branches.  Other control flow will be lowered to
    143   // branches if possible anyway.
    144   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    145   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    146   if (Pred1Br == 0 || Pred2Br == 0)
    147     return 0;
    148 
    149   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    150   // either are.
    151   if (Pred2Br->isConditional()) {
    152     // If both branches are conditional, we don't have an "if statement".  In
    153     // reality, we could transform this case, but since the condition will be
    154     // required anyway, we stand no chance of eliminating it, so the xform is
    155     // probably not profitable.
    156     if (Pred1Br->isConditional())
    157       return 0;
    158 
    159     std::swap(Pred1, Pred2);
    160     std::swap(Pred1Br, Pred2Br);
    161   }
    162 
    163   if (Pred1Br->isConditional()) {
    164     // The only thing we have to watch out for here is to make sure that Pred2
    165     // doesn't have incoming edges from other blocks.  If it does, the condition
    166     // doesn't dominate BB.
    167     if (Pred2->getSinglePredecessor() == 0)
    168       return 0;
    169 
    170     // If we found a conditional branch predecessor, make sure that it branches
    171     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    172     if (Pred1Br->getSuccessor(0) == BB &&
    173         Pred1Br->getSuccessor(1) == Pred2) {
    174       IfTrue = Pred1;
    175       IfFalse = Pred2;
    176     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    177                Pred1Br->getSuccessor(1) == BB) {
    178       IfTrue = Pred2;
    179       IfFalse = Pred1;
    180     } else {
    181       // We know that one arm of the conditional goes to BB, so the other must
    182       // go somewhere unrelated, and this must not be an "if statement".
    183       return 0;
    184     }
    185 
    186     return Pred1Br->getCondition();
    187   }
    188 
    189   // Ok, if we got here, both predecessors end with an unconditional branch to
    190   // BB.  Don't panic!  If both blocks only have a single (identical)
    191   // predecessor, and THAT is a conditional branch, then we're all ok!
    192   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    193   if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
    194     return 0;
    195 
    196   // Otherwise, if this is a conditional branch, then we can use it!
    197   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    198   if (BI == 0) return 0;
    199 
    200   assert(BI->isConditional() && "Two successors but not conditional?");
    201   if (BI->getSuccessor(0) == Pred1) {
    202     IfTrue = Pred1;
    203     IfFalse = Pred2;
    204   } else {
    205     IfTrue = Pred2;
    206     IfFalse = Pred1;
    207   }
    208   return BI->getCondition();
    209 }
    210 
    211 /// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
    212 /// given instruction, which is assumed to be safe to speculate. 1 means
    213 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
    214 static unsigned ComputeSpeculationCost(const User *I) {
    215   assert(isSafeToSpeculativelyExecute(I) &&
    216          "Instruction is not safe to speculatively execute!");
    217   switch (Operator::getOpcode(I)) {
    218   default:
    219     // In doubt, be conservative.
    220     return UINT_MAX;
    221   case Instruction::GetElementPtr:
    222     // GEPs are cheap if all indices are constant.
    223     if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    224       return UINT_MAX;
    225     return 1;
    226   case Instruction::Load:
    227   case Instruction::Add:
    228   case Instruction::Sub:
    229   case Instruction::And:
    230   case Instruction::Or:
    231   case Instruction::Xor:
    232   case Instruction::Shl:
    233   case Instruction::LShr:
    234   case Instruction::AShr:
    235   case Instruction::ICmp:
    236   case Instruction::Trunc:
    237   case Instruction::ZExt:
    238   case Instruction::SExt:
    239     return 1; // These are all cheap.
    240 
    241   case Instruction::Call:
    242   case Instruction::Select:
    243     return 2;
    244   }
    245 }
    246 
    247 /// DominatesMergePoint - If we have a merge point of an "if condition" as
    248 /// accepted above, return true if the specified value dominates the block.  We
    249 /// don't handle the true generality of domination here, just a special case
    250 /// which works well enough for us.
    251 ///
    252 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
    253 /// see if V (which must be an instruction) and its recursive operands
    254 /// that do not dominate BB have a combined cost lower than CostRemaining and
    255 /// are non-trapping.  If both are true, the instruction is inserted into the
    256 /// set and true is returned.
    257 ///
    258 /// The cost for most non-trapping instructions is defined as 1 except for
    259 /// Select whose cost is 2.
    260 ///
    261 /// After this function returns, CostRemaining is decreased by the cost of
    262 /// V plus its non-dominating operands.  If that cost is greater than
    263 /// CostRemaining, false is returned and CostRemaining is undefined.
    264 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
    265                                 SmallPtrSet<Instruction*, 4> *AggressiveInsts,
    266                                 unsigned &CostRemaining) {
    267   Instruction *I = dyn_cast<Instruction>(V);
    268   if (!I) {
    269     // Non-instructions all dominate instructions, but not all constantexprs
    270     // can be executed unconditionally.
    271     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
    272       if (C->canTrap())
    273         return false;
    274     return true;
    275   }
    276   BasicBlock *PBB = I->getParent();
    277 
    278   // We don't want to allow weird loops that might have the "if condition" in
    279   // the bottom of this block.
    280   if (PBB == BB) return false;
    281 
    282   // If this instruction is defined in a block that contains an unconditional
    283   // branch to BB, then it must be in the 'conditional' part of the "if
    284   // statement".  If not, it definitely dominates the region.
    285   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
    286   if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
    287     return true;
    288 
    289   // If we aren't allowing aggressive promotion anymore, then don't consider
    290   // instructions in the 'if region'.
    291   if (AggressiveInsts == 0) return false;
    292 
    293   // If we have seen this instruction before, don't count it again.
    294   if (AggressiveInsts->count(I)) return true;
    295 
    296   // Okay, it looks like the instruction IS in the "condition".  Check to
    297   // see if it's a cheap instruction to unconditionally compute, and if it
    298   // only uses stuff defined outside of the condition.  If so, hoist it out.
    299   if (!isSafeToSpeculativelyExecute(I))
    300     return false;
    301 
    302   unsigned Cost = ComputeSpeculationCost(I);
    303 
    304   if (Cost > CostRemaining)
    305     return false;
    306 
    307   CostRemaining -= Cost;
    308 
    309   // Okay, we can only really hoist these out if their operands do
    310   // not take us over the cost threshold.
    311   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
    312     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
    313       return false;
    314   // Okay, it's safe to do this!  Remember this instruction.
    315   AggressiveInsts->insert(I);
    316   return true;
    317 }
    318 
    319 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
    320 /// and PointerNullValue. Return NULL if value is not a constant int.
    321 static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
    322   // Normal constant int.
    323   ConstantInt *CI = dyn_cast<ConstantInt>(V);
    324   if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
    325     return CI;
    326 
    327   // This is some kind of pointer constant. Turn it into a pointer-sized
    328   // ConstantInt if possible.
    329   IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
    330 
    331   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
    332   if (isa<ConstantPointerNull>(V))
    333     return ConstantInt::get(PtrTy, 0);
    334 
    335   // IntToPtr const int.
    336   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    337     if (CE->getOpcode() == Instruction::IntToPtr)
    338       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
    339         // The constant is very likely to have the right type already.
    340         if (CI->getType() == PtrTy)
    341           return CI;
    342         else
    343           return cast<ConstantInt>
    344             (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
    345       }
    346   return 0;
    347 }
    348 
    349 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
    350 /// collection of icmp eq/ne instructions that compare a value against a
    351 /// constant, return the value being compared, and stick the constant into the
    352 /// Values vector.
    353 static Value *
    354 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
    355                        const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
    356   Instruction *I = dyn_cast<Instruction>(V);
    357   if (I == 0) return 0;
    358 
    359   // If this is an icmp against a constant, handle this as one of the cases.
    360   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
    361     if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
    362       if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
    363         UsedICmps++;
    364         Vals.push_back(C);
    365         return I->getOperand(0);
    366       }
    367 
    368       // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
    369       // the set.
    370       ConstantRange Span =
    371         ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
    372 
    373       // If this is an and/!= check then we want to optimize "x ugt 2" into
    374       // x != 0 && x != 1.
    375       if (!isEQ)
    376         Span = Span.inverse();
    377 
    378       // If there are a ton of values, we don't want to make a ginormous switch.
    379       if (Span.getSetSize().ugt(8) || Span.isEmptySet())
    380         return 0;
    381 
    382       for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
    383         Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
    384       UsedICmps++;
    385       return I->getOperand(0);
    386     }
    387     return 0;
    388   }
    389 
    390   // Otherwise, we can only handle an | or &, depending on isEQ.
    391   if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
    392     return 0;
    393 
    394   unsigned NumValsBeforeLHS = Vals.size();
    395   unsigned UsedICmpsBeforeLHS = UsedICmps;
    396   if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
    397                                           isEQ, UsedICmps)) {
    398     unsigned NumVals = Vals.size();
    399     unsigned UsedICmpsBeforeRHS = UsedICmps;
    400     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    401                                             isEQ, UsedICmps)) {
    402       if (LHS == RHS)
    403         return LHS;
    404       Vals.resize(NumVals);
    405       UsedICmps = UsedICmpsBeforeRHS;
    406     }
    407 
    408     // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
    409     // set it and return success.
    410     if (Extra == 0 || Extra == I->getOperand(1)) {
    411       Extra = I->getOperand(1);
    412       return LHS;
    413     }
    414 
    415     Vals.resize(NumValsBeforeLHS);
    416     UsedICmps = UsedICmpsBeforeLHS;
    417     return 0;
    418   }
    419 
    420   // If the LHS can't be folded in, but Extra is available and RHS can, try to
    421   // use LHS as Extra.
    422   if (Extra == 0 || Extra == I->getOperand(0)) {
    423     Value *OldExtra = Extra;
    424     Extra = I->getOperand(0);
    425     if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
    426                                             isEQ, UsedICmps))
    427       return RHS;
    428     assert(Vals.size() == NumValsBeforeLHS);
    429     Extra = OldExtra;
    430   }
    431 
    432   return 0;
    433 }
    434 
    435 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
    436   Instruction *Cond = 0;
    437   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    438     Cond = dyn_cast<Instruction>(SI->getCondition());
    439   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    440     if (BI->isConditional())
    441       Cond = dyn_cast<Instruction>(BI->getCondition());
    442   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
    443     Cond = dyn_cast<Instruction>(IBI->getAddress());
    444   }
    445 
    446   TI->eraseFromParent();
    447   if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
    448 }
    449 
    450 /// isValueEqualityComparison - Return true if the specified terminator checks
    451 /// to see if a value is equal to constant integer value.
    452 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
    453   Value *CV = 0;
    454   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    455     // Do not permit merging of large switch instructions into their
    456     // predecessors unless there is only one predecessor.
    457     if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
    458                                              pred_end(SI->getParent())) <= 128)
    459       CV = SI->getCondition();
    460   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
    461     if (BI->isConditional() && BI->getCondition()->hasOneUse())
    462       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
    463         if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
    464              ICI->getPredicate() == ICmpInst::ICMP_NE) &&
    465             GetConstantInt(ICI->getOperand(1), TD))
    466           CV = ICI->getOperand(0);
    467 
    468   // Unwrap any lossless ptrtoint cast.
    469   if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
    470     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
    471       CV = PTII->getOperand(0);
    472   return CV;
    473 }
    474 
    475 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
    476 /// decode all of the 'cases' that it represents and return the 'default' block.
    477 BasicBlock *SimplifyCFGOpt::
    478 GetValueEqualityComparisonCases(TerminatorInst *TI,
    479                                 std::vector<std::pair<ConstantInt*,
    480                                                       BasicBlock*> > &Cases) {
    481   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    482     Cases.reserve(SI->getNumCases());
    483     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    484       Cases.push_back(std::make_pair(i.getCaseValue(),
    485                                      i.getCaseSuccessor()));
    486     return SI->getDefaultDest();
    487   }
    488 
    489   BranchInst *BI = cast<BranchInst>(TI);
    490   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
    491   Cases.push_back(std::make_pair(GetConstantInt(ICI->getOperand(1), TD),
    492                                  BI->getSuccessor(ICI->getPredicate() ==
    493                                                   ICmpInst::ICMP_NE)));
    494   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
    495 }
    496 
    497 
    498 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
    499 /// in the list that match the specified block.
    500 static void EliminateBlockCases(BasicBlock *BB,
    501                std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
    502   for (unsigned i = 0, e = Cases.size(); i != e; ++i)
    503     if (Cases[i].second == BB) {
    504       Cases.erase(Cases.begin()+i);
    505       --i; --e;
    506     }
    507 }
    508 
    509 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
    510 /// well.
    511 static bool
    512 ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
    513               std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
    514   std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
    515 
    516   // Make V1 be smaller than V2.
    517   if (V1->size() > V2->size())
    518     std::swap(V1, V2);
    519 
    520   if (V1->size() == 0) return false;
    521   if (V1->size() == 1) {
    522     // Just scan V2.
    523     ConstantInt *TheVal = (*V1)[0].first;
    524     for (unsigned i = 0, e = V2->size(); i != e; ++i)
    525       if (TheVal == (*V2)[i].first)
    526         return true;
    527   }
    528 
    529   // Otherwise, just sort both lists and compare element by element.
