Home | History | Annotate | Download | only in mips
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include <limits.h>  // For LONG_MIN, LONG_MAX.
     29 
     30 #include "v8.h"
     31 
     32 #if defined(V8_TARGET_ARCH_MIPS)
     33 
     34 #include "bootstrapper.h"
     35 #include "codegen.h"
     36 #include "debug.h"
     37 #include "runtime.h"
     38 
     39 namespace v8 {
     40 namespace internal {
     41 
     42 MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
     43     : Assembler(arg_isolate, buffer, size),
     44       generating_stub_(false),
     45       allow_stub_calls_(true),
     46       has_frame_(false) {
     47   if (isolate() != NULL) {
     48     code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
     49                                   isolate());
     50   }
     51 }
     52 
     53 
     54 void MacroAssembler::LoadRoot(Register destination,
     55                               Heap::RootListIndex index) {
     56   lw(destination, MemOperand(s6, index << kPointerSizeLog2));
     57 }
     58 
     59 
     60 void MacroAssembler::LoadRoot(Register destination,
     61                               Heap::RootListIndex index,
     62                               Condition cond,
     63                               Register src1, const Operand& src2) {
     64   Branch(2, NegateCondition(cond), src1, src2);
     65   lw(destination, MemOperand(s6, index << kPointerSizeLog2));
     66 }
     67 
     68 
     69 void MacroAssembler::StoreRoot(Register source,
     70                                Heap::RootListIndex index) {
     71   sw(source, MemOperand(s6, index << kPointerSizeLog2));
     72 }
     73 
     74 
     75 void MacroAssembler::StoreRoot(Register source,
     76                                Heap::RootListIndex index,
     77                                Condition cond,
     78                                Register src1, const Operand& src2) {
     79   Branch(2, NegateCondition(cond), src1, src2);
     80   sw(source, MemOperand(s6, index << kPointerSizeLog2));
     81 }
     82 
     83 
     84 void MacroAssembler::LoadHeapObject(Register result,
     85                                     Handle<HeapObject> object) {
     86   if (isolate()->heap()->InNewSpace(*object)) {
     87     Handle<JSGlobalPropertyCell> cell =
     88         isolate()->factory()->NewJSGlobalPropertyCell(object);
     89     li(result, Operand(cell));
     90     lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset));
     91   } else {
     92     li(result, Operand(object));
     93   }
     94 }
     95 
     96 
     97 // Push and pop all registers that can hold pointers.
     98 void MacroAssembler::PushSafepointRegisters() {
     99   // Safepoints expect a block of kNumSafepointRegisters values on the
    100   // stack, so adjust the stack for unsaved registers.
    101   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    102   ASSERT(num_unsaved >= 0);
    103   if (num_unsaved > 0) {
    104     Subu(sp, sp, Operand(num_unsaved * kPointerSize));
    105   }
    106   MultiPush(kSafepointSavedRegisters);
    107 }
    108 
    109 
    110 void MacroAssembler::PopSafepointRegisters() {
    111   const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
    112   MultiPop(kSafepointSavedRegisters);
    113   if (num_unsaved > 0) {
    114     Addu(sp, sp, Operand(num_unsaved * kPointerSize));
    115   }
    116 }
    117 
    118 
    119 void MacroAssembler::PushSafepointRegistersAndDoubles() {
    120   PushSafepointRegisters();
    121   Subu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize));
    122   for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) {
    123     FPURegister reg = FPURegister::FromAllocationIndex(i);
    124     sdc1(reg, MemOperand(sp, i * kDoubleSize));
    125   }
    126 }
    127 
    128 
    129 void MacroAssembler::PopSafepointRegistersAndDoubles() {
    130   for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) {
    131     FPURegister reg = FPURegister::FromAllocationIndex(i);
    132     ldc1(reg, MemOperand(sp, i * kDoubleSize));
    133   }
    134   Addu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize));
    135   PopSafepointRegisters();
    136 }
    137 
    138 
    139 void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src,
    140                                                              Register dst) {
    141   sw(src, SafepointRegistersAndDoublesSlot(dst));
    142 }
    143 
    144 
    145 void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
    146   sw(src, SafepointRegisterSlot(dst));
    147 }
    148 
    149 
    150 void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
    151   lw(dst, SafepointRegisterSlot(src));
    152 }
    153 
    154 
    155 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
    156   // The registers are pushed starting with the highest encoding,
    157   // which means that lowest encodings are closest to the stack pointer.
    158   return kSafepointRegisterStackIndexMap[reg_code];
    159 }
    160 
    161 
    162 MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
    163   return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
    164 }
    165 
    166 
    167 MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
    168   UNIMPLEMENTED_MIPS();
    169   // General purpose registers are pushed last on the stack.
    170   int doubles_size = FPURegister::kNumAllocatableRegisters * kDoubleSize;
    171   int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
    172   return MemOperand(sp, doubles_size + register_offset);
    173 }
    174 
    175 
    176 void MacroAssembler::InNewSpace(Register object,
    177                                 Register scratch,
    178                                 Condition cc,
    179                                 Label* branch) {
    180   ASSERT(cc == eq || cc == ne);
    181   And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
    182   Branch(branch, cc, scratch,
    183          Operand(ExternalReference::new_space_start(isolate())));
    184 }
    185 
    186 
    187 void MacroAssembler::RecordWriteField(
    188     Register object,
    189     int offset,
    190     Register value,
    191     Register dst,
    192     RAStatus ra_status,
    193     SaveFPRegsMode save_fp,
    194     RememberedSetAction remembered_set_action,
    195     SmiCheck smi_check) {
    196   ASSERT(!AreAliased(value, dst, t8, object));
    197   // First, check if a write barrier is even needed. The tests below
    198   // catch stores of Smis.
    199   Label done;
    200 
    201   // Skip barrier if writing a smi.
    202   if (smi_check == INLINE_SMI_CHECK) {
    203     JumpIfSmi(value, &done);
    204   }
    205 
    206   // Although the object register is tagged, the offset is relative to the start
    207   // of the object, so so offset must be a multiple of kPointerSize.
    208   ASSERT(IsAligned(offset, kPointerSize));
    209 
    210   Addu(dst, object, Operand(offset - kHeapObjectTag));
    211   if (emit_debug_code()) {
    212     Label ok;
    213     And(t8, dst, Operand((1 << kPointerSizeLog2) - 1));
    214     Branch(&ok, eq, t8, Operand(zero_reg));
    215     stop("Unaligned cell in write barrier");
    216     bind(&ok);
    217   }
    218 
    219   RecordWrite(object,
    220               dst,
    221               value,
    222               ra_status,
    223               save_fp,
    224               remembered_set_action,
    225               OMIT_SMI_CHECK);
    226 
    227   bind(&done);
    228 
    229   // Clobber clobbered input registers when running with the debug-code flag
    230   // turned on to provoke errors.
    231   if (emit_debug_code()) {
    232     li(value, Operand(BitCast<int32_t>(kZapValue + 4)));
    233     li(dst, Operand(BitCast<int32_t>(kZapValue + 8)));
    234   }
    235 }
    236 
    237 
    238 // Will clobber 4 registers: object, address, scratch, ip.  The
    239 // register 'object' contains a heap object pointer.  The heap object
    240 // tag is shifted away.
    241 void MacroAssembler::RecordWrite(Register object,
    242                                  Register address,
    243                                  Register value,
    244                                  RAStatus ra_status,
    245                                  SaveFPRegsMode fp_mode,
    246                                  RememberedSetAction remembered_set_action,
    247                                  SmiCheck smi_check) {
    248   ASSERT(!AreAliased(object, address, value, t8));
    249   ASSERT(!AreAliased(object, address, value, t9));
    250   // The compiled code assumes that record write doesn't change the
    251   // context register, so we check that none of the clobbered
    252   // registers are cp.
    253   ASSERT(!address.is(cp) && !value.is(cp));
    254 
    255   if (emit_debug_code()) {
    256     lw(at, MemOperand(address));
    257     Assert(
    258         eq, "Wrong address or value passed to RecordWrite", at, Operand(value));
    259   }
    260 
    261   Label done;
    262 
    263   if (smi_check == INLINE_SMI_CHECK) {
    264     ASSERT_EQ(0, kSmiTag);
    265     JumpIfSmi(value, &done);
    266   }
    267 
    268   CheckPageFlag(value,
    269                 value,  // Used as scratch.
    270                 MemoryChunk::kPointersToHereAreInterestingMask,
    271                 eq,
    272                 &done);
    273   CheckPageFlag(object,
    274                 value,  // Used as scratch.
    275                 MemoryChunk::kPointersFromHereAreInterestingMask,
    276                 eq,
    277                 &done);
    278 
    279   // Record the actual write.
    280   if (ra_status == kRAHasNotBeenSaved) {
    281     push(ra);
    282   }
    283   RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
    284   CallStub(&stub);
    285   if (ra_status == kRAHasNotBeenSaved) {
    286     pop(ra);
    287   }
    288 
    289   bind(&done);
    290 
    291   // Clobber clobbered registers when running with the debug-code flag
    292   // turned on to provoke errors.
    293   if (emit_debug_code()) {
    294     li(address, Operand(BitCast<int32_t>(kZapValue + 12)));
    295     li(value, Operand(BitCast<int32_t>(kZapValue + 16)));
    296   }
    297 }
    298 
    299 
    300 void MacroAssembler::RememberedSetHelper(Register object,  // For debug tests.
    301                                          Register address,
    302                                          Register scratch,
    303                                          SaveFPRegsMode fp_mode,
    304                                          RememberedSetFinalAction and_then) {
    305   Label done;
    306   if (emit_debug_code()) {
    307     Label ok;
    308     JumpIfNotInNewSpace(object, scratch, &ok);
    309     stop("Remembered set pointer is in new space");
    310     bind(&ok);
    311   }
    312   // Load store buffer top.
    313   ExternalReference store_buffer =
    314       ExternalReference::store_buffer_top(isolate());
    315   li(t8, Operand(store_buffer));
    316   lw(scratch, MemOperand(t8));
    317   // Store pointer to buffer and increment buffer top.
    318   sw(address, MemOperand(scratch));
    319   Addu(scratch, scratch, kPointerSize);
    320   // Write back new top of buffer.
    321   sw(scratch, MemOperand(t8));
    322   // Call stub on end of buffer.
    323   // Check for end of buffer.
    324   And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit));
    325   if (and_then == kFallThroughAtEnd) {
    326     Branch(&done, eq, t8, Operand(zero_reg));
    327   } else {
    328     ASSERT(and_then == kReturnAtEnd);
    329     Ret(eq, t8, Operand(zero_reg));
    330   }
    331   push(ra);
    332   StoreBufferOverflowStub store_buffer_overflow =
    333       StoreBufferOverflowStub(fp_mode);
    334   CallStub(&store_buffer_overflow);
    335   pop(ra);
    336   bind(&done);
    337   if (and_then == kReturnAtEnd) {
    338     Ret();
    339   }
    340 }
    341 
    342 
    343 // -----------------------------------------------------------------------------
    344 // Allocation support.
    345 
    346 
    347 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
    348                                             Register scratch,
    349                                             Label* miss) {
    350   Label same_contexts;
    351 
    352   ASSERT(!holder_reg.is(scratch));
    353   ASSERT(!holder_reg.is(at));
    354   ASSERT(!scratch.is(at));
    355 
    356   // Load current lexical context from the stack frame.
    357   lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
    358   // In debug mode, make sure the lexical context is set.
    359 #ifdef DEBUG
    360   Check(ne, "we should not have an empty lexical context",
    361       scratch, Operand(zero_reg));
    362 #endif
    363 
    364   // Load the global context of the current context.
    365   int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    366   lw(scratch, FieldMemOperand(scratch, offset));
    367   lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
    368 
    369   // Check the context is a global context.
    370   if (emit_debug_code()) {
    371     // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
    372     push(holder_reg);  // Temporarily save holder on the stack.
    373     // Read the first word and compare to the global_context_map.
    374     lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
    375     LoadRoot(at, Heap::kGlobalContextMapRootIndex);
    376     Check(eq, "JSGlobalObject::global_context should be a global context.",
    377           holder_reg, Operand(at));
    378     pop(holder_reg);  // Restore holder.
    379   }
    380 
    381   // Check if both contexts are the same.
    382   lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
    383   Branch(&same_contexts, eq, scratch, Operand(at));
    384 
    385   // Check the context is a global context.
    386   if (emit_debug_code()) {
    387     // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
    388     push(holder_reg);  // Temporarily save holder on the stack.
    389     mov(holder_reg, at);  // Move at to its holding place.
    390     LoadRoot(at, Heap::kNullValueRootIndex);
    391     Check(ne, "JSGlobalProxy::context() should not be null.",
    392           holder_reg, Operand(at));
    393 
    394     lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
    395     LoadRoot(at, Heap::kGlobalContextMapRootIndex);
    396     Check(eq, "JSGlobalObject::global_context should be a global context.",
    397           holder_reg, Operand(at));
    398     // Restore at is not needed. at is reloaded below.
    399     pop(holder_reg);  // Restore holder.
    400     // Restore at to holder's context.
    401     lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
    402   }
    403 
    404   // Check that the security token in the calling global object is
    405   // compatible with the security token in the receiving global
    406   // object.
    407   int token_offset = Context::kHeaderSize +
    408                      Context::SECURITY_TOKEN_INDEX * kPointerSize;
    409 
    410   lw(scratch, FieldMemOperand(scratch, token_offset));
    411   lw(at, FieldMemOperand(at, token_offset));
    412   Branch(miss, ne, scratch, Operand(at));
    413 
    414   bind(&same_contexts);
    415 }
    416 
    417 
    418 void MacroAssembler::GetNumberHash(Register reg0, Register scratch) {
    419   // First of all we assign the hash seed to scratch.
    420   LoadRoot(scratch, Heap::kHashSeedRootIndex);
    421   SmiUntag(scratch);
    422 
    423   // Xor original key with a seed.
    424   xor_(reg0, reg0, scratch);
    425 
    426   // Compute the hash code from the untagged key.  This must be kept in sync
    427   // with ComputeIntegerHash in utils.h.
    428   //
    429   // hash = ~hash + (hash << 15);
    430   nor(scratch, reg0, zero_reg);
    431   sll(at, reg0, 15);
    432   addu(reg0, scratch, at);
    433 
    434   // hash = hash ^ (hash >> 12);
    435   srl(at, reg0, 12);
    436   xor_(reg0, reg0, at);
    437 
    438   // hash = hash + (hash << 2);
    439   sll(at, reg0, 2);
    440   addu(reg0, reg0, at);
    441 
    442   // hash = hash ^ (hash >> 4);
    443   srl(at, reg0, 4);
    444   xor_(reg0, reg0, at);
    445 
    446   // hash = hash * 2057;
    447   sll(scratch, reg0, 11);
    448   sll(at, reg0, 3);
    449   addu(reg0, reg0, at);
    450   addu(reg0, reg0, scratch);
    451 
    452   // hash = hash ^ (hash >> 16);
    453   srl(at, reg0, 16);
    454   xor_(reg0, reg0, at);
    455 }
    456 
    457 
    458 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
    459                                               Register elements,
    460                                               Register key,
    461                                               Register result,
    462                                               Register reg0,
    463                                               Register reg1,
    464                                               Register reg2) {
    465   // Register use:
    466   //
    467   // elements - holds the slow-case elements of the receiver on entry.
    468   //            Unchanged unless 'result' is the same register.
    469   //
    470   // key      - holds the smi key on entry.
    471   //            Unchanged unless 'result' is the same register.
    472   //
    473   //
    474   // result   - holds the result on exit if the load succeeded.
    475   //            Allowed to be the same as 'key' or 'result'.
    476   //            Unchanged on bailout so 'key' or 'result' can be used
    477   //            in further computation.
    478   //
    479   // Scratch registers:
    480   //
    481   // reg0 - holds the untagged key on entry and holds the hash once computed.
    482   //
    483   // reg1 - Used to hold the capacity mask of the dictionary.
    484   //
    485   // reg2 - Used for the index into the dictionary.
    486   // at   - Temporary (avoid MacroAssembler instructions also using 'at').
    487   Label done;
    488 
    489   GetNumberHash(reg0, reg1);
    490 
    491   // Compute the capacity mask.
    492   lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
    493   sra(reg1, reg1, kSmiTagSize);
    494   Subu(reg1, reg1, Operand(1));
    495 
    496   // Generate an unrolled loop that performs a few probes before giving up.
    497   static const int kProbes = 4;
    498   for (int i = 0; i < kProbes; i++) {
    499     // Use reg2 for index calculations and keep the hash intact in reg0.
    500     mov(reg2, reg0);
    501     // Compute the masked index: (hash + i + i * i) & mask.
    502     if (i > 0) {
    503       Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
    504     }
    505     and_(reg2, reg2, reg1);
    506 
    507     // Scale the index by multiplying by the element size.
    508     ASSERT(SeededNumberDictionary::kEntrySize == 3);
    509     sll(at, reg2, 1);  // 2x.
    510     addu(reg2, reg2, at);  // reg2 = reg2 * 3.
    511 
    512     // Check if the key is identical to the name.
    513     sll(at, reg2, kPointerSizeLog2);
    514     addu(reg2, elements, at);
    515 
    516     lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset));
    517     if (i != kProbes - 1) {
    518       Branch(&done, eq, key, Operand(at));
    519     } else {
    520       Branch(miss, ne, key, Operand(at));
    521     }
    522   }
    523 
    524   bind(&done);
    525   // Check that the value is a normal property.
    526   // reg2: elements + (index * kPointerSize).
    527   const int kDetailsOffset =
    528       SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
    529   lw(reg1, FieldMemOperand(reg2, kDetailsOffset));
    530   And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
    531   Branch(miss, ne, at, Operand(zero_reg));
    532 
    533   // Get the value at the masked, scaled index and return.
    534   const int kValueOffset =
    535       SeededNumberDictionary::kElementsStartOffset + kPointerSize;
    536   lw(result, FieldMemOperand(reg2, kValueOffset));
    537 }
    538 
    539 
    540 // ---------------------------------------------------------------------------
    541 // Instruction macros.
    542 
    543 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
    544   if (rt.is_reg()) {
    545     addu(rd, rs, rt.rm());
    546   } else {
    547     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    548       addiu(rd, rs, rt.imm32_);
    549     } else {
    550       // li handles the relocation.
    551       ASSERT(!rs.is(at));
    552       li(at, rt);
    553       addu(rd, rs, at);
    554     }
    555   }
    556 }
    557 
    558 
    559 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
    560   if (rt.is_reg()) {
    561     subu(rd, rs, rt.rm());
    562   } else {
    563     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    564       addiu(rd, rs, -rt.imm32_);  // No subiu instr, use addiu(x, y, -imm).
    565     } else {
    566       // li handles the relocation.
    567       ASSERT(!rs.is(at));
    568       li(at, rt);
    569       subu(rd, rs, at);
    570     }
    571   }
    572 }
    573 
    574 
    575 void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
    576   if (rt.is_reg()) {
    577     if (kArchVariant == kLoongson) {
    578       mult(rs, rt.rm());
    579       mflo(rd);
    580     } else {
    581       mul(rd, rs, rt.rm());
    582     }
    583   } else {
    584     // li handles the relocation.
    585     ASSERT(!rs.is(at));
    586     li(at, rt);
    587     if (kArchVariant == kLoongson) {
    588       mult(rs, at);
    589       mflo(rd);
    590     } else {
    591       mul(rd, rs, at);
    592     }
    593   }
    594 }
    595 
    596 
    597 void MacroAssembler::Mult(Register rs, const Operand& rt) {
    598   if (rt.is_reg()) {
    599     mult(rs, rt.rm());
    600   } else {
    601     // li handles the relocation.
    602     ASSERT(!rs.is(at));
    603     li(at, rt);
    604     mult(rs, at);
    605   }
    606 }
    607 
    608 
    609 void MacroAssembler::Multu(Register rs, const Operand& rt) {
    610   if (rt.is_reg()) {
    611     multu(rs, rt.rm());
    612   } else {
    613     // li handles the relocation.
    614     ASSERT(!rs.is(at));
    615     li(at, rt);
    616     multu(rs, at);
    617   }
    618 }
    619 
    620 
    621 void MacroAssembler::Div(Register rs, const Operand& rt) {
    622   if (rt.is_reg()) {
    623     div(rs, rt.rm());
    624   } else {
    625     // li handles the relocation.
    626     ASSERT(!rs.is(at));
    627     li(at, rt);
    628     div(rs, at);
    629   }
    630 }
    631 
    632 
    633 void MacroAssembler::Divu(Register rs, const Operand& rt) {
    634   if (rt.is_reg()) {
    635     divu(rs, rt.rm());
    636   } else {
    637     // li handles the relocation.
    638     ASSERT(!rs.is(at));
    639     li(at, rt);
    640     divu(rs, at);
    641   }
    642 }
    643 
    644 
    645 void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
    646   if (rt.is_reg()) {
    647     and_(rd, rs, rt.rm());
    648   } else {
    649     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    650       andi(rd, rs, rt.imm32_);
    651     } else {
    652       // li handles the relocation.
    653       ASSERT(!rs.is(at));
    654       li(at, rt);
    655       and_(rd, rs, at);
    656     }
    657   }
    658 }
    659 
    660 
    661 void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
    662   if (rt.is_reg()) {
    663     or_(rd, rs, rt.rm());
    664   } else {
    665     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    666       ori(rd, rs, rt.imm32_);
    667     } else {
    668       // li handles the relocation.
    669       ASSERT(!rs.is(at));
    670       li(at, rt);
    671       or_(rd, rs, at);
    672     }
    673   }
    674 }
    675 
    676 
    677 void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
    678   if (rt.is_reg()) {
    679     xor_(rd, rs, rt.rm());
    680   } else {
    681     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    682       xori(rd, rs, rt.imm32_);
    683     } else {
    684       // li handles the relocation.
    685       ASSERT(!rs.is(at));
    686       li(at, rt);
    687       xor_(rd, rs, at);
    688     }
    689   }
    690 }
    691 
    692 
    693 void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
    694   if (rt.is_reg()) {
    695     nor(rd, rs, rt.rm());
    696   } else {
    697     // li handles the relocation.
    698     ASSERT(!rs.is(at));
    699     li(at, rt);
    700     nor(rd, rs, at);
    701   }
    702 }
    703 
    704 
    705 void MacroAssembler::Neg(Register rs, const Operand& rt) {
    706   ASSERT(rt.is_reg());
    707   ASSERT(!at.is(rs));
    708   ASSERT(!at.is(rt.rm()));
    709   li(at, -1);
    710   xor_(rs, rt.rm(), at);
    711 }
    712 
    713 
    714 void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
    715   if (rt.is_reg()) {
    716     slt(rd, rs, rt.rm());
    717   } else {
    718     if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    719       slti(rd, rs, rt.imm32_);
    720     } else {
    721       // li handles the relocation.
    722       ASSERT(!rs.is(at));
    723       li(at, rt);
    724       slt(rd, rs, at);
    725     }
    726   }
    727 }
    728 
    729 
    730 void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
    731   if (rt.is_reg()) {
    732     sltu(rd, rs, rt.rm());
    733   } else {
    734     if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
    735       sltiu(rd, rs, rt.imm32_);
    736     } else {
    737       // li handles the relocation.
    738       ASSERT(!rs.is(at));
    739       li(at, rt);
    740       sltu(rd, rs, at);
    741     }
    742   }
    743 }
    744 
    745 
    746 void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
    747   if (kArchVariant == kMips32r2) {
    748     if (rt.is_reg()) {
    749       rotrv(rd, rs, rt.rm());
    750     } else {
    751       rotr(rd, rs, rt.imm32_);
    752     }
    753   } else {
    754     if (rt.is_reg()) {
    755       subu(at, zero_reg, rt.rm());
    756       sllv(at, rs, at);
    757       srlv(rd, rs, rt.rm());
    758       or_(rd, rd, at);
    759     } else {
    760       if (rt.imm32_ == 0) {
    761         srl(rd, rs, 0);
    762       } else {
    763         srl(at, rs, rt.imm32_);
    764         sll(rd, rs, (0x20 - rt.imm32_) & 0x1f);
    765         or_(rd, rd, at);
    766       }
    767     }
    768   }
    769 }
    770 
    771 //------------Pseudo-instructions-------------
    772 
    773 void MacroAssembler::li(Register rd, Operand j, LiFlags mode) {
    774   ASSERT(!j.is_reg());
    775   BlockTrampolinePoolScope block_trampoline_pool(this);
    776   if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) {
    777     // Normal load of an immediate value which does not need Relocation Info.
    778     if (is_int16(j.imm32_)) {
    779       addiu(rd, zero_reg, j.imm32_);
    780     } else if (!(j.imm32_ & kHiMask)) {
    781       ori(rd, zero_reg, j.imm32_);
    782     } else if (!(j.imm32_ & kImm16Mask)) {
    783       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
    784     } else {
    785       lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
    786       ori(rd, rd, (j.imm32_ & kImm16Mask));
    787     }
    788   } else {
    789     if (MustUseReg(j.rmode_)) {
    790       RecordRelocInfo(j.rmode_, j.imm32_);
    791     }
    792     // We always need the same number of instructions as we may need to patch
    793     // this code to load another value which may need 2 instructions to load.
    794     lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask);
    795     ori(rd, rd, (j.imm32_ & kImm16Mask));
    796   }
    797 }
    798 
    799 
    800 void MacroAssembler::MultiPush(RegList regs) {
    801   int16_t num_to_push = NumberOfBitsSet(regs);
    802   int16_t stack_offset = num_to_push * kPointerSize;
    803 
    804   Subu(sp, sp, Operand(stack_offset));
    805   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
    806     if ((regs & (1 << i)) != 0) {
    807       stack_offset -= kPointerSize;
    808       sw(ToRegister(i), MemOperand(sp, stack_offset));
    809     }
    810   }
    811 }
    812 
    813 
    814 void MacroAssembler::MultiPushReversed(RegList regs) {
    815   int16_t num_to_push = NumberOfBitsSet(regs);
    816   int16_t stack_offset = num_to_push * kPointerSize;
    817 
    818   Subu(sp, sp, Operand(stack_offset));
    819   for (int16_t i = 0; i < kNumRegisters; i++) {
    820     if ((regs & (1 << i)) != 0) {
    821       stack_offset -= kPointerSize;
    822       sw(ToRegister(i), MemOperand(sp, stack_offset));
    823     }
    824   }
    825 }
    826 
    827 
    828 void MacroAssembler::MultiPop(RegList regs) {
    829   int16_t stack_offset = 0;
    830 
    831   for (int16_t i = 0; i < kNumRegisters; i++) {
    832     if ((regs & (1 << i)) != 0) {
    833       lw(ToRegister(i), MemOperand(sp, stack_offset));
    834       stack_offset += kPointerSize;
    835     }
    836   }
    837   addiu(sp, sp, stack_offset);
    838 }
    839 
    840 
    841 void MacroAssembler::MultiPopReversed(RegList regs) {
    842   int16_t stack_offset = 0;
    843 
    844   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
    845     if ((regs & (1 << i)) != 0) {
    846       lw(ToRegister(i), MemOperand(sp, stack_offset));
    847       stack_offset += kPointerSize;
    848     }
    849   }
    850   addiu(sp, sp, stack_offset);
    851 }
    852 
    853 
    854 void MacroAssembler::MultiPushFPU(RegList regs) {
    855   CpuFeatures::Scope scope(FPU);
    856   int16_t num_to_push = NumberOfBitsSet(regs);
    857   int16_t stack_offset = num_to_push * kDoubleSize;
    858 
    859   Subu(sp, sp, Operand(stack_offset));
    860   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
    861     if ((regs & (1 << i)) != 0) {
    862       stack_offset -= kDoubleSize;
    863       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
    864     }
    865   }
    866 }
    867 
    868 
    869 void MacroAssembler::MultiPushReversedFPU(RegList regs) {
    870   CpuFeatures::Scope scope(FPU);
    871   int16_t num_to_push = NumberOfBitsSet(regs);
    872   int16_t stack_offset = num_to_push * kDoubleSize;
    873 
    874   Subu(sp, sp, Operand(stack_offset));
    875   for (int16_t i = 0; i < kNumRegisters; i++) {
    876     if ((regs & (1 << i)) != 0) {
    877       stack_offset -= kDoubleSize;
    878       sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
    879     }
    880   }
    881 }
    882 
    883 
    884 void MacroAssembler::MultiPopFPU(RegList regs) {
    885   CpuFeatures::Scope scope(FPU);
    886   int16_t stack_offset = 0;
    887 
    888   for (int16_t i = 0; i < kNumRegisters; i++) {
    889     if ((regs & (1 << i)) != 0) {
    890       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
    891       stack_offset += kDoubleSize;
    892     }
    893   }
    894   addiu(sp, sp, stack_offset);
    895 }
    896 
    897 
    898 void MacroAssembler::MultiPopReversedFPU(RegList regs) {
    899   CpuFeatures::Scope scope(FPU);
    900   int16_t stack_offset = 0;
    901 
    902   for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
    903     if ((regs & (1 << i)) != 0) {
    904       ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset));
    905       stack_offset += kDoubleSize;
    906     }
    907   }
    908   addiu(sp, sp, stack_offset);
    909 }
    910 
    911 
    912 void MacroAssembler::FlushICache(Register address, unsigned instructions) {
    913   RegList saved_regs = kJSCallerSaved | ra.bit();
    914   MultiPush(saved_regs);
    915   AllowExternalCallThatCantCauseGC scope(this);
    916 
    917   // Save to a0 in case address == t0.
    918   Move(a0, address);
    919   PrepareCallCFunction(2, t0);
    920 
    921   li(a1, instructions * kInstrSize);
    922   CallCFunction(ExternalReference::flush_icache_function(isolate()), 2);
    923   MultiPop(saved_regs);
    924 }
    925 
    926 
    927 void MacroAssembler::Ext(Register rt,
    928                          Register rs,
    929                          uint16_t pos,
    930                          uint16_t size) {
    931   ASSERT(pos < 32);
    932   ASSERT(pos + size < 33);
    933 
    934   if (kArchVariant == kMips32r2) {
    935     ext_(rt, rs, pos, size);
    936   } else {
    937     // Move rs to rt and shift it left then right to get the
    938     // desired bitfield on the right side and zeroes on the left.
    939     int shift_left = 32 - (pos + size);
    940     sll(rt, rs, shift_left);  // Acts as a move if shift_left == 0.
    941 
    942     int shift_right = 32 - size;
    943     if (shift_right > 0) {
    944       srl(rt, rt, shift_right);
    945     }
    946   }
    947 }
    948 
    949 
    950 void MacroAssembler::Ins(Register rt,
    951                          Register rs,
    952                          uint16_t pos,
    953                          uint16_t size) {
    954   ASSERT(pos < 32);
    955   ASSERT(pos + size <= 32);
    956   ASSERT(size != 0);
    957 
    958   if (kArchVariant == kMips32r2) {
    959     ins_(rt, rs, pos, size);
    960   } else {
    961     ASSERT(!rt.is(t8) && !rs.is(t8));
    962     Subu(at, zero_reg, Operand(1));
    963     srl(at, at, 32 - size);
    964     and_(t8, rs, at);
    965     sll(t8, t8, pos);
    966     sll(at, at, pos);
    967     nor(at, at, zero_reg);
    968     and_(at, rt, at);
    969     or_(rt, t8, at);
    970   }
    971 }
    972 
    973 
    974 void MacroAssembler::Cvt_d_uw(FPURegister fd,
    975                               FPURegister fs,
    976                               FPURegister scratch) {
    977   // Move the data from fs to t8.
    978   mfc1(t8, fs);
    979   Cvt_d_uw(fd, t8, scratch);
    980 }
    981 
    982 
    983 void MacroAssembler::Cvt_d_uw(FPURegister fd,
    984                               Register rs,
    985                               FPURegister scratch) {
    986   // Convert rs to a FP value in fd (and fd + 1).
    987   // We do this by converting rs minus the MSB to avoid sign conversion,
    988   // then adding 2^31 to the result (if needed).
    989 
    990   ASSERT(!fd.is(scratch));
    991   ASSERT(!rs.is(t9));
    992   ASSERT(!rs.is(at));
    993 
    994   // Save rs's MSB to t9.
    995   Ext(t9, rs, 31, 1);
    996   // Remove rs's MSB.
    997   Ext(at, rs, 0, 31);
    998   // Move the result to fd.
    999   mtc1(at, fd);
   1000 
   1001   // Convert fd to a real FP value.
   1002   cvt_d_w(fd, fd);
   1003 
   1004   Label conversion_done;
   1005 
   1006   // If rs's MSB was 0, it's done.
   1007   // Otherwise we need to add that to the FP register.
   1008   Branch(&conversion_done, eq, t9, Operand(zero_reg));
   1009 
   1010   // Load 2^31 into f20 as its float representation.
   1011   li(at, 0x41E00000);
   1012   mtc1(at, FPURegister::from_code(scratch.code() + 1));
   1013   mtc1(zero_reg, scratch);
   1014   // Add it to fd.
   1015   add_d(fd, fd, scratch);
   1016 
   1017   bind(&conversion_done);
   1018 }
   1019 
   1020 
   1021 void MacroAssembler::Trunc_uw_d(FPURegister fd,
   1022                                 FPURegister fs,
   1023                                 FPURegister scratch) {
   1024   Trunc_uw_d(fs, t8, scratch);
   1025   mtc1(t8, fd);
   1026 }
   1027 
   1028 void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) {
   1029   if (kArchVariant == kLoongson && fd.is(fs)) {
   1030     mfc1(t8, FPURegister::from_code(fs.code() + 1));
   1031     trunc_w_d(fd, fs);
   1032     mtc1(t8, FPURegister::from_code(fs.code() + 1));
   1033   } else {
   1034     trunc_w_d(fd, fs);
   1035   }
   1036 }
   1037 
   1038 void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) {
   1039   if (kArchVariant == kLoongson && fd.is(fs)) {
   1040     mfc1(t8, FPURegister::from_code(fs.code() + 1));
   1041     round_w_d(fd, fs);
   1042     mtc1(t8, FPURegister::from_code(fs.code() + 1));
   1043   } else {
   1044     round_w_d(fd, fs);
   1045   }
   1046 }
   1047 
   1048 
   1049 void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) {
   1050   if (kArchVariant == kLoongson && fd.is(fs)) {
   1051     mfc1(t8, FPURegister::from_code(fs.code() + 1));
   1052     floor_w_d(fd, fs);
   1053     mtc1(t8, FPURegister::from_code(fs.code() + 1));
   1054   } else {
   1055     floor_w_d(fd, fs);
   1056   }
   1057 }
   1058 
   1059 
   1060 void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) {
   1061   if (kArchVariant == kLoongson && fd.is(fs)) {
   1062     mfc1(t8, FPURegister::from_code(fs.code() + 1));
   1063     ceil_w_d(fd, fs);
   1064     mtc1(t8, FPURegister::from_code(fs.code() + 1));
   1065   } else {
   1066     ceil_w_d(fd, fs);
   1067   }
   1068 }
   1069 
   1070 
   1071 void MacroAssembler::Trunc_uw_d(FPURegister fd,
   1072                                 Register rs,
   1073                                 FPURegister scratch) {
   1074   ASSERT(!fd.is(scratch));
   1075   ASSERT(!rs.is(at));
   1076 
   1077   // Load 2^31 into scratch as its float representation.
   1078   li(at, 0x41E00000);
   1079   mtc1(at, FPURegister::from_code(scratch.code() + 1));
   1080   mtc1(zero_reg, scratch);
   1081   // Test if scratch > fd.
   1082   // If fd < 2^31 we can convert it normally.
   1083   Label simple_convert;
   1084   BranchF(&simple_convert, NULL, lt, fd, scratch);
   1085 
   1086   // First we subtract 2^31 from fd, then trunc it to rs
   1087   // and add 2^31 to rs.
   1088   sub_d(scratch, fd, scratch);
   1089   trunc_w_d(scratch, scratch);
   1090   mfc1(rs, scratch);
   1091   Or(rs, rs, 1 << 31);
   1092 
   1093   Label done;
   1094   Branch(&done);
   1095   // Simple conversion.
   1096   bind(&simple_convert);
   1097   trunc_w_d(scratch, fd);
   1098   mfc1(rs, scratch);
   1099 
   1100   bind(&done);
   1101 }
   1102 
   1103 
   1104 void MacroAssembler::BranchF(Label* target,
   1105                              Label* nan,
   1106                              Condition cc,
   1107                              FPURegister cmp1,
   1108                              FPURegister cmp2,
   1109                              BranchDelaySlot bd) {
   1110   if (cc == al) {
   1111     Branch(bd, target);
   1112     return;
   1113   }
   1114 
   1115   ASSERT(nan || target);
   1116   // Check for unordered (NaN) cases.
   1117   if (nan) {
   1118     c(UN, D, cmp1, cmp2);
   1119     bc1t(nan);
   1120   }
   1121 
   1122   if (target) {
   1123     // Here NaN cases were either handled by this function or are assumed to
   1124     // have been handled by the caller.
   1125     // Unsigned conditions are treated as their signed counterpart.
   1126     switch (cc) {
   1127       case Uless:
   1128       case less:
   1129         c(OLT, D, cmp1, cmp2);
   1130         bc1t(target);
   1131         break;
   1132       case Ugreater:
   1133       case greater:
   1134         c(ULE, D, cmp1, cmp2);
   1135         bc1f(target);
   1136         break;
   1137       case Ugreater_equal:
   1138       case greater_equal:
   1139         c(ULT, D, cmp1, cmp2);
   1140         bc1f(target);
   1141         break;
   1142       case Uless_equal:
   1143       case less_equal:
   1144         c(OLE, D, cmp1, cmp2);
   1145         bc1t(target);
   1146         break;
   1147       case eq:
   1148         c(EQ, D, cmp1, cmp2);
   1149         bc1t(target);
   1150         break;
   1151       case ne:
   1152         c(EQ, D, cmp1, cmp2);
   1153         bc1f(target);
   1154         break;
   1155       default:
   1156         CHECK(0);
   1157     };
   1158   }
   1159 
   1160   if (bd == PROTECT) {
   1161     nop();
   1162   }
   1163 }
   1164 
   1165 
   1166 void MacroAssembler::Move(FPURegister dst, double imm) {
   1167   ASSERT(CpuFeatures::IsEnabled(FPU));
   1168   static const DoubleRepresentation minus_zero(-0.0);
   1169   static const DoubleRepresentation zero(0.0);
   1170   DoubleRepresentation value(imm);
   1171   // Handle special values first.
   1172   bool force_load = dst.is(kDoubleRegZero);
   1173   if (value.bits == zero.bits && !force_load) {
   1174     mov_d(dst, kDoubleRegZero);
   1175   } else if (value.bits == minus_zero.bits && !force_load) {
   1176     neg_d(dst, kDoubleRegZero);
   1177   } else {
   1178     uint32_t lo, hi;
   1179     DoubleAsTwoUInt32(imm, &lo, &hi);
   1180     // Move the low part of the double into the lower of the corresponding FPU
   1181     // register of FPU register pair.
   1182     if (lo != 0) {
   1183       li(at, Operand(lo));
   1184       mtc1(at, dst);
   1185     } else {
   1186       mtc1(zero_reg, dst);
   1187     }
   1188     // Move the high part of the double into the higher of the corresponding FPU
   1189     // register of FPU register pair.
   1190     if (hi != 0) {
   1191       li(at, Operand(hi));
   1192       mtc1(at, dst.high());
   1193     } else {
   1194       mtc1(zero_reg, dst.high());
   1195     }
   1196   }
   1197 }
   1198 
   1199 
   1200 void MacroAssembler::Movz(Register rd, Register rs, Register rt) {
   1201   if (kArchVariant == kLoongson) {
   1202     Label done;
   1203     Branch(&done, ne, rt, Operand(zero_reg));
   1204     mov(rd, rs);
   1205     bind(&done);
   1206   } else {
   1207     movz(rd, rs, rt);
   1208   }
   1209 }
   1210 
   1211 
   1212 void MacroAssembler::Movn(Register rd, Register rs, Register rt) {
   1213   if (kArchVariant == kLoongson) {
   1214     Label done;
   1215     Branch(&done, eq, rt, Operand(zero_reg));
   1216     mov(rd, rs);
   1217     bind(&done);
   1218   } else {
   1219     movn(rd, rs, rt);
   1220   }
   1221 }
   1222 
   1223 
   1224 void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) {
   1225   if (kArchVariant == kLoongson) {
   1226     // Tests an FP condition code and then conditionally move rs to rd.
   1227     // We do not currently use any FPU cc bit other than bit 0.
   1228     ASSERT(cc == 0);
   1229     ASSERT(!(rs.is(t8) || rd.is(t8)));
   1230     Label done;
   1231     Register scratch = t8;
   1232     // For testing purposes we need to fetch content of the FCSR register and
   1233     // than test its cc (floating point condition code) bit (for cc = 0, it is
   1234     // 24. bit of the FCSR).
   1235     cfc1(scratch, FCSR);
   1236     // For the MIPS I, II and III architectures, the contents of scratch is
   1237     // UNPREDICTABLE for the instruction immediately following CFC1.
   1238     nop();
   1239     srl(scratch, scratch, 16);
   1240     andi(scratch, scratch, 0x0080);
   1241     Branch(&done, eq, scratch, Operand(zero_reg));
   1242     mov(rd, rs);
   1243     bind(&done);
   1244   } else {
   1245     movt(rd, rs, cc);
   1246   }
   1247 }
   1248 
   1249 
   1250 void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) {
   1251   if (kArchVariant == kLoongson) {
   1252     // Tests an FP condition code and then conditionally move rs to rd.
   1253     // We do not currently use any FPU cc bit other than bit 0.
   1254     ASSERT(cc == 0);
   1255     ASSERT(!(rs.is(t8) || rd.is(t8)));
   1256     Label done;
   1257     Register scratch = t8;
   1258     // For testing purposes we need to fetch content of the FCSR register and
   1259     // than test its cc (floating point condition code) bit (for cc = 0, it is
   1260     // 24. bit of the FCSR).
   1261     cfc1(scratch, FCSR);
   1262     // For the MIPS I, II and III architectures, the contents of scratch is
   1263     // UNPREDICTABLE for the instruction immediately following CFC1.
   1264     nop();
   1265     srl(scratch, scratch, 16);
   1266     andi(scratch, scratch, 0x0080);
   1267     Branch(&done, ne, scratch, Operand(zero_reg));
   1268     mov(rd, rs);
   1269     bind(&done);
   1270   } else {
   1271     movf(rd, rs, cc);
   1272   }
   1273 }
   1274 
   1275 
   1276 void MacroAssembler::Clz(Register rd, Register rs) {
   1277   if (kArchVariant == kLoongson) {
   1278     ASSERT(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9)));
   1279     Register mask = t8;
   1280     Register scratch = t9;
   1281     Label loop, end;
   1282     mov(at, rs);
   1283     mov(rd, zero_reg);
   1284     lui(mask, 0x8000);
   1285     bind(&loop);
   1286     and_(scratch, at, mask);
   1287     Branch(&end, ne, scratch, Operand(zero_reg));
   1288     addiu(rd, rd, 1);
   1289     Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT);
   1290     srl(mask, mask, 1);
   1291     bind(&end);
   1292   } else {
   1293     clz(rd, rs);
   1294   }
   1295 }
   1296 
   1297 
   1298 // Tries to get a signed int32 out of a double precision floating point heap
   1299 // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
   1300 // 32bits signed integer range.
   1301 // This method implementation differs from the ARM version for performance
   1302 // reasons.
   1303 void MacroAssembler::ConvertToInt32(Register source,
   1304                                     Register dest,
   1305                                     Register scratch,
   1306                                     Register scratch2,
   1307                                     FPURegister double_scratch,
   1308                                     Label *not_int32) {
   1309   Label right_exponent, done;
   1310   // Get exponent word (ENDIAN issues).
   1311   lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
   1312   // Get exponent alone in scratch2.
   1313   And(scratch2, scratch, Operand(HeapNumber::kExponentMask));
   1314   // Load dest with zero.  We use this either for the final shift or
   1315   // for the answer.
   1316   mov(dest, zero_reg);
   1317   // Check whether the exponent matches a 32 bit signed int that is not a Smi.
   1318   // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).  This is
   1319   // the exponent that we are fastest at and also the highest exponent we can
   1320   // handle here.
   1321   const uint32_t non_smi_exponent =
   1322       (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
   1323   // If we have a match of the int32-but-not-Smi exponent then skip some logic.
   1324   Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent));
   1325   // If the exponent is higher than that then go to not_int32 case.  This
   1326   // catches numbers that don't fit in a signed int32, infinities and NaNs.
   1327   Branch(not_int32, gt, scratch2, Operand(non_smi_exponent));
   1328 
   1329   // We know the exponent is smaller than 30 (biased).  If it is less than
   1330   // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e.
   1331   // it rounds to zero.
   1332   const uint32_t zero_exponent =
   1333       (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
   1334   Subu(scratch2, scratch2, Operand(zero_exponent));
   1335   // Dest already has a Smi zero.
   1336   Branch(&done, lt, scratch2, Operand(zero_reg));
   1337   if (!CpuFeatures::IsSupported(FPU)) {
   1338     // We have a shifted exponent between 0 and 30 in scratch2.
   1339     srl(dest, scratch2, HeapNumber::kExponentShift);
   1340     // We now have the exponent in dest.  Subtract from 30 to get
   1341     // how much to shift down.
   1342     li(at, Operand(30));
   1343     subu(dest, at, dest);
   1344   }
   1345   bind(&right_exponent);
   1346   if (CpuFeatures::IsSupported(FPU)) {
   1347     CpuFeatures::Scope scope(FPU);
   1348     // MIPS FPU instructions implementing double precision to integer
   1349     // conversion using round to zero. Since the FP value was qualified
   1350     // above, the resulting integer should be a legal int32.
   1351     // The original 'Exponent' word is still in scratch.
   1352     lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
   1353     mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1));
   1354     trunc_w_d(double_scratch, double_scratch);
   1355     mfc1(dest, double_scratch);
   1356   } else {
   1357     // On entry, dest has final downshift, scratch has original sign/exp/mant.
   1358     // Save sign bit in top bit of dest.
   1359     And(scratch2, scratch, Operand(0x80000000));
   1360     Or(dest, dest, Operand(scratch2));
   1361     // Put back the implicit 1, just above mantissa field.
   1362     Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift));
   1363 
   1364     // Shift up the mantissa bits to take up the space the exponent used to
   1365     // take. We just orred in the implicit bit so that took care of one and
   1366     // we want to leave the sign bit 0 so we subtract 2 bits from the shift
   1367     // distance. But we want to clear the sign-bit so shift one more bit
   1368     // left, then shift right one bit.
   1369     const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
   1370     sll(scratch, scratch, shift_distance + 1);
   1371     srl(scratch, scratch, 1);
   1372 
   1373     // Get the second half of the double. For some exponents we don't
   1374     // actually need this because the bits get shifted out again, but
   1375     // it's probably slower to test than just to do it.
   1376     lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
   1377     // Extract the top 10 bits, and insert those bottom 10 bits of scratch.
   1378     // The width of the field here is the same as the shift amount above.
   1379     const int field_width = shift_distance;
   1380     Ext(scratch2, scratch2, 32-shift_distance, field_width);
   1381     Ins(scratch, scratch2, 0, field_width);
   1382     // Move down according to the exponent.
   1383     srlv(scratch, scratch, dest);
   1384     // Prepare the negative version of our integer.
   1385     subu(scratch2, zero_reg, scratch);
   1386     // Trick to check sign bit (msb) held in dest, count leading zero.
   1387     // 0 indicates negative, save negative version with conditional move.
   1388     Clz(dest, dest);
   1389     Movz(scratch, scratch2, dest);
   1390     mov(dest, scratch);
   1391   }
   1392   bind(&done);
   1393 }
   1394 
   1395 
   1396 void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode,
   1397                                      FPURegister result,
   1398                                      DoubleRegister double_input,
   1399                                      Register scratch1,
   1400                                      Register except_flag,
   1401                                      CheckForInexactConversion check_inexact) {
   1402   ASSERT(CpuFeatures::IsSupported(FPU));
   1403   CpuFeatures::Scope scope(FPU);
   1404 
   1405   int32_t except_mask = kFCSRFlagMask;  // Assume interested in all exceptions.
   1406 
   1407   if (check_inexact == kDontCheckForInexactConversion) {
   1408     // Ingore inexact exceptions.
   1409     except_mask &= ~kFCSRInexactFlagMask;
   1410   }
   1411 
   1412   // Save FCSR.
   1413   cfc1(scratch1, FCSR);
   1414   // Disable FPU exceptions.
   1415   ctc1(zero_reg, FCSR);
   1416 
   1417   // Do operation based on rounding mode.
   1418   switch (rounding_mode) {
   1419     case kRoundToNearest:
   1420       Round_w_d(result, double_input);
   1421       break;
   1422     case kRoundToZero:
   1423       Trunc_w_d(result, double_input);
   1424       break;
   1425     case kRoundToPlusInf:
   1426       Ceil_w_d(result, double_input);
   1427       break;
   1428     case kRoundToMinusInf:
   1429       Floor_w_d(result, double_input);
   1430       break;
   1431   }  // End of switch-statement.
   1432 
   1433   // Retrieve FCSR.
   1434   cfc1(except_flag, FCSR);
   1435   // Restore FCSR.
   1436   ctc1(scratch1, FCSR);
   1437 
   1438   // Check for fpu exceptions.
   1439   And(except_flag, except_flag, Operand(except_mask));
   1440 }
   1441 
   1442 
   1443 void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result,
   1444                                                  Register input_high,
   1445                                                  Register input_low,
   1446                                                  Register scratch) {
   1447   Label done, normal_exponent, restore_sign;
   1448   // Extract the biased exponent in result.
   1449   Ext(result,
   1450       input_high,
   1451       HeapNumber::kExponentShift,
   1452       HeapNumber::kExponentBits);
   1453 
   1454   // Check for Infinity and NaNs, which should return 0.
   1455   Subu(scratch, result, HeapNumber::kExponentMask);
   1456   Movz(result, zero_reg, scratch);
   1457   Branch(&done, eq, scratch, Operand(zero_reg));
   1458 
   1459   // Express exponent as delta to (number of mantissa bits + 31).
   1460   Subu(result,
   1461        result,
   1462        Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
   1463 
   1464   // If the delta is strictly positive, all bits would be shifted away,
   1465   // which means that we can return 0.
   1466   Branch(&normal_exponent, le, result, Operand(zero_reg));
   1467   mov(result, zero_reg);
   1468   Branch(&done);
   1469 
   1470   bind(&normal_exponent);
   1471   const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
   1472   // Calculate shift.
   1473   Addu(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits));
   1474 
   1475   // Save the sign.
   1476   Register sign = result;
   1477   result = no_reg;
   1478   And(sign, input_high, Operand(HeapNumber::kSignMask));
   1479 
   1480   // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
   1481   // to check for this specific case.
   1482   Label high_shift_needed, high_shift_done;
   1483   Branch(&high_shift_needed, lt, scratch, Operand(32));
   1484   mov(input_high, zero_reg);
   1485   Branch(&high_shift_done);
   1486   bind(&high_shift_needed);
   1487 
   1488   // Set the implicit 1 before the mantissa part in input_high.
   1489   Or(input_high,
   1490      input_high,
   1491      Operand(1 << HeapNumber::kMantissaBitsInTopWord));
   1492   // Shift the mantissa bits to the correct position.
   1493   // We don't need to clear non-mantissa bits as they will be shifted away.
   1494   // If they weren't, it would mean that the answer is in the 32bit range.
   1495   sllv(input_high, input_high, scratch);
   1496 
   1497   bind(&high_shift_done);
   1498 
   1499   // Replace the shifted bits with bits from the lower mantissa word.
   1500   Label pos_shift, shift_done;
   1501   li(at, 32);
   1502   subu(scratch, at, scratch);
   1503   Branch(&pos_shift, ge, scratch, Operand(zero_reg));
   1504 
   1505   // Negate scratch.
   1506   Subu(scratch, zero_reg, scratch);
   1507   sllv(input_low, input_low, scratch);
   1508   Branch(&shift_done);
   1509 
   1510   bind(&pos_shift);
   1511   srlv(input_low, input_low, scratch);
   1512 
   1513   bind(&shift_done);
   1514   Or(input_high, input_high, Operand(input_low));
   1515   // Restore sign if necessary.
   1516   mov(scratch, sign);
   1517   result = sign;
   1518   sign = no_reg;
   1519   Subu(result, zero_reg, input_high);
   1520   Movz(result, input_high, scratch);
   1521   bind(&done);
   1522 }
   1523 
   1524 
   1525 void MacroAssembler::EmitECMATruncate(Register result,
   1526                                       FPURegister double_input,
   1527                                       FPURegister single_scratch,
   1528                                       Register scratch,
   1529                                       Register scratch2,
   1530                                       Register scratch3) {
   1531   CpuFeatures::Scope scope(FPU);
   1532   ASSERT(!scratch2.is(result));
   1533   ASSERT(!scratch3.is(result));
   1534   ASSERT(!scratch3.is(scratch2));
   1535   ASSERT(!scratch.is(result) &&
   1536          !scratch.is(scratch2) &&
   1537          !scratch.is(scratch3));
   1538   ASSERT(!single_scratch.is(double_input));
   1539 
   1540   Label done;
   1541   Label manual;
   1542 
   1543   // Clear cumulative exception flags and save the FCSR.
   1544   cfc1(scratch2, FCSR);
   1545   ctc1(zero_reg, FCSR);
   1546   // Try a conversion to a signed integer.
   1547   trunc_w_d(single_scratch, double_input);
   1548   mfc1(result, single_scratch);
   1549   // Retrieve and restore the FCSR.
   1550   cfc1(scratch, FCSR);
   1551   ctc1(scratch2, FCSR);
   1552   // Check for overflow and NaNs.
   1553   And(scratch,
   1554       scratch,
   1555       kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
   1556   // If we had no exceptions we are done.
   1557   Branch(&done, eq, scratch, Operand(zero_reg));
   1558 
   1559   // Load the double value and perform a manual truncation.
   1560   Register input_high = scratch2;
   1561   Register input_low = scratch3;
   1562   Move(input_low, input_high, double_input);
   1563   EmitOutOfInt32RangeTruncate(result,
   1564                               input_high,
   1565                               input_low,
   1566                               scratch);
   1567   bind(&done);
   1568 }
   1569 
   1570 
   1571 void MacroAssembler::GetLeastBitsFromSmi(Register dst,
   1572                                          Register src,
   1573                                          int num_least_bits) {
   1574   Ext(dst, src, kSmiTagSize, num_least_bits);
   1575 }
   1576 
   1577 
   1578 void MacroAssembler::GetLeastBitsFromInt32(Register dst,
   1579                                            Register src,
   1580                                            int num_least_bits) {
   1581   And(dst, src, Operand((1 << num_least_bits) - 1));
   1582 }
   1583 
   1584 
   1585 // Emulated condtional branches do not emit a nop in the branch delay slot.
   1586 //
   1587 // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
   1588 #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT(                                \
   1589     (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) ||          \
   1590     (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
   1591 
   1592 
   1593 void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
   1594   BranchShort(offset, bdslot);
   1595 }
   1596 
   1597 
   1598 void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
   1599                             const Operand& rt,
   1600                             BranchDelaySlot bdslot) {
   1601   BranchShort(offset, cond, rs, rt, bdslot);
   1602 }
   1603 
   1604 
   1605 void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
   1606   if (L->is_bound()) {
   1607     if (is_near(L)) {
   1608       BranchShort(L, bdslot);
   1609     } else {
   1610       Jr(L, bdslot);
   1611     }
   1612   } else {
   1613     if (is_trampoline_emitted()) {
   1614       Jr(L, bdslot);
   1615     } else {
   1616       BranchShort(L, bdslot);
   1617     }
   1618   }
   1619 }
   1620 
   1621 
   1622 void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
   1623                             const Operand& rt,
   1624                             BranchDelaySlot bdslot) {
   1625   if (L->is_bound()) {
   1626     if (is_near(L)) {
   1627       BranchShort(L, cond, rs, rt, bdslot);
   1628     } else {
   1629       Label skip;
   1630       Condition neg_cond = NegateCondition(cond);
   1631       BranchShort(&skip, neg_cond, rs, rt);
   1632       Jr(L, bdslot);
   1633       bind(&skip);
   1634     }
   1635   } else {
   1636     if (is_trampoline_emitted()) {
   1637       Label skip;
   1638       Condition neg_cond = NegateCondition(cond);
   1639       BranchShort(&skip, neg_cond, rs, rt);
   1640       Jr(L, bdslot);
   1641       bind(&skip);
   1642     } else {
   1643       BranchShort(L, cond, rs, rt, bdslot);
   1644     }
   1645   }
   1646 }
   1647 
   1648 
   1649 void MacroAssembler::Branch(Label* L,
   1650                             Condition cond,
   1651                             Register rs,
   1652                             Heap::RootListIndex index,
   1653                             BranchDelaySlot bdslot) {
   1654   LoadRoot(at, index);
   1655   Branch(L, cond, rs, Operand(at), bdslot);
   1656 }
   1657 
   1658 
   1659 void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) {
   1660   b(offset);
   1661 
   1662   // Emit a nop in the branch delay slot if required.
   1663   if (bdslot == PROTECT)
   1664     nop();
   1665 }
   1666 
   1667 
   1668 void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs,
   1669                                  const Operand& rt,
   1670                                  BranchDelaySlot bdslot) {
   1671   BRANCH_ARGS_CHECK(cond, rs, rt);
   1672   ASSERT(!rs.is(zero_reg));
   1673   Register r2 = no_reg;
   1674   Register scratch = at;
   1675 
   1676   if (rt.is_reg()) {
   1677     // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or
   1678     // rt.
   1679     r2 = rt.rm_;
   1680     switch (cond) {
   1681       case cc_always:
   1682         b(offset);
   1683         break;
   1684       case eq:
   1685         beq(rs, r2, offset);
   1686         break;
   1687       case ne:
   1688         bne(rs, r2, offset);
   1689         break;
   1690       // Signed comparison.
   1691       case greater:
   1692         if (r2.is(zero_reg)) {
   1693           bgtz(rs, offset);
   1694         } else {
   1695           slt(scratch, r2, rs);
   1696           bne(scratch, zero_reg, offset);
   1697         }
   1698         break;
   1699       case greater_equal:
   1700         if (r2.is(zero_reg)) {
   1701           bgez(rs, offset);
   1702         } else {
   1703           slt(scratch, rs, r2);
   1704           beq(scratch, zero_reg, offset);
   1705         }
   1706         break;
   1707       case less:
   1708         if (r2.is(zero_reg)) {
   1709           bltz(rs, offset);
   1710         } else {
   1711           slt(scratch, rs, r2);
   1712           bne(scratch, zero_reg, offset);
   1713         }
   1714         break;
   1715       case less_equal:
   1716         if (r2.is(zero_reg)) {
   1717           blez(rs, offset);
   1718         } else {
   1719           slt(scratch, r2, rs);
   1720           beq(scratch, zero_reg, offset);
   1721         }
   1722         break;
   1723       // Unsigned comparison.
   1724       case Ugreater:
   1725         if (r2.is(zero_reg)) {
   1726           bgtz(rs, offset);
   1727         } else {
   1728           sltu(scratch, r2, rs);
   1729           bne(scratch, zero_reg, offset);
   1730         }
   1731         break;
   1732       case Ugreater_equal:
   1733         if (r2.is(zero_reg)) {
   1734           bgez(rs, offset);
   1735         } else {
   1736           sltu(scratch, rs, r2);
   1737           beq(scratch, zero_reg, offset);
   1738         }
   1739         break;
   1740       case Uless:
   1741         if (r2.is(zero_reg)) {
   1742           // No code needs to be emitted.
   1743           return;
   1744         } else {
   1745           sltu(scratch, rs, r2);
   1746           bne(scratch, zero_reg, offset);
   1747         }
   1748         break;
   1749       case Uless_equal:
   1750         if (r2.is(zero_reg)) {
   1751           b(offset);
   1752         } else {
   1753           sltu(scratch, r2, rs);
   1754           beq(scratch, zero_reg, offset);
   1755         }
   1756         break;
   1757       default:
   1758         UNREACHABLE();
   1759     }
   1760   } else {
   1761     // Be careful to always use shifted_branch_offset only just before the
   1762     // branch instruction, as the location will be remember for patching the
   1763     // target.
   1764     switch (cond) {
   1765       case cc_always:
   1766         b(offset);
   1767         break;
   1768       case eq:
   1769         // We don't want any other register but scratch clobbered.
   1770         ASSERT(!scratch.is(rs));
   1771         r2 = scratch;
   1772         li(r2, rt);
   1773         beq(rs, r2, offset);
   1774         break;
   1775       case ne:
   1776         // We don't want any other register but scratch clobbered.
   1777         ASSERT(!scratch.is(rs));
   1778         r2 = scratch;
   1779         li(r2, rt);
   1780         bne(rs, r2, offset);
   1781         break;
   1782       // Signed comparison.
   1783       case greater:
   1784         if (rt.imm32_ == 0) {
   1785           bgtz(rs, offset);
   1786         } else {
   1787           r2 = scratch;
   1788           li(r2, rt);
   1789           slt(scratch, r2, rs);
   1790           bne(scratch, zero_reg, offset);
   1791         }
   1792         break;
   1793       case greater_equal:
   1794         if (rt.imm32_ == 0) {
   1795           bgez(rs, offset);
   1796         } else if (is_int16(rt.imm32_)) {
   1797           slti(scratch, rs, rt.imm32_);
   1798           beq(scratch, zero_reg, offset);
   1799         } else {
   1800           r2 = scratch;
   1801           li(r2, rt);
   1802           slt(scratch, rs, r2);
   1803           beq(scratch, zero_reg, offset);
   1804         }
   1805         break;
   1806       case less:
   1807         if (rt.imm32_ == 0) {
   1808           bltz(rs, offset);
   1809         } else if (is_int16(rt.imm32_)) {
   1810           slti(scratch, rs, rt.imm32_);
   1811           bne(scratch, zero_reg, offset);
   1812         } else {
   1813           r2 = scratch;
   1814           li(r2, rt);
   1815           slt(scratch, rs, r2);
   1816           bne(scratch, zero_reg, offset);
   1817         }
   1818         break;
   1819       case less_equal:
   1820         if (rt.imm32_ == 0) {
   1821           blez(rs, offset);
   1822         } else {
   1823           r2 = scratch;
   1824           li(r2, rt);
   1825           slt(scratch, r2, rs);
   1826           beq(scratch, zero_reg, offset);
   1827        }
   1828        break;
   1829       // Unsigned comparison.
   1830       case Ugreater:
   1831         if (rt.imm32_ == 0) {
   1832           bgtz(rs, offset);
   1833         } else {
   1834           r2 = scratch;
   1835           li(r2, rt);
   1836           sltu(scratch, r2, rs);
   1837           bne(scratch, zero_reg, offset);
   1838         }
   1839         break;
   1840       case Ugreater_equal:
   1841         if (rt.imm32_ == 0) {
   1842           bgez(rs, offset);
   1843         } else if (is_int16(rt.imm32_)) {
   1844           sltiu(scratch, rs, rt.imm32_);
   1845           beq(scratch, zero_reg, offset);
   1846         } else {
   1847           r2 = scratch;
   1848           li(r2, rt);
   1849           sltu(scratch, rs, r2);
   1850           beq(scratch, zero_reg, offset);
   1851         }
   1852         break;
   1853       case Uless:
   1854         if (rt.imm32_ == 0) {
   1855           // No code needs to be emitted.
   1856           return;
   1857         } else if (is_int16(rt.imm32_)) {
   1858           sltiu(scratch, rs, rt.imm32_);
   1859           bne(scratch, zero_reg, offset);
   1860         } else {
   1861           r2 = scratch;
   1862           li(r2, rt);
   1863           sltu(scratch, rs, r2);
   1864           bne(scratch, zero_reg, offset);
   1865         }
   1866         break;
   1867       case Uless_equal:
   1868         if (rt.imm32_ == 0) {
   1869           b(offset);
   1870         } else {
   1871           r2 = scratch;
   1872           li(r2, rt);
   1873           sltu(scratch, r2, rs);
   1874           beq(scratch, zero_reg, offset);
   1875         }
   1876         break;
   1877       default:
   1878         UNREACHABLE();
   1879     }
   1880   }
   1881   // Emit a nop in the branch delay slot if required.
   1882   if (bdslot == PROTECT)
   1883     nop();
   1884 }
   1885 
   1886 
   1887 void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) {
   1888   // We use branch_offset as an argument for the branch instructions to be sure
   1889   // it is called just before generating the branch instruction, as needed.
   1890 
   1891   b(shifted_branch_offset(L, false));
   1892 
   1893   // Emit a nop in the branch delay slot if required.
   1894   if (bdslot == PROTECT)
   1895     nop();
   1896 }
   1897 
   1898 
   1899 void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs,
   1900                                  const Operand& rt,
   1901                                  BranchDelaySlot bdslot) {
   1902   BRANCH_ARGS_CHECK(cond, rs, rt);
   1903 
   1904   int32_t offset;
   1905   Register r2 = no_reg;
   1906   Register scratch = at;
   1907   if (rt.is_reg()) {
   1908     r2 = rt.rm_;
   1909     // Be careful to always use shifted_branch_offset only just before the
   1910     // branch instruction, as the location will be remember for patching the
   1911     // target.
   1912     switch (cond) {
   1913       case cc_always:
   1914         offset = shifted_branch_offset(L, false);
   1915         b(offset);
   1916         break;
   1917       case eq:
   1918         offset = shifted_branch_offset(L, false);
   1919         beq(rs, r2, offset);
   1920         break;
   1921       case ne:
   1922         offset = shifted_branch_offset(L, false);
   1923         bne(rs, r2, offset);
   1924         break;
   1925       // Signed comparison.
   1926       case greater:
   1927         if (r2.is(zero_reg)) {
   1928           offset = shifted_branch_offset(L, false);
   1929           bgtz(rs, offset);
   1930         } else {
   1931           slt(scratch, r2, rs);
   1932           offset = shifted_branch_offset(L, false);
   1933           bne(scratch, zero_reg, offset);
   1934         }
   1935         break;
   1936       case greater_equal:
   1937         if (r2.is(zero_reg)) {
   1938           offset = shifted_branch_offset(L, false);
   1939           bgez(rs, offset);
   1940         } else {
   1941           slt(scratch, rs, r2);
   1942           offset = shifted_branch_offset(L, false);
   1943           beq(scratch, zero_reg, offset);
   1944         }
   1945         break;
   1946       case less:
   1947         if (r2.is(zero_reg)) {
   1948           offset = shifted_branch_offset(L, false);
   1949           bltz(rs, offset);
   1950         } else {
   1951           slt(scratch, rs, r2);
   1952           offset = shifted_branch_offset(L, false);
   1953           bne(scratch, zero_reg, offset);
   1954         }
   1955         break;
   1956       case less_equal:
   1957         if (r2.is(zero_reg)) {
   1958           offset = shifted_branch_offset(L, false);
   1959           blez(rs, offset);
   1960         } else {
   1961           slt(scratch, r2, rs);
   1962           offset = shifted_branch_offset(L, false);
   1963           beq(scratch, zero_reg, offset);
   1964         }
   1965         break;
   1966       // Unsigned comparison.
   1967       case Ugreater:
   1968         if (r2.is(zero_reg)) {
   1969           offset = shifted_branch_offset(L, false);
   1970            bgtz(rs, offset);
   1971         } else {
   1972           sltu(scratch, r2, rs);
   1973           offset = shifted_branch_offset(L, false);
   1974           bne(scratch, zero_reg, offset);
   1975         }
   1976         break;
   1977       case Ugreater_equal:
   1978         if (r2.is(zero_reg)) {
   1979           offset = shifted_branch_offset(L, false);
   1980           bgez(rs, offset);
   1981         } else {
   1982           sltu(scratch, rs, r2);
   1983           offset = shifted_branch_offset(L, false);
   1984           beq(scratch, zero_reg, offset);
   1985         }
   1986         break;
   1987       case Uless:
   1988         if (r2.is(zero_reg)) {
   1989           // No code needs to be emitted.
   1990           return;
   1991         } else {
   1992           sltu(scratch, rs, r2);
   1993           offset = shifted_branch_offset(L, false);
   1994           bne(scratch, zero_reg, offset);
   1995         }
   1996         break;
   1997       case Uless_equal:
   1998         if (r2.is(zero_reg)) {
   1999           offset = shifted_branch_offset(L, false);
   2000           b(offset);
   2001         } else {
   2002           sltu(scratch, r2, rs);
   2003           offset = shifted_branch_offset(L, false);
   2004           beq(scratch, zero_reg, offset);
   2005         }
   2006         break;
   2007       default:
   2008         UNREACHABLE();
   2009     }
   2010   } else {
   2011     // Be careful to always use shifted_branch_offset only just before the
   2012     // branch instruction, as the location will be remember for patching the
   2013     // target.
   2014     switch (cond) {
   2015       case cc_always:
   2016         offset = shifted_branch_offset(L, false);
   2017         b(offset);
   2018         break;
   2019       case eq:
   2020         ASSERT(!scratch.is(rs));
   2021         r2 = scratch;
   2022         li(r2, rt);
   2023         offset = shifted_branch_offset(L, false);
   2024         beq(rs, r2, offset);
   2025         break;
   2026       case ne:
   2027         ASSERT(!scratch.is(rs));
   2028         r2 = scratch;
   2029         li(r2, rt);
   2030         offset = shifted_branch_offset(L, false);
   2031         bne(rs, r2, offset);
   2032         break;
   2033       // Signed comparison.
   2034       case greater:
   2035         if (rt.imm32_ == 0) {
   2036           offset = shifted_branch_offset(L, false);
   2037           bgtz(rs, offset);
   2038         } else {
   2039           ASSERT(!scratch.is(rs));
   2040           r2 = scratch;
   2041           li(r2, rt);
   2042           slt(scratch, r2, rs);
   2043           offset = shifted_branch_offset(L, false);
   2044           bne(scratch, zero_reg, offset);
   2045         }
   2046         break;
   2047       case greater_equal:
   2048         if (rt.imm32_ == 0) {
   2049           offset = shifted_branch_offset(L, false);
   2050           bgez(rs, offset);
   2051         } else if (is_int16(rt.imm32_)) {
   2052           slti(scratch, rs, rt.imm32_);
   2053           offset = shifted_branch_offset(L, false);
   2054           beq(scratch, zero_reg, offset);
   2055         } else {
   2056           ASSERT(!scratch.is(rs));
   2057           r2 = scratch;
   2058           li(r2, rt);
   2059           slt(scratch, rs, r2);
   2060           offset = shifted_branch_offset(L, false);
   2061           beq(scratch, zero_reg, offset);
   2062         }
   2063         break;
   2064       case less:
   2065         if (rt.imm32_ == 0) {
   2066           offset = shifted_branch_offset(L, false);
   2067           bltz(rs, offset);
   2068         } else if (is_int16(rt.imm32_)) {
   2069           slti(scratch, rs, rt.imm32_);
   2070           offset = shifted_branch_offset(L, false);
   2071           bne(scratch, zero_reg, offset);
   2072         } else {
   2073           ASSERT(!scratch.is(rs));
   2074           r2 = scratch;
   2075           li(r2, rt);
   2076           slt(scratch, rs, r2);
   2077           offset = shifted_branch_offset(L, false);
   2078           bne(scratch, zero_reg, offset);
   2079         }
   2080         break;
   2081       case less_equal:
   2082         if (rt.imm32_ == 0) {
   2083           offset = shifted_branch_offset(L, false);
   2084           blez(rs, offset);
   2085         } else {
   2086           ASSERT(!scratch.is(rs));
   2087           r2 = scratch;
   2088           li(r2, rt);
   2089           slt(scratch, r2, rs);
   2090           offset = shifted_branch_offset(L, false);
   2091           beq(scratch, zero_reg, offset);
   2092         }
   2093         break;
   2094       // Unsigned comparison.
   2095       case Ugreater:
   2096         if (rt.imm32_ == 0) {
   2097           offset = shifted_branch_offset(L, false);
   2098           bgtz(rs, offset);
   2099         } else {
   2100           ASSERT(!scratch.is(rs));
   2101           r2 = scratch;
   2102           li(r2, rt);
   2103           sltu(scratch, r2, rs);
   2104           offset = shifted_branch_offset(L, false);
   2105           bne(scratch, zero_reg, offset);
   2106         }
   2107         break;
   2108       case Ugreater_equal:
   2109         if (rt.imm32_ == 0) {
   2110           offset = shifted_branch_offset(L, false);
   2111           bgez(rs, offset);
   2112         } else if (is_int16(rt.imm32_)) {
   2113           sltiu(scratch, rs, rt.imm32_);
   2114           offset = shifted_branch_offset(L, false);
   2115           beq(scratch, zero_reg, offset);
   2116         } else {
   2117           ASSERT(!scratch.is(rs));
   2118           r2 = scratch;
   2119           li(r2, rt);
   2120           sltu(scratch, rs, r2);
   2121           offset = shifted_branch_offset(L, false);
   2122           beq(scratch, zero_reg, offset);
   2123         }
   2124         break;
   2125      case Uless:
   2126         if (rt.imm32_ == 0) {
   2127           // No code needs to be emitted.
   2128           return;
   2129         } else if (is_int16(rt.imm32_)) {
   2130           sltiu(scratch, rs, rt.imm32_);
   2131           offset = shifted_branch_offset(L, false);
   2132           bne(scratch, zero_reg, offset);
   2133         } else {
   2134           ASSERT(!scratch.is(rs));
   2135           r2 = scratch;
   2136           li(r2, rt);
   2137           sltu(scratch, rs, r2);
   2138           offset = shifted_branch_offset(L, false);
   2139           bne(scratch, zero_reg, offset);
   2140         }
   2141         break;
   2142       case Uless_equal:
   2143         if (rt.imm32_ == 0) {
   2144           offset = shifted_branch_offset(L, false);
   2145           b(offset);
   2146         } else {
   2147           ASSERT(!scratch.is(rs));
   2148           r2 = scratch;
   2149           li(r2, rt);
   2150           sltu(scratch, r2, rs);
   2151           offset = shifted_branch_offset(L, false);
   2152           beq(scratch, zero_reg, offset);
   2153         }
   2154         break;
   2155       default:
   2156         UNREACHABLE();
   2157     }
   2158   }
   2159   // Check that offset could actually hold on an int16_t.
   2160   ASSERT(is_int16(offset));
   2161   // Emit a nop in the branch delay slot if required.
   2162   if (bdslot == PROTECT)
   2163     nop();
   2164 }
   2165 
   2166 
   2167 void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) {
   2168   BranchAndLinkShort(offset, bdslot);
   2169 }
   2170 
   2171 
   2172 void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
   2173                                    const Operand& rt,
   2174                                    BranchDelaySlot bdslot) {
   2175   BranchAndLinkShort(offset, cond, rs, rt, bdslot);
   2176 }
   2177 
   2178 
   2179 void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
   2180   if (L->is_bound()) {
   2181     if (is_near(L)) {
   2182       BranchAndLinkShort(L, bdslot);
   2183     } else {
   2184       Jalr(L, bdslot);
   2185     }
   2186   } else {
   2187     if (is_trampoline_emitted()) {
   2188       Jalr(L, bdslot);
   2189     } else {
   2190       BranchAndLinkShort(L, bdslot);
   2191     }
   2192   }
   2193 }
   2194 
   2195 
   2196 void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
   2197                                    const Operand& rt,
   2198                                    BranchDelaySlot bdslot) {
   2199   if (L->is_bound()) {
   2200     if (is_near(L)) {
   2201       BranchAndLinkShort(L, cond, rs, rt, bdslot);
   2202     } else {
   2203       Label skip;
   2204       Condition neg_cond = NegateCondition(cond);
   2205       BranchShort(&skip, neg_cond, rs, rt);
   2206       Jalr(L, bdslot);
   2207       bind(&skip);
   2208     }
   2209   } else {
   2210     if (is_trampoline_emitted()) {
   2211       Label skip;
   2212       Condition neg_cond = NegateCondition(cond);
   2213       BranchShort(&skip, neg_cond, rs, rt);
   2214       Jalr(L, bdslot);
   2215       bind(&skip);
   2216     } else {
   2217       BranchAndLinkShort(L, cond, rs, rt, bdslot);
   2218     }
   2219   }
   2220 }
   2221 
   2222 
   2223 // We need to use a bgezal or bltzal, but they can't be used directly with the
   2224 // slt instructions. We could use sub or add instead but we would miss overflow
   2225 // cases, so we keep slt and add an intermediate third instruction.
   2226 void MacroAssembler::BranchAndLinkShort(int16_t offset,
   2227                                         BranchDelaySlot bdslot) {
   2228   bal(offset);
   2229 
   2230   // Emit a nop in the branch delay slot if required.
   2231   if (bdslot == PROTECT)
   2232     nop();
   2233 }
   2234 
   2235 
   2236 void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond,
   2237                                         Register rs, const Operand& rt,
   2238                                         BranchDelaySlot bdslot) {
   2239   BRANCH_ARGS_CHECK(cond, rs, rt);
   2240   Register r2 = no_reg;
   2241   Register scratch = at;
   2242 
   2243   if (rt.is_reg()) {
   2244     r2 = rt.rm_;
   2245   } else if (cond != cc_always) {
   2246     r2 = scratch;
   2247     li(r2, rt);
   2248   }
   2249 
   2250   switch (cond) {
   2251     case cc_always:
   2252       bal(offset);
   2253       break;
   2254     case eq:
   2255       bne(rs, r2, 2);
   2256       nop();
   2257       bal(offset);
   2258       break;
   2259     case ne:
   2260       beq(rs, r2, 2);
   2261       nop();
   2262       bal(offset);
   2263       break;
   2264 
   2265     // Signed comparison.
   2266     case greater:
   2267       slt(scratch, r2, rs);
   2268       addiu(scratch, scratch, -1);
   2269       bgezal(scratch, offset);
   2270       break;
   2271     case greater_equal:
   2272       slt(scratch, rs, r2);
   2273       addiu(scratch, scratch, -1);
   2274       bltzal(scratch, offset);
   2275       break;
   2276     case less:
   2277       slt(scratch, rs, r2);
   2278       addiu(scratch, scratch, -1);
   2279       bgezal(scratch, offset);
   2280       break;
   2281     case less_equal:
   2282       slt(scratch, r2, rs);
   2283       addiu(scratch, scratch, -1);
   2284       bltzal(scratch, offset);
   2285       break;
   2286 
   2287     // Unsigned comparison.
   2288     case Ugreater:
   2289       sltu(scratch, r2, rs);
   2290       addiu(scratch, scratch, -1);
   2291       bgezal(scratch, offset);
   2292       break;
   2293     case Ugreater_equal:
   2294       sltu(scratch, rs, r2);
   2295       addiu(scratch, scratch, -1);
   2296       bltzal(scratch, offset);
   2297       break;
   2298     case Uless:
   2299       sltu(scratch, rs, r2);
   2300       addiu(scratch, scratch, -1);
   2301       bgezal(scratch, offset);
   2302       break;
   2303     case Uless_equal:
   2304       sltu(scratch, r2, rs);
   2305       addiu(scratch, scratch, -1);
   2306       bltzal(scratch, offset);
   2307       break;
   2308 
   2309     default:
   2310       UNREACHABLE();
   2311   }
   2312   // Emit a nop in the branch delay slot if required.
   2313   if (bdslot == PROTECT)
   2314     nop();
   2315 }
   2316 
   2317 
   2318 void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) {
   2319   bal(shifted_branch_offset(L, false));
   2320 
   2321   // Emit a nop in the branch delay slot if required.
   2322   if (bdslot == PROTECT)
   2323     nop();
   2324 }
   2325 
   2326 
   2327 void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs,
   2328                                         const Operand& rt,
   2329                                         BranchDelaySlot bdslot) {
   2330   BRANCH_ARGS_CHECK(cond, rs, rt);
   2331 
   2332   int32_t offset;
   2333   Register r2 = no_reg;
   2334   Register scratch = at;
   2335   if (rt.is_reg()) {
   2336     r2 = rt.rm_;
   2337   } else if (cond != cc_always) {
   2338     r2 = scratch;
   2339     li(r2, rt);
   2340   }
   2341 
   2342   switch (cond) {
   2343     case cc_always:
   2344       offset = shifted_branch_offset(L, false);
   2345       bal(offset);
   2346       break;
   2347     case eq:
   2348       bne(rs, r2, 2);
   2349       nop();
   2350       offset = shifted_branch_offset(L, false);
   2351       bal(offset);
   2352       break;
   2353     case ne:
   2354       beq(rs, r2, 2);
   2355       nop();
   2356       offset = shifted_branch_offset(L, false);
   2357       bal(offset);
   2358       break;
   2359 
   2360     // Signed comparison.
   2361     case greater:
   2362       slt(scratch, r2, rs);
   2363       addiu(scratch, scratch, -1);
   2364       offset = shifted_branch_offset(L, false);
   2365       bgezal(scratch, offset);
   2366       break;
   2367     case greater_equal:
   2368       slt(scratch, rs, r2);
   2369       addiu(scratch, scratch, -1);
   2370       offset = shifted_branch_offset(L, false);
   2371       bltzal(scratch, offset);
   2372       break;
   2373     case less:
   2374       slt(scratch, rs, r2);
   2375       addiu(scratch, scratch, -1);
   2376       offset = shifted_branch_offset(L, false);
   2377       bgezal(scratch, offset);
   2378       break;
   2379     case less_equal:
   2380       slt(scratch, r2, rs);
   2381       addiu(scratch, scratch, -1);
   2382       offset = shifted_branch_offset(L, false);
   2383       bltzal(scratch, offset);
   2384       break;
   2385 
   2386     // Unsigned comparison.
   2387     case Ugreater:
   2388       sltu(scratch, r2, rs);
   2389       addiu(scratch, scratch, -1);
   2390       offset = shifted_branch_offset(L, false);
   2391       bgezal(scratch, offset);
   2392       break;
   2393     case Ugreater_equal:
   2394       sltu(scratch, rs, r2);
   2395       addiu(scratch, scratch, -1);
   2396       offset = shifted_branch_offset(L, false);
   2397       bltzal(scratch, offset);
   2398       break;
   2399     case Uless:
   2400       sltu(scratch, rs, r2);
   2401       addiu(scratch, scratch, -1);
   2402       offset = shifted_branch_offset(L, false);
   2403       bgezal(scratch, offset);
   2404       break;
   2405     case Uless_equal:
   2406       sltu(scratch, r2, rs);
   2407       addiu(scratch, scratch, -1);
   2408       offset = shifted_branch_offset(L, false);
   2409       bltzal(scratch, offset);
   2410       break;
   2411 
   2412     default:
   2413       UNREACHABLE();
   2414   }
   2415 
   2416   // Check that offset could actually hold on an int16_t.
   2417   ASSERT(is_int16(offset));
   2418 
   2419   // Emit a nop in the branch delay slot if required.
   2420   if (bdslot == PROTECT)
   2421     nop();
   2422 }
   2423 
   2424 
   2425 void MacroAssembler::Jump(Register target,
   2426                           Condition cond,
   2427                           Register rs,
   2428                           const Operand& rt,
   2429                           BranchDelaySlot bd) {
   2430   BlockTrampolinePoolScope block_trampoline_pool(this);
   2431   if (cond == cc_always) {
   2432     jr(target);
   2433   } else {
   2434     BRANCH_ARGS_CHECK(cond, rs, rt);
   2435     Branch(2, NegateCondition(cond), rs, rt);
   2436     jr(target);
   2437   }
   2438   // Emit a nop in the branch delay slot if required.
   2439   if (bd == PROTECT)
   2440     nop();
   2441 }
   2442 
   2443 
   2444 void MacroAssembler::Jump(intptr_t target,
   2445                           RelocInfo::Mode rmode,
   2446                           Condition cond,
   2447                           Register rs,
   2448                           const Operand& rt,
   2449                           BranchDelaySlot bd) {
   2450   Label skip;
   2451   if (cond != cc_always) {
   2452     Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt);
   2453   }
   2454   // The first instruction of 'li' may be placed in the delay slot.
   2455   // This is not an issue, t9 is expected to be clobbered anyway.
   2456   li(t9, Operand(target, rmode));
   2457   Jump(t9, al, zero_reg, Operand(zero_reg), bd);
   2458   bind(&skip);
   2459 }
   2460 
   2461 
   2462 void MacroAssembler::Jump(Address target,
   2463                           RelocInfo::Mode rmode,
   2464                           Condition cond,
   2465                           Register rs,
   2466                           const Operand& rt,
   2467                           BranchDelaySlot bd) {
   2468   ASSERT(!RelocInfo::IsCodeTarget(rmode));
   2469   Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd);
   2470 }
   2471 
   2472 
   2473 void MacroAssembler::Jump(Handle<Code> code,
   2474                           RelocInfo::Mode rmode,
   2475                           Condition cond,
   2476                           Register rs,
   2477                           const Operand& rt,
   2478                           BranchDelaySlot bd) {
   2479   ASSERT(RelocInfo::IsCodeTarget(rmode));
   2480   Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd);
   2481 }
   2482 
   2483 
   2484 int MacroAssembler::CallSize(Register target,
   2485                              Condition cond,
   2486                              Register rs,
   2487                              const Operand& rt,
   2488                              BranchDelaySlot bd) {
   2489   int size = 0;
   2490 
   2491   if (cond == cc_always) {
   2492     size += 1;
   2493   } else {
   2494     size += 3;
   2495   }
   2496 
   2497   if (bd == PROTECT)
   2498     size += 1;
   2499 
   2500   return size * kInstrSize;
   2501 }
   2502 
   2503 
   2504 // Note: To call gcc-compiled C code on mips, you must call thru t9.
   2505 void MacroAssembler::Call(Register target,
   2506                           Condition cond,
   2507                           Register rs,
   2508                           const Operand& rt,
   2509                           BranchDelaySlot bd) {
   2510   BlockTrampolinePoolScope block_trampoline_pool(this);
   2511   Label start;
   2512   bind(&start);
   2513   if (cond == cc_always) {
   2514     jalr(target);
   2515   } else {
   2516     BRANCH_ARGS_CHECK(cond, rs, rt);
   2517     Branch(2, NegateCondition(cond), rs, rt);
   2518     jalr(target);
   2519   }
   2520   // Emit a nop in the branch delay slot if required.
   2521   if (bd == PROTECT)
   2522     nop();
   2523 
   2524   ASSERT_EQ(CallSize(target, cond, rs, rt, bd),
   2525             SizeOfCodeGeneratedSince(&start));
   2526 }
   2527 
   2528 
   2529 int MacroAssembler::CallSize(Address target,
   2530                              RelocInfo::Mode rmode,
   2531                              Condition cond,
   2532                              Register rs,
   2533                              const Operand& rt,
   2534                              BranchDelaySlot bd) {
   2535   int size = CallSize(t9, cond, rs, rt, bd);
   2536   return size + 2 * kInstrSize;
   2537 }
   2538 
   2539 
   2540 void MacroAssembler::Call(Address target,
   2541                           RelocInfo::Mode rmode,
   2542                           Condition cond,
   2543                           Register rs,
   2544                           const Operand& rt,
   2545                           BranchDelaySlot bd) {
   2546   BlockTrampolinePoolScope block_trampoline_pool(this);
   2547   Label start;
   2548   bind(&start);
   2549   int32_t target_int = reinterpret_cast<int32_t>(target);
   2550   // Must record previous source positions before the
   2551   // li() generates a new code target.
   2552   positions_recorder()->WriteRecordedPositions();
   2553   li(t9, Operand(target_int, rmode), CONSTANT_SIZE);
   2554   Call(t9, cond, rs, rt, bd);
   2555   ASSERT_EQ(CallSize(target, rmode, cond, rs, rt, bd),
   2556             SizeOfCodeGeneratedSince(&start));
   2557 }
   2558 
   2559 
   2560 int MacroAssembler::CallSize(Handle<Code> code,
   2561                              RelocInfo::Mode rmode,
   2562                              unsigned ast_id,
   2563                              Condition cond,
   2564                              Register rs,
   2565                              const Operand& rt,
   2566                              BranchDelaySlot bd) {
   2567   return CallSize(reinterpret_cast<Address>(code.location()),
   2568       rmode, cond, rs, rt, bd);
   2569 }
   2570 
   2571 
   2572 void MacroAssembler::Call(Handle<Code> code,
   2573                           RelocInfo::Mode rmode,
   2574                           unsigned ast_id,
   2575                           Condition cond,
   2576                           Register rs,
   2577                           const Operand& rt,
   2578                           BranchDelaySlot bd) {
   2579   BlockTrampolinePoolScope block_trampoline_pool(this);
   2580   Label start;
   2581   bind(&start);
   2582   ASSERT(RelocInfo::IsCodeTarget(rmode));
   2583   if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
   2584     SetRecordedAstId(ast_id);
   2585     rmode = RelocInfo::CODE_TARGET_WITH_ID;
   2586   }
   2587   Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd);
   2588   ASSERT_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd),
   2589             SizeOfCodeGeneratedSince(&start));
   2590 }
   2591 
   2592 
   2593 void MacroAssembler::Ret(Condition cond,
   2594                          Register rs,
   2595                          const Operand& rt,
   2596                          BranchDelaySlot bd) {
   2597   Jump(ra, cond, rs, rt, bd);
   2598 }
   2599 
   2600 
   2601 void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) {
   2602   BlockTrampolinePoolScope block_trampoline_pool(this);
   2603 
   2604   uint32_t imm28;
   2605   imm28 = jump_address(L);
   2606   imm28 &= kImm28Mask;
   2607   { BlockGrowBufferScope block_buf_growth(this);
   2608     // Buffer growth (and relocation) must be blocked for internal references
   2609     // until associated instructions are emitted and available to be patched.
   2610     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2611     j(imm28);
   2612   }
   2613   // Emit a nop in the branch delay slot if required.
   2614   if (bdslot == PROTECT)
   2615     nop();
   2616 }
   2617 
   2618 
   2619 void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) {
   2620   BlockTrampolinePoolScope block_trampoline_pool(this);
   2621 
   2622   uint32_t imm32;
   2623   imm32 = jump_address(L);
   2624   { BlockGrowBufferScope block_buf_growth(this);
   2625     // Buffer growth (and relocation) must be blocked for internal references
   2626     // until associated instructions are emitted and available to be patched.
   2627     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2628     lui(at, (imm32 & kHiMask) >> kLuiShift);
   2629     ori(at, at, (imm32 & kImm16Mask));
   2630   }
   2631   jr(at);
   2632 
   2633   // Emit a nop in the branch delay slot if required.
   2634   if (bdslot == PROTECT)
   2635     nop();
   2636 }
   2637 
   2638 
   2639 void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) {
   2640   BlockTrampolinePoolScope block_trampoline_pool(this);
   2641 
   2642   uint32_t imm32;
   2643   imm32 = jump_address(L);
   2644   { BlockGrowBufferScope block_buf_growth(this);
   2645     // Buffer growth (and relocation) must be blocked for internal references
   2646     // until associated instructions are emitted and available to be patched.
   2647     RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2648     lui(at, (imm32 & kHiMask) >> kLuiShift);
   2649     ori(at, at, (imm32 & kImm16Mask));
   2650   }
   2651   jalr(at);
   2652 
   2653   // Emit a nop in the branch delay slot if required.
   2654   if (bdslot == PROTECT)
   2655     nop();
   2656 }
   2657 
   2658 void MacroAssembler::DropAndRet(int drop) {
   2659   Ret(USE_DELAY_SLOT);
   2660   addiu(sp, sp, drop * kPointerSize);
   2661 }
   2662 
   2663 void MacroAssembler::DropAndRet(int drop,
   2664                                 Condition cond,
   2665                                 Register r1,
   2666                                 const Operand& r2) {
   2667   // Both Drop and Ret need to be conditional.
   2668   Label skip;
   2669   if (cond != cc_always) {
   2670     Branch(&skip, NegateCondition(cond), r1, r2);
   2671   }
   2672 
   2673   Drop(drop);
   2674   Ret();
   2675 
   2676   if (cond != cc_always) {
   2677     bind(&skip);
   2678   }
   2679 }
   2680 
   2681 
   2682 void MacroAssembler::Drop(int count,
   2683                           Condition cond,
   2684                           Register reg,
   2685                           const Operand& op) {
   2686   if (count <= 0) {
   2687     return;
   2688   }
   2689 
   2690   Label skip;
   2691 
   2692   if (cond != al) {
   2693      Branch(&skip, NegateCondition(cond), reg, op);
   2694   }
   2695 
   2696   addiu(sp, sp, count * kPointerSize);
   2697 
   2698   if (cond != al) {
   2699     bind(&skip);
   2700   }
   2701 }
   2702 
   2703 
   2704 
   2705 void MacroAssembler::Swap(Register reg1,
   2706                           Register reg2,
   2707                           Register scratch) {
   2708   if (scratch.is(no_reg)) {
   2709     Xor(reg1, reg1, Operand(reg2));
   2710     Xor(reg2, reg2, Operand(reg1));
   2711     Xor(reg1, reg1, Operand(reg2));
   2712   } else {
   2713     mov(scratch, reg1);
   2714     mov(reg1, reg2);
   2715     mov(reg2, scratch);
   2716   }
   2717 }
   2718 
   2719 
   2720 void MacroAssembler::Call(Label* target) {
   2721   BranchAndLink(target);
   2722 }
   2723 
   2724 
   2725 void MacroAssembler::Push(Handle<Object> handle) {
   2726   li(at, Operand(handle));
   2727   push(at);
   2728 }
   2729 
   2730 
   2731 #ifdef ENABLE_DEBUGGER_SUPPORT
   2732 
   2733 void MacroAssembler::DebugBreak() {
   2734   PrepareCEntryArgs(0);
   2735   PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate()));
   2736   CEntryStub ces(1);
   2737   ASSERT(AllowThisStubCall(&ces));
   2738   Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
   2739 }
   2740 
   2741 #endif  // ENABLE_DEBUGGER_SUPPORT
   2742 
   2743 
   2744 // ---------------------------------------------------------------------------
   2745 // Exception handling.
   2746 
   2747 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
   2748                                     int handler_index) {
   2749   // Adjust this code if not the case.
   2750   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   2751   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   2752   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   2753   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   2754   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   2755   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   2756 
   2757   // For the JSEntry handler, we must preserve a0-a3 and s0.
   2758   // t1-t3 are available. We will build up the handler from the bottom by
   2759   // pushing on the stack.
   2760   // Set up the code object (t1) and the state (t2) for pushing.
   2761   unsigned state =
   2762       StackHandler::IndexField::encode(handler_index) |
   2763       StackHandler::KindField::encode(kind);
   2764   li(t1, Operand(CodeObject()), CONSTANT_SIZE);
   2765   li(t2, Operand(state));
   2766 
   2767   // Push the frame pointer, context, state, and code object.
   2768   if (kind == StackHandler::JS_ENTRY) {
   2769     ASSERT_EQ(Smi::FromInt(0), 0);
   2770     // The second zero_reg indicates no context.
   2771     // The first zero_reg is the NULL frame pointer.
   2772     // The operands are reversed to match the order of MultiPush/Pop.
   2773     Push(zero_reg, zero_reg, t2, t1);
   2774   } else {
   2775     MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit());
   2776   }
   2777 
   2778   // Link the current handler as the next handler.
   2779   li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   2780   lw(t1, MemOperand(t2));
   2781   push(t1);
   2782   // Set this new handler as the current one.
   2783   sw(sp, MemOperand(t2));
   2784 }
   2785 
   2786 
   2787 void MacroAssembler::PopTryHandler() {
   2788   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   2789   pop(a1);
   2790   Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
   2791   li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   2792   sw(a1, MemOperand(at));
   2793 }
   2794 
   2795 
   2796 void MacroAssembler::JumpToHandlerEntry() {
   2797   // Compute the handler entry address and jump to it.  The handler table is
   2798   // a fixed array of (smi-tagged) code offsets.
   2799   // v0 = exception, a1 = code object, a2 = state.
   2800   lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset));  // Handler table.
   2801   Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
   2802   srl(a2, a2, StackHandler::kKindWidth);  // Handler index.
   2803   sll(a2, a2, kPointerSizeLog2);
   2804   Addu(a2, a3, a2);
   2805   lw(a2, MemOperand(a2));  // Smi-tagged offset.
   2806   Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start.
   2807   sra(t9, a2, kSmiTagSize);
   2808   Addu(t9, t9, a1);
   2809   Jump(t9);  // Jump.
   2810 }
   2811 
   2812 
   2813 void MacroAssembler::Throw(Register value) {
   2814   // Adjust this code if not the case.
   2815   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   2816   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
   2817   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   2818   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   2819   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   2820   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   2821 
   2822   // The exception is expected in v0.
   2823   Move(v0, value);
   2824 
   2825   // Drop the stack pointer to the top of the top handler.
   2826   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress,
   2827                                    isolate())));
   2828   lw(sp, MemOperand(a3));
   2829 
   2830   // Restore the next handler.
   2831   pop(a2);
   2832   sw(a2, MemOperand(a3));
   2833 
   2834   // Get the code object (a1) and state (a2).  Restore the context and frame
   2835   // pointer.
   2836   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
   2837 
   2838   // If the handler is a JS frame, restore the context to the frame.
   2839   // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
   2840   // or cp.
   2841   Label done;
   2842   Branch(&done, eq, cp, Operand(zero_reg));
   2843   sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
   2844   bind(&done);
   2845 
   2846   JumpToHandlerEntry();
   2847 }
   2848 
   2849 
   2850 void MacroAssembler::ThrowUncatchable(Register value) {
   2851   // Adjust this code if not the case.
   2852   STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
   2853   STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
   2854   STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
   2855   STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
   2856   STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
   2857   STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
   2858 
   2859   // The exception is expected in v0.
   2860   if (!value.is(v0)) {
   2861     mov(v0, value);
   2862   }
   2863   // Drop the stack pointer to the top of the top stack handler.
   2864   li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
   2865   lw(sp, MemOperand(a3));
   2866 
   2867   // Unwind the handlers until the ENTRY handler is found.
   2868   Label fetch_next, check_kind;
   2869   jmp(&check_kind);
   2870   bind(&fetch_next);
   2871   lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
   2872 
   2873   bind(&check_kind);
   2874   STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
   2875   lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset));
   2876   And(a2, a2, Operand(StackHandler::KindField::kMask));
   2877   Branch(&fetch_next, ne, a2, Operand(zero_reg));
   2878 
   2879   // Set the top handler address to next handler past the top ENTRY handler.
   2880   pop(a2);
   2881   sw(a2, MemOperand(a3));
   2882 
   2883   // Get the code object (a1) and state (a2).  Clear the context and frame
   2884   // pointer (0 was saved in the handler).
   2885   MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit());
   2886 
   2887   JumpToHandlerEntry();
   2888 }
   2889 
   2890 
   2891 void MacroAssembler::AllocateInNewSpace(int object_size,
   2892                                         Register result,
   2893                                         Register scratch1,
   2894                                         Register scratch2,
   2895                                         Label* gc_required,
   2896                                         AllocationFlags flags) {
   2897   if (!FLAG_inline_new) {
   2898     if (emit_debug_code()) {
   2899       // Trash the registers to simulate an allocation failure.
   2900       li(result, 0x7091);
   2901       li(scratch1, 0x7191);
   2902       li(scratch2, 0x7291);
   2903     }
   2904     jmp(gc_required);
   2905     return;
   2906   }
   2907 
   2908   ASSERT(!result.is(scratch1));
   2909   ASSERT(!result.is(scratch2));
   2910   ASSERT(!scratch1.is(scratch2));
   2911   ASSERT(!scratch1.is(t9));
   2912   ASSERT(!scratch2.is(t9));
   2913   ASSERT(!result.is(t9));
   2914 
   2915   // Make object size into bytes.
   2916   if ((flags & SIZE_IN_WORDS) != 0) {
   2917     object_size *= kPointerSize;
   2918   }
   2919   ASSERT_EQ(0, object_size & kObjectAlignmentMask);
   2920 
   2921   // Check relative positions of allocation top and limit addresses.
   2922   // ARM adds additional checks to make sure the ldm instruction can be
   2923   // used. On MIPS we don't have ldm so we don't need additional checks either.
   2924   ExternalReference new_space_allocation_top =
   2925       ExternalReference::new_space_allocation_top_address(isolate());
   2926   ExternalReference new_space_allocation_limit =
   2927       ExternalReference::new_space_allocation_limit_address(isolate());
   2928   intptr_t top   =
   2929       reinterpret_cast<intptr_t>(new_space_allocation_top.address());
   2930   intptr_t limit =
   2931       reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
   2932   ASSERT((limit - top) == kPointerSize);
   2933 
   2934   // Set up allocation top address and object size registers.
   2935   Register topaddr = scratch1;
   2936   Register obj_size_reg = scratch2;
   2937   li(topaddr, Operand(new_space_allocation_top));
   2938   li(obj_size_reg, Operand(object_size));
   2939 
   2940   // This code stores a temporary value in t9.
   2941   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   2942     // Load allocation top into result and allocation limit into t9.
   2943     lw(result, MemOperand(topaddr));
   2944     lw(t9, MemOperand(topaddr, kPointerSize));
   2945   } else {
   2946     if (emit_debug_code()) {
   2947       // Assert that result actually contains top on entry. t9 is used
   2948       // immediately below so this use of t9 does not cause difference with
   2949       // respect to register content between debug and release mode.
   2950       lw(t9, MemOperand(topaddr));
   2951       Check(eq, "Unexpected allocation top", result, Operand(t9));
   2952     }
   2953     // Load allocation limit into t9. Result already contains allocation top.
   2954     lw(t9, MemOperand(topaddr, limit - top));
   2955   }
   2956 
   2957   // Calculate new top and bail out if new space is exhausted. Use result
   2958   // to calculate the new top.
   2959   Addu(scratch2, result, Operand(obj_size_reg));
   2960   Branch(gc_required, Ugreater, scratch2, Operand(t9));
   2961   sw(scratch2, MemOperand(topaddr));
   2962 
   2963   // Tag object if requested.
   2964   if ((flags & TAG_OBJECT) != 0) {
   2965     Addu(result, result, Operand(kHeapObjectTag));
   2966   }
   2967 }
   2968 
   2969 
   2970 void MacroAssembler::AllocateInNewSpace(Register object_size,
   2971                                         Register result,
   2972                                         Register scratch1,
   2973                                         Register scratch2,
   2974                                         Label* gc_required,
   2975                                         AllocationFlags flags) {
   2976   if (!FLAG_inline_new) {
   2977     if (emit_debug_code()) {
   2978       // Trash the registers to simulate an allocation failure.
   2979       li(result, 0x7091);
   2980       li(scratch1, 0x7191);
   2981       li(scratch2, 0x7291);
   2982     }
   2983     jmp(gc_required);
   2984     return;
   2985   }
   2986 
   2987   ASSERT(!result.is(scratch1));
   2988   ASSERT(!result.is(scratch2));
   2989   ASSERT(!scratch1.is(scratch2));
   2990   ASSERT(!object_size.is(t9));
   2991   ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
   2992 
   2993   // Check relative positions of allocation top and limit addresses.
   2994   // ARM adds additional checks to make sure the ldm instruction can be
   2995   // used. On MIPS we don't have ldm so we don't need additional checks either.
   2996   ExternalReference new_space_allocation_top =
   2997       ExternalReference::new_space_allocation_top_address(isolate());
   2998   ExternalReference new_space_allocation_limit =
   2999       ExternalReference::new_space_allocation_limit_address(isolate());
   3000   intptr_t top   =
   3001       reinterpret_cast<intptr_t>(new_space_allocation_top.address());
   3002   intptr_t limit =
   3003       reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
   3004   ASSERT((limit - top) == kPointerSize);
   3005 
   3006   // Set up allocation top address and object size registers.
   3007   Register topaddr = scratch1;
   3008   li(topaddr, Operand(new_space_allocation_top));
   3009 
   3010   // This code stores a temporary value in t9.
   3011   if ((flags & RESULT_CONTAINS_TOP) == 0) {
   3012     // Load allocation top into result and allocation limit into t9.
   3013     lw(result, MemOperand(topaddr));
   3014     lw(t9, MemOperand(topaddr, kPointerSize));
   3015   } else {
   3016     if (emit_debug_code()) {
   3017       // Assert that result actually contains top on entry. t9 is used
   3018       // immediately below so this use of t9 does not cause difference with
   3019       // respect to register content between debug and release mode.
   3020       lw(t9, MemOperand(topaddr));
   3021       Check(eq, "Unexpected allocation top", result, Operand(t9));
   3022     }
   3023     // Load allocation limit into t9. Result already contains allocation top.
   3024     lw(t9, MemOperand(topaddr, limit - top));
   3025   }
   3026 
   3027   // Calculate new top and bail out if new space is exhausted. Use result
   3028   // to calculate the new top. Object size may be in words so a shift is
   3029   // required to get the number of bytes.
   3030   if ((flags & SIZE_IN_WORDS) != 0) {
   3031     sll(scratch2, object_size, kPointerSizeLog2);
   3032     Addu(scratch2, result, scratch2);
   3033   } else {
   3034     Addu(scratch2, result, Operand(object_size));
   3035   }
   3036   Branch(gc_required, Ugreater, scratch2, Operand(t9));
   3037 
   3038   // Update allocation top. result temporarily holds the new top.
   3039   if (emit_debug_code()) {
   3040     And(t9, scratch2, Operand(kObjectAlignmentMask));
   3041     Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg));
   3042   }
   3043   sw(scratch2, MemOperand(topaddr));
   3044 
   3045   // Tag object if requested.
   3046   if ((flags & TAG_OBJECT) != 0) {
   3047     Addu(result, result, Operand(kHeapObjectTag));
   3048   }
   3049 }
   3050 
   3051 
   3052 void MacroAssembler::UndoAllocationInNewSpace(Register object,
   3053                                               Register scratch) {
   3054   ExternalReference new_space_allocation_top =
   3055       ExternalReference::new_space_allocation_top_address(isolate());
   3056 
   3057   // Make sure the object has no tag before resetting top.
   3058   And(object, object, Operand(~kHeapObjectTagMask));
   3059 #ifdef DEBUG
   3060   // Check that the object un-allocated is below the current top.
   3061   li(scratch, Operand(new_space_allocation_top));
   3062   lw(scratch, MemOperand(scratch));
   3063   Check(less, "Undo allocation of non allocated memory",
   3064       object, Operand(scratch));
   3065 #endif
   3066   // Write the address of the object to un-allocate as the current top.
   3067   li(scratch, Operand(new_space_allocation_top));
   3068   sw(object, MemOperand(scratch));
   3069 }
   3070 
   3071 
   3072 void MacroAssembler::AllocateTwoByteString(Register result,
   3073                                            Register length,
   3074                                            Register scratch1,
   3075                                            Register scratch2,
   3076                                            Register scratch3,
   3077                                            Label* gc_required) {
   3078   // Calculate the number of bytes needed for the characters in the string while
   3079   // observing object alignment.
   3080   ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
   3081   sll(scratch1, length, 1);  // Length in bytes, not chars.
   3082   addiu(scratch1, scratch1,
   3083        kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
   3084   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   3085 
   3086   // Allocate two-byte string in new space.
   3087   AllocateInNewSpace(scratch1,
   3088                      result,
   3089                      scratch2,
   3090                      scratch3,
   3091                      gc_required,
   3092                      TAG_OBJECT);
   3093 
   3094   // Set the map, length and hash field.
   3095   InitializeNewString(result,
   3096                       length,
   3097                       Heap::kStringMapRootIndex,
   3098                       scratch1,
   3099                       scratch2);
   3100 }
   3101 
   3102 
   3103 void MacroAssembler::AllocateAsciiString(Register result,
   3104                                          Register length,
   3105                                          Register scratch1,
   3106                                          Register scratch2,
   3107                                          Register scratch3,
   3108                                          Label* gc_required) {
   3109   // Calculate the number of bytes needed for the characters in the string
   3110   // while observing object alignment.
   3111   ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
   3112   ASSERT(kCharSize == 1);
   3113   addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize);
   3114   And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
   3115 
   3116   // Allocate ASCII string in new space.
   3117   AllocateInNewSpace(scratch1,
   3118                      result,
   3119                      scratch2,
   3120                      scratch3,
   3121                      gc_required,
   3122                      TAG_OBJECT);
   3123 
   3124   // Set the map, length and hash field.
   3125   InitializeNewString(result,
   3126                       length,
   3127                       Heap::kAsciiStringMapRootIndex,
   3128                       scratch1,
   3129                       scratch2);
   3130 }
   3131 
   3132 
   3133 void MacroAssembler::AllocateTwoByteConsString(Register result,
   3134                                                Register length,
   3135                                                Register scratch1,
   3136                                                Register scratch2,
   3137                                                Label* gc_required) {
   3138   AllocateInNewSpace(ConsString::kSize,
   3139                      result,
   3140                      scratch1,
   3141                      scratch2,
   3142                      gc_required,
   3143                      TAG_OBJECT);
   3144   InitializeNewString(result,
   3145                       length,
   3146                       Heap::kConsStringMapRootIndex,
   3147                       scratch1,
   3148                       scratch2);
   3149 }
   3150 
   3151 
   3152 void MacroAssembler::AllocateAsciiConsString(Register result,
   3153                                              Register length,
   3154                                              Register scratch1,
   3155                                              Register scratch2,
   3156                                              Label* gc_required) {
   3157   AllocateInNewSpace(ConsString::kSize,
   3158                      result,
   3159                      scratch1,
   3160                      scratch2,
   3161                      gc_required,
   3162                      TAG_OBJECT);
   3163   InitializeNewString(result,
   3164                       length,
   3165                       Heap::kConsAsciiStringMapRootIndex,
   3166                       scratch1,
   3167                       scratch2);
   3168 }
   3169 
   3170 
   3171 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
   3172                                                  Register length,
   3173                                                  Register scratch1,
   3174                                                  Register scratch2,
   3175                                                  Label* gc_required) {
   3176   AllocateInNewSpace(SlicedString::kSize,
   3177                      result,
   3178                      scratch1,
   3179                      scratch2,
   3180                      gc_required,
   3181                      TAG_OBJECT);
   3182 
   3183   InitializeNewString(result,
   3184                       length,
   3185                       Heap::kSlicedStringMapRootIndex,
   3186                       scratch1,
   3187                       scratch2);
   3188 }
   3189 
   3190 
   3191 void MacroAssembler::AllocateAsciiSlicedString(Register result,
   3192                                                Register length,
   3193                                                Register scratch1,
   3194                                                Register scratch2,
   3195                                                Label* gc_required) {
   3196   AllocateInNewSpace(SlicedString::kSize,
   3197                      result,
   3198                      scratch1,
   3199                      scratch2,
   3200                      gc_required,
   3201                      TAG_OBJECT);
   3202 
   3203   InitializeNewString(result,
   3204                       length,
   3205                       Heap::kSlicedAsciiStringMapRootIndex,
   3206                       scratch1,
   3207                       scratch2);
   3208 }
   3209 
   3210 
   3211 // Allocates a heap number or jumps to the label if the young space is full and
   3212 // a scavenge is needed.
   3213 void MacroAssembler::AllocateHeapNumber(Register result,
   3214                                         Register scratch1,
   3215                                         Register scratch2,
   3216                                         Register heap_number_map,
   3217                                         Label* need_gc) {
   3218   // Allocate an object in the heap for the heap number and tag it as a heap
   3219   // object.
   3220   AllocateInNewSpace(HeapNumber::kSize,
   3221                      result,
   3222                      scratch1,
   3223                      scratch2,
   3224                      need_gc,
   3225                      TAG_OBJECT);
   3226 
   3227   // Store heap number map in the allocated object.
   3228   AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   3229   sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
   3230 }
   3231 
   3232 
   3233 void MacroAssembler::AllocateHeapNumberWithValue(Register result,
   3234                                                  FPURegister value,
   3235                                                  Register scratch1,
   3236                                                  Register scratch2,
   3237                                                  Label* gc_required) {
   3238   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   3239   AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required);
   3240   sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
   3241 }
   3242 
   3243 
   3244 // Copies a fixed number of fields of heap objects from src to dst.
   3245 void MacroAssembler::CopyFields(Register dst,
   3246                                 Register src,
   3247                                 RegList temps,
   3248                                 int field_count) {
   3249   ASSERT((temps & dst.bit()) == 0);
   3250   ASSERT((temps & src.bit()) == 0);
   3251   // Primitive implementation using only one temporary register.
   3252 
   3253   Register tmp = no_reg;
   3254   // Find a temp register in temps list.
   3255   for (int i = 0; i < kNumRegisters; i++) {
   3256     if ((temps & (1 << i)) != 0) {
   3257       tmp.code_ = i;
   3258       break;
   3259     }
   3260   }
   3261   ASSERT(!tmp.is(no_reg));
   3262 
   3263   for (int i = 0; i < field_count; i++) {
   3264     lw(tmp, FieldMemOperand(src, i * kPointerSize));
   3265     sw(tmp, FieldMemOperand(dst, i * kPointerSize));
   3266   }
   3267 }
   3268 
   3269 
   3270 void MacroAssembler::CopyBytes(Register src,
   3271                                Register dst,
   3272                                Register length,
   3273                                Register scratch) {
   3274   Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done;
   3275 
   3276   // Align src before copying in word size chunks.
   3277   bind(&align_loop);
   3278   Branch(&done, eq, length, Operand(zero_reg));
   3279   bind(&align_loop_1);
   3280   And(scratch, src, kPointerSize - 1);
   3281   Branch(&word_loop, eq, scratch, Operand(zero_reg));
   3282   lbu(scratch, MemOperand(src));
   3283   Addu(src, src, 1);
   3284   sb(scratch, MemOperand(dst));
   3285   Addu(dst, dst, 1);
   3286   Subu(length, length, Operand(1));
   3287   Branch(&byte_loop_1, ne, length, Operand(zero_reg));
   3288 
   3289   // Copy bytes in word size chunks.
   3290   bind(&word_loop);
   3291   if (emit_debug_code()) {
   3292     And(scratch, src, kPointerSize - 1);
   3293     Assert(eq, "Expecting alignment for CopyBytes",
   3294         scratch, Operand(zero_reg));
   3295   }
   3296   Branch(&byte_loop, lt, length, Operand(kPointerSize));
   3297   lw(scratch, MemOperand(src));
   3298   Addu(src, src, kPointerSize);
   3299 
   3300   // TODO(kalmard) check if this can be optimized to use sw in most cases.
   3301   // Can't use unaligned access - copy byte by byte.
   3302   sb(scratch, MemOperand(dst, 0));
   3303   srl(scratch, scratch, 8);
   3304   sb(scratch, MemOperand(dst, 1));
   3305   srl(scratch, scratch, 8);
   3306   sb(scratch, MemOperand(dst, 2));
   3307   srl(scratch, scratch, 8);
   3308   sb(scratch, MemOperand(dst, 3));
   3309   Addu(dst, dst, 4);
   3310 
   3311   Subu(length, length, Operand(kPointerSize));
   3312   Branch(&word_loop);
   3313 
   3314   // Copy the last bytes if any left.
   3315   bind(&byte_loop);
   3316   Branch(&done, eq, length, Operand(zero_reg));
   3317   bind(&byte_loop_1);
   3318   lbu(scratch, MemOperand(src));
   3319   Addu(src, src, 1);
   3320   sb(scratch, MemOperand(dst));
   3321   Addu(dst, dst, 1);
   3322   Subu(length, length, Operand(1));
   3323   Branch(&byte_loop_1, ne, length, Operand(zero_reg));
   3324   bind(&done);
   3325 }
   3326 
   3327 
   3328 void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
   3329                                                 Register end_offset,
   3330                                                 Register filler) {
   3331   Label loop, entry;
   3332   Branch(&entry);
   3333   bind(&loop);
   3334   sw(filler, MemOperand(start_offset));
   3335   Addu(start_offset, start_offset, kPointerSize);
   3336   bind(&entry);
   3337   Branch(&loop, lt, start_offset, Operand(end_offset));
   3338 }
   3339 
   3340 
   3341 void MacroAssembler::CheckFastElements(Register map,
   3342                                        Register scratch,
   3343                                        Label* fail) {
   3344   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
   3345   STATIC_ASSERT(FAST_ELEMENTS == 1);
   3346   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3347   Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastElementValue));
   3348 }
   3349 
   3350 
   3351 void MacroAssembler::CheckFastObjectElements(Register map,
   3352                                              Register scratch,
   3353                                              Label* fail) {
   3354   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
   3355   STATIC_ASSERT(FAST_ELEMENTS == 1);
   3356   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3357   Branch(fail, ls, scratch,
   3358          Operand(Map::kMaximumBitField2FastSmiOnlyElementValue));
   3359   Branch(fail, hi, scratch,
   3360          Operand(Map::kMaximumBitField2FastElementValue));
   3361 }
   3362 
   3363 
   3364 void MacroAssembler::CheckFastSmiOnlyElements(Register map,
   3365                                               Register scratch,
   3366                                               Label* fail) {
   3367   STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0);
   3368   lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset));
   3369   Branch(fail, hi, scratch,
   3370          Operand(Map::kMaximumBitField2FastSmiOnlyElementValue));
   3371 }
   3372 
   3373 
   3374 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
   3375                                                  Register key_reg,
   3376                                                  Register receiver_reg,
   3377                                                  Register elements_reg,
   3378                                                  Register scratch1,
   3379                                                  Register scratch2,
   3380                                                  Register scratch3,
   3381                                                  Register scratch4,
   3382                                                  Label* fail) {
   3383   Label smi_value, maybe_nan, have_double_value, is_nan, done;
   3384   Register mantissa_reg = scratch2;
   3385   Register exponent_reg = scratch3;
   3386 
   3387   // Handle smi values specially.
   3388   JumpIfSmi(value_reg, &smi_value);
   3389 
   3390   // Ensure that the object is a heap number
   3391   CheckMap(value_reg,
   3392            scratch1,
   3393            Heap::kHeapNumberMapRootIndex,
   3394            fail,
   3395            DONT_DO_SMI_CHECK);
   3396 
   3397   // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000
   3398   // in the exponent.
   3399   li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32));
   3400   lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset));
   3401   Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1));
   3402 
   3403   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
   3404 
   3405   bind(&have_double_value);
   3406   sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize);
   3407   Addu(scratch1, scratch1, elements_reg);
   3408   sw(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize));
   3409   uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
   3410   sw(exponent_reg, FieldMemOperand(scratch1, offset));
   3411   jmp(&done);
   3412 
   3413   bind(&maybe_nan);
   3414   // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
   3415   // it's an Infinity, and the non-NaN code path applies.
   3416   Branch(&is_nan, gt, exponent_reg, Operand(scratch1));
   3417   lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset));
   3418   Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg));
   3419   bind(&is_nan);
   3420   // Load canonical NaN for storing into the double array.
   3421   uint64_t nan_int64 = BitCast<uint64_t>(
   3422       FixedDoubleArray::canonical_not_the_hole_nan_as_double());
   3423   li(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64)));
   3424   li(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32)));
   3425   jmp(&have_double_value);
   3426 
   3427   bind(&smi_value);
   3428   Addu(scratch1, elements_reg,
   3429       Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
   3430   sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize);
   3431   Addu(scratch1, scratch1, scratch2);
   3432   // scratch1 is now effective address of the double element
   3433 
   3434   FloatingPointHelper::Destination destination;
   3435   if (CpuFeatures::IsSupported(FPU)) {
   3436     destination = FloatingPointHelper::kFPURegisters;
   3437   } else {
   3438     destination = FloatingPointHelper::kCoreRegisters;
   3439   }
   3440 
   3441   Register untagged_value = receiver_reg;
   3442   SmiUntag(untagged_value, value_reg);
   3443   FloatingPointHelper::ConvertIntToDouble(this,
   3444                                           untagged_value,
   3445                                           destination,
   3446                                           f0,
   3447                                           mantissa_reg,
   3448                                           exponent_reg,
   3449                                           scratch4,
   3450                                           f2);
   3451   if (destination == FloatingPointHelper::kFPURegisters) {
   3452     CpuFeatures::Scope scope(FPU);
   3453     sdc1(f0, MemOperand(scratch1, 0));
   3454   } else {
   3455     sw(mantissa_reg, MemOperand(scratch1, 0));
   3456     sw(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes));
   3457   }
   3458   bind(&done);
   3459 }
   3460 
   3461 
   3462 void MacroAssembler::CompareMapAndBranch(Register obj,
   3463                                          Register scratch,
   3464                                          Handle<Map> map,
   3465                                          Label* early_success,
   3466                                          Condition cond,
   3467                                          Label* branch_to,
   3468                                          CompareMapMode mode) {
   3469   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3470   Operand right = Operand(map);
   3471   if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) {
   3472     Map* transitioned_fast_element_map(
   3473         map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL));
   3474     ASSERT(transitioned_fast_element_map == NULL ||
   3475            map->elements_kind() != FAST_ELEMENTS);
   3476     if (transitioned_fast_element_map != NULL) {
   3477       Branch(early_success, eq, scratch, right);
   3478       right = Operand(Handle<Map>(transitioned_fast_element_map));
   3479     }
   3480 
   3481     Map* transitioned_double_map(
   3482         map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL));
   3483     ASSERT(transitioned_double_map == NULL ||
   3484            map->elements_kind() == FAST_SMI_ONLY_ELEMENTS);
   3485     if (transitioned_double_map != NULL) {
   3486       Branch(early_success, eq, scratch, right);
   3487       right = Operand(Handle<Map>(transitioned_double_map));
   3488     }
   3489   }
   3490 
   3491   Branch(branch_to, cond, scratch, right);
   3492 }
   3493 
   3494 
   3495 void MacroAssembler::CheckMap(Register obj,
   3496                               Register scratch,
   3497                               Handle<Map> map,
   3498                               Label* fail,
   3499                               SmiCheckType smi_check_type,
   3500                               CompareMapMode mode) {
   3501   if (smi_check_type == DO_SMI_CHECK) {
   3502     JumpIfSmi(obj, fail);
   3503   }
   3504   Label success;
   3505   CompareMapAndBranch(obj, scratch, map, &success, ne, fail, mode);
   3506   bind(&success);
   3507 }
   3508 
   3509 
   3510 void MacroAssembler::DispatchMap(Register obj,
   3511                                  Register scratch,
   3512                                  Handle<Map> map,
   3513                                  Handle<Code> success,
   3514                                  SmiCheckType smi_check_type) {
   3515   Label fail;
   3516   if (smi_check_type == DO_SMI_CHECK) {
   3517     JumpIfSmi(obj, &fail);
   3518   }
   3519   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3520   Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map));
   3521   bind(&fail);
   3522 }
   3523 
   3524 
   3525 void MacroAssembler::CheckMap(Register obj,
   3526                               Register scratch,
   3527                               Heap::RootListIndex index,
   3528                               Label* fail,
   3529                               SmiCheckType smi_check_type) {
   3530   if (smi_check_type == DO_SMI_CHECK) {
   3531     JumpIfSmi(obj, fail);
   3532   }
   3533   lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
   3534   LoadRoot(at, index);
   3535   Branch(fail, ne, scratch, Operand(at));
   3536 }
   3537 
   3538 
   3539 void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) {
   3540   CpuFeatures::Scope scope(FPU);
   3541   if (IsMipsSoftFloatABI) {
   3542     Move(dst, v0, v1);
   3543   } else {
   3544     Move(dst, f0);  // Reg f0 is o32 ABI FP return value.
   3545   }
   3546 }
   3547 
   3548 
   3549 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) {
   3550   CpuFeatures::Scope scope(FPU);
   3551   if (!IsMipsSoftFloatABI) {
   3552     Move(f12, dreg);
   3553   } else {
   3554     Move(a0, a1, dreg);
   3555   }
   3556 }
   3557 
   3558 
   3559 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1,
   3560                                              DoubleRegister dreg2) {
   3561   CpuFeatures::Scope scope(FPU);
   3562   if (!IsMipsSoftFloatABI) {
   3563     if (dreg2.is(f12)) {
   3564       ASSERT(!dreg1.is(f14));
   3565       Move(f14, dreg2);
   3566       Move(f12, dreg1);
   3567     } else {
   3568       Move(f12, dreg1);
   3569       Move(f14, dreg2);
   3570     }
   3571   } else {
   3572     Move(a0, a1, dreg1);
   3573     Move(a2, a3, dreg2);
   3574   }
   3575 }
   3576 
   3577 
   3578 void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg,
   3579                                              Register reg) {
   3580   CpuFeatures::Scope scope(FPU);
   3581   if (!IsMipsSoftFloatABI) {
   3582     Move(f12, dreg);
   3583     Move(a2, reg);
   3584   } else {
   3585     Move(a2, reg);
   3586     Move(a0, a1, dreg);
   3587   }
   3588 }
   3589 
   3590 
   3591 void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
   3592   // This macro takes the dst register to make the code more readable
   3593   // at the call sites. However, the dst register has to be t1 to
   3594   // follow the calling convention which requires the call type to be
   3595   // in t1.
   3596   ASSERT(dst.is(t1));
   3597   if (call_kind == CALL_AS_FUNCