Home | History | Annotate | Download | only in VMCore
      1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the function verifier interface, that can be used for some
     11 // sanity checking of input to the system.
     12 //
     13 // Note that this does not provide full `Java style' security and verifications,
     14 // instead it just tries to ensure that code is well-formed.
     15 //
     16 //  * Both of a binary operator's parameters are of the same type
     17 //  * Verify that the indices of mem access instructions match other operands
     18 //  * Verify that arithmetic and other things are only performed on first-class
     19 //    types.  Verify that shifts & logicals only happen on integrals f.e.
     20 //  * All of the constants in a switch statement are of the correct type
     21 //  * The code is in valid SSA form
     22 //  * It should be illegal to put a label into any other type (like a structure)
     23 //    or to return one. [except constant arrays!]
     24 //  * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
     25 //  * PHI nodes must have an entry for each predecessor, with no extras.
     26 //  * PHI nodes must be the first thing in a basic block, all grouped together
     27 //  * PHI nodes must have at least one entry
     28 //  * All basic blocks should only end with terminator insts, not contain them
     29 //  * The entry node to a function must not have predecessors
     30 //  * All Instructions must be embedded into a basic block
     31 //  * Functions cannot take a void-typed parameter
     32 //  * Verify that a function's argument list agrees with it's declared type.
     33 //  * It is illegal to specify a name for a void value.
     34 //  * It is illegal to have a internal global value with no initializer
     35 //  * It is illegal to have a ret instruction that returns a value that does not
     36 //    agree with the function return value type.
     37 //  * Function call argument types match the function prototype
     38 //  * A landing pad is defined by a landingpad instruction, and can be jumped to
     39 //    only by the unwind edge of an invoke instruction.
     40 //  * A landingpad instruction must be the first non-PHI instruction in the
     41 //    block.
     42 //  * All landingpad instructions must use the same personality function with
     43 //    the same function.
     44 //  * All other things that are tested by asserts spread about the code...
     45 //
     46 //===----------------------------------------------------------------------===//
     47 
     48 #include "llvm/Analysis/Verifier.h"
     49 #include "llvm/CallingConv.h"
     50 #include "llvm/Constants.h"
     51 #include "llvm/DerivedTypes.h"
     52 #include "llvm/InlineAsm.h"
     53 #include "llvm/IntrinsicInst.h"
     54 #include "llvm/LLVMContext.h"
     55 #include "llvm/Metadata.h"
     56 #include "llvm/Module.h"
     57 #include "llvm/Pass.h"
     58 #include "llvm/PassManager.h"
     59 #include "llvm/Analysis/Dominators.h"
     60 #include "llvm/Assembly/Writer.h"
     61 #include "llvm/CodeGen/ValueTypes.h"
     62 #include "llvm/Support/CallSite.h"
     63 #include "llvm/Support/CFG.h"
     64 #include "llvm/Support/Debug.h"
     65 #include "llvm/Support/InstVisitor.h"
     66 #include "llvm/ADT/SetVector.h"
     67 #include "llvm/ADT/SmallPtrSet.h"
     68 #include "llvm/ADT/SmallVector.h"
     69 #include "llvm/ADT/StringExtras.h"
     70 #include "llvm/ADT/STLExtras.h"
     71 #include "llvm/Support/ErrorHandling.h"
     72 #include "llvm/Support/raw_ostream.h"
     73 #include <algorithm>
     74 #include <cstdarg>
     75 using namespace llvm;
     76 
     77 namespace {  // Anonymous namespace for class
     78   struct PreVerifier : public FunctionPass {
     79     static char ID; // Pass ID, replacement for typeid
     80 
     81     PreVerifier() : FunctionPass(ID) {
     82       initializePreVerifierPass(*PassRegistry::getPassRegistry());
     83     }
     84 
     85     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     86       AU.setPreservesAll();
     87     }
     88 
     89     // Check that the prerequisites for successful DominatorTree construction
     90     // are satisfied.
     91     bool runOnFunction(Function &F) {
     92       bool Broken = false;
     93 
     94       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
     95         if (I->empty() || !I->back().isTerminator()) {
     96           dbgs() << "Basic Block in function '" << F.getName()
     97                  << "' does not have terminator!\n";
     98           WriteAsOperand(dbgs(), I, true);
     99           dbgs() << "\n";
    100           Broken = true;
    101         }
    102       }
    103 
    104       if (Broken)
    105         report_fatal_error("Broken module, no Basic Block terminator!");
    106 
    107       return false;
    108     }
    109   };
    110 }
    111 
    112 char PreVerifier::ID = 0;
    113 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
    114                 false, false)
    115 static char &PreVerifyID = PreVerifier::ID;
    116 
    117 namespace {
    118   struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
    119     static char ID; // Pass ID, replacement for typeid
    120     bool Broken;          // Is this module found to be broken?
    121     VerifierFailureAction action;
    122                           // What to do if verification fails.
    123     Module *Mod;          // Module we are verifying right now
    124     LLVMContext *Context; // Context within which we are verifying
    125     DominatorTree *DT;    // Dominator Tree, caution can be null!
    126 
    127     std::string Messages;
    128     raw_string_ostream MessagesStr;
    129 
    130     /// InstInThisBlock - when verifying a basic block, keep track of all of the
    131     /// instructions we have seen so far.  This allows us to do efficient
    132     /// dominance checks for the case when an instruction has an operand that is
    133     /// an instruction in the same block.
    134     SmallPtrSet<Instruction*, 16> InstsInThisBlock;
    135 
    136     /// MDNodes - keep track of the metadata nodes that have been checked
    137     /// already.
    138     SmallPtrSet<MDNode *, 32> MDNodes;
    139 
    140     /// PersonalityFn - The personality function referenced by the
    141     /// LandingPadInsts. All LandingPadInsts within the same function must use
    142     /// the same personality function.
    143     const Value *PersonalityFn;
    144 
    145     Verifier()
    146       : FunctionPass(ID), Broken(false),
    147         action(AbortProcessAction), Mod(0), Context(0), DT(0),
    148         MessagesStr(Messages), PersonalityFn(0) {
    149       initializeVerifierPass(*PassRegistry::getPassRegistry());
    150     }
    151     explicit Verifier(VerifierFailureAction ctn)
    152       : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
    153         Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
    154       initializeVerifierPass(*PassRegistry::getPassRegistry());
    155     }
    156 
    157     bool doInitialization(Module &M) {
    158       Mod = &M;
    159       Context = &M.getContext();
    160 
    161       // We must abort before returning back to the pass manager, or else the
    162       // pass manager may try to run other passes on the broken module.
    163       return abortIfBroken();
    164     }
    165 
    166     bool runOnFunction(Function &F) {
    167       // Get dominator information if we are being run by PassManager
    168       DT = &getAnalysis<DominatorTree>();
    169 
    170       Mod = F.getParent();
    171       if (!Context) Context = &F.getContext();
    172 
    173       visit(F);
    174       InstsInThisBlock.clear();
    175       PersonalityFn = 0;
    176 
    177       // We must abort before returning back to the pass manager, or else the
    178       // pass manager may try to run other passes on the broken module.
    179       return abortIfBroken();
    180     }
    181 
    182     bool doFinalization(Module &M) {
    183       // Scan through, checking all of the external function's linkage now...
    184       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    185         visitGlobalValue(*I);
    186 
    187         // Check to make sure function prototypes are okay.
    188         if (I->isDeclaration()) visitFunction(*I);
    189       }
    190 
    191       for (Module::global_iterator I = M.global_begin(), E = M.global_end();
    192            I != E; ++I)
    193         visitGlobalVariable(*I);
    194 
    195       for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
    196            I != E; ++I)
    197         visitGlobalAlias(*I);
    198 
    199       for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    200            E = M.named_metadata_end(); I != E; ++I)
    201         visitNamedMDNode(*I);
    202 
    203       // If the module is broken, abort at this time.
    204       return abortIfBroken();
    205     }
    206 
    207     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    208       AU.setPreservesAll();
    209       AU.addRequiredID(PreVerifyID);
    210       AU.addRequired<DominatorTree>();
    211     }
    212 
    213     /// abortIfBroken - If the module is broken and we are supposed to abort on
    214     /// this condition, do so.
    215     ///
    216     bool abortIfBroken() {
    217       if (!Broken) return false;
    218       MessagesStr << "Broken module found, ";
    219       switch (action) {
    220       case AbortProcessAction:
    221         MessagesStr << "compilation aborted!\n";
    222         dbgs() << MessagesStr.str();
    223         // Client should choose different reaction if abort is not desired
    224         abort();
    225       case PrintMessageAction:
    226         MessagesStr << "verification continues.\n";
    227         dbgs() << MessagesStr.str();
    228         return false;
    229       case ReturnStatusAction:
    230         MessagesStr << "compilation terminated.\n";
    231         return true;
    232       }
    233       llvm_unreachable("Invalid action");
    234     }
    235 
    236 
    237     // Verification methods...