    530   array_pod_sort(V1->begin(), V1->end());
    531   array_pod_sort(V2->begin(), V2->end());
    532   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
    533   while (i1 != e1 && i2 != e2) {
    534     if ((*V1)[i1].first == (*V2)[i2].first)
    535       return true;
    536     if ((*V1)[i1].first < (*V2)[i2].first)
    537       ++i1;
    538     else
    539       ++i2;
    540   }
    541   return false;
    542 }
    543 
    544 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
    545 /// terminator instruction and its block is known to only have a single
    546 /// predecessor block, check to see if that predecessor is also a value
    547 /// comparison with the same value, and if that comparison determines the
    548 /// outcome of this comparison.  If so, simplify TI.  This does a very limited
    549 /// form of jump threading.
    550 bool SimplifyCFGOpt::
    551 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
    552                                               BasicBlock *Pred,
    553                                               IRBuilder<> &Builder) {
    554   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
    555   if (!PredVal) return false;  // Not a value comparison in predecessor.
    556 
    557   Value *ThisVal = isValueEqualityComparison(TI);
    558   assert(ThisVal && "This isn't a value comparison!!");
    559   if (ThisVal != PredVal) return false;  // Different predicates.
    560 
    561   // Find out information about when control will move from Pred to TI's block.
    562   std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    563   BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
    564                                                         PredCases);
    565   EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
    566 
    567   // Find information about how control leaves this block.
    568   std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
    569   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
    570   EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
    571 
    572   // If TI's block is the default block from Pred's comparison, potentially
    573   // simplify TI based on this knowledge.
    574   if (PredDef == TI->getParent()) {
    575     // If we are here, we know that the value is none of those cases listed in
    576     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
    577     // can simplify TI.
    578     if (!ValuesOverlap(PredCases, ThisCases))
    579       return false;
    580 
    581     if (isa<BranchInst>(TI)) {
    582       // Okay, one of the successors of this condbr is dead.  Convert it to a
    583       // uncond br.
    584       assert(ThisCases.size() == 1 && "Branch can only have one case!");
    585       // Insert the new branch.
    586       Instruction *NI = Builder.CreateBr(ThisDef);
    587       (void) NI;
    588 
    589       // Remove PHI node entries for the dead edge.
    590       ThisCases[0].second->removePredecessor(TI->getParent());
    591 
    592       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    593            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    594 
    595       EraseTerminatorInstAndDCECond(TI);
    596       return true;
    597     }
    598 
    599     SwitchInst *SI = cast<SwitchInst>(TI);
    600     // Okay, TI has cases that are statically dead, prune them away.
    601     SmallPtrSet<Constant*, 16> DeadCases;
    602     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    603       DeadCases.insert(PredCases[i].first);
    604 
    605     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    606                  << "Through successor TI: " << *TI);
    607 
    608     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
    609       --i;
    610       if (DeadCases.count(i.getCaseValue())) {
    611         i.getCaseSuccessor()->removePredecessor(TI->getParent());
    612         SI->removeCase(i);
    613       }
    614     }
    615 
    616     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
    617     return true;
    618   }
    619 
    620   // Otherwise, TI's block must correspond to some matched value.  Find out
    621   // which value (or set of values) this is.
    622   ConstantInt *TIV = 0;
    623   BasicBlock *TIBB = TI->getParent();
    624   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    625     if (PredCases[i].second == TIBB) {
    626       if (TIV != 0)
    627         return false;  // Cannot handle multiple values coming to this block.
    628       TIV = PredCases[i].first;
    629     }
    630   assert(TIV && "No edge from pred to succ?");
    631 
    632   // Okay, we found the one constant that our value can be if we get into TI's
    633   // BB.  Find out which successor will unconditionally be branched to.
    634   BasicBlock *TheRealDest = 0;
    635   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
    636     if (ThisCases[i].first == TIV) {
    637       TheRealDest = ThisCases[i].second;
    638       break;
    639     }
    640 
    641   // If not handled by any explicit cases, it is handled by the default case.
    642   if (TheRealDest == 0) TheRealDest = ThisDef;
    643 
    644   // Remove PHI node entries for dead edges.
    645   BasicBlock *CheckEdge = TheRealDest;
    646   for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
    647     if (*SI != CheckEdge)
    648       (*SI)->removePredecessor(TIBB);
    649     else
    650       CheckEdge = 0;
    651 
    652   // Insert the new branch.
    653   Instruction *NI = Builder.CreateBr(TheRealDest);
    654   (void) NI;
    655 
    656   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
    657             << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
    658 
    659   EraseTerminatorInstAndDCECond(TI);
    660   return true;
    661 }
    662 
    663 namespace {
    664   /// ConstantIntOrdering - This class implements a stable ordering of constant
    665   /// integers that does not depend on their address.  This is important for
    666   /// applications that sort ConstantInt's to ensure uniqueness.
    667   struct ConstantIntOrdering {
    668     bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
    669       return LHS->getValue().ult(RHS->getValue());
    670     }
    671   };
    672 }
    673 
    674 static int ConstantIntSortPredicate(const void *P1, const void *P2) {
    675   const ConstantInt *LHS = *(const ConstantInt**)P1;
    676   const ConstantInt *RHS = *(const ConstantInt**)P2;
    677   if (LHS->getValue().ult(RHS->getValue()))
    678     return 1;
    679   if (LHS->getValue() == RHS->getValue())
    680     return 0;
    681   return -1;
    682 }
    683 
    684 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
    685 /// equality comparison instruction (either a switch or a branch on "X == c").
    686 /// See if any of the predecessors of the terminator block are value comparisons
    687 /// on the same value.  If so, and if safe to do so, fold them together.
    688 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
    689                                                          IRBuilder<> &Builder) {
    690   BasicBlock *BB = TI->getParent();
    691   Value *CV = isValueEqualityComparison(TI);  // CondVal
    692   assert(CV && "Not a comparison?");
    693   bool Changed = false;
    694 
    695   SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
    696   while (!Preds.empty()) {
    697     BasicBlock *Pred = Preds.pop_back_val();
    698 
    699     // See if the predecessor is a comparison with the same value.
    700     TerminatorInst *PTI = Pred->getTerminator();
    701     Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
    702 
    703     if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
    704       // Figure out which 'cases' to copy from SI to PSI.
    705       std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
    706       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
    707 
    708       std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
    709       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
    710 
    711       // Based on whether the default edge from PTI goes to BB or not, fill in
    712       // PredCases and PredDefault with the new switch cases we would like to
    713       // build.
    714       SmallVector<BasicBlock*, 8> NewSuccessors;
    715 
    716       if (PredDefault == BB) {
    717         // If this is the default destination from PTI, only the edges in TI
    718         // that don't occur in PTI, or that branch to BB will be activated.
    719         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    720         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    721           if (PredCases[i].second != BB)
    722             PTIHandled.insert(PredCases[i].first);
    723           else {
    724             // The default destination is BB, we don't need explicit targets.
    725             std::swap(PredCases[i], PredCases.back());
    726             PredCases.pop_back();
    727             --i; --e;
    728           }
    729 
    730         // Reconstruct the new switch statement we will be building.
    731         if (PredDefault != BBDefault) {
    732           PredDefault->removePredecessor(Pred);
    733           PredDefault = BBDefault;
    734           NewSuccessors.push_back(BBDefault);
    735         }
    736         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    737           if (!PTIHandled.count(BBCases[i].first) &&
    738               BBCases[i].second != BBDefault) {
    739             PredCases.push_back(BBCases[i]);
    740             NewSuccessors.push_back(BBCases[i].second);
    741           }
    742 
    743       } else {
    744         // If this is not the default destination from PSI, only the edges
    745         // in SI that occur in PSI with a destination of BB will be
    746         // activated.
    747         std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
    748         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    749           if (PredCases[i].second == BB) {
    750             PTIHandled.insert(PredCases[i].first);
    751             std::swap(PredCases[i], PredCases.back());
    752             PredCases.pop_back();
    753             --i; --e;
    754           }
    755 
    756         // Okay, now we know which constants were sent to BB from the
    757         // predecessor.  Figure out where they will all go now.
    758         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
    759           if (PTIHandled.count(BBCases[i].first)) {
    760             // If this is one we are capable of getting...
    761             PredCases.push_back(BBCases[i]);
    762             NewSuccessors.push_back(BBCases[i].second);
    763             PTIHandled.erase(BBCases[i].first);// This constant is taken care of
    764           }
    765 
    766         // If there are any constants vectored to BB that TI doesn't handle,
    767         // they must go to the default destination of TI.
    768         for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
    769                                     PTIHandled.begin(),
    770                E = PTIHandled.end(); I != E; ++I) {
    771           PredCases.push_back(std::make_pair(*I, BBDefault));
    772           NewSuccessors.push_back(BBDefault);
    773         }
    774       }
    775 
    776       // Okay, at this point, we know which new successor Pred will get.  Make
    777       // sure we update the number of entries in the PHI nodes for these
    778       // successors.
    779       for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
    780         AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
    781 
    782       Builder.SetInsertPoint(PTI);
    783       // Convert pointer to int before we switch.
    784       if (CV->getType()->isPointerTy()) {
    785         assert(TD && "Cannot switch on pointer without TargetData");
    786         CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
    787                                     "magicptr");
    788       }
    789 
    790       // Now that the successors are updated, create the new Switch instruction.
    791       SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
    792                                                PredCases.size());
    793       NewSI->setDebugLoc(PTI->getDebugLoc());
    794       for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
    795         NewSI->addCase(PredCases[i].first, PredCases[i].second);
    796 
    797       EraseTerminatorInstAndDCECond(PTI);
    798 
    799       // Okay, last check.  If BB is still a successor of PSI, then we must
    800       // have an infinite loop case.  If so, add an infinitely looping block
    801       // to handle the case to preserve the behavior of the code.
    802       BasicBlock *InfLoopBlock = 0;
    803       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
    804         if (NewSI->getSuccessor(i) == BB) {
    805           if (InfLoopBlock == 0) {
    806             // Insert it at the end of the function, because it's either code,
    807             // or it won't matter if it's hot. :)
    808             InfLoopBlock = BasicBlock::Create(BB->getContext(),
    809                                               "infloop", BB->getParent());
    810             BranchInst::Create(InfLoopBlock, InfLoopBlock);
    811           }
    812           NewSI->setSuccessor(i, InfLoopBlock);
    813         }
    814 
    815       Changed = true;
    816     }
    817   }
    818   return Changed;
    819 }
    820 
    821 // isSafeToHoistInvoke - If we would need to insert a select that uses the
    822 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
    823 // would need to do this), we can't hoist the invoke, as there is nowhere
    824 // to put the select in this case.
    825 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
    826                                 Instruction *I1, Instruction *I2) {
    827   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    828     PHINode *PN;
    829     for (BasicBlock::iterator BBI = SI->begin();
    830          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    831       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    832       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    833       if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
    834         return false;
    835       }
    836     }
    837   }
    838   return true;
    839 }
    840 
    841 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
    842 /// BB2, hoist any common code in the two blocks up into the branch block.  The
    843 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
    844 static bool HoistThenElseCodeToIf(BranchInst *BI) {
    845   // This does very trivial matching, with limited scanning, to find identical
    846   // instructions in the two blocks.  In particular, we don't want to get into
    847   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
    848   // such, we currently just scan for obviously identical instructions in an
    849   // identical order.
    850   BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
    851   BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
    852 
    853   BasicBlock::iterator BB1_Itr = BB1->begin();
    854   BasicBlock::iterator BB2_Itr = BB2->begin();
    855 
    856   Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
    857   // Skip debug info if it is not identical.
    858   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    859   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    860   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    861     while (isa<DbgInfoIntrinsic>(I1))
    862       I1 = BB1_Itr++;
    863     while (isa<DbgInfoIntrinsic>(I2))
    864       I2 = BB2_Itr++;
    865   }
    866   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
    867       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
    868     return false;
    869 
    870   // If we get here, we can hoist at least one instruction.
    871   BasicBlock *BIParent = BI->getParent();
    872 
    873   do {
    874     // If we are hoisting the terminator instruction, don't move one (making a
    875     // broken BB), instead clone it, and remove BI.
    876     if (isa<TerminatorInst>(I1))
    877       goto HoistTerminator;
    878 
    879     // For a normal instruction, we just move one to right before the branch,
    880     // then replace all uses of the other with the first.  Finally, we remove
    881     // the now redundant second instruction.
    882     BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
    883     if (!I2->use_empty())
    884       I2->replaceAllUsesWith(I1);
    885     I1->intersectOptionalDataWith(I2);
    886     I2->eraseFromParent();
    887 
    888     I1 = BB1_Itr++;
    889     I2 = BB2_Itr++;
    890     // Skip debug info if it is not identical.
    891     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
    892     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
    893     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
    894       while (isa<DbgInfoIntrinsic>(I1))
    895         I1 = BB1_Itr++;
    896       while (isa<DbgInfoIntrinsic>(I2))
    897         I2 = BB2_Itr++;
    898     }
    899   } while (I1->isIdenticalToWhenDefined(I2));
    900 
    901   return true;
    902 
    903 HoistTerminator:
    904   // It may not be possible to hoist an invoke.
