Home | History | Annotate | Download | only in libtess
      1 /*
      2 ** License Applicability. Except to the extent portions of this file are
      3 ** made subject to an alternative license as permitted in the SGI Free
      4 ** Software License B, Version 1.1 (the "License"), the contents of this
      5 ** file are subject only to the provisions of the License. You may not use
      6 ** this file except in compliance with the License. You may obtain a copy
      7 ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
      8 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
      9 **
     10 ** http://oss.sgi.com/projects/FreeB
     11 **
     12 ** Note that, as provided in the License, the Software is distributed on an
     13 ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
     14 ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
     15 ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
     16 ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
     17 **
     18 ** Original Code. The Original Code is: OpenGL Sample Implementation,
     19 ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
     20 ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
     21 ** Copyright in any portions created by third parties is as indicated
     22 ** elsewhere herein. All Rights Reserved.
     23 **
     24 ** Additional Notice Provisions: The application programming interfaces
     25 ** established by SGI in conjunction with the Original Code are The
     26 ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
     27 ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
     28 ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
     29 ** Window System(R) (Version 1.3), released October 19, 1998. This software
     30 ** was created using the OpenGL(R) version 1.2.1 Sample Implementation
     31 ** published by SGI, but has not been independently verified as being
     32 ** compliant with the OpenGL(R) version 1.2.1 Specification.
     33 **
     34 */
     35 /*
     36 ** Author: Eric Veach, July 1994.
     37 **
     38 ** $Date$ $Revision$
     39 ** $Header: //depot/main/gfx/lib/glu/libtess/geom.c#5 $
     40 */
     41 
     42 #include "gluos.h"
     43 #include <assert.h>
     44 #include "mesh.h"
     45 #include "geom.h"
     46 
     47 int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
     48 {
     49   /* Returns TRUE if u is lexicographically <= v. */
     50 
     51   return VertLeq( u, v );
     52 }
     53 
     54 GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
     55 {
     56   /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
     57    * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
     58    * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
     59    * If uw is vertical (and thus passes thru v), the result is zero.
     60    *
     61    * The calculation is extremely accurate and stable, even when v
     62    * is very close to u or w.  In particular if we set v->t = 0 and
     63    * let r be the negated result (this evaluates (uw)(v->s)), then
     64    * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
     65    */
     66   GLdouble gapL, gapR;
     67 
     68   assert( VertLeq( u, v ) && VertLeq( v, w ));
     69 
     70   gapL = v->s - u->s;
     71   gapR = w->s - v->s;
     72 
     73   if( gapL + gapR > 0 ) {
     74     if( gapL < gapR ) {
     75       return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
     76     } else {
     77       return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
     78     }
     79   }
     80   /* vertical line */
     81   return 0;
     82 }
     83 
     84 GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
     85 {
     86   /* Returns a number whose sign matches EdgeEval(u,v,w) but which
     87    * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
     88    * as v is above, on, or below the edge uw.
     89    */
     90   GLdouble gapL, gapR;
     91 
     92   assert( VertLeq( u, v ) && VertLeq( v, w ));
     93 
     94   gapL = v->s - u->s;
     95   gapR = w->s - v->s;
     96 
     97   if( gapL + gapR > 0 ) {
     98     return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
     99   }
    100   /* vertical line */
    101   return 0;
    102 }
    103 
    104 
    105 /***********************************************************************
    106  * Define versions of EdgeSign, EdgeEval with s and t transposed.
    107  */
    108 
    109 GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
    110 {
    111   /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
    112    * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
    113    * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
    114    * If uw is vertical (and thus passes thru v), the result is zero.
    115    *
    116    * The calculation is extremely accurate and stable, even when v
    117    * is very close to u or w.  In particular if we set v->s = 0 and
    118    * let r be the negated result (this evaluates (uw)(v->t)), then
    119    * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
    120    */
    121   GLdouble gapL, gapR;
    122 
    123   assert( TransLeq( u, v ) && TransLeq( v, w ));
    124 
    125   gapL = v->t - u->t;
    126   gapR = w->t - v->t;
    127 
    128   if( gapL + gapR > 0 ) {
    129     if( gapL < gapR ) {
    130       return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
    131     } else {
    132       return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
    133     }
    134   }
    135   /* vertical line */
    136   return 0;
    137 }
    138 
    139 GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
    140 {
    141   /* Returns a number whose sign matches TransEval(u,v,w) but which
    142    * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
    143    * as v is above, on, or below the edge uw.
    144    */
    145   GLdouble gapL, gapR;
    146 
    147   assert( TransLeq( u, v ) && TransLeq( v, w ));
    148 
    149   gapL = v->t - u->t;
    150   gapR = w->t - v->t;
    151 
    152   if( gapL + gapR > 0 ) {
    153     return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
    154   }
    155   /* vertical line */
    156   return 0;
    157 }
    158 
    159 
    160 int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
    161 {
    162   /* For almost-degenerate situations, the results are not reliable.
    163    * Unless the floating-point arithmetic can be performed without
    164    * rounding errors, *any* implementation will give incorrect results
    165    * on some degenerate inputs, so the client must have some way to
    166    * handle this situation.
    167    */
    168   return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
    169 }
    170 
    171 /* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
    172  * or (x+y)/2 if a==b==0.  It requires that a,b >= 0, and enforces
    173  * this in the rare case that one argument is slightly negative.
    174  * The implementation is extremely stable numerically.
    175  * In particular it guarantees that the result r satisfies
    176  * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
    177  * even when a and b differ greatly in magnitude.
    178  */
    179 #define RealInterpolate(a,x,b,y)			\
    180   (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b,		\
    181   ((a <= b) ? ((b == 0) ? ((x+y) / 2)			\
    182                         : (x + (y-x) * (a/(a+b))))	\
    183             : (y + (x-y) * (b/(a+b)))))
    184 
    185 #ifndef FOR_TRITE_TEST_PROGRAM
    186 #define Interpolate(a,x,b,y)	RealInterpolate(a,x,b,y)
    187 #else
    188 
    189 /* Claim: the ONLY property the sweep algorithm relies on is that
    190  * MIN(x,y) <= r <= MAX(x,y).  This is a nasty way to test that.
    191  */
    192 #include <stdlib.h>
    193 extern int RandomInterpolate;
    194 
    195 GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
    196 {
    197 printf("*********************%d\n",RandomInterpolate);
    198   if( RandomInterpolate ) {
    199     a = 1.2 * drand48() - 0.1;
    200     a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
    201     b = 1.0 - a;
    202   }
    203   return RealInterpolate(a,x,b,y);
    204 }
    205 
    206 #endif
    207 
    208 #define Swap(a,b)	do { GLUvertex *t = a; a = b; b = t; } while(0)
    209 
    210 void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
    211 			 GLUvertex *o2, GLUvertex *d2,
    212 			 GLUvertex *v )
    213 /* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
    214  * The computed point is guaranteed to lie in the intersection of the
    215  * bounding rectangles defined by each edge.
    216  */
    217 {
    218   GLdouble z1, z2;
    219 
    220   /* This is certainly not the most efficient way to find the intersection
    221    * of two line segments, but it is very numerically stable.
    222    *
    223    * Strategy: find the two middle vertices in the VertLeq ordering,
    224    * and interpolate the intersection s-value from these.  Then repeat
    225    * using the TransLeq ordering to find the intersection t-value.
    226    */
    227 
    228   if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
    229   if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
    230   if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
    231 
    232   if( ! VertLeq( o2, d1 )) {
    233     /* Technically, no intersection -- do our best */
    234     v->s = (o2->s + d1->s) / 2;
    235   } else if( VertLeq( d1, d2 )) {
    236     /* Interpolate between o2 and d1 */
    237     z1 = EdgeEval( o1, o2, d1 );
    238     z2 = EdgeEval( o2, d1, d2 );
    239     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    240     v->s = Interpolate( z1, o2->s, z2, d1->s );
    241   } else {
    242     /* Interpolate between o2 and d2 */
    243     z1 = EdgeSign( o1, o2, d1 );
    244     z2 = -EdgeSign( o1, d2, d1 );
    245     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    246     v->s = Interpolate( z1, o2->s, z2, d2->s );
    247   }
    248 
    249   /* Now repeat the process for t */
    250 
    251   if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
    252   if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
    253   if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
    254 
    255   if( ! TransLeq( o2, d1 )) {
    256     /* Technically, no intersection -- do our best */
    257     v->t = (o2->t + d1->t) / 2;
    258   } else if( TransLeq( d1, d2 )) {
    259     /* Interpolate between o2 and d1 */
    260     z1 = TransEval( o1, o2, d1 );
    261     z2 = TransEval( o2, d1, d2 );
    262     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    263     v->t = Interpolate( z1, o2->t, z2, d1->t );
    264   } else {
    265     /* Interpolate between o2 and d2 */
    266     z1 = TransSign( o1, o2, d1 );
    267     z2 = -TransSign( o1, d2, d1 );
    268     if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
    269     v->t = Interpolate( z1, o2->t, z2, d2->t );
    270   }
    271 }
    272