    238     void visitGlobalValue(GlobalValue &GV);
    239     void visitGlobalVariable(GlobalVariable &GV);
    240     void visitGlobalAlias(GlobalAlias &GA);
    241     void visitNamedMDNode(NamedMDNode &NMD);
    242     void visitMDNode(MDNode &MD, Function *F);
    243     void visitFunction(Function &F);
    244     void visitBasicBlock(BasicBlock &BB);
    245     using InstVisitor<Verifier>::visit;
    246 
    247     void visit(Instruction &I);
    248 
    249     void visitTruncInst(TruncInst &I);
    250     void visitZExtInst(ZExtInst &I);
    251     void visitSExtInst(SExtInst &I);
    252     void visitFPTruncInst(FPTruncInst &I);
    253     void visitFPExtInst(FPExtInst &I);
    254     void visitFPToUIInst(FPToUIInst &I);
    255     void visitFPToSIInst(FPToSIInst &I);
    256     void visitUIToFPInst(UIToFPInst &I);
    257     void visitSIToFPInst(SIToFPInst &I);
    258     void visitIntToPtrInst(IntToPtrInst &I);
    259     void visitPtrToIntInst(PtrToIntInst &I);
    260     void visitBitCastInst(BitCastInst &I);
    261     void visitPHINode(PHINode &PN);
    262     void visitBinaryOperator(BinaryOperator &B);
    263     void visitICmpInst(ICmpInst &IC);
    264     void visitFCmpInst(FCmpInst &FC);
    265     void visitExtractElementInst(ExtractElementInst &EI);
    266     void visitInsertElementInst(InsertElementInst &EI);
    267     void visitShuffleVectorInst(ShuffleVectorInst &EI);
    268     void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
    269     void visitCallInst(CallInst &CI);
    270     void visitInvokeInst(InvokeInst &II);
    271     void visitGetElementPtrInst(GetElementPtrInst &GEP);
    272     void visitLoadInst(LoadInst &LI);
    273     void visitStoreInst(StoreInst &SI);
    274     void verifyDominatesUse(Instruction &I, unsigned i);
    275     void visitInstruction(Instruction &I);
    276     void visitTerminatorInst(TerminatorInst &I);
    277     void visitBranchInst(BranchInst &BI);
    278     void visitReturnInst(ReturnInst &RI);
    279     void visitSwitchInst(SwitchInst &SI);
    280     void visitIndirectBrInst(IndirectBrInst &BI);
    281     void visitSelectInst(SelectInst &SI);
    282     void visitUserOp1(Instruction &I);
    283     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
    284     void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
    285     void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
    286     void visitAtomicRMWInst(AtomicRMWInst &RMWI);
    287     void visitFenceInst(FenceInst &FI);
    288     void visitAllocaInst(AllocaInst &AI);
    289     void visitExtractValueInst(ExtractValueInst &EVI);
    290     void visitInsertValueInst(InsertValueInst &IVI);
    291     void visitLandingPadInst(LandingPadInst &LPI);
    292 
    293     void VerifyCallSite(CallSite CS);
    294     bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
    295                           int VT, unsigned ArgNo, std::string &Suffix);
    296     void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
    297                                   unsigned RetNum, unsigned ParamNum, ...);
    298     void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    299                               bool isReturnValue, const Value *V);
    300     void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
    301                              const Value *V);
    302 
    303     void WriteValue(const Value *V) {
    304       if (!V) return;
    305       if (isa<Instruction>(V)) {
    306         MessagesStr << *V << '\n';
    307       } else {
    308         WriteAsOperand(MessagesStr, V, true, Mod);
    309         MessagesStr << '\n';
    310       }
    311     }
    312 
    313     void WriteType(Type *T) {
    314       if (!T) return;
    315       MessagesStr << ' ' << *T;
    316     }
    317 
    318 
    319     // CheckFailed - A check failed, so print out the condition and the message
    320     // that failed.  This provides a nice place to put a breakpoint if you want
    321     // to see why something is not correct.
    322     void CheckFailed(const Twine &Message,
    323                      const Value *V1 = 0, const Value *V2 = 0,
    324                      const Value *V3 = 0, const Value *V4 = 0) {
    325       MessagesStr << Message.str() << "\n";
    326       WriteValue(V1);
    327       WriteValue(V2);
    328       WriteValue(V3);
    329       WriteValue(V4);
    330       Broken = true;
    331     }
    332 
    333     void CheckFailed(const Twine &Message, const Value *V1,
    334                      Type *T2, const Value *V3 = 0) {
    335       MessagesStr << Message.str() << "\n";
    336       WriteValue(V1);
    337       WriteType(T2);
    338       WriteValue(V3);
    339       Broken = true;
    340     }
    341 
    342     void CheckFailed(const Twine &Message, Type *T1,
    343                      Type *T2 = 0, Type *T3 = 0) {
    344       MessagesStr << Message.str() << "\n";
    345       WriteType(T1);
    346       WriteType(T2);
    347       WriteType(T3);
    348       Broken = true;
    349     }
    350   };
    351 } // End anonymous namespace
    352 
    353 char Verifier::ID = 0;
    354 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
    355 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
    356 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    357 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
    358 
    359 // Assert - We know that cond should be true, if not print an error message.
    360 #define Assert(C, M) \
    361   do { if (!(C)) { CheckFailed(M); return; } } while (0)
    362 #define Assert1(C, M, V1) \
    363   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
    364 #define Assert2(C, M, V1, V2) \
    365   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
    366 #define Assert3(C, M, V1, V2, V3) \
    367   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
    368 #define Assert4(C, M, V1, V2, V3, V4) \
    369   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
    370 
    371 void Verifier::visit(Instruction &I) {
    372   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
    373     Assert1(I.getOperand(i) != 0, "Operand is null", &I);
    374   InstVisitor<Verifier>::visit(I);
    375 }
    376 
    377 
    378 void Verifier::visitGlobalValue(GlobalValue &GV) {
    379   Assert1(!GV.isDeclaration() ||
    380           GV.isMaterializable() ||
    381           GV.hasExternalLinkage() ||
    382           GV.hasDLLImportLinkage() ||
    383           GV.hasExternalWeakLinkage() ||
    384           (isa<GlobalAlias>(GV) &&
    385            (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
    386   "Global is external, but doesn't have external or dllimport or weak linkage!",
    387           &GV);
    388 
    389   Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
    390           "Global is marked as dllimport, but not external", &GV);
    391 
    392   Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
    393           "Only global variables can have appending linkage!", &GV);
    394 
    395   if (GV.hasAppendingLinkage()) {
    396     GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
    397     Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
    398             "Only global arrays can have appending linkage!", GVar);
    399   }
    400 
    401   Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
    402           "linker_private_weak_def_auto can only have default visibility!",
    403           &GV);
    404 }
    405 
    406 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
    407   if (GV.hasInitializer()) {
    408     Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
    409             "Global variable initializer type does not match global "
    410             "variable type!", &GV);
    411 
    412     // If the global has common linkage, it must have a zero initializer and
    413     // cannot be constant.
    414     if (GV.hasCommonLinkage()) {
    415       Assert1(GV.getInitializer()->isNullValue(),
    416               "'common' global must have a zero initializer!", &GV);
    417       Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
    418               &GV);
    419     }
    420   } else {
    421     Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
    422             GV.hasExternalWeakLinkage(),
    423             "invalid linkage type for global declaration", &GV);
    424   }
    425 
    426   if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
    427                        GV.getName() == "llvm.global_dtors")) {
    428     Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
    429             "invalid linkage for intrinsic global variable", &GV);
    430     // Don't worry about emitting an error for it not being an array,
    431     // visitGlobalValue will complain on appending non-array.
    432     if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
    433       StructType *STy = dyn_cast<StructType>(ATy->getElementType());
    434       PointerType *FuncPtrTy =
    435           FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
    436       Assert1(STy && STy->getNumElements() == 2 &&
    437               STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
    438               STy->getTypeAtIndex(1) == FuncPtrTy,
    439               "wrong type for intrinsic global variable", &GV);
    440     }
    441   }
    442 
    443   visitGlobalValue(GV);
    444 }
    445 
    446 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
    447   Assert1(!GA.getName().empty(),
    448           "Alias name cannot be empty!", &GA);
    449   Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
    450           GA.hasWeakLinkage(),
    451           "Alias should have external or external weak linkage!", &GA);
    452   Assert1(GA.getAliasee(),
    453           "Aliasee cannot be NULL!", &GA);
    454   Assert1(GA.getType() == GA.getAliasee()->getType(),
    455           "Alias and aliasee types should match!", &GA);
    456   Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
    457 
    458   if (!isa<GlobalValue>(GA.getAliasee())) {
    459     const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
    460     Assert1(CE &&
    461             (CE->getOpcode() == Instruction::BitCast ||
    462              CE->getOpcode() == Instruction::GetElementPtr) &&
    463             isa<GlobalValue>(CE->getOperand(0)),
    464             "Aliasee should be either GlobalValue or bitcast of GlobalValue",
    465             &GA);
    466   }
    467 
    468   const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
    469   Assert1(Aliasee,
    470           "Aliasing chain should end with function or global variable", &GA);
    471 
    472   visitGlobalValue(GA);
    473 }
    474 
    475 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
    476   for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
    477     MDNode *MD = NMD.getOperand(i);
    478     if (!MD)
    479       continue;
    480 
    481     Assert1(!MD->isFunctionLocal(),
    482             "Named metadata operand cannot be function local!", MD);
    483     visitMDNode(*MD, 0);
    484   }
    485 }
    486 
    487 void Verifier::visitMDNode(MDNode &MD, Function *F) {
    488   // Only visit each node once.  Metadata can be mutually recursive, so this
    489   // avoids infinite recursion here, as well as being an optimization.
    490   if (!MDNodes.insert(&MD))
    491     return;
    492 
    493   for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
    494     Value *Op = MD.getOperand(i);
    495     if (!Op)
    496       continue;
    497     if (isa<Constant>(Op) || isa<MDString>(Op))
    498       continue;
    499     if (MDNode *N = dyn_cast<MDNode>(Op)) {
    500       Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
    501               "Global metadata operand cannot be function local!", &MD, N);
    502       visitMDNode(*N, F);
    503       continue;
    504     }
    505     Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
    506 
    507     // If this was an instruction, bb, or argument, verify that it is in the
    508     // function that we expect.
    509     Function *ActualF = 0;
    510     if (Instruction *I = dyn_cast<Instruction>(Op))
    511       ActualF = I->getParent()->getParent();
    512     else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
    513       ActualF = BB->getParent();
    514     else if (Argument *A = dyn_cast<Argument>(Op))
    515       ActualF = A->getParent();
    516     assert(ActualF && "Unimplemented function local metadata case!");
    517 
    518     Assert2(ActualF == F, "function-local metadata used in wrong function",
    519             &MD, Op);
    520   }
    521 }
    522 
    523 // VerifyParameterAttrs - Check the given attributes for an argument or return
    524 // value of the specified type.  The value V is printed in error messages.
    525 void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
    526                                     bool isReturnValue, const Value *V) {
    527   if (Attrs == Attribute::None)
    528     return;
    529 
    530   Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
    531   Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
    532           " only applies to the function!", V);
    533 
    534   if (isReturnValue) {
    535     Attributes RetI = Attrs & Attribute::ParameterOnly;
    536     Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
    537             " does not apply to return values!", V);
    538   }
    539 
    540   for (unsigned i = 0;
    541        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    542     Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
    543     Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
    544             Attribute::getAsString(MutI) + " are incompatible!", V);
    545   }
    546 
    547   Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
    548   Assert1(!TypeI, "Wrong type for attribute " +
    549           Attribute::getAsString(TypeI), V);
    550 
    551   Attributes ByValI = Attrs & Attribute::ByVal;
    552   if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
    553     Assert1(!ByValI || PTy->getElementType()->isSized(),
    554             "Attribute " + Attribute::getAsString(ByValI) +
    555             " does not support unsized types!", V);
    556   } else {
    557     Assert1(!ByValI,
    558             "Attribute " + Attribute::getAsString(ByValI) +
    559             " only applies to parameters with pointer type!", V);
    560   }
    561 }
    562 
    563 // VerifyFunctionAttrs - Check parameter attributes against a function type.
    564 // The value V is printed in error messages.
    565 void Verifier::VerifyFunctionAttrs(FunctionType *FT,
    566                                    const AttrListPtr &Attrs,
    567                                    const Value *V) {
    568   if (Attrs.isEmpty())
    569     return;
    570 
    571   bool SawNest = false;
    572 
    573   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
    574     const AttributeWithIndex &Attr = Attrs.getSlot(i);
    575 
    576     Type *Ty;
    577     if (Attr.Index == 0)
    578       Ty = FT->getReturnType();
    579     else if (Attr.Index-1 < FT->getNumParams())
    580       Ty = FT->getParamType(Attr.Index-1);
    581     else
    582       break;  // VarArgs attributes, verified elsewhere.
    583 
    584     VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
    585 
    586     if (Attr.Attrs & Attribute::Nest) {
    587       Assert1(!SawNest, "More than one parameter has attribute nest!", V);
    588       SawNest = true;
    589     }
    590 
    591     if (Attr.Attrs & Attribute::StructRet)
    592       Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
    593   }
    594 
    595   Attributes FAttrs = Attrs.getFnAttributes();
    596   Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
    597   Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
    598           " does not apply to the function!", V);
    599 
    600   for (unsigned i = 0;
    601        i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
    602     Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
    603     Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
    604             Attribute::getAsString(MutI) + " are incompatible!", V);
    605   }
    606 }
    607 
    608 static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
    609   if (Attrs.isEmpty())
    610     return true;
    611 
    612   unsigned LastSlot = Attrs.getNumSlots() - 1;
    613   unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
    614   if (LastIndex <= Params
    615       || (LastIndex == (unsigned)~0
    616           && (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
    617     return true;
    618 
    619   return false;
    620 }
    621 
    622 // visitFunction - Verify that a function is ok.
    623 //
    624 void Verifier::visitFunction(Function &F) {
    625   // Check function arguments.
    626   FunctionType *FT = F.getFunctionType();
    627   unsigned NumArgs = F.arg_size();
    628 
    629   Assert1(Context == &F.getContext(),
    630           "Function context does not match Module context!", &F);
    631 
    632   Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
    633   Assert2(FT->getNumParams() == NumArgs,
    634           "# formal arguments must match # of arguments for function type!",
    635           &F, FT);
    636   Assert1(F.getReturnType()->isFirstClassType() ||
    637           F.getReturnType()->isVoidTy() ||
    638           F.getReturnType()->isStructTy(),
    639           "Functions cannot return aggregate values!", &F);
    640 
    641   Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
    642           "Invalid struct return type!", &F);
    643 
    644   const AttrListPtr &Attrs = F.getAttributes();
    645 
    646   Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
    647           "Attributes after last parameter!", &F);
    648 
    649   // Check function attributes.
    650   VerifyFunctionAttrs(FT, Attrs, &F);
    651 
    652   // Check that this function meets the restrictions on this calling convention.
    653   switch (F.getCallingConv()) {
    654   default:
    655     break;
    656   case CallingConv::C:
    657     break;
    658   case CallingConv::Fast:
    659   case CallingConv::Cold:
    660   case CallingConv::X86_FastCall:
    661   case CallingConv::X86_ThisCall:
    662   case CallingConv::PTX_Kernel:
    663   case CallingConv::PTX_Device:
    664     Assert1(!F.isVarArg(),
    665             "Varargs functions must have C calling conventions!", &F);
    666     break;
    667   }
    668 
    669   bool isLLVMdotName = F.getName().size() >= 5 &&
    670                        F.getName().substr(0, 5) == "llvm.";
    671 
    672   // Check that the argument values match the function type for this function...
    673   unsigned i = 0;
    674   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
    675        I != E; ++I, ++i) {
    676     Assert2(I->getType() == FT->getParamType(i),
    677             "Argument value does not match function argument type!",
    678             I, FT->getParamType(i));
    679     Assert1(I->getType()->isFirstClassType(),
    680             "Function arguments must have first-class types!", I);
    681     if (!isLLVMdotName)
    682       Assert2(!I->getType()->isMetadataTy(),
    683               "Function takes metadata but isn't an intrinsic", I, &F);
    684   }
    685 
    686   if (F.isMaterializable()) {
    687     // Function has a body somewhere we can't see.
    688   } else if (F.isDeclaration()) {
    689     Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
    690             F.hasExternalWeakLinkage(),
    691             "invalid linkage type for function declaration", &F);
    692   } else {
    693     // Verify that this function (which has a body) is not named "llvm.*".  It
    694     // is not legal to define intrinsics.
    695     Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
    696 
    697     // Check the entry node
    698     BasicBlock *Entry = &F.getEntryBlock();
    699     Assert1(pred_begin(Entry) == pred_end(Entry),
    700             "Entry block to function must not have predecessors!", Entry);
    701 
    702     // The address of the entry block cannot be taken, unless it is dead.
    703     if (Entry->hasAddressTaken()) {
    704       Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
    705               "blockaddress may not be used with the entry block!", Entry);
    706     }
    707   }
    708 
    709   // If this function is actually an intrinsic, verify that it is only used in
    710   // direct call/invokes, never having its "address taken".
    711   if (F.getIntrinsicID()) {
    712     const User *U;
    713     if (F.hasAddressTaken(&U))
    714       Assert1(0, "Invalid user of intrinsic instruction!", U);
    715   }
    716 }
    717 
    718 // verifyBasicBlock - Verify that a basic block is well formed...
    719 //
    720 void Verifier::visitBasicBlock(BasicBlock &BB) {
    721   InstsInThisBlock.clear();
    722 
    723   // Ensure that basic blocks have terminators!
    724   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
    725 
    726   // Check constraints that this basic block imposes on all of the PHI nodes in
    727   // it.
    728   if (isa<PHINode>(BB.front())) {
    729     SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
    730     SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
    731     std::sort(Preds.begin(), Preds.end());
    732     PHINode *PN;
    733     for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
    734       // Ensure that PHI nodes have at least one entry!
    735       Assert1(PN->getNumIncomingValues() != 0,
    736               "PHI nodes must have at least one entry.  If the block is dead, "
    737               "the PHI should be removed!", PN);
    738       Assert1(PN->getNumIncomingValues() == Preds.size(),
    739               "PHINode should have one entry for each predecessor of its "
    740               "parent basic block!", PN);
    741 
    742       // Get and sort all incoming values in the PHI node...
    743       Values.clear();
    744       Values.reserve(PN->getNumIncomingValues());
    745       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    746         Values.push_back(std::make_pair(PN->getIncomingBlock(i),
    747                                         PN->getIncomingValue(i)));
    748       std::sort(Values.begin(), Values.end());
    749 
    750       for (unsigned i = 0, e = Values.size(); i != e; ++i) {
    751         // Check to make sure that if there is more than one entry for a
    752         // particular basic block in this PHI node, that the incoming values are
    753         // all identical.
    754         //
    755         Assert4(i == 0 || Values[i].first  != Values[i-1].first ||
    756                 Values[i].second == Values[i-1].second,
    757                 "PHI node has multiple entries for the same basic block with "
    758                 "different incoming values!", PN, Values[i].first,
    759                 Values[i].second, Values[i-1].second);
    760 
    761         // Check to make sure that the predecessors and PHI node entries are
    762         // matched up.
    763         Assert3(Values[i].first == Preds[i],
    764                 "PHI node entries do not match predecessors!", PN,
    765                 Values[i].first, Preds[i]);
    766       }
    767     }
    768   }
    769 }
    770 
    771 void Verifier::visitTerminatorInst(TerminatorInst &I) {
    772   // Ensure that terminators only exist at the end of the basic block.
    773   Assert1(&I == I.getParent()->getTerminator(),
    774           "Terminator found in the middle of a basic block!", I.getParent());
    775   visitInstruction(I);
    776 }
    777 
    778 void Verifier::visitBranchInst(BranchInst &BI) {
    779   if (BI.isConditional()) {
    780     Assert2(BI.getCondition()->getType()->isIntegerTy(1),
    781             "Branch condition is not 'i1' type!", &BI, BI.getCondition());
    782   }
    783   visitTerminatorInst(BI);
    784 }
    785 
    786 void Verifier::visitReturnInst(ReturnInst &RI) {
    787   Function *F = RI.getParent()->getParent();
    788   unsigned N = RI.getNumOperands();
    789   if (F->getReturnType()->isVoidTy())
    790     Assert2(N == 0,
    791             "Found return instr that returns non-void in Function of void "
    792             "return type!", &RI, F->getReturnType());
    793   else
    794     Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
    795             "Function return type does not match operand "
    796             "type of return inst!", &RI, F->getReturnType());
    797 
    798   // Check to make sure that the return value has necessary properties for
    799   // terminators...
    800   visitTerminatorInst(RI);
    801 }
    802 
    803 void Verifier::visitSwitchInst(SwitchInst &SI) {
    804   // Check to make sure that all of the constants in the switch instruction
    805   // have the same type as the switched-on value.
    806   Type *SwitchTy = SI.getCondition()->getType();
    807   SmallPtrSet<ConstantInt*, 32> Constants;
    808   for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
    809     Assert1(i.getCaseValue()->getType() == SwitchTy,
    810             "Switch constants must all be same type as switch value!", &SI);
    811     Assert2(Constants.insert(i.getCaseValue()),
    812             "Duplicate integer as switch case", &SI, i.getCaseValue());
    813   }
    814 
    815   visitTerminatorInst(SI);
    816 }
    817 
    818 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
    819   Assert1(BI.getAddress()->getType()->isPointerTy(),
    820           "Indirectbr operand must have pointer type!", &BI);
    821   for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
    822     Assert1(BI.getDestination(i)->getType()->isLabelTy(),
    823             "Indirectbr destinations must all have pointer type!", &BI);
    824 
    825   visitTerminatorInst(BI);
    826 }
    827 
    828 void Verifier::visitSelectInst(SelectInst &SI) {
    829   Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
    830                                           SI.getOperand(2)),
    831           "Invalid operands for select instruction!", &SI);
    832 
    833   Assert1(SI.getTrueValue()->getType() == SI.getType(),
    834           "Select values must have same type as select instruction!", &SI);
    835   visitInstruction(SI);
    836 }
    837 
    838 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
    839 /// a pass, if any exist, it's an error.
    840 ///
    841 void Verifier::visitUserOp1(Instruction &I) {
    842   Assert1(0, "User-defined operators should not live outside of a pass!", &I);
    843 }
    844 
    845 void Verifier::visitTruncInst(TruncInst &I) {
    846   // Get the source and destination types
    847   Type *SrcTy = I.getOperand(0)->getType();
    848   Type *DestTy = I.getType();
    849 
    850   // Get the size of the types in bits, we'll need this later
    851   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    852   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    853 
    854   Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
    855   Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
    856   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    857           "trunc source and destination must both be a vector or neither", &I);
    858   Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
    859 
    860   visitInstruction(I);
    861 }
    862 
    863 void Verifier::visitZExtInst(ZExtInst &I) {
    864   // Get the source and destination types
    865   Type *SrcTy = I.getOperand(0)->getType();
    866   Type *DestTy = I.getType();
    867 
    868   // Get the size of the types in bits, we'll need this later
    869   Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
    870   Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
    871   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    872           "zext source and destination must both be a vector or neither", &I);
    873   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    874   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    875 
    876   Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
    877 
    878   visitInstruction(I);
    879 }
    880 
    881 void Verifier::visitSExtInst(SExtInst &I) {
    882   // Get the source and destination types
    883   Type *SrcTy = I.getOperand(0)->getType();
    884   Type *DestTy = I.getType();
    885 
    886   // Get the size of the types in bits, we'll need this later
    887   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    888   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    889 
    890   Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
    891   Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
    892   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    893           "sext source and destination must both be a vector or neither", &I);
    894   Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
    895 
    896   visitInstruction(I);
    897 }
    898 
    899 void Verifier::visitFPTruncInst(FPTruncInst &I) {
    900   // Get the source and destination types
    901   Type *SrcTy = I.getOperand(0)->getType();
    902   Type *DestTy = I.getType();
    903   // Get the size of the types in bits, we'll need this later
    904   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    905   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    906 
    907   Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
    908   Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
    909   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    910           "fptrunc source and destination must both be a vector or neither",&I);
    911   Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
    912 
    913   visitInstruction(I);
    914 }
    915 
    916 void Verifier::visitFPExtInst(FPExtInst &I) {
    917   // Get the source and destination types
    918   Type *SrcTy = I.getOperand(0)->getType();
    919   Type *DestTy = I.getType();
    920 
    921   // Get the size of the types in bits, we'll need this later
    922   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
    923   unsigned DestBitSize = DestTy->getScalarSizeInBits();
    924 
    925   Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
    926   Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
    927   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
    928           "fpext source and destination must both be a vector or neither", &I);
    929   Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
    930 
    931   visitInstruction(I);
    932 }
    933 
    934 void Verifier::visitUIToFPInst(UIToFPInst &I) {
    935   // Get the source and destination types
    936   Type *SrcTy = I.getOperand(0)->getType();
    937   Type *DestTy = I.getType();
    938 
    939   bool SrcVec = SrcTy->isVectorTy();
    940   bool DstVec = DestTy->isVectorTy();
    941 
    942   Assert1(SrcVec == DstVec,
    943           "UIToFP source and dest must both be vector or scalar", &I);
    944   Assert1(SrcTy->isIntOrIntVectorTy(),
    945           "UIToFP source must be integer or integer vector", &I);
    946   Assert1(DestTy->isFPOrFPVectorTy(),
    947           "UIToFP result must be FP or FP vector", &I);
    948 
    949   if (SrcVec && DstVec)
    950     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    951             cast<VectorType>(DestTy)->getNumElements(),
    952             "UIToFP source and dest vector length mismatch", &I);
    953 
    954   visitInstruction(I);
    955 }
    956 
    957 void Verifier::visitSIToFPInst(SIToFPInst &I) {
    958   // Get the source and destination types
    959   Type *SrcTy = I.getOperand(0)->getType();
    960   Type *DestTy = I.getType();
    961 
    962   bool SrcVec = SrcTy->isVectorTy();
    963   bool DstVec = DestTy->isVectorTy();
    964 
    965   Assert1(SrcVec == DstVec,
    966           "SIToFP source and dest must both be vector or scalar", &I);
    967   Assert1(SrcTy->isIntOrIntVectorTy(),
    968           "SIToFP source must be integer or integer vector", &I);
    969   Assert1(DestTy->isFPOrFPVectorTy(),
    970           "SIToFP result must be FP or FP vector", &I);
    971 
    972   if (SrcVec && DstVec)
    973     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    974             cast<VectorType>(DestTy)->getNumElements(),
    975             "SIToFP source and dest vector length mismatch", &I);
    976 
    977   visitInstruction(I);
    978 }
    979 
    980 void Verifier::visitFPToUIInst(FPToUIInst &I) {
    981   // Get the source and destination types
    982   Type *SrcTy = I.getOperand(0)->getType();
    983   Type *DestTy = I.getType();
    984 
    985   bool SrcVec = SrcTy->isVectorTy();
    986   bool DstVec = DestTy->isVectorTy();
    987 
    988   Assert1(SrcVec == DstVec,
    989           "FPToUI source and dest must both be vector or scalar", &I);
    990   Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
    991           &I);
    992   Assert1(DestTy->isIntOrIntVectorTy(),
    993           "FPToUI result must be integer or integer vector", &I);
    994 
    995   if (SrcVec && DstVec)
    996     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
    997             cast<VectorType>(DestTy)->getNumElements(),
    998             "FPToUI source and dest vector length mismatch", &I);
    999 
   1000   visitInstruction(I);
   1001 }
   1002 
   1003 void Verifier::visitFPToSIInst(FPToSIInst &I) {
   1004   // Get the source and destination types
   1005   Type *SrcTy = I.getOperand(0)->getType();
   1006   Type *DestTy = I.getType();
   1007 
   1008   bool SrcVec = SrcTy->isVectorTy();
   1009   bool DstVec = DestTy->isVectorTy();
   1010 
   1011   Assert1(SrcVec == DstVec,
   1012           "FPToSI source and dest must both be vector or scalar", &I);
   1013   Assert1(SrcTy->isFPOrFPVectorTy(),
   1014           "FPToSI source must be FP or FP vector", &I);
   1015   Assert1(DestTy->isIntOrIntVectorTy(),
   1016           "FPToSI result must be integer or integer vector", &I);
   1017 
   1018   if (SrcVec && DstVec)
   1019     Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
   1020             cast<VectorType>(DestTy)->getNumElements(),
   1021             "FPToSI source and dest vector length mismatch", &I);
   1022 
   1023   visitInstruction(I);
   1024 }
   1025 
   1026 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
   1027   // Get the source and destination types
   1028   Type *SrcTy = I.getOperand(0)->getType();
   1029   Type *DestTy = I.getType();
   1030 
   1031   Assert1(SrcTy->getScalarType()->isPointerTy(),
   1032           "PtrToInt source must be pointer", &I);
   1033   Assert1(DestTy->getScalarType()->isIntegerTy(),
   1034           "PtrToInt result must be integral", &I);
   1035   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1036           "PtrToInt type mismatch", &I);
   1037 
   1038   if (SrcTy->isVectorTy()) {
   1039     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1040     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1041     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1042           "PtrToInt Vector width mismatch", &I);
   1043   }
   1044 
   1045   visitInstruction(I);
   1046 }
   1047 
   1048 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
   1049   // Get the source and destination types
   1050   Type *SrcTy = I.getOperand(0)->getType();
   1051   Type *DestTy = I.getType();
   1052 
   1053   Assert1(SrcTy->getScalarType()->isIntegerTy(),
   1054           "IntToPtr source must be an integral", &I);
   1055   Assert1(DestTy->getScalarType()->isPointerTy(),
   1056           "IntToPtr result must be a pointer",&I);
   1057   Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
   1058           "IntToPtr type mismatch", &I);
   1059   if (SrcTy->isVectorTy()) {
   1060     VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
   1061     VectorType *VDest = dyn_cast<VectorType>(DestTy);
   1062     Assert1(VSrc->getNumElements() == VDest->getNumElements(),
   1063           "IntToPtr Vector width mismatch", &I);
   1064   }
   1065   visitInstruction(I);
   1066 }
   1067 
   1068 void Verifier::visitBitCastInst(BitCastInst &I) {
   1069   // Get the source and destination types
   1070   Type *SrcTy = I.getOperand(0)->getType();
   1071   Type *DestTy = I.getType();
   1072 
   1073   // Get the size of the types in bits, we'll need this later
   1074   unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
   1075   unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
   1076 
   1077   // BitCast implies a no-op cast of type only. No bits change.
   1078   // However, you can't cast pointers to anything but pointers.
   1079   Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
   1080           "Bitcast requires both operands to be pointer or neither", &I);
   1081   Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
   1082 
   1083   // Disallow aggregates.
   1084   Assert1(!SrcTy->isAggregateType(),
   1085           "Bitcast operand must not be aggregate", &I);
   1086   Assert1(!DestTy->isAggregateType(),
   1087           "Bitcast type must not be aggregate", &I);
   1088 
   1089   visitInstruction(I);
   1090 }
   1091 
   1092 /// visitPHINode - Ensure that a PHI node is well formed.
   1093 ///
   1094 void Verifier::visitPHINode(PHINode &PN) {
   1095   // Ensure that the PHI nodes are all grouped together at the top of the block.
   1096   // This can be tested by checking whether the instruction before this is
   1097   // either nonexistent (because this is begin()) or is a PHI node.  If not,
   1098   // then there is some other instruction before a PHI.
   1099   Assert2(&PN == &PN.getParent()->front() ||
   1100           isa<PHINode>(--BasicBlock::iterator(&PN)),
   1101           "PHI nodes not grouped at top of basic block!",
   1102           &PN, PN.getParent());
   1103 
   1104   // Check that all of the values of the PHI node have the same type as the
   1105   // result, and that the incoming blocks are really basic blocks.
   1106   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1107     Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
   1108             "PHI node operands are not the same type as the result!", &PN);
   1109   }
   1110 
   1111   // All other PHI node constraints are checked in the visitBasicBlock method.
   1112 
   1113   visitInstruction(PN);
   1114 }
   1115 
   1116 void Verifier::VerifyCallSite(CallSite CS) {
   1117   Instruction *I = CS.getInstruction();
   1118 
   1119   Assert1(CS.getCalledValue()->getType()->isPointerTy(),
   1120           "Called function must be a pointer!", I);
   1121   PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
   1122 
   1123   Assert1(FPTy->getElementType()->isFunctionTy(),
   1124           "Called function is not pointer to function type!", I);
   1125   FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
   1126 
   1127   // Verify that the correct number of arguments are being passed
   1128   if (FTy->isVarArg())
   1129     Assert1(CS.arg_size() >= FTy->getNumParams(),
   1130             "Called function requires more parameters than were provided!",I);
   1131   else
   1132     Assert1(CS.arg_size() == FTy->getNumParams(),
   1133             "Incorrect number of arguments passed to called function!", I);
   1134 
   1135   // Verify that all arguments to the call match the function type.
   1136   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1137     Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
   1138             "Call parameter type does not match function signature!",
   1139             CS.getArgument(i), FTy->getParamType(i), I);
   1140 
   1141   const AttrListPtr &Attrs = CS.getAttributes();
   1142 
   1143   Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
   1144           "Attributes after last parameter!", I);
   1145 
   1146   // Verify call attributes.
   1147   VerifyFunctionAttrs(FTy, Attrs, I);
   1148 
   1149   if (FTy->isVarArg())
   1150     // Check attributes on the varargs part.
   1151     for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
   1152       Attributes Attr = Attrs.getParamAttributes(Idx);
   1153 
   1154       VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
   1155 
   1156       Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
   1157       Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
   1158               " cannot be used for vararg call arguments!", I);
   1159     }
   1160 
   1161   // Verify that there's no metadata unless it's a direct call to an intrinsic.
   1162   if (CS.getCalledFunction() == 0 ||
   1163       !CS.getCalledFunction()->getName().startswith("llvm.")) {
   1164     for (FunctionType::param_iterator PI = FTy->param_begin(),
   1165            PE = FTy->param_end(); PI != PE; ++PI)
   1166       Assert1(!(*PI)->isMetadataTy(),
   1167               "Function has metadata parameter but isn't an intrinsic", I);
   1168   }
   1169 
   1170   visitInstruction(*I);
   1171 }
   1172 
   1173 void Verifier::visitCallInst(CallInst &CI) {
   1174   VerifyCallSite(&CI);
   1175 
   1176   if (Function *F = CI.getCalledFunction())
   1177     if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
   1178       visitIntrinsicFunctionCall(ID, CI);
   1179 }
   1180 
   1181 void Verifier::visitInvokeInst(InvokeInst &II) {
   1182   VerifyCallSite(&II);
   1183 
   1184   // Verify that there is a landingpad instruction as the first non-PHI
   1185   // instruction of the 'unwind' destination.
   1186   Assert1(II.getUnwindDest()->isLandingPad(),
   1187           "The unwind destination does not have a landingpad instruction!",&II);
   1188 
   1189   visitTerminatorInst(II);
   1190 }
   1191 
   1192 /// visitBinaryOperator - Check that both arguments to the binary operator are
   1193 /// of the same type!
   1194 ///
   1195 void Verifier::visitBinaryOperator(BinaryOperator &B) {
   1196   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
   1197           "Both operands to a binary operator are not of the same type!", &B);
   1198 
   1199   switch (B.getOpcode()) {
   1200   // Check that integer arithmetic operators are only used with
   1201   // integral operands.
   1202   case Instruction::Add:
   1203   case Instruction::Sub:
   1204   case Instruction::Mul:
   1205   case Instruction::SDiv:
   1206   case Instruction::UDiv:
   1207   case Instruction::SRem:
   1208   case Instruction::URem:
   1209     Assert1(B.getType()->isIntOrIntVectorTy(),
   1210             "Integer arithmetic operators only work with integral types!", &B);
   1211     Assert1(B.getType() == B.getOperand(0)->getType(),
   1212             "Integer arithmetic operators must have same type "
   1213             "for operands and result!", &B);
   1214     break;
   1215   // Check that floating-point arithmetic operators are only used with
   1216   // floating-point operands.
   1217   case Instruction::FAdd:
   1218   case Instruction::FSub:
   1219   case Instruction::FMul:
   1220   case Instruction::FDiv:
   1221   case Instruction::FRem:
   1222     Assert1(B.getType()->isFPOrFPVectorTy(),
   1223             "Floating-point arithmetic operators only work with "
   1224             "floating-point types!", &B);
   1225     Assert1(B.getType() == B.getOperand(0)->getType(),
   1226             "Floating-point arithmetic operators must have same type "
   1227             "for operands and result!", &B);
   1228     break;
   1229   // Check that logical operators are only used with integral operands.
   1230   case Instruction::And:
   1231   case Instruction::Or:
   1232   case Instruction::Xor:
   1233     Assert1(B.getType()->isIntOrIntVectorTy(),
   1234             "Logical operators only work with integral types!", &B);
   1235     Assert1(B.getType() == B.getOperand(0)->getType(),
   1236             "Logical operators must have same type for operands and result!",
   1237             &B);
   1238     break;
   1239   case Instruction::Shl:
   1240   case Instruction::LShr:
   1241   case Instruction::AShr:
   1242     Assert1(B.getType()->isIntOrIntVectorTy(),
   1243             "Shifts only work with integral types!", &B);
   1244     Assert1(B.getType() == B.getOperand(0)->getType(),
   1245             "Shift return type must be same as operands!", &B);
   1246     break;
   1247   default:
   1248     llvm_unreachable("Unknown BinaryOperator opcode!");
   1249   }
   1250 
   1251   visitInstruction(B);
   1252 }
   1253 
   1254 void Verifier::visitICmpInst(ICmpInst &IC) {
   1255   // Check that the operands are the same type
   1256   Type *Op0Ty = IC.getOperand(0)->getType();
   1257   Type *Op1Ty = IC.getOperand(1)->getType();
   1258   Assert1(Op0Ty == Op1Ty,
   1259           "Both operands to ICmp instruction are not of the same type!", &IC);
   1260   // Check that the operands are the right type
   1261   Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
   1262           "Invalid operand types for ICmp instruction", &IC);
   1263   // Check that the predicate is valid.
   1264   Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
   1265           IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
   1266           "Invalid predicate in ICmp instruction!", &IC);
   1267 
   1268   visitInstruction(IC);
   1269 }
   1270 
   1271 void Verifier::visitFCmpInst(FCmpInst &FC) {
   1272   // Check that the operands are the same type
   1273   Type *Op0Ty = FC.getOperand(0)->getType();
   1274   Type *Op1Ty = FC.getOperand(1)->getType();
   1275   Assert1(Op0Ty == Op1Ty,
   1276           "Both operands to FCmp instruction are not of the same type!", &FC);
   1277   // Check that the operands are the right type
   1278   Assert1(Op0Ty->isFPOrFPVectorTy(),
   1279           "Invalid operand types for FCmp instruction", &FC);
   1280   // Check that the predicate is valid.
   1281   Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
   1282           FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
   1283           "Invalid predicate in FCmp instruction!", &FC);
   1284 
   1285   visitInstruction(FC);
   1286 }
   1287 
   1288 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
   1289   Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
   1290                                               EI.getOperand(1)),
   1291           "Invalid extractelement operands!", &EI);
   1292   visitInstruction(EI);
   1293 }
   1294 
   1295 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
   1296   Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
   1297                                              IE.getOperand(1),
   1298                                              IE.getOperand(2)),
   1299           "Invalid insertelement operands!", &IE);
   1300   visitInstruction(IE);
   1301 }
   1302 
   1303 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
   1304   Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
   1305                                              SV.getOperand(2)),
   1306           "Invalid shufflevector operands!", &SV);
   1307   visitInstruction(SV);
   1308 }
   1309 
   1310 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1311   Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
   1312 
   1313   Assert1(isa<PointerType>(TargetTy),
   1314     "GEP base pointer is not a vector or a vector of pointers", &GEP);
   1315   Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
   1316           "GEP into unsized type!", &GEP);
   1317 
   1318   SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
   1319   Type *ElTy =
   1320     GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
   1321   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
   1322 
   1323   if (GEP.getPointerOperandType()->isPointerTy()) {
   1324     // Validate GEPs with scalar indices.
   1325     Assert2(GEP.getType()->isPointerTy() &&
   1326            cast<PointerType>(GEP.getType())->getElementType() == ElTy,
   1327            "GEP is not of right type for indices!", &GEP, ElTy);
   1328   } else {
   1329     // Validate GEPs with a vector index.
   1330     Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP);
   1331     Value *Index = Idxs[0];
   1332     Type  *IndexTy = Index->getType();
   1333     Assert1(IndexTy->isVectorTy(),
   1334       "Vector GEP must have vector indices!", &GEP);
   1335     Assert1(GEP.getType()->isVectorTy(),
   1336       "Vector GEP must return a vector value", &GEP);
   1337     Type *ElemPtr = cast<VectorType>(GEP.getType())->getElementType();
   1338     Assert1(ElemPtr->isPointerTy(),
   1339       "Vector GEP pointer operand is not a pointer!", &GEP);
   1340     unsigned IndexWidth = cast<VectorType>(IndexTy)->getNumElements();
   1341     unsigned GepWidth = cast<VectorType>(GEP.getType())->getNumElements();
   1342     Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
   1343     Assert1(ElTy == cast<PointerType>(ElemPtr)->getElementType(),
   1344       "Vector GEP type does not match pointer type!", &GEP);
   1345   }
   1346   visitInstruction(GEP);
   1347 }
   1348 
   1349 void Verifier::visitLoadInst(LoadInst &LI) {
   1350   PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
   1351   Assert1(PTy, "Load operand must be a pointer.", &LI);
   1352   Type *ElTy = PTy->getElementType();
   1353   Assert2(ElTy == LI.getType(),
   1354           "Load result type does not match pointer operand type!", &LI, ElTy);
   1355   if (LI.isAtomic()) {
   1356     Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
   1357             "Load cannot have Release ordering", &LI);
   1358     Assert1(LI.getAlignment() != 0,
   1359             "Atomic load must specify explicit alignment", &LI);
   1360   } else {
   1361     Assert1(LI.getSynchScope() == CrossThread,
   1362             "Non-atomic load cannot have SynchronizationScope specified", &LI);
   1363   }
   1364 
   1365   if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
   1366     unsigned NumOperands = Range->getNumOperands();
   1367     Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
   1368     unsigned NumRanges = NumOperands / 2;
   1369     Assert1(NumRanges >= 1, "It should have at least one range!", Range);
   1370     for (unsigned i = 0; i < NumRanges; ++i) {
   1371       ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
   1372       Assert1(Low, "The lower limit must be an integer!", Low);
   1373       ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
   1374       Assert1(High, "The upper limit must be an integer!", High);
   1375       Assert1(High->getType() == Low->getType() &&
   1376               High->getType() == ElTy, "Range types must match load type!",
   1377               &LI);
   1378       Assert1(High->getValue() != Low->getValue(), "Range must not be empty!",
   1379               Range);
   1380     }
   1381   }
   1382 
   1383   visitInstruction(LI);
   1384 }
   1385 
   1386 void Verifier::visitStoreInst(StoreInst &SI) {
   1387   PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
   1388   Assert1(PTy, "Store operand must be a pointer.", &SI);
   1389   Type *ElTy = PTy->getElementType();
   1390   Assert2(ElTy == SI.getOperand(0)->getType(),
   1391           "Stored value type does not match pointer operand type!",
   1392           &SI, ElTy);
   1393   if (SI.isAtomic()) {
   1394     Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
   1395             "Store cannot have Acquire ordering", &SI);
   1396     Assert1(SI.getAlignment() != 0,
   1397             "Atomic store must specify explicit alignment", &SI);
   1398   } else {
   1399     Assert1(SI.getSynchScope() == CrossThread,
   1400             "Non-atomic store cannot have SynchronizationScope specified", &SI);
   1401   }
   1402   visitInstruction(SI);
   1403 }
   1404 
   1405 void Verifier::visitAllocaInst(AllocaInst &AI) {
   1406   PointerType *PTy = AI.getType();
   1407   Assert1(PTy->getAddressSpace() == 0,
   1408           "Allocation instruction pointer not in the generic address space!",
   1409           &AI);
   1410   Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
   1411           &AI);
   1412   Assert1(AI.getArraySize()->getType()->isIntegerTy(),
   1413           "Alloca array size must have integer type", &AI);
   1414   visitInstruction(AI);
   1415 }
   1416 
   1417 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
   1418   Assert1(CXI.getOrdering() != NotAtomic,
   1419           "cmpxchg instructions must be atomic.", &CXI);
   1420   Assert1(CXI.getOrdering() != Unordered,
   1421           "cmpxchg instructions cannot be unordered.", &CXI);
   1422   PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
   1423   Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
   1424   Type *ElTy = PTy->getElementType();
   1425   Assert2(ElTy == CXI.getOperand(1)->getType(),
   1426           "Expected value type does not match pointer operand type!",
   1427           &CXI, ElTy);
   1428   Assert2(ElTy == CXI.getOperand(2)->getType(),
   1429           "Stored value type does not match pointer operand type!",
   1430           &CXI, ElTy);
   1431   visitInstruction(CXI);
   1432 }
   1433 
   1434 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
   1435   Assert1(RMWI.getOrdering() != NotAtomic,
   1436           "atomicrmw instructions must be atomic.", &RMWI);
   1437   Assert1(RMWI.getOrdering() != Unordered,
   1438           "atomicrmw instructions cannot be unordered.", &RMWI);
   1439   PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
   1440   Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
   1441   Type *ElTy = PTy->getElementType();
   1442   Assert2(ElTy == RMWI.getOperand(1)->getType(),
   1443           "Argument value type does not match pointer operand type!",
   1444           &RMWI, ElTy);
   1445   Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
   1446           RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
   1447           "Invalid binary operation!", &RMWI);
   1448   visitInstruction(RMWI);
   1449 }
   1450 
   1451 void Verifier::visitFenceInst(FenceInst &FI) {
   1452   const AtomicOrdering Ordering = FI.getOrdering();
   1453   Assert1(Ordering == Acquire || Ordering == Release ||
   1454           Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
   1455           "fence instructions may only have "
   1456           "acquire, release, acq_rel, or seq_cst ordering.", &FI);
   1457   visitInstruction(FI);
   1458 }
   1459 
   1460 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
   1461   Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
   1462                                            EVI.getIndices()) ==
   1463           EVI.getType(),
   1464           "Invalid ExtractValueInst operands!", &EVI);
   1465 
   1466   visitInstruction(EVI);
   1467 }
   1468 
   1469 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
   1470   Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
   1471                                            IVI.getIndices()) ==
   1472           IVI.getOperand(1)->getType(),
   1473           "Invalid InsertValueInst operands!", &IVI);
   1474 
   1475   visitInstruction(IVI);
   1476 }
   1477 
   1478 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
   1479   BasicBlock *BB = LPI.getParent();
   1480 
   1481   // The landingpad instruction is ill-formed if it doesn't have any clauses and
   1482   // isn't a cleanup.
   1483   Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
   1484           "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
   1485 
   1486   // The landingpad instruction defines its parent as a landing pad block. The
   1487   // landing pad block may be branched to only by the unwind edge of an invoke.
   1488   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
   1489     const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
   1490     Assert1(II && II->getUnwindDest() == BB,
   1491             "Block containing LandingPadInst must be jumped to "
   1492             "only by the unwind edge of an invoke.", &LPI);
   1493   }
   1494 
   1495   // The landingpad instruction must be the first non-PHI instruction in the
   1496   // block.
   1497   Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
   1498           "LandingPadInst not the first non-PHI instruction in the block.",
   1499           &LPI);
   1500 
   1501   // The personality functions for all landingpad instructions within the same
   1502   // function should match.
   1503   if (PersonalityFn)
   1504     Assert1(LPI.getPersonalityFn() == PersonalityFn,
   1505             "Personality function doesn't match others in function", &LPI);
   1506   PersonalityFn = LPI.getPersonalityFn();
   1507 
   1508   // All operands must be constants.
   1509   Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
   1510           &LPI);
   1511   for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
   1512     Value *Clause = LPI.getClause(i);
   1513     Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
   1514     if (LPI.isCatch(i)) {
   1515       Assert1(isa<PointerType>(Clause->getType()),
   1516               "Catch operand does not have pointer type!", &LPI);
   1517     } else {
   1518       Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
   1519       Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
   1520               "Filter operand is not an array of constants!", &LPI);
   1521     }
   1522   }
   1523 
   1524   visitInstruction(LPI);
   1525 }
   1526 
   1527 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
   1528   Instruction *Op = cast<Instruction>(I.getOperand(i));
   1529   BasicBlock *BB = I.getParent();
   1530   BasicBlock *OpBlock = Op->getParent();
   1531   PHINode *PN = dyn_cast<PHINode>(&I);
   1532 
   1533   // DT can handle non phi instructions for us.
   1534   if (!PN) {
   1535     // Definition must dominate use unless use is unreachable!
   1536     Assert2(InstsInThisBlock.count(Op) || !DT->isReachableFromEntry(BB) ||
   1537             DT->dominates(Op, &I),
   1538             "Instruction does not dominate all uses!", Op, &I);
   1539     return;
   1540   }
   1541 
   1542   // Check that a definition dominates all of its uses.
   1543   if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
   1544     // Invoke results are only usable in the normal destination, not in the
   1545     // exceptional destination.
   1546     BasicBlock *NormalDest = II->getNormalDest();
   1547 
   1548 
   1549     // PHI nodes differ from other nodes because they actually "use" the
   1550     // value in the predecessor basic blocks they correspond to.
   1551     BasicBlock *UseBlock = BB;
   1552     unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1553     UseBlock = PN->getIncomingBlock(j);
   1554     Assert2(UseBlock, "Invoke operand is PHI node with bad incoming-BB",
   1555             Op, &I);
   1556 
   1557     if (UseBlock == OpBlock) {
   1558       // Special case of a phi node in the normal destination or the unwind
   1559       // destination.
   1560       Assert2(BB == NormalDest || !DT->isReachableFromEntry(UseBlock),
   1561               "Invoke result not available in the unwind destination!",
   1562               Op, &I);
   1563     } else {
   1564       Assert2(DT->dominates(II, UseBlock) ||
   1565               !DT->isReachableFromEntry(UseBlock),
   1566               "Invoke result does not dominate all uses!", Op, &I);
   1567     }
   1568   }
   1569 
   1570   // PHI nodes are more difficult than other nodes because they actually
   1571   // "use" the value in the predecessor basic blocks they correspond to.
   1572   unsigned j = PHINode::getIncomingValueNumForOperand(i);
   1573   BasicBlock *PredBB = PN->getIncomingBlock(j);
   1574   Assert2(PredBB && (DT->dominates(OpBlock, PredBB) ||
   1575                      !DT->isReachableFromEntry(PredBB)),
   1576           "Instruction does not dominate all uses!", Op, &I);
   1577 }
   1578 
   1579 /// verifyInstruction - Verify that an instruction is well formed.
   1580 ///
   1581 void Verifier::visitInstruction(Instruction &I) {
   1582   BasicBlock *BB = I.getParent();
   1583   Assert1(BB, "Instruction not embedded in basic block!", &I);
   1584 
   1585   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
   1586     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
   1587          UI != UE; ++UI)
   1588       Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
   1589               "Only PHI nodes may reference their own value!", &I);
   1590   }
   1591 
   1592   // Check that void typed values don't have names
   1593   Assert1(!I.getType()->isVoidTy() || !I.hasName(),
   1594           "Instruction has a name, but provides a void value!", &I);
   1595 
   1596   // Check that the return value of the instruction is either void or a legal
   1597   // value type.
   1598   Assert1(I.getType()->isVoidTy() ||
   1599           I.getType()->isFirstClassType(),
   1600           "Instruction returns a non-scalar type!", &I);
   1601 
   1602   // Check that the instruction doesn't produce metadata. Calls are already
   1603   // checked against the callee type.
   1604   Assert1(!I.getType()->isMetadataTy() ||
   1605           isa<CallInst>(I) || isa<InvokeInst>(I),
   1606           "Invalid use of metadata!", &I);
   1607 
   1608   // Check that all uses of the instruction, if they are instructions
   1609   // themselves, actually have parent basic blocks.  If the use is not an
   1610   // instruction, it is an error!
   1611   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
   1612        UI != UE; ++UI) {
   1613     if (Instruction *Used = dyn_cast<Instruction>(*UI))
   1614       Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
   1615               " embedded in a basic block!", &I, Used);
   1616     else {
   1617       CheckFailed("Use of instruction is not an instruction!", *UI);
   1618       return;
   1619     }
   1620   }
   1621 
   1622   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
   1623     Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
   1624 
   1625     // Check to make sure that only first-class-values are operands to
   1626     // instructions.
   1627     if (!I.getOperand(i)->getType()->isFirstClassType()) {
   1628       Assert1(0, "Instruction operands must be first-class values!", &I);
   1629     }
   1630 
   1631     if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
   1632       // Check to make sure that the "address of" an intrinsic function is never
   1633       // taken.
   1634       Assert1(!F->isIntrinsic() || (i + 1 == e && isa<CallInst>(I)),
   1635               "Cannot take the address of an intrinsic!", &I);
   1636       Assert1(F->getParent() == Mod, "Referencing function in another module!",
   1637               &I);
   1638     } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
   1639       Assert1(OpBB->getParent() == BB->getParent(),
   1640               "Referring to a basic block in another function!", &I);
   1641     } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
   1642       Assert1(OpArg->getParent() == BB->getParent(),
   1643               "Referring to an argument in another function!", &I);
   1644     } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
   1645       Assert1(GV->getParent() == Mod, "Referencing global in another module!",
   1646               &I);
   1647     } else if (isa<Instruction>(I.getOperand(i))) {
   1648       verifyDominatesUse(I, i);
   1649     } else if (isa<InlineAsm>(I.getOperand(i))) {
   1650       Assert1((i + 1 == e && isa<CallInst>(I)) ||
   1651               (i + 3 == e && isa<InvokeInst>(I)),
   1652               "Cannot take the address of an inline asm!", &I);
   1653     }
   1654   }
   1655 
   1656   if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
   1657     Assert1(I.getType()->isFPOrFPVectorTy(),
   1658             "fpmath requires a floating point result!", &I);
   1659     Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
   1660     Value *Op0 = MD->getOperand(0);
   1661     if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
   1662       APFloat Accuracy = CFP0->getValueAPF();
   1663       Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
   1664               "fpmath accuracy not a positive number!", &I);
   1665     } else {
   1666       Assert1(false, "invalid fpmath accuracy!", &I);
   1667     }
   1668   }
   1669 
   1670   MDNode *MD = I.getMetadata(LLVMContext::MD_range);
   1671   Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
   1672 
   1673   InstsInThisBlock.insert(&I);
   1674 }
   1675 
   1676 // Flags used by TableGen to mark intrinsic parameters with the
   1677 // LLVMExtendedElementVectorType and LLVMTruncatedElementVectorType classes.
   1678 static const unsigned ExtendedElementVectorType = 0x40000000;
   1679 static const unsigned TruncatedElementVectorType = 0x20000000;
   1680 
   1681 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
   1682 ///
   1683 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
   1684   Function *IF = CI.getCalledFunction();
   1685   Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
   1686           IF);
   1687 
   1688 #define GET_INTRINSIC_VERIFIER
   1689 #include "llvm/Intrinsics.gen"
   1690 #undef GET_INTRINSIC_VERIFIER
   1691 
   1692   // If the intrinsic takes MDNode arguments, verify that they are either global
   1693   // or are local to *this* function.
   1694   for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
   1695     if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
   1696       visitMDNode(*MD, CI.getParent()->getParent());
   1697 
   1698   switch (ID) {
   1699   default:
   1700     break;
   1701   case Intrinsic::ctlz:  // llvm.ctlz
   1702   case Intrinsic::cttz:  // llvm.cttz
   1703     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1704             "is_zero_undef argument of bit counting intrinsics must be a "
   1705             "constant int", &CI);
   1706     break;
   1707   case Intrinsic::dbg_declare: {  // llvm.dbg.declare
   1708     Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
   1709                 "invalid llvm.dbg.declare intrinsic call 1", &CI);
   1710     MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
   1711     Assert1(MD->getNumOperands() == 1,
   1712                 "invalid llvm.dbg.declare intrinsic call 2", &CI);
   1713   } break;
   1714   case Intrinsic::memcpy:
   1715   case Intrinsic::memmove:
   1716   case Intrinsic::memset:
   1717     Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
   1718             "alignment argument of memory intrinsics must be a constant int",
   1719             &CI);
   1720     Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
   1721             "isvolatile argument of memory intrinsics must be a constant int",
   1722             &CI);
   1723     break;
   1724   case Intrinsic::gcroot:
   1725   case Intrinsic::gcwrite:
   1726   case Intrinsic::gcread:
   1727     if (ID == Intrinsic::gcroot) {
   1728       AllocaInst *AI =
   1729         dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
   1730       Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
   1731       Assert1(isa<Constant>(CI.getArgOperand(1)),
   1732               "llvm.gcroot parameter #2 must be a constant.", &CI);
   1733       if (!AI->getType()->getElementType()->isPointerTy()) {
   1734         Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
   1735                 "llvm.gcroot parameter #1 must either be a pointer alloca, "
   1736                 "or argument #2 must be a non-null constant.", &CI);
   1737       }
   1738     }
   1739 
   1740     Assert1(CI.getParent()->getParent()->hasGC(),
   1741             "Enclosing function does not use GC.", &CI);
   1742     break;
   1743   case Intrinsic::init_trampoline:
   1744     Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
   1745             "llvm.init_trampoline parameter #2 must resolve to a function.",
   1746             &CI);
   1747     break;
   1748   case Intrinsic::prefetch:
   1749     Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
   1750             isa<ConstantInt>(CI.getArgOperand(2)) &&
   1751             cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
   1752             cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
   1753             "invalid arguments to llvm.prefetch",
   1754             &CI);
   1755     break;
   1756   case Intrinsic::stackprotector:
   1757     Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
   1758             "llvm.stackprotector parameter #2 must resolve to an alloca.",
   1759             &CI);
   1760     break;
   1761   case Intrinsic::lifetime_start:
   1762   case Intrinsic::lifetime_end:
   1763   case Intrinsic::invariant_start:
   1764     Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
   1765             "size argument of memory use markers must be a constant integer",
   1766             &CI);
   1767     break;
   1768   case Intrinsic::invariant_end:
   1769     Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
   1770             "llvm.invariant.end parameter #2 must be a constant integer", &CI);
   1771     break;
   1772   }
   1773 }
   1774 
   1775 /// Produce a string to identify an intrinsic parameter or return value.
   1776 /// The ArgNo value numbers the return values from 0 to NumRets-1 and the
   1777 /// parameters beginning with NumRets.
   1778 ///
   1779 static std::string IntrinsicParam(unsigned ArgNo, unsigned NumRets) {
   1780   if (ArgNo >= NumRets)
   1781     return "Intrinsic parameter #" + utostr(ArgNo - NumRets);
   1782   if (NumRets == 1)
   1783     return "Intrinsic result type";
   1784   return "Intrinsic result type #" + utostr(ArgNo);
   1785 }
   1786 
   1787 bool Verifier::PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
   1788                                 int VT, unsigned ArgNo, std::string &Suffix) {
   1789   FunctionType *FTy = F->getFunctionType();
   1790 
   1791   unsigned NumElts = 0;
   1792   Type *EltTy = Ty;
   1793   VectorType *VTy = dyn_cast<VectorType>(Ty);
   1794   if (VTy) {
   1795     EltTy = VTy->getElementType();
   1796     NumElts = VTy->getNumElements();
   1797   }
   1798 
   1799   Type *RetTy = FTy->getReturnType();
   1800   StructType *ST = dyn_cast<StructType>(RetTy);
   1801   unsigned NumRetVals;
   1802   if (RetTy->isVoidTy())
   1803     NumRetVals = 0;
   1804   else if (ST)
   1805     NumRetVals = ST->getNumElements();
   1806   else
   1807     NumRetVals = 1;
   1808 
   1809   if (VT < 0) {
   1810     int Match = ~VT;
   1811 
   1812     // Check flags that indicate a type that is an integral vector type with
   1813     // elements that are larger or smaller than the elements of the matched
   1814     // type.
   1815     if ((Match & (ExtendedElementVectorType |
   1816                   TruncatedElementVectorType)) != 0) {
   1817       IntegerType *IEltTy = dyn_cast<IntegerType>(EltTy);
   1818       if (!VTy || !IEltTy) {
   1819         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1820                     "an integral vector type.", F);
   1821         return false;
   1822       }
   1823       // Adjust the current Ty (in the opposite direction) rather than
   1824       // the type being matched against.
   1825       if ((Match & ExtendedElementVectorType) != 0) {
   1826         if ((IEltTy->getBitWidth() & 1) != 0) {
   1827           CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " vector "
   1828                       "element bit-width is odd.", F);
   1829           return false;
   1830         }
   1831         Ty = VectorType::getTruncatedElementVectorType(VTy);
   1832       } else
   1833         Ty = VectorType::getExtendedElementVectorType(VTy);
   1834       Match &= ~(ExtendedElementVectorType | TruncatedElementVectorType);
   1835     }
   1836 
   1837     if (Match <= static_cast<int>(NumRetVals - 1)) {
   1838       if (ST)
   1839         RetTy = ST->getElementType(Match);
   1840 
   1841       if (Ty != RetTy) {
   1842         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1843                     "match return type.", F);
   1844         return false;
   1845       }
   1846     } else {
   1847       if (Ty != FTy->getParamType(Match - NumRetVals)) {
   1848         CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " does not "
   1849                     "match parameter %" + utostr(Match - NumRetVals) + ".", F);
   1850         return false;
   1851       }
   1852     }
   1853   } else if (VT == MVT::iAny) {
   1854     if (!EltTy->isIntegerTy()) {
   1855       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1856                   "an integer type.", F);
   1857       return false;
   1858     }
   1859 
   1860     unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
   1861     Suffix += ".";
   1862 
   1863     if (EltTy != Ty)
   1864       Suffix += "v" + utostr(NumElts);
   1865 
   1866     Suffix += "i" + utostr(GotBits);
   1867 
   1868     // Check some constraints on various intrinsics.
   1869     switch (ID) {
   1870     default: break; // Not everything needs to be checked.
   1871     case Intrinsic::bswap:
   1872       if (GotBits < 16 || GotBits % 16 != 0) {
   1873         CheckFailed("Intrinsic requires even byte width argument", F);
   1874         return false;
   1875       }
   1876       break;
   1877     }
   1878   } else if (VT == MVT::fAny) {
   1879     if (!EltTy->isFloatingPointTy()) {
   1880       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not "
   1881                   "a floating-point type.", F);
   1882       return false;
   1883     }
   1884 
   1885     Suffix += ".";
   1886 
   1887     if (EltTy != Ty)
   1888       Suffix += "v" + utostr(NumElts);
   1889 
   1890     Suffix += EVT::getEVT(EltTy).getEVTString();
   1891   } else if (VT == MVT::vAny) {
   1892     if (!VTy) {
   1893       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a vector type.",
   1894                   F);
   1895       return false;
   1896     }
   1897     Suffix += ".v" + utostr(NumElts) + EVT::getEVT(EltTy).getEVTString();
   1898   } else if (VT == MVT::iPTR) {
   1899     if (!Ty->isPointerTy()) {
   1900       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1901                   "pointer and a pointer is required.", F);
   1902       return false;
   1903     }
   1904   } else if (VT == MVT::iPTRAny) {
   1905     // Outside of TableGen, we don't distinguish iPTRAny (to any address space)
   1906     // and iPTR. In the verifier, we can not distinguish which case we have so
   1907     // allow either case to be legal.
   1908     if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
   1909       EVT PointeeVT = EVT::getEVT(PTyp->getElementType(), true);
   1910       if (PointeeVT == MVT::Other) {
   1911         CheckFailed("Intrinsic has pointer to complex type.");
   1912         return false;
   1913       }
   1914       Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
   1915         PointeeVT.getEVTString();
   1916     } else {
   1917       CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is not a "
   1918                   "pointer and a pointer is required.", F);
   1919       return false;
   1920     }
   1921   } else if (EVT((MVT::SimpleValueType)VT).isVector()) {
   1922     EVT VVT = EVT((MVT::SimpleValueType)VT);
   1923 
   1924     // If this is a vector argument, verify the number and type of elements.
   1925     if (VVT.getVectorElementType() != EVT::getEVT(EltTy)) {
   1926       CheckFailed("Intrinsic prototype has incorrect vector element type!", F);
   1927       return false;
   1928     }
   1929 
   1930     if (VVT.getVectorNumElements() != NumElts) {
   1931       CheckFailed("Intrinsic prototype has incorrect number of "
   1932                   "vector elements!", F);
   1933       return false;
   1934     }
   1935   } else if (EVT((MVT::SimpleValueType)VT).getTypeForEVT(Ty->getContext()) !=
   1936              EltTy) {
   1937     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is wrong!", F);
   1938     return false;
   1939   } else if (EltTy != Ty) {
   1940     CheckFailed(IntrinsicParam(ArgNo, NumRetVals) + " is a vector "
   1941                 "and a scalar is required.", F);
   1942     return false;
   1943   }
   1944 
   1945   return true;
   1946 }
   1947 
   1948 /// VerifyIntrinsicPrototype - TableGen emits calls to this function into
   1949 /// Intrinsics.gen.  This implements a little state machine that verifies the
   1950 /// prototype of intrinsics.
   1951 void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
   1952                                         unsigned NumRetVals,
   1953                                         unsigned NumParams, ...) {
   1954   va_list VA;
   1955   va_start(VA, NumParams);
   1956   FunctionType *FTy = F->getFunctionType();
   1957 
   1958   // For overloaded intrinsics, the Suffix of the function name must match the
   1959   // types of the arguments. This variable keeps track of the expected
   1960   // suffix, to be checked at the end.
   1961   std::string Suffix;
   1962 
   1963   if (FTy->getNumParams() + FTy->isVarArg() != NumParams) {
   1964     CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
   1965     return;
   1966   }
   1967 
   1968   Type *Ty = FTy->getReturnType();
   1969   StructType *ST = dyn_cast<StructType>(Ty);
   1970 
   1971   if (NumRetVals == 0 && !Ty->isVoidTy()) {
   1972     CheckFailed("Intrinsic should return void", F);
   1973     return;
   1974   }
   1975 
   1976   // Verify the return types.
   1977   if (ST && ST->getNumElements() != NumRetVals) {
   1978     CheckFailed("Intrinsic prototype has incorrect number of return types!", F);
   1979     return;
   1980   }
   1981 
   1982   for (unsigned ArgNo = 0; ArgNo != NumRetVals; ++ArgNo) {
   1983     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1984 
   1985     if (ST) Ty = ST->getElementType(ArgNo);
   1986     if (!PerformTypeCheck(ID, F, Ty, VT, ArgNo, Suffix))
   1987       break;
   1988   }
   1989 
   1990   // Verify the parameter types.
   1991   for (unsigned ArgNo = 0; ArgNo != NumParams; ++ArgNo) {
   1992     int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
   1993 
   1994     if (VT == MVT::isVoid && ArgNo > 0) {
   1995       if (!FTy->isVarArg())
   1996         CheckFailed("Intrinsic prototype has no '...'!", F);
   1997       break;
   1998     }
   1999 
   2000     if (!PerformTypeCheck(ID, F, FTy->getParamType(ArgNo), VT,
   2001                           ArgNo + NumRetVals, Suffix))
   2002       break;
   2003   }
   2004 
   2005   va_end(VA);
   2006 
   2007   // For intrinsics without pointer arguments, if we computed a Suffix then the
   2008   // intrinsic is overloaded and we need to make sure that the name of the
   2009   // function is correct. We add the suffix to the name of the intrinsic and
   2010   // compare against the given function name. If they are not the same, the
   2011   // function name is invalid. This ensures that overloading of intrinsics
   2012   // uses a sane and consistent naming convention.  Note that intrinsics with
   2013   // pointer argument may or may not be overloaded so we will check assuming it
   2014   // has a suffix and not.
   2015   if (!Suffix.empty()) {
   2016     std::string Name(Intrinsic::getName(ID));
   2017     if (Name + Suffix != F->getName()) {
   2018       CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
   2019                   F->getName().substr(Name.length()) + "'. It should be '" +
   2020                   Suffix + "'", F);
   2021     }
   2022   }
   2023 
   2024   // Check parameter attributes.
   2025   Assert1(F->getAttributes() == Intrinsic::getAttributes(ID),
   2026           "Intrinsic has wrong parameter attributes!", F);
   2027 }
   2028 
   2029 
   2030 //===----------------------------------------------------------------------===//
   2031 //  Implement the public interfaces to this file...
   2032 //===----------------------------------------------------------------------===//
   2033 
   2034 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
   2035   return new Verifier(action);
   2036 }
   2037 
   2038 
   2039 /// verifyFunction - Check a function for errors, printing messages on stderr.
   2040 /// Return true if the function is corrupt.
   2041 ///
   2042 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
   2043   Function &F = const_cast<Function&>(f);
   2044   assert(!F.isDeclaration() && "Cannot verify external functions");
   2045 
   2046   FunctionPassManager FPM(F.getParent());
   2047   Verifier *V = new Verifier(action);
   2048   FPM.add(V);
   2049   FPM.run(F);
   2050   return V->Broken;
   2051 }
   2052 
   2053 /// verifyModule - Check a module for errors, printing messages on stderr.
   2054 /// Return true if the module is corrupt.
   2055 ///
   2056 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
   2057                         std::string *ErrorInfo) {
   2058   PassManager PM;
   2059   Verifier *V = new Verifier(action);
   2060   PM.add(V);
   2061   PM.run(const_cast<Module&>(M));
   2062 
   2063   if (ErrorInfo && V->Broken)
   2064     *ErrorInfo = V->MessagesStr.str();
   2065   return V->Broken;
   2066 }
   2067