    905   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
    906     return true;
    907 
    908   // Okay, it is safe to hoist the terminator.
    909   Instruction *NT = I1->clone();
    910   BIParent->getInstList().insert(BI, NT);
    911   if (!NT->getType()->isVoidTy()) {
    912     I1->replaceAllUsesWith(NT);
    913     I2->replaceAllUsesWith(NT);
    914     NT->takeName(I1);
    915   }
    916 
    917   IRBuilder<true, NoFolder> Builder(NT);
    918   // Hoisting one of the terminators from our successor is a great thing.
    919   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
    920   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
    921   // nodes, so we insert select instruction to compute the final result.
    922   std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
    923   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
    924     PHINode *PN;
    925     for (BasicBlock::iterator BBI = SI->begin();
    926          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    927       Value *BB1V = PN->getIncomingValueForBlock(BB1);
    928       Value *BB2V = PN->getIncomingValueForBlock(BB2);
    929       if (BB1V == BB2V) continue;
    930 
    931       // These values do not agree.  Insert a select instruction before NT
    932       // that determines the right value.
    933       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
    934       if (SI == 0)
    935         SI = cast<SelectInst>
    936           (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
    937                                 BB1V->getName()+"."+BB2V->getName()));
    938 
    939       // Make the PHI node use the select for all incoming values for BB1/BB2
    940       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    941         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
    942           PN->setIncomingValue(i, SI);
    943     }
    944   }
    945 
    946   // Update any PHI nodes in our new successors.
    947   for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
    948     AddPredecessorToBlock(*SI, BIParent, BB1);
    949 
    950   EraseTerminatorInstAndDCECond(BI);
    951   return true;
    952 }
    953 
    954 /// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
    955 /// and an BB2 and the only successor of BB1 is BB2, hoist simple code
    956 /// (for now, restricted to a single instruction that's side effect free) from
    957 /// the BB1 into the branch block to speculatively execute it.
    958 ///
    959 /// Turn
    960 /// BB:
    961 ///     %t1 = icmp
    962 ///     br i1 %t1, label %BB1, label %BB2
    963 /// BB1:
    964 ///     %t3 = add %t2, c
    965 ///     br label BB2
    966 /// BB2:
    967 /// =>
    968 /// BB:
    969 ///     %t1 = icmp
    970 ///     %t4 = add %t2, c
    971 ///     %t3 = select i1 %t1, %t2, %t3
    972 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
    973   // Only speculatively execution a single instruction (not counting the
    974   // terminator) for now.
    975   Instruction *HInst = NULL;
    976   Instruction *Term = BB1->getTerminator();
    977   for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
    978        BBI != BBE; ++BBI) {
    979     Instruction *I = BBI;
    980     // Skip debug info.
    981     if (isa<DbgInfoIntrinsic>(I)) continue;
    982     if (I == Term) break;
    983 
    984     if (HInst)
    985       return false;
    986     HInst = I;
    987   }
    988 
    989   BasicBlock *BIParent = BI->getParent();
    990 
    991   // Check the instruction to be hoisted, if there is one.
    992   if (HInst) {
    993     // Don't hoist the instruction if it's unsafe or expensive.
    994     if (!isSafeToSpeculativelyExecute(HInst))
    995       return false;
    996     if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
    997       return false;
    998 
    999     // Do not hoist the instruction if any of its operands are defined but not
   1000     // used in this BB. The transformation will prevent the operand from
   1001     // being sunk into the use block.
   1002     for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
   1003          i != e; ++i) {
   1004       Instruction *OpI = dyn_cast<Instruction>(*i);
   1005       if (OpI && OpI->getParent() == BIParent &&
   1006           !OpI->mayHaveSideEffects() &&
   1007           !OpI->isUsedInBasicBlock(BIParent))
   1008         return false;
   1009     }
   1010   }
   1011 
   1012   // Be conservative for now. FP select instruction can often be expensive.
   1013   Value *BrCond = BI->getCondition();
   1014   if (isa<FCmpInst>(BrCond))
   1015     return false;
   1016 
   1017   // If BB1 is actually on the false edge of the conditional branch, remember
   1018   // to swap the select operands later.
   1019   bool Invert = false;
   1020   if (BB1 != BI->getSuccessor(0)) {
   1021     assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
   1022     Invert = true;
   1023   }
   1024 
   1025   // Collect interesting PHIs, and scan for hazards.
   1026   SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
   1027   BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
   1028   for (BasicBlock::iterator I = BB2->begin();
   1029        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1030     Value *BB1V = PN->getIncomingValueForBlock(BB1);
   1031     Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
   1032 
   1033     // Skip PHIs which are trivial.
   1034     if (BB1V == BIParentV)
   1035       continue;
   1036 
   1037     // Check for saftey.
   1038     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
   1039       // An unfolded ConstantExpr could end up getting expanded into
   1040       // Instructions. Don't speculate this and another instruction at
   1041       // the same time.
   1042       if (HInst)
   1043         return false;
   1044       if (!isSafeToSpeculativelyExecute(CE))
   1045         return false;
   1046       if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
   1047         return false;
   1048     }
   1049 
   1050     // Ok, we may insert a select for this PHI.
   1051     PHIs.insert(std::make_pair(BB1V, BIParentV));
   1052   }
   1053 
   1054   // If there are no PHIs to process, bail early. This helps ensure idempotence
   1055   // as well.
   1056   if (PHIs.empty())
   1057     return false;
   1058 
   1059   // If we get here, we can hoist the instruction and if-convert.
   1060   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
   1061 
   1062   // Hoist the instruction.
   1063   if (HInst)
   1064     BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
   1065 
   1066   // Insert selects and rewrite the PHI operands.
   1067   IRBuilder<true, NoFolder> Builder(BI);
   1068   for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
   1069     Value *TrueV = PHIs[i].first;
   1070     Value *FalseV = PHIs[i].second;
   1071 
   1072     // Create a select whose true value is the speculatively executed value and
   1073     // false value is the previously determined FalseV.
   1074     SelectInst *SI;
   1075     if (Invert)
   1076       SI = cast<SelectInst>
   1077         (Builder.CreateSelect(BrCond, FalseV, TrueV,
   1078                               FalseV->getName() + "." + TrueV->getName()));
   1079     else
   1080       SI = cast<SelectInst>
   1081         (Builder.CreateSelect(BrCond, TrueV, FalseV,
   1082                               TrueV->getName() + "." + FalseV->getName()));
   1083 
   1084     // Make the PHI node use the select for all incoming values for "then" and
   1085     // "if" blocks.
   1086     for (BasicBlock::iterator I = BB2->begin();
   1087          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1088       unsigned BB1I = PN->getBasicBlockIndex(BB1);
   1089       unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
   1090       Value *BB1V = PN->getIncomingValue(BB1I);
   1091       Value *BIParentV = PN->getIncomingValue(BIParentI);
   1092       if (TrueV == BB1V && FalseV == BIParentV) {
   1093         PN->setIncomingValue(BB1I, SI);
   1094         PN->setIncomingValue(BIParentI, SI);
   1095       }
   1096     }
   1097   }
   1098 
   1099   ++NumSpeculations;
   1100   return true;
   1101 }
   1102 
   1103 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
   1104 /// across this block.
   1105 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
   1106   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
   1107   unsigned Size = 0;
   1108 
   1109   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1110     if (isa<DbgInfoIntrinsic>(BBI))
   1111       continue;
   1112     if (Size > 10) return false;  // Don't clone large BB's.
   1113     ++Size;
   1114 
   1115     // We can only support instructions that do not define values that are
   1116     // live outside of the current basic block.
   1117     for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
   1118          UI != E; ++UI) {
   1119       Instruction *U = cast<Instruction>(*UI);
   1120       if (U->getParent() != BB || isa<PHINode>(U)) return false;
   1121     }
   1122 
   1123     // Looks ok, continue checking.
   1124   }
   1125 
   1126   return true;
   1127 }
   1128 
   1129 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
   1130 /// that is defined in the same block as the branch and if any PHI entries are
   1131 /// constants, thread edges corresponding to that entry to be branches to their
   1132 /// ultimate destination.
   1133 static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
   1134   BasicBlock *BB = BI->getParent();
   1135   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
   1136   // NOTE: we currently cannot transform this case if the PHI node is used
   1137   // outside of the block.
   1138   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
   1139     return false;
   1140 
   1141   // Degenerate case of a single entry PHI.
   1142   if (PN->getNumIncomingValues() == 1) {
   1143     FoldSingleEntryPHINodes(PN->getParent());
   1144     return true;
   1145   }
   1146 
   1147   // Now we know that this block has multiple preds and two succs.
   1148   if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
   1149 
   1150   // Okay, this is a simple enough basic block.  See if any phi values are
   1151   // constants.
   1152   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1153     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
   1154     if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
   1155 
   1156     // Okay, we now know that all edges from PredBB should be revectored to
   1157     // branch to RealDest.
   1158     BasicBlock *PredBB = PN->getIncomingBlock(i);
   1159     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
   1160 
   1161     if (RealDest == BB) continue;  // Skip self loops.
   1162     // Skip if the predecessor's terminator is an indirect branch.
   1163     if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
   1164 
   1165     // The dest block might have PHI nodes, other predecessors and other
   1166     // difficult cases.  Instead of being smart about this, just insert a new
   1167     // block that jumps to the destination block, effectively splitting
   1168     // the edge we are about to create.
   1169     BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
   1170                                             RealDest->getName()+".critedge",
   1171                                             RealDest->getParent(), RealDest);
   1172     BranchInst::Create(RealDest, EdgeBB);
   1173 
   1174     // Update PHI nodes.
   1175     AddPredecessorToBlock(RealDest, EdgeBB, BB);
   1176 
   1177     // BB may have instructions that are being threaded over.  Clone these
   1178     // instructions into EdgeBB.  We know that there will be no uses of the
   1179     // cloned instructions outside of EdgeBB.
   1180     BasicBlock::iterator InsertPt = EdgeBB->begin();
   1181     DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
   1182     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
   1183       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
   1184         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
   1185         continue;
   1186       }
   1187       // Clone the instruction.
   1188       Instruction *N = BBI->clone();
   1189       if (BBI->hasName()) N->setName(BBI->getName()+".c");
   1190 
   1191       // Update operands due to translation.
   1192       for (User::op_iterator i = N->op_begin(), e = N->op_end();
   1193            i != e; ++i) {
   1194         DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
   1195         if (PI != TranslateMap.end())
   1196           *i = PI->second;
   1197       }
   1198 
   1199       // Check for trivial simplification.
   1200       if (Value *V = SimplifyInstruction(N, TD)) {
   1201         TranslateMap[BBI] = V;
   1202         delete N;   // Instruction folded away, don't need actual inst
   1203       } else {
   1204         // Insert the new instruction into its new home.
   1205         EdgeBB->getInstList().insert(InsertPt, N);
   1206         if (!BBI->use_empty())
   1207           TranslateMap[BBI] = N;
   1208       }
   1209     }
   1210 
   1211     // Loop over all of the edges from PredBB to BB, changing them to branch
   1212     // to EdgeBB instead.
   1213     TerminatorInst *PredBBTI = PredBB->getTerminator();
   1214     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
   1215       if (PredBBTI->getSuccessor(i) == BB) {
   1216         BB->removePredecessor(PredBB);
   1217         PredBBTI->setSuccessor(i, EdgeBB);
   1218       }
   1219 
   1220     // Recurse, simplifying any other constants.
   1221     return FoldCondBranchOnPHI(BI, TD) | true;
   1222   }
   1223 
   1224   return false;
   1225 }
   1226 
   1227 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
   1228 /// PHI node, see if we can eliminate it.
   1229 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
   1230   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
   1231   // statement", which has a very simple dominance structure.  Basically, we
   1232   // are trying to find the condition that is being branched on, which
   1233   // subsequently causes this merge to happen.  We really want control
   1234   // dependence information for this check, but simplifycfg can't keep it up
   1235   // to date, and this catches most of the cases we care about anyway.
   1236   BasicBlock *BB = PN->getParent();
   1237   BasicBlock *IfTrue, *IfFalse;
   1238   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
   1239   if (!IfCond ||
   1240       // Don't bother if the branch will be constant folded trivially.
   1241       isa<ConstantInt>(IfCond))
   1242     return false;
   1243 
   1244   // Okay, we found that we can merge this two-entry phi node into a select.
   1245   // Doing so would require us to fold *all* two entry phi nodes in this block.
   1246   // At some point this becomes non-profitable (particularly if the target
   1247   // doesn't support cmov's).  Only do this transformation if there are two or
   1248   // fewer PHI nodes in this block.
   1249   unsigned NumPhis = 0;
   1250   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
   1251     if (NumPhis > 2)
   1252       return false;
   1253 
   1254   // Loop over the PHI's seeing if we can promote them all to select
   1255   // instructions.  While we are at it, keep track of the instructions
   1256   // that need to be moved to the dominating block.
   1257   SmallPtrSet<Instruction*, 4> AggressiveInsts;
   1258   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
   1259            MaxCostVal1 = PHINodeFoldingThreshold;
   1260 
   1261   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
   1262     PHINode *PN = cast<PHINode>(II++);
   1263     if (Value *V = SimplifyInstruction(PN, TD)) {
   1264       PN->replaceAllUsesWith(V);
   1265       PN->eraseFromParent();
   1266       continue;
   1267     }
   1268 
   1269     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
   1270                              MaxCostVal0) ||
   1271         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
   1272                              MaxCostVal1))
   1273       return false;
   1274   }
   1275 
   1276   // If we folded the the first phi, PN dangles at this point.  Refresh it.  If
   1277   // we ran out of PHIs then we simplified them all.
   1278   PN = dyn_cast<PHINode>(BB->begin());
   1279   if (PN == 0) return true;
   1280 
   1281   // Don't fold i1 branches on PHIs which contain binary operators.  These can
   1282   // often be turned into switches and other things.
   1283   if (PN->getType()->isIntegerTy(1) &&
   1284       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
   1285        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
   1286        isa<BinaryOperator>(IfCond)))
   1287     return false;
   1288 
   1289   // If we all PHI nodes are promotable, check to make sure that all
   1290   // instructions in the predecessor blocks can be promoted as well.  If
   1291   // not, we won't be able to get rid of the control flow, so it's not
   1292   // worth promoting to select instructions.
   1293   BasicBlock *DomBlock = 0;
   1294   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
   1295   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
   1296   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
   1297     IfBlock1 = 0;
   1298   } else {
   1299     DomBlock = *pred_begin(IfBlock1);
   1300     for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
   1301       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1302         // This is not an aggressive instruction that we can promote.
   1303         // Because of this, we won't be able to get rid of the control
   1304         // flow, so the xform is not worth it.
   1305         return false;
   1306       }
   1307   }
   1308 
   1309   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
   1310     IfBlock2 = 0;
   1311   } else {
   1312     DomBlock = *pred_begin(IfBlock2);
   1313     for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
   1314       if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
   1315         // This is not an aggressive instruction that we can promote.
   1316         // Because of this, we won't be able to get rid of the control
   1317         // flow, so the xform is not worth it.
   1318         return false;
   1319       }
   1320   }
   1321 
   1322   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
   1323                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
   1324 
   1325   // If we can still promote the PHI nodes after this gauntlet of tests,
   1326   // do all of the PHI's now.
   1327   Instruction *InsertPt = DomBlock->getTerminator();
   1328   IRBuilder<true, NoFolder> Builder(InsertPt);
   1329 
   1330   // Move all 'aggressive' instructions, which are defined in the
   1331   // conditional parts of the if's up to the dominating block.
   1332   if (IfBlock1)
   1333     DomBlock->getInstList().splice(InsertPt,
   1334                                    IfBlock1->getInstList(), IfBlock1->begin(),
   1335                                    IfBlock1->getTerminator());
   1336   if (IfBlock2)
   1337     DomBlock->getInstList().splice(InsertPt,
   1338                                    IfBlock2->getInstList(), IfBlock2->begin(),
   1339                                    IfBlock2->getTerminator());
   1340 
   1341   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
   1342     // Change the PHI node into a select instruction.
   1343     Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
   1344     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
   1345 
   1346     SelectInst *NV =
   1347       cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
   1348     PN->replaceAllUsesWith(NV);
   1349     NV->takeName(PN);
   1350     PN->eraseFromParent();
   1351   }
   1352 
   1353   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
   1354   // has been flattened.  Change DomBlock to jump directly to our new block to
   1355   // avoid other simplifycfg's kicking in on the diamond.
   1356   TerminatorInst *OldTI = DomBlock->getTerminator();
   1357   Builder.SetInsertPoint(OldTI);
   1358   Builder.CreateBr(BB);
   1359   OldTI->eraseFromParent();
   1360   return true;
   1361 }
   1362 
   1363 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
   1364 /// to two returning blocks, try to merge them together into one return,
   1365 /// introducing a select if the return values disagree.
   1366 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
   1367                                            IRBuilder<> &Builder) {
   1368   assert(BI->isConditional() && "Must be a conditional branch");
   1369   BasicBlock *TrueSucc = BI->getSuccessor(0);
   1370   BasicBlock *FalseSucc = BI->getSuccessor(1);
   1371   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
   1372   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
   1373 
   1374   // Check to ensure both blocks are empty (just a return) or optionally empty
   1375   // with PHI nodes.  If there are other instructions, merging would cause extra
   1376   // computation on one path or the other.
   1377   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
   1378     return false;
   1379   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
   1380     return false;
   1381 
   1382   Builder.SetInsertPoint(BI);
   1383   // Okay, we found a branch that is going to two return nodes.  If
   1384   // there is no return value for this function, just change the
   1385   // branch into a return.
   1386   if (FalseRet->getNumOperands() == 0) {
   1387     TrueSucc->removePredecessor(BI->getParent());
   1388     FalseSucc->removePredecessor(BI->getParent());
   1389     Builder.CreateRetVoid();
   1390     EraseTerminatorInstAndDCECond(BI);
   1391     return true;
   1392   }
   1393 
   1394   // Otherwise, figure out what the true and false return values are
   1395   // so we can insert a new select instruction.
   1396   Value *TrueValue = TrueRet->getReturnValue();
   1397   Value *FalseValue = FalseRet->getReturnValue();
   1398 
   1399   // Unwrap any PHI nodes in the return blocks.
   1400   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
   1401     if (TVPN->getParent() == TrueSucc)
   1402       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
   1403   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
   1404     if (FVPN->getParent() == FalseSucc)
   1405       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
   1406 
   1407   // In order for this transformation to be safe, we must be able to
   1408   // unconditionally execute both operands to the return.  This is
   1409   // normally the case, but we could have a potentially-trapping
   1410   // constant expression that prevents this transformation from being
   1411   // safe.
   1412   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
   1413     if (TCV->canTrap())
   1414       return false;
   1415   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
   1416     if (FCV->canTrap())
   1417       return false;
   1418 
   1419   // Okay, we collected all the mapped values and checked them for sanity, and
   1420   // defined to really do this transformation.  First, update the CFG.
   1421   TrueSucc->removePredecessor(BI->getParent());
   1422   FalseSucc->removePredecessor(BI->getParent());
   1423 
   1424   // Insert select instructions where needed.
   1425   Value *BrCond = BI->getCondition();
   1426   if (TrueValue) {
   1427     // Insert a select if the results differ.
   1428     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
   1429     } else if (isa<UndefValue>(TrueValue)) {
   1430       TrueValue = FalseValue;
   1431     } else {
   1432       TrueValue = Builder.CreateSelect(BrCond, TrueValue,
   1433                                        FalseValue, "retval");
   1434     }
   1435   }
   1436 
   1437   Value *RI = !TrueValue ?
   1438     Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
   1439 
   1440   (void) RI;
   1441 
   1442   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
   1443                << "\n  " << *BI << "NewRet = " << *RI
   1444                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
   1445 
   1446   EraseTerminatorInstAndDCECond(BI);
   1447 
   1448   return true;
   1449 }
   1450 
   1451 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
   1452 /// probabilities of the branch taking each edge. Fills in the two APInt
   1453 /// parameters and return true, or returns false if no or invalid metadata was
   1454 /// found.
   1455 static bool ExtractBranchMetadata(BranchInst *BI,
   1456                                   APInt &ProbTrue, APInt &ProbFalse) {
   1457   assert(BI->isConditional() &&
   1458          "Looking for probabilities on unconditional branch?");
   1459   MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
   1460   if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
   1461   ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
   1462   ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
   1463   if (!CITrue || !CIFalse) return false;
   1464   ProbTrue = CITrue->getValue();
   1465   ProbFalse = CIFalse->getValue();
   1466   assert(ProbTrue.getBitWidth() == 32 && ProbFalse.getBitWidth() == 32 &&
   1467          "Branch probability metadata must be 32-bit integers");
   1468   return true;
   1469 }
   1470 
   1471 /// MultiplyAndLosePrecision - Multiplies A and B, then returns the result. In
   1472 /// the event of overflow, logically-shifts all four inputs right until the
   1473 /// multiply fits.
   1474 static APInt MultiplyAndLosePrecision(APInt &A, APInt &B, APInt &C, APInt &D,
   1475                                       unsigned &BitsLost) {
   1476   BitsLost = 0;
   1477   bool Overflow = false;
   1478   APInt Result = A.umul_ov(B, Overflow);
   1479   if (Overflow) {
   1480     APInt MaxB = APInt::getMaxValue(A.getBitWidth()).udiv(A);
   1481     do {
   1482       B = B.lshr(1);
   1483       ++BitsLost;
   1484     } while (B.ugt(MaxB));
   1485     A = A.lshr(BitsLost);
   1486     C = C.lshr(BitsLost);
   1487     D = D.lshr(BitsLost);
   1488     Result = A * B;
   1489   }
   1490   return Result;
   1491 }
   1492 
   1493 
   1494 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
   1495 /// predecessor branches to us and one of our successors, fold the block into
   1496 /// the predecessor and use logical operations to pick the right destination.
   1497 bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
   1498   BasicBlock *BB = BI->getParent();
   1499 
   1500   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   1501   if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
   1502     Cond->getParent() != BB || !Cond->hasOneUse())
   1503   return false;
   1504 
   1505   // Only allow this if the condition is a simple instruction that can be
   1506   // executed unconditionally.  It must be in the same block as the branch, and
   1507   // must be at the front of the block.
   1508   BasicBlock::iterator FrontIt = BB->front();
   1509 
   1510   // Ignore dbg intrinsics.
   1511   while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1512 
   1513   // Allow a single instruction to be hoisted in addition to the compare
   1514   // that feeds the branch.  We later ensure that any values that _it_ uses
   1515   // were also live in the predecessor, so that we don't unnecessarily create
   1516   // register pressure or inhibit out-of-order execution.
   1517   Instruction *BonusInst = 0;
   1518   if (&*FrontIt != Cond &&
   1519       FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
   1520       isSafeToSpeculativelyExecute(FrontIt)) {
   1521     BonusInst = &*FrontIt;
   1522     ++FrontIt;
   1523 
   1524     // Ignore dbg intrinsics.
   1525     while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
   1526   }
   1527 
   1528   // Only a single bonus inst is allowed.
   1529   if (&*FrontIt != Cond)
   1530     return false;
   1531 
   1532   // Make sure the instruction after the condition is the cond branch.
   1533   BasicBlock::iterator CondIt = Cond; ++CondIt;
   1534 
   1535   // Ingore dbg intrinsics.
   1536   while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
   1537 
   1538   if (&*CondIt != BI)
   1539     return false;
   1540 
   1541   // Cond is known to be a compare or binary operator.  Check to make sure that
   1542   // neither operand is a potentially-trapping constant expression.
   1543   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
   1544     if (CE->canTrap())
   1545       return false;
   1546   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
   1547     if (CE->canTrap())
   1548       return false;
   1549 
   1550   // Finally, don't infinitely unroll conditional loops.
   1551   BasicBlock *TrueDest  = BI->getSuccessor(0);
   1552   BasicBlock *FalseDest = BI->getSuccessor(1);
   1553   if (TrueDest == BB || FalseDest == BB)
   1554     return false;
   1555 
   1556   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   1557     BasicBlock *PredBlock = *PI;
   1558     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
   1559 
   1560     // Check that we have two conditional branches.  If there is a PHI node in
   1561     // the common successor, verify that the same value flows in from both
   1562     // blocks.
   1563     if (PBI == 0 || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
   1564       continue;
   1565 
   1566     // Determine if the two branches share a common destination.
   1567     Instruction::BinaryOps Opc;
   1568     bool InvertPredCond = false;
   1569 
   1570     if (PBI->getSuccessor(0) == TrueDest)
   1571       Opc = Instruction::Or;
   1572     else if (PBI->getSuccessor(1) == FalseDest)
   1573       Opc = Instruction::And;
   1574     else if (PBI->getSuccessor(0) == FalseDest)
   1575       Opc = Instruction::And, InvertPredCond = true;
   1576     else if (PBI->getSuccessor(1) == TrueDest)
   1577       Opc = Instruction::Or, InvertPredCond = true;
   1578     else
   1579       continue;
   1580 
   1581     // Ensure that any values used in the bonus instruction are also used
   1582     // by the terminator of the predecessor.  This means that those values
   1583     // must already have been resolved, so we won't be inhibiting the
   1584     // out-of-order core by speculating them earlier.
   1585     if (BonusInst) {
   1586       // Collect the values used by the bonus inst
   1587       SmallPtrSet<Value*, 4> UsedValues;
   1588       for (Instruction::op_iterator OI = BonusInst->op_begin(),
   1589            OE = BonusInst->op_end(); OI != OE; ++OI) {
   1590         Value *V = *OI;
   1591         if (!isa<Constant>(V))
   1592           UsedValues.insert(V);
   1593       }
   1594 
   1595       SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
   1596       Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
   1597 
   1598       // Walk up to four levels back up the use-def chain of the predecessor's
   1599       // terminator to see if all those values were used.  The choice of four
   1600       // levels is arbitrary, to provide a compile-time-cost bound.
   1601       while (!Worklist.empty()) {
   1602         std::pair<Value*, unsigned> Pair = Worklist.back();
   1603         Worklist.pop_back();
   1604 
   1605         if (Pair.second >= 4) continue;
   1606         UsedValues.erase(Pair.first);
   1607         if (UsedValues.empty()) break;
   1608 
   1609         if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
   1610           for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
   1611                OI != OE; ++OI)
   1612             Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
   1613         }
   1614       }
   1615 
   1616       if (!UsedValues.empty()) return false;
   1617     }
   1618 
   1619     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
   1620     IRBuilder<> Builder(PBI);
   1621 
   1622     // If we need to invert the condition in the pred block to match, do so now.
   1623     if (InvertPredCond) {
   1624       Value *NewCond = PBI->getCondition();
   1625 
   1626       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
   1627         CmpInst *CI = cast<CmpInst>(NewCond);
   1628         CI->setPredicate(CI->getInversePredicate());
   1629       } else {
   1630         NewCond = Builder.CreateNot(NewCond,
   1631                                     PBI->getCondition()->getName()+".not");
   1632       }
   1633 
   1634       PBI->setCondition(NewCond);
   1635       PBI->swapSuccessors();
   1636     }
   1637 
   1638     // If we have a bonus inst, clone it into the predecessor block.
   1639     Instruction *NewBonus = 0;
   1640     if (BonusInst) {
   1641       NewBonus = BonusInst->clone();
   1642       PredBlock->getInstList().insert(PBI, NewBonus);
   1643       NewBonus->takeName(BonusInst);
   1644       BonusInst->setName(BonusInst->getName()+".old");
   1645     }
   1646 
   1647     // Clone Cond into the predecessor basic block, and or/and the
   1648     // two conditions together.
   1649     Instruction *New = Cond->clone();
   1650     if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
   1651     PredBlock->getInstList().insert(PBI, New);
   1652     New->takeName(Cond);
   1653     Cond->setName(New->getName()+".old");
   1654 
   1655     Instruction *NewCond =
   1656       cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
   1657                                             New, "or.cond"));
   1658     PBI->setCondition(NewCond);
   1659     if (PBI->getSuccessor(0) == BB) {
   1660       AddPredecessorToBlock(TrueDest, PredBlock, BB);
   1661       PBI->setSuccessor(0, TrueDest);
   1662     }
   1663     if (PBI->getSuccessor(1) == BB) {
   1664       AddPredecessorToBlock(FalseDest, PredBlock, BB);
   1665       PBI->setSuccessor(1, FalseDest);
   1666     }
   1667 
   1668     // TODO: If BB is reachable from all paths through PredBlock, then we
   1669     // could replace PBI's branch probabilities with BI's.
   1670 
   1671     // Merge probability data into PredBlock's branch.
   1672     APInt A, B, C, D;
   1673     if (ExtractBranchMetadata(PBI, C, D) && ExtractBranchMetadata(BI, A, B)) {
   1674       // Given IR which does:
   1675       //   bbA:
   1676       //     br i1 %x, label %bbB, label %bbC
   1677       //   bbB:
   1678       //     br i1 %y, label %bbD, label %bbC
   1679       // Let's call the probability that we take the edge from %bbA to %bbB
   1680       // 'a', from %bbA to %bbC, 'b', from %bbB to %bbD 'c' and from %bbB to
   1681       // %bbC probability 'd'.
   1682       //
   1683       // We transform the IR into:
   1684       //   bbA:
   1685       //     br i1 %z, label %bbD, label %bbC
   1686       // where the probability of going to %bbD is (a*c) and going to bbC is
   1687       // (b+a*d).
   1688       //
   1689       // Probabilities aren't stored as ratios directly. Using branch weights,
   1690       // we get:
   1691       // (a*c)% = A*C, (b+(a*d))% = A*D+B*C+B*D.
   1692 
   1693       // In the event of overflow, we want to drop the LSB of the input
   1694       // probabilities.
   1695       unsigned BitsLost;
   1696 
   1697       // Ignore overflow result on ProbTrue.
   1698       APInt ProbTrue = MultiplyAndLosePrecision(A, C, B, D, BitsLost);
   1699 
   1700       APInt Tmp1 = MultiplyAndLosePrecision(B, D, A, C, BitsLost);
   1701       if (BitsLost) {
   1702         ProbTrue = ProbTrue.lshr(BitsLost*2);
   1703       }
   1704 
   1705       APInt Tmp2 = MultiplyAndLosePrecision(A, D, C, B, BitsLost);
   1706       if (BitsLost) {
   1707         ProbTrue = ProbTrue.lshr(BitsLost*2);
   1708         Tmp1 = Tmp1.lshr(BitsLost*2);
   1709       }
   1710 
   1711       APInt Tmp3 = MultiplyAndLosePrecision(B, C, A, D, BitsLost);
   1712       if (BitsLost) {
   1713         ProbTrue = ProbTrue.lshr(BitsLost*2);
   1714         Tmp1 = Tmp1.lshr(BitsLost*2);
   1715         Tmp2 = Tmp2.lshr(BitsLost*2);
   1716       }
   1717 
   1718       bool Overflow1 = false, Overflow2 = false;
   1719       APInt Tmp4 = Tmp2.uadd_ov(Tmp3, Overflow1);
   1720       APInt ProbFalse = Tmp4.uadd_ov(Tmp1, Overflow2);
   1721 
   1722       if (Overflow1 || Overflow2) {
   1723         ProbTrue = ProbTrue.lshr(1);
   1724         Tmp1 = Tmp1.lshr(1);
   1725         Tmp2 = Tmp2.lshr(1);
   1726         Tmp3 = Tmp3.lshr(1);
   1727         Tmp4 = Tmp2 + Tmp3;
   1728         ProbFalse = Tmp4 + Tmp1;
   1729       }
   1730 
   1731       // The sum of branch weights must fit in 32-bits.
   1732       if (ProbTrue.isNegative() && ProbFalse.isNegative()) {
   1733         ProbTrue = ProbTrue.lshr(1);
   1734         ProbFalse = ProbFalse.lshr(1);
   1735       }
   1736 
   1737       if (ProbTrue != ProbFalse) {
   1738         // Normalize the result.
   1739         APInt GCD = APIntOps::GreatestCommonDivisor(ProbTrue, ProbFalse);
   1740         ProbTrue = ProbTrue.udiv(GCD);
   1741         ProbFalse = ProbFalse.udiv(GCD);
   1742 
   1743         LLVMContext &Context = BI->getContext();
   1744         Value *Ops[3];
   1745         Ops[0] = BI->getMetadata(LLVMContext::MD_prof)->getOperand(0);
   1746         Ops[1] = ConstantInt::get(Context, ProbTrue);
   1747         Ops[2] = ConstantInt::get(Context, ProbFalse);
   1748         PBI->setMetadata(LLVMContext::MD_prof, MDNode::get(Context, Ops));
   1749       } else {
   1750         PBI->setMetadata(LLVMContext::MD_prof, NULL);
   1751       }
   1752     } else {
   1753       PBI->setMetadata(LLVMContext::MD_prof, NULL);
   1754     }
   1755 
   1756     // Copy any debug value intrinsics into the end of PredBlock.
   1757     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
   1758       if (isa<DbgInfoIntrinsic>(*I))
   1759         I->clone()->insertBefore(PBI);
   1760 
   1761     return true;
   1762   }
   1763   return false;
   1764 }
   1765 
   1766 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
   1767 /// predecessor of another block, this function tries to simplify it.  We know
   1768 /// that PBI and BI are both conditional branches, and BI is in one of the
   1769 /// successor blocks of PBI - PBI branches to BI.
   1770 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
   1771   assert(PBI->isConditional() && BI->isConditional());
   1772   BasicBlock *BB = BI->getParent();
   1773 
   1774   // If this block ends with a branch instruction, and if there is a
   1775   // predecessor that ends on a branch of the same condition, make
   1776   // this conditional branch redundant.
   1777   if (PBI->getCondition() == BI->getCondition() &&
   1778       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1779     // Okay, the outcome of this conditional branch is statically
   1780     // knowable.  If this block had a single pred, handle specially.
   1781     if (BB->getSinglePredecessor()) {
   1782       // Turn this into a branch on constant.
   1783       bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1784       BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1785                                         CondIsTrue));
   1786       return true;  // Nuke the branch on constant.
   1787     }
   1788 
   1789     // Otherwise, if there are multiple predecessors, insert a PHI that merges
   1790     // in the constant and simplify the block result.  Subsequent passes of
   1791     // simplifycfg will thread the block.
   1792     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
   1793       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
   1794       PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
   1795                                        std::distance(PB, PE),
   1796                                        BI->getCondition()->getName() + ".pr",
   1797                                        BB->begin());
   1798       // Okay, we're going to insert the PHI node.  Since PBI is not the only
   1799       // predecessor, compute the PHI'd conditional value for all of the preds.
   1800       // Any predecessor where the condition is not computable we keep symbolic.
   1801       for (pred_iterator PI = PB; PI != PE; ++PI) {
   1802         BasicBlock *P = *PI;
   1803         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
   1804             PBI != BI && PBI->isConditional() &&
   1805             PBI->getCondition() == BI->getCondition() &&
   1806             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
   1807           bool CondIsTrue = PBI->getSuccessor(0) == BB;
   1808           NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
   1809                                               CondIsTrue), P);
   1810         } else {
   1811           NewPN->addIncoming(BI->getCondition(), P);
   1812         }
   1813       }
   1814 
   1815       BI->setCondition(NewPN);
   1816       return true;
   1817     }
   1818   }
   1819 
   1820   // If this is a conditional branch in an empty block, and if any
   1821   // predecessors is a conditional branch to one of our destinations,
   1822   // fold the conditions into logical ops and one cond br.
   1823   BasicBlock::iterator BBI = BB->begin();
   1824   // Ignore dbg intrinsics.
   1825   while (isa<DbgInfoIntrinsic>(BBI))
   1826     ++BBI;
   1827   if (&*BBI != BI)
   1828     return false;
   1829 
   1830 
   1831   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
   1832     if (CE->canTrap())
   1833       return false;
   1834 
   1835   int PBIOp, BIOp;
   1836   if (PBI->getSuccessor(0) == BI->getSuccessor(0))
   1837     PBIOp = BIOp = 0;
   1838   else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
   1839     PBIOp = 0, BIOp = 1;
   1840   else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
   1841     PBIOp = 1, BIOp = 0;
   1842   else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
   1843     PBIOp = BIOp = 1;
   1844   else
   1845     return false;
   1846 
   1847   // Check to make sure that the other destination of this branch
   1848   // isn't BB itself.  If so, this is an infinite loop that will
   1849   // keep getting unwound.
   1850   if (PBI->getSuccessor(PBIOp) == BB)
   1851     return false;
   1852 
   1853   // Do not perform this transformation if it would require
   1854   // insertion of a large number of select instructions. For targets
   1855   // without predication/cmovs, this is a big pessimization.
   1856   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
   1857 
   1858   unsigned NumPhis = 0;
   1859   for (BasicBlock::iterator II = CommonDest->begin();
   1860        isa<PHINode>(II); ++II, ++NumPhis)
   1861     if (NumPhis > 2) // Disable this xform.
   1862       return false;
   1863 
   1864   // Finally, if everything is ok, fold the branches to logical ops.
   1865   BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
   1866 
   1867   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
   1868                << "AND: " << *BI->getParent());
   1869 
   1870 
   1871   // If OtherDest *is* BB, then BB is a basic block with a single conditional
   1872   // branch in it, where one edge (OtherDest) goes back to itself but the other
   1873   // exits.  We don't *know* that the program avoids the infinite loop
   1874   // (even though that seems likely).  If we do this xform naively, we'll end up
   1875   // recursively unpeeling the loop.  Since we know that (after the xform is
   1876   // done) that the block *is* infinite if reached, we just make it an obviously
   1877   // infinite loop with no cond branch.
   1878   if (OtherDest == BB) {
   1879     // Insert it at the end of the function, because it's either code,
   1880     // or it won't matter if it's hot. :)
   1881     BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
   1882                                                   "infloop", BB->getParent());
   1883     BranchInst::Create(InfLoopBlock, InfLoopBlock);
   1884     OtherDest = InfLoopBlock;
   1885   }
   1886 
   1887   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1888 
   1889   // BI may have other predecessors.  Because of this, we leave
   1890   // it alone, but modify PBI.
   1891 
   1892   // Make sure we get to CommonDest on True&True directions.
   1893   Value *PBICond = PBI->getCondition();
   1894   IRBuilder<true, NoFolder> Builder(PBI);
   1895   if (PBIOp)
   1896     PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
   1897 
   1898   Value *BICond = BI->getCondition();
   1899   if (BIOp)
   1900     BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
   1901 
   1902   // Merge the conditions.
   1903   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
   1904 
   1905   // Modify PBI to branch on the new condition to the new dests.
   1906   PBI->setCondition(Cond);
   1907   PBI->setSuccessor(0, CommonDest);
   1908   PBI->setSuccessor(1, OtherDest);
   1909 
   1910   // OtherDest may have phi nodes.  If so, add an entry from PBI's
   1911   // block that are identical to the entries for BI's block.
   1912   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
   1913 
   1914   // We know that the CommonDest already had an edge from PBI to
   1915   // it.  If it has PHIs though, the PHIs may have different
   1916   // entries for BB and PBI's BB.  If so, insert a select to make
   1917   // them agree.
   1918   PHINode *PN;
   1919   for (BasicBlock::iterator II = CommonDest->begin();
   1920        (PN = dyn_cast<PHINode>(II)); ++II) {
   1921     Value *BIV = PN->getIncomingValueForBlock(BB);
   1922     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
   1923     Value *PBIV = PN->getIncomingValue(PBBIdx);
   1924     if (BIV != PBIV) {
   1925       // Insert a select in PBI to pick the right value.
   1926       Value *NV = cast<SelectInst>
   1927         (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
   1928       PN->setIncomingValue(PBBIdx, NV);
   1929     }
   1930   }
   1931 
   1932   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
   1933   DEBUG(dbgs() << *PBI->getParent()->getParent());
   1934 
   1935   // This basic block is probably dead.  We know it has at least
   1936   // one fewer predecessor.
   1937   return true;
   1938 }
   1939 
   1940 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
   1941 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
   1942 // Takes care of updating the successors and removing the old terminator.
   1943 // Also makes sure not to introduce new successors by assuming that edges to
   1944 // non-successor TrueBBs and FalseBBs aren't reachable.
   1945 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
   1946                                        BasicBlock *TrueBB, BasicBlock *FalseBB){
   1947   // Remove any superfluous successor edges from the CFG.
   1948   // First, figure out which successors to preserve.
   1949   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
   1950   // successor.
   1951   BasicBlock *KeepEdge1 = TrueBB;
   1952   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
   1953 
   1954   // Then remove the rest.
   1955   for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
   1956     BasicBlock *Succ = OldTerm->getSuccessor(I);
   1957     // Make sure only to keep exactly one copy of each edge.
   1958     if (Succ == KeepEdge1)
   1959       KeepEdge1 = 0;
   1960     else if (Succ == KeepEdge2)
   1961       KeepEdge2 = 0;
   1962     else
   1963       Succ->removePredecessor(OldTerm->getParent());
   1964   }
   1965 
   1966   IRBuilder<> Builder(OldTerm);
   1967   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
   1968 
   1969   // Insert an appropriate new terminator.
   1970   if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
   1971     if (TrueBB == FalseBB)
   1972       // We were only looking for one successor, and it was present.
   1973       // Create an unconditional branch to it.
   1974       Builder.CreateBr(TrueBB);
   1975     else
   1976       // We found both of the successors we were looking for.
   1977       // Create a conditional branch sharing the condition of the select.
   1978       Builder.CreateCondBr(Cond, TrueBB, FalseBB);
   1979   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
   1980     // Neither of the selected blocks were successors, so this
   1981     // terminator must be unreachable.
   1982     new UnreachableInst(OldTerm->getContext(), OldTerm);
   1983   } else {
   1984     // One of the selected values was a successor, but the other wasn't.
   1985     // Insert an unconditional branch to the one that was found;
   1986     // the edge to the one that wasn't must be unreachable.
   1987     if (KeepEdge1 == 0)
   1988       // Only TrueBB was found.
   1989       Builder.CreateBr(TrueBB);
   1990     else
   1991       // Only FalseBB was found.
   1992       Builder.CreateBr(FalseBB);
   1993   }
   1994 
   1995   EraseTerminatorInstAndDCECond(OldTerm);
   1996   return true;
   1997 }
   1998 
   1999 // SimplifySwitchOnSelect - Replaces
   2000 //   (switch (select cond, X, Y)) on constant X, Y
   2001 // with a branch - conditional if X and Y lead to distinct BBs,
   2002 // unconditional otherwise.
   2003 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
   2004   // Check for constant integer values in the select.
   2005   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
   2006   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
   2007   if (!TrueVal || !FalseVal)
   2008     return false;
   2009 
   2010   // Find the relevant condition and destinations.
   2011   Value *Condition = Select->getCondition();
   2012   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
   2013   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
   2014 
   2015   // Perform the actual simplification.
   2016   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB);
   2017 }
   2018 
   2019 // SimplifyIndirectBrOnSelect - Replaces
   2020 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
   2021 //                             blockaddress(@fn, BlockB)))
   2022 // with
   2023 //   (br cond, BlockA, BlockB).
   2024 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
   2025   // Check that both operands of the select are block addresses.
   2026   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
   2027   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
   2028   if (!TBA || !FBA)
   2029     return false;
   2030 
   2031   // Extract the actual blocks.
   2032   BasicBlock *TrueBB = TBA->getBasicBlock();
   2033   BasicBlock *FalseBB = FBA->getBasicBlock();
   2034 
   2035   // Perform the actual simplification.
   2036   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB);
   2037 }
   2038 
   2039 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
   2040 /// instruction (a seteq/setne with a constant) as the only instruction in a
   2041 /// block that ends with an uncond branch.  We are looking for a very specific
   2042 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
   2043 /// this case, we merge the first two "or's of icmp" into a switch, but then the
   2044 /// default value goes to an uncond block with a seteq in it, we get something
   2045 /// like:
   2046 ///
   2047 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
   2048 /// DEFAULT:
   2049 ///   %tmp = icmp eq i8 %A, 92
   2050 ///   br label %end
   2051 /// end:
   2052 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
   2053 ///
   2054 /// We prefer to split the edge to 'end' so that there is a true/false entry to
   2055 /// the PHI, merging the third icmp into the switch.
   2056 static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
   2057                                                   const TargetData *TD,
   2058                                                   IRBuilder<> &Builder) {
   2059   BasicBlock *BB = ICI->getParent();
   2060 
   2061   // If the block has any PHIs in it or the icmp has multiple uses, it is too
   2062   // complex.
   2063   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
   2064 
   2065   Value *V = ICI->getOperand(0);
   2066   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
   2067 
   2068   // The pattern we're looking for is where our only predecessor is a switch on
   2069   // 'V' and this block is the default case for the switch.  In this case we can
   2070   // fold the compared value into the switch to simplify things.
   2071   BasicBlock *Pred = BB->getSinglePredecessor();
   2072   if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
   2073 
   2074   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
   2075   if (SI->getCondition() != V)
   2076     return false;
   2077 
   2078   // If BB is reachable on a non-default case, then we simply know the value of
   2079   // V in this block.  Substitute it and constant fold the icmp instruction
   2080   // away.
   2081   if (SI->getDefaultDest() != BB) {
   2082     ConstantInt *VVal = SI->findCaseDest(BB);
   2083     assert(VVal && "Should have a unique destination value");
   2084     ICI->setOperand(0, VVal);
   2085 
   2086     if (Value *V = SimplifyInstruction(ICI, TD)) {
   2087       ICI->replaceAllUsesWith(V);
   2088       ICI->eraseFromParent();
   2089     }
   2090     // BB is now empty, so it is likely to simplify away.
   2091     return SimplifyCFG(BB) | true;
   2092   }
   2093 
   2094   // Ok, the block is reachable from the default dest.  If the constant we're
   2095   // comparing exists in one of the other edges, then we can constant fold ICI
   2096   // and zap it.
   2097   if (SI->findCaseValue(Cst) != SI->case_default()) {
   2098     Value *V;
   2099     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2100       V = ConstantInt::getFalse(BB->getContext());
   2101     else
   2102       V = ConstantInt::getTrue(BB->getContext());
   2103 
   2104     ICI->replaceAllUsesWith(V);
   2105     ICI->eraseFromParent();
   2106     // BB is now empty, so it is likely to simplify away.
   2107     return SimplifyCFG(BB) | true;
   2108   }
   2109 
   2110   // The use of the icmp has to be in the 'end' block, by the only PHI node in
   2111   // the block.
   2112   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
   2113   PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
   2114   if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
   2115       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
   2116     return false;
   2117 
   2118   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
   2119   // true in the PHI.
   2120   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
   2121   Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
   2122 
   2123   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
   2124     std::swap(DefaultCst, NewCst);
   2125 
   2126   // Replace ICI (which is used by the PHI for the default value) with true or
   2127   // false depending on if it is EQ or NE.
   2128   ICI->replaceAllUsesWith(DefaultCst);
   2129   ICI->eraseFromParent();
   2130 
   2131   // Okay, the switch goes to this block on a default value.  Add an edge from
   2132   // the switch to the merge point on the compared value.
   2133   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
   2134                                          BB->getParent(), BB);
   2135   SI->addCase(Cst, NewBB);
   2136 
   2137   // NewBB branches to the phi block, add the uncond branch and the phi entry.
   2138   Builder.SetInsertPoint(NewBB);
   2139   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
   2140   Builder.CreateBr(SuccBlock);
   2141   PHIUse->addIncoming(NewCst, NewBB);
   2142   return true;
   2143 }
   2144 
   2145 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
   2146 /// Check to see if it is branching on an or/and chain of icmp instructions, and
   2147 /// fold it into a switch instruction if so.
   2148 static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
   2149                                       IRBuilder<> &Builder) {
   2150   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
   2151   if (Cond == 0) return false;
   2152 
   2153 
   2154   // Change br (X == 0 | X == 1), T, F into a switch instruction.
   2155   // If this is a bunch of seteq's or'd together, or if it's a bunch of
   2156   // 'setne's and'ed together, collect them.
   2157   Value *CompVal = 0;
   2158   std::vector<ConstantInt*> Values;
   2159   bool TrueWhenEqual = true;
   2160   Value *ExtraCase = 0;
   2161   unsigned UsedICmps = 0;
   2162 
   2163   if (Cond->getOpcode() == Instruction::Or) {
   2164     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
   2165                                      UsedICmps);
   2166   } else if (Cond->getOpcode() == Instruction::And) {
   2167     CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
   2168                                      UsedICmps);
   2169     TrueWhenEqual = false;
   2170   }
   2171 
   2172   // If we didn't have a multiply compared value, fail.
   2173   if (CompVal == 0) return false;
   2174 
   2175   // Avoid turning single icmps into a switch.
   2176   if (UsedICmps <= 1)
   2177     return false;
   2178 
   2179   // There might be duplicate constants in the list, which the switch
   2180   // instruction can't handle, remove them now.
   2181   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
   2182   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
   2183 
   2184   // If Extra was used, we require at least two switch values to do the
   2185   // transformation.  A switch with one value is just an cond branch.
   2186   if (ExtraCase && Values.size() < 2) return false;
   2187 
   2188   // Figure out which block is which destination.
   2189   BasicBlock *DefaultBB = BI->getSuccessor(1);
   2190   BasicBlock *EdgeBB    = BI->getSuccessor(0);
   2191   if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
   2192 
   2193   BasicBlock *BB = BI->getParent();
   2194 
   2195   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
   2196                << " cases into SWITCH.  BB is:\n" << *BB);
   2197 
   2198   // If there are any extra values that couldn't be folded into the switch
   2199   // then we evaluate them with an explicit branch first.  Split the block
   2200   // right before the condbr to handle it.
   2201   if (ExtraCase) {
   2202     BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
   2203     // Remove the uncond branch added to the old block.
   2204     TerminatorInst *OldTI = BB->getTerminator();
   2205     Builder.SetInsertPoint(OldTI);
   2206 
   2207     if (TrueWhenEqual)
   2208       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
   2209     else
   2210       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
   2211 
   2212     OldTI->eraseFromParent();
   2213 
   2214     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
   2215     // for the edge we just added.
   2216     AddPredecessorToBlock(EdgeBB, BB, NewBB);
   2217 
   2218     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
   2219           << "\nEXTRABB = " << *BB);
   2220     BB = NewBB;
   2221   }
   2222 
   2223   Builder.SetInsertPoint(BI);
   2224   // Convert pointer to int before we switch.
   2225   if (CompVal->getType()->isPointerTy()) {
   2226     assert(TD && "Cannot switch on pointer without TargetData");
   2227     CompVal = Builder.CreatePtrToInt(CompVal,
   2228                                      TD->getIntPtrType(CompVal->getContext()),
   2229                                      "magicptr");
   2230   }
   2231 
   2232   // Create the new switch instruction now.
   2233   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
   2234 
   2235   // Add all of the 'cases' to the switch instruction.
   2236   for (unsigned i = 0, e = Values.size(); i != e; ++i)
   2237     New->addCase(Values[i], EdgeBB);
   2238 
   2239   // We added edges from PI to the EdgeBB.  As such, if there were any
   2240   // PHI nodes in EdgeBB, they need entries to be added corresponding to
   2241   // the number of edges added.
   2242   for (BasicBlock::iterator BBI = EdgeBB->begin();
   2243        isa<PHINode>(BBI); ++BBI) {
   2244     PHINode *PN = cast<PHINode>(BBI);
   2245     Value *InVal = PN->getIncomingValueForBlock(BB);
   2246     for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
   2247       PN->addIncoming(InVal, BB);
   2248   }
   2249 
   2250   // Erase the old branch instruction.
   2251   EraseTerminatorInstAndDCECond(BI);
   2252 
   2253   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
   2254   return true;
   2255 }
   2256 
   2257 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
   2258   // If this is a trivial landing pad that just continues unwinding the caught
   2259   // exception then zap the landing pad, turning its invokes into calls.
   2260   BasicBlock *BB = RI->getParent();
   2261   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
   2262   if (RI->getValue() != LPInst)
   2263     // Not a landing pad, or the resume is not unwinding the exception that
   2264     // caused control to branch here.
   2265     return false;
   2266 
   2267   // Check that there are no other instructions except for debug intrinsics.
   2268   BasicBlock::iterator I = LPInst, E = RI;
   2269   while (++I != E)
   2270     if (!isa<DbgInfoIntrinsic>(I))
   2271       return false;
   2272 
   2273   // Turn all invokes that unwind here into calls and delete the basic block.
   2274   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
   2275     InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
   2276     SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
   2277     // Insert a call instruction before the invoke.
   2278     CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
   2279     Call->takeName(II);
   2280     Call->setCallingConv(II->getCallingConv());
   2281     Call->setAttributes(II->getAttributes());
   2282     Call->setDebugLoc(II->getDebugLoc());
   2283 
   2284     // Anything that used the value produced by the invoke instruction now uses
   2285     // the value produced by the call instruction.  Note that we do this even
   2286     // for void functions and calls with no uses so that the callgraph edge is
   2287     // updated.
   2288     II->replaceAllUsesWith(Call);
   2289     BB->removePredecessor(II->getParent());
   2290 
   2291     // Insert a branch to the normal destination right before the invoke.
   2292     BranchInst::Create(II->getNormalDest(), II);
   2293 
   2294     // Finally, delete the invoke instruction!
   2295     II->eraseFromParent();
   2296   }
   2297 
   2298   // The landingpad is now unreachable.  Zap it.
   2299   BB->eraseFromParent();
   2300   return true;
   2301 }
   2302 
   2303 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
   2304   BasicBlock *BB = RI->getParent();
   2305   if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
   2306 
   2307   // Find predecessors that end with branches.
   2308   SmallVector<BasicBlock*, 8> UncondBranchPreds;
   2309   SmallVector<BranchInst*, 8> CondBranchPreds;
   2310   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
   2311     BasicBlock *P = *PI;
   2312     TerminatorInst *PTI = P->getTerminator();
   2313     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
   2314       if (BI->isUnconditional())
   2315         UncondBranchPreds.push_back(P);
   2316       else
   2317         CondBranchPreds.push_back(BI);
   2318     }
   2319   }
   2320 
   2321   // If we found some, do the transformation!
   2322   if (!UncondBranchPreds.empty() && DupRet) {
   2323     while (!UncondBranchPreds.empty()) {
   2324       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
   2325       DEBUG(dbgs() << "FOLDING: " << *BB
   2326             << "INTO UNCOND BRANCH PRED: " << *Pred);
   2327       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
   2328     }
   2329 
   2330     // If we eliminated all predecessors of the block, delete the block now.
   2331     if (pred_begin(BB) == pred_end(BB))
   2332       // We know there are no successors, so just nuke the block.
   2333       BB->eraseFromParent();
   2334 
   2335     return true;
   2336   }
   2337 
   2338   // Check out all of the conditional branches going to this return
   2339   // instruction.  If any of them just select between returns, change the
   2340   // branch itself into a select/return pair.
   2341   while (!CondBranchPreds.empty()) {
   2342     BranchInst *BI = CondBranchPreds.pop_back_val();
   2343 
   2344     // Check to see if the non-BB successor is also a return block.
   2345     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
   2346         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
   2347         SimplifyCondBranchToTwoReturns(BI, Builder))
   2348       return true;
   2349   }
   2350   return false;
   2351 }
   2352 
   2353 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
   2354   BasicBlock *BB = UI->getParent();
   2355 
   2356   bool Changed = false;
   2357 
   2358   // If there are any instructions immediately before the unreachable that can
   2359   // be removed, do so.
   2360   while (UI != BB->begin()) {
   2361     BasicBlock::iterator BBI = UI;
   2362     --BBI;
   2363     // Do not delete instructions that can have side effects which might cause
   2364     // the unreachable to not be reachable; specifically, calls and volatile
   2365     // operations may have this effect.
   2366     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
   2367 
   2368     if (BBI->mayHaveSideEffects()) {
   2369       if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
   2370         if (SI->isVolatile())
   2371           break;
   2372       } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
   2373         if (LI->isVolatile())
   2374           break;
   2375       } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
   2376         if (RMWI->isVolatile())
   2377           break;
   2378       } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
   2379         if (CXI->isVolatile())
   2380           break;
   2381       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
   2382                  !isa<LandingPadInst>(BBI)) {
   2383         break;
   2384       }
   2385       // Note that deleting LandingPad's here is in fact okay, although it
   2386       // involves a bit of subtle reasoning. If this inst is a LandingPad,
   2387       // all the predecessors of this block will be the unwind edges of Invokes,
   2388       // and we can therefore guarantee this block will be erased.
   2389     }
   2390 
   2391     // Delete this instruction (any uses are guaranteed to be dead)
   2392     if (!BBI->use_empty())
   2393       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
   2394     BBI->eraseFromParent();
   2395     Changed = true;
   2396   }
   2397 
   2398   // If the unreachable instruction is the first in the block, take a gander
   2399   // at all of the predecessors of this instruction, and simplify them.
   2400   if (&BB->front() != UI) return Changed;
   2401 
   2402   SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
   2403   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
   2404     TerminatorInst *TI = Preds[i]->getTerminator();
   2405     IRBuilder<> Builder(TI);
   2406     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2407       if (BI->isUnconditional()) {
   2408         if (BI->getSuccessor(0) == BB) {
   2409           new UnreachableInst(TI->getContext(), TI);
   2410           TI->eraseFromParent();
   2411           Changed = true;
   2412         }
   2413       } else {
   2414         if (BI->getSuccessor(0) == BB) {
   2415           Builder.CreateBr(BI->getSuccessor(1));
   2416           EraseTerminatorInstAndDCECond(BI);
   2417         } else if (BI->getSuccessor(1) == BB) {
   2418           Builder.CreateBr(BI->getSuccessor(0));
   2419           EraseTerminatorInstAndDCECond(BI);
   2420           Changed = true;
   2421         }
   2422       }
   2423     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2424       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2425            i != e; ++i)
   2426         if (i.getCaseSuccessor() == BB) {
   2427           BB->removePredecessor(SI->getParent());
   2428           SI->removeCase(i);
   2429           --i; --e;
   2430           Changed = true;
   2431         }
   2432       // If the default value is unreachable, figure out the most popular
   2433       // destination and make it the default.
   2434       if (SI->getDefaultDest() == BB) {
   2435         std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
   2436         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2437              i != e; ++i) {
   2438           std::pair<unsigned, unsigned> &entry =
   2439               Popularity[i.getCaseSuccessor()];
   2440           if (entry.first == 0) {
   2441             entry.first = 1;
   2442             entry.second = i.getCaseIndex();
   2443           } else {
   2444             entry.first++;
   2445           }
   2446         }
   2447 
   2448         // Find the most popular block.
   2449         unsigned MaxPop = 0;
   2450         unsigned MaxIndex = 0;
   2451         BasicBlock *MaxBlock = 0;
   2452         for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
   2453              I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
   2454           if (I->second.first > MaxPop ||
   2455               (I->second.first == MaxPop && MaxIndex > I->second.second)) {
   2456             MaxPop = I->second.first;
   2457             MaxIndex = I->second.second;
   2458             MaxBlock = I->first;
   2459           }
   2460         }
   2461         if (MaxBlock) {
   2462           // Make this the new default, allowing us to delete any explicit
   2463           // edges to it.
   2464           SI->setDefaultDest(MaxBlock);
   2465           Changed = true;
   2466 
   2467           // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
   2468           // it.
   2469           if (isa<PHINode>(MaxBlock->begin()))
   2470             for (unsigned i = 0; i != MaxPop-1; ++i)
   2471               MaxBlock->removePredecessor(SI->getParent());
   2472 
   2473           for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2474                i != e; ++i)
   2475             if (i.getCaseSuccessor() == MaxBlock) {
   2476               SI->removeCase(i);
   2477               --i; --e;
   2478             }
   2479         }
   2480       }
   2481     } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
   2482       if (II->getUnwindDest() == BB) {
   2483         // Convert the invoke to a call instruction.  This would be a good
   2484         // place to note that the call does not throw though.
   2485         BranchInst *BI = Builder.CreateBr(II->getNormalDest());
   2486         II->removeFromParent();   // Take out of symbol table
   2487 
   2488         // Insert the call now...
   2489         SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
   2490         Builder.SetInsertPoint(BI);
   2491         CallInst *CI = Builder.CreateCall(II->getCalledValue(),
   2492                                           Args, II->getName());
   2493         CI->setCallingConv(II->getCallingConv());
   2494         CI->setAttributes(II->getAttributes());
   2495         // If the invoke produced a value, the call does now instead.
   2496         II->replaceAllUsesWith(CI);
   2497         delete II;
   2498         Changed = true;
   2499       }
   2500     }
   2501   }
   2502 
   2503   // If this block is now dead, remove it.
   2504   if (pred_begin(BB) == pred_end(BB) &&
   2505       BB != &BB->getParent()->getEntryBlock()) {
   2506     // We know there are no successors, so just nuke the block.
   2507     BB->eraseFromParent();
   2508     return true;
   2509   }
   2510 
   2511   return Changed;
   2512 }
   2513 
   2514 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
   2515 /// integer range comparison into a sub, an icmp and a branch.
   2516 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
   2517   assert(SI->getNumCases() > 1 && "Degenerate switch?");
   2518 
   2519   // Make sure all cases point to the same destination and gather the values.
   2520   SmallVector<ConstantInt *, 16> Cases;
   2521   SwitchInst::CaseIt I = SI->case_begin();
   2522   Cases.push_back(I.getCaseValue());
   2523   SwitchInst::CaseIt PrevI = I++;
   2524   for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
   2525     if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
   2526       return false;
   2527     Cases.push_back(I.getCaseValue());
   2528   }
   2529   assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
   2530 
   2531   // Sort the case values, then check if they form a range we can transform.
   2532   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
   2533   for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
   2534     if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
   2535       return false;
   2536   }
   2537 
   2538   Constant *Offset = ConstantExpr::getNeg(Cases.back());
   2539   Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
   2540 
   2541   Value *Sub = SI->getCondition();
   2542   if (!Offset->isNullValue())
   2543     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
   2544   Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
   2545   Builder.CreateCondBr(
   2546       Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
   2547 
   2548   // Prune obsolete incoming values off the successor's PHI nodes.
   2549   for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
   2550        isa<PHINode>(BBI); ++BBI) {
   2551     for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
   2552       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
   2553   }
   2554   SI->eraseFromParent();
   2555 
   2556   return true;
   2557 }
   2558 
   2559 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
   2560 /// and use it to remove dead cases.
   2561 static bool EliminateDeadSwitchCases(SwitchInst *SI) {
   2562   Value *Cond = SI->getCondition();
   2563   unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
   2564   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
   2565   ComputeMaskedBits(Cond, KnownZero, KnownOne);
   2566 
   2567   // Gather dead cases.
   2568   SmallVector<ConstantInt*, 8> DeadCases;
   2569   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   2570     if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
   2571         (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
   2572       DeadCases.push_back(I.getCaseValue());
   2573       DEBUG(dbgs() << "SimplifyCFG: switch case '"
   2574                    << I.getCaseValue() << "' is dead.\n");
   2575     }
   2576   }
   2577 
   2578   // Remove dead cases from the switch.
   2579   for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
   2580     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
   2581     assert(Case != SI->case_default() &&
   2582            "Case was not found. Probably mistake in DeadCases forming.");
   2583     // Prune unused values from PHI nodes.
   2584     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
   2585     SI->removeCase(Case);
   2586   }
   2587 
   2588   return !DeadCases.empty();
   2589 }
   2590 
   2591 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
   2592 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
   2593 /// by an unconditional branch), look at the phi node for BB in the successor
   2594 /// block and see if the incoming value is equal to CaseValue. If so, return
   2595 /// the phi node, and set PhiIndex to BB's index in the phi node.
   2596 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
   2597                                               BasicBlock *BB,
   2598                                               int *PhiIndex) {
   2599   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
   2600     return NULL; // BB must be empty to be a candidate for simplification.
   2601   if (!BB->getSinglePredecessor())
   2602     return NULL; // BB must be dominated by the switch.
   2603 
   2604   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
   2605   if (!Branch || !Branch->isUnconditional())
   2606     return NULL; // Terminator must be unconditional branch.
   2607 
   2608   BasicBlock *Succ = Branch->getSuccessor(0);
   2609 
   2610   BasicBlock::iterator I = Succ->begin();
   2611   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
   2612     int Idx = PHI->getBasicBlockIndex(BB);
   2613     assert(Idx >= 0 && "PHI has no entry for predecessor?");
   2614 
   2615     Value *InValue = PHI->getIncomingValue(Idx);
   2616     if (InValue != CaseValue) continue;
   2617 
   2618     *PhiIndex = Idx;
   2619     return PHI;
   2620   }
   2621 
   2622   return NULL;
   2623 }
   2624 
   2625 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
   2626 /// instruction to a phi node dominated by the switch, if that would mean that
   2627 /// some of the destination blocks of the switch can be folded away.
   2628 /// Returns true if a change is made.
   2629 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
   2630   typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
   2631   ForwardingNodesMap ForwardingNodes;
   2632 
   2633   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
   2634     ConstantInt *CaseValue = I.getCaseValue();
   2635     BasicBlock *CaseDest = I.getCaseSuccessor();
   2636 
   2637     int PhiIndex;
   2638     PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
   2639                                                  &PhiIndex);
   2640     if (!PHI) continue;
   2641 
   2642     ForwardingNodes[PHI].push_back(PhiIndex);
   2643   }
   2644 
   2645   bool Changed = false;
   2646 
   2647   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
   2648        E = ForwardingNodes.end(); I != E; ++I) {
   2649     PHINode *Phi = I->first;
   2650     SmallVector<int,4> &Indexes = I->second;
   2651 
   2652     if (Indexes.size() < 2) continue;
   2653 
   2654     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
   2655       Phi->setIncomingValue(Indexes[I], SI->getCondition());
   2656     Changed = true;
   2657   }
   2658 
   2659   return Changed;
   2660 }
   2661 
   2662 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
   2663   // If this switch is too complex to want to look at, ignore it.
   2664   if (!isValueEqualityComparison(SI))
   2665     return false;
   2666 
   2667   BasicBlock *BB = SI->getParent();
   2668 
   2669   // If we only have one predecessor, and if it is a branch on this value,
   2670   // see if that predecessor totally determines the outcome of this switch.
   2671   if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2672     if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
   2673       return SimplifyCFG(BB) | true;
   2674 
   2675   Value *Cond = SI->getCondition();
   2676   if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
   2677     if (SimplifySwitchOnSelect(SI, Select))
   2678       return SimplifyCFG(BB) | true;
   2679 
   2680   // If the block only contains the switch, see if we can fold the block
   2681   // away into any preds.
   2682   BasicBlock::iterator BBI = BB->begin();
   2683   // Ignore dbg intrinsics.
   2684   while (isa<DbgInfoIntrinsic>(BBI))
   2685     ++BBI;
   2686   if (SI == &*BBI)
   2687     if (FoldValueComparisonIntoPredecessors(SI, Builder))
   2688       return SimplifyCFG(BB) | true;
   2689 
   2690   // Try to transform the switch into an icmp and a branch.
   2691   if (TurnSwitchRangeIntoICmp(SI, Builder))
   2692     return SimplifyCFG(BB) | true;
   2693 
   2694   // Remove unreachable cases.
   2695   if (EliminateDeadSwitchCases(SI))
   2696     return SimplifyCFG(BB) | true;
   2697 
   2698   if (ForwardSwitchConditionToPHI(SI))
   2699     return SimplifyCFG(BB) | true;
   2700 
   2701   return false;
   2702 }
   2703 
   2704 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
   2705   BasicBlock *BB = IBI->getParent();
   2706   bool Changed = false;
   2707 
   2708   // Eliminate redundant destinations.
   2709   SmallPtrSet<Value *, 8> Succs;
   2710   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
   2711     BasicBlock *Dest = IBI->getDestination(i);
   2712     if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
   2713       Dest->removePredecessor(BB);
   2714       IBI->removeDestination(i);
   2715       --i; --e;
   2716       Changed = true;
   2717     }
   2718   }
   2719 
   2720   if (IBI->getNumDestinations() == 0) {
   2721     // If the indirectbr has no successors, change it to unreachable.
   2722     new UnreachableInst(IBI->getContext(), IBI);
   2723     EraseTerminatorInstAndDCECond(IBI);
   2724     return true;
   2725   }
   2726 
   2727   if (IBI->getNumDestinations() == 1) {
   2728     // If the indirectbr has one successor, change it to a direct branch.
   2729     BranchInst::Create(IBI->getDestination(0), IBI);
   2730     EraseTerminatorInstAndDCECond(IBI);
   2731     return true;
   2732   }
   2733 
   2734   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
   2735     if (SimplifyIndirectBrOnSelect(IBI, SI))
   2736       return SimplifyCFG(BB) | true;
   2737   }
   2738   return Changed;
   2739 }
   2740 
   2741 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
   2742   BasicBlock *BB = BI->getParent();
   2743 
   2744   // If the Terminator is the only non-phi instruction, simplify the block.
   2745   BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
   2746   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
   2747       TryToSimplifyUncondBranchFromEmptyBlock(BB))
   2748     return true;
   2749 
   2750   // If the only instruction in the block is a seteq/setne comparison
   2751   // against a constant, try to simplify the block.
   2752   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
   2753     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
   2754       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
   2755         ;
   2756       if (I->isTerminator() &&
   2757           TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
   2758         return true;
   2759     }
   2760 
   2761   return false;
   2762 }
   2763 
   2764 
   2765 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
   2766   BasicBlock *BB = BI->getParent();
   2767 
   2768   // Conditional branch
   2769   if (isValueEqualityComparison(BI)) {
   2770     // If we only have one predecessor, and if it is a branch on this value,
   2771     // see if that predecessor totally determines the outcome of this
   2772     // switch.
   2773     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
   2774       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
   2775         return SimplifyCFG(BB) | true;
   2776 
   2777     // This block must be empty, except for the setcond inst, if it exists.
   2778     // Ignore dbg intrinsics.
   2779     BasicBlock::iterator I = BB->begin();
   2780     // Ignore dbg intrinsics.
   2781     while (isa<DbgInfoIntrinsic>(I))
   2782       ++I;
   2783     if (&*I == BI) {
   2784       if (FoldValueComparisonIntoPredecessors(BI, Builder))
   2785         return SimplifyCFG(BB) | true;
   2786     } else if (&*I == cast<Instruction>(BI->getCondition())){
   2787       ++I;
   2788       // Ignore dbg intrinsics.
   2789       while (isa<DbgInfoIntrinsic>(I))
   2790         ++I;
   2791       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
   2792         return SimplifyCFG(BB) | true;
   2793     }
   2794   }
   2795 
   2796   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
   2797   if (SimplifyBranchOnICmpChain(BI, TD, Builder))
   2798     return true;
   2799 
   2800   // If this basic block is ONLY a compare and a branch, and if a predecessor
   2801   // branches to us and one of our successors, fold the comparison into the
   2802   // predecessor and use logical operations to pick the right destination.
   2803   if (FoldBranchToCommonDest(BI))
   2804     return SimplifyCFG(BB) | true;
   2805 
   2806   // We have a conditional branch to two blocks that are only reachable
   2807   // from BI.  We know that the condbr dominates the two blocks, so see if
   2808   // there is any identical code in the "then" and "else" blocks.  If so, we
   2809   // can hoist it up to the branching block.
   2810   if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
   2811     if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2812       if (HoistThenElseCodeToIf(BI))
   2813         return SimplifyCFG(BB) | true;
   2814     } else {
   2815       // If Successor #1 has multiple preds, we may be able to conditionally
   2816       // execute Successor #0 if it branches to successor #1.
   2817       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
   2818       if (Succ0TI->getNumSuccessors() == 1 &&
   2819           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
   2820         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
   2821           return SimplifyCFG(BB) | true;
   2822     }
   2823   } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
   2824     // If Successor #0 has multiple preds, we may be able to conditionally
   2825     // execute Successor #1 if it branches to successor #0.
   2826     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
   2827     if (Succ1TI->getNumSuccessors() == 1 &&
   2828         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
   2829       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
   2830         return SimplifyCFG(BB) | true;
   2831   }
   2832 
   2833   // If this is a branch on a phi node in the current block, thread control
   2834   // through this block if any PHI node entries are constants.
   2835   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
   2836     if (PN->getParent() == BI->getParent())
   2837       if (FoldCondBranchOnPHI(BI, TD))
   2838         return SimplifyCFG(BB) | true;
   2839 
   2840   // Scan predecessor blocks for conditional branches.
   2841   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
   2842     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
   2843       if (PBI != BI && PBI->isConditional())
   2844         if (SimplifyCondBranchToCondBranch(PBI, BI))
   2845           return SimplifyCFG(BB) | true;
   2846 
   2847   return false;
   2848 }
   2849 
   2850 /// Check if passing a value to an instruction will cause undefined behavior.
   2851 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
   2852   Constant *C = dyn_cast<Constant>(V);
   2853   if (!C)
   2854     return false;
   2855 
   2856   if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
   2857     return false;
   2858 
   2859   if (C->isNullValue()) {
   2860     Instruction *Use = I->use_back();
   2861 
   2862     // Now make sure that there are no instructions in between that can alter
   2863     // control flow (eg. calls)
   2864     for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
   2865       if (i == I->getParent()->end() || i->mayHaveSideEffects())
   2866         return false;
   2867 
   2868     // Look through GEPs. A load from a GEP derived from NULL is still undefined
   2869     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
   2870       if (GEP->getPointerOperand() == I)
   2871         return passingValueIsAlwaysUndefined(V, GEP);
   2872 
   2873     // Look through bitcasts.
   2874     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
   2875       return passingValueIsAlwaysUndefined(V, BC);
   2876 
   2877     // Load from null is undefined.
   2878     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
   2879       return LI->getPointerAddressSpace() == 0;
   2880 
   2881     // Store to null is undefined.
   2882     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
   2883       return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
   2884   }
   2885   return false;
   2886 }
   2887 
   2888 /// If BB has an incoming value that will always trigger undefined behavior
   2889 /// (eg. null pointer dereference), remove the branch leading here.
   2890 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
   2891   for (BasicBlock::iterator i = BB->begin();
   2892        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
   2893     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
   2894       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
   2895         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
   2896         IRBuilder<> Builder(T);
   2897         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
   2898           BB->removePredecessor(PHI->getIncomingBlock(i));
   2899           // Turn uncoditional branches into unreachables and remove the dead
   2900           // destination from conditional branches.
   2901           if (BI->isUnconditional())
   2902             Builder.CreateUnreachable();
   2903           else
   2904             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
   2905                                                          BI->getSuccessor(0));
   2906           BI->eraseFromParent();
   2907           return true;
   2908         }
   2909         // TODO: SwitchInst.
   2910       }
   2911 
   2912   return false;
   2913 }
   2914 
   2915 bool SimplifyCFGOpt::run(BasicBlock *BB) {
   2916   bool Changed = false;
   2917 
   2918   assert(BB && BB->getParent() && "Block not embedded in function!");
   2919   assert(BB->getTerminator() && "Degenerate basic block encountered!");
   2920 
   2921   // Remove basic blocks that have no predecessors (except the entry block)...
   2922   // or that just have themself as a predecessor.  These are unreachable.
   2923   if ((pred_begin(BB) == pred_end(BB) &&
   2924        BB != &BB->getParent()->getEntryBlock()) ||
   2925       BB->getSinglePredecessor() == BB) {
   2926     DEBUG(dbgs() << "Removing BB: \n" << *BB);
   2927     DeleteDeadBlock(BB);
   2928     return true;
   2929   }
   2930 
   2931   // Check to see if we can constant propagate this terminator instruction
   2932   // away...
   2933   Changed |= ConstantFoldTerminator(BB, true);
   2934 
   2935   // Check for and eliminate duplicate PHI nodes in this block.
   2936   Changed |= EliminateDuplicatePHINodes(BB);
   2937 
   2938   // Check for and remove branches that will always cause undefined behavior.
   2939   Changed |= removeUndefIntroducingPredecessor(BB);
   2940 
   2941   // Merge basic blocks into their predecessor if there is only one distinct
   2942   // pred, and if there is only one distinct successor of the predecessor, and
   2943   // if there are no PHI nodes.
   2944   //
   2945   if (MergeBlockIntoPredecessor(BB))
   2946     return true;
   2947 
   2948   IRBuilder<> Builder(BB);
   2949 
   2950   // If there is a trivial two-entry PHI node in this basic block, and we can
   2951   // eliminate it, do so now.
   2952   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
   2953     if (PN->getNumIncomingValues() == 2)
   2954       Changed |= FoldTwoEntryPHINode(PN, TD);
   2955 
   2956   Builder.SetInsertPoint(BB->getTerminator());
   2957   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
   2958     if (BI->isUnconditional()) {
   2959       if (SimplifyUncondBranch(BI, Builder)) return true;
   2960     } else {
   2961       if (SimplifyCondBranch(BI, Builder)) return true;
   2962     }
   2963   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
   2964     if (SimplifyReturn(RI, Builder)) return true;
   2965   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
   2966     if (SimplifyResume(RI, Builder)) return true;
   2967   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
   2968     if (SimplifySwitch(SI, Builder)) return true;
   2969   } else if (UnreachableInst *UI =
   2970                dyn_cast<UnreachableInst>(BB->getTerminator())) {
   2971     if (SimplifyUnreachable(UI)) return true;
   2972   } else if (IndirectBrInst *IBI =
   2973                dyn_cast<IndirectBrInst>(BB->getTerminator())) {
   2974     if (SimplifyIndirectBr(IBI)) return true;
   2975   }
   2976 
   2977   return Changed;
   2978 }
   2979 
   2980 /// SimplifyCFG - This function is used to do simplification of a CFG.  For
   2981 /// example, it adjusts branches to branches to eliminate the extra hop, it
   2982 /// eliminates unreachable basic blocks, and does other "peephole" optimization
   2983 /// of the CFG.  It returns true if a modification was made.
   2984 ///
   2985 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
   2986   return SimplifyCFGOpt(TD).run(BB);
   2987 }
   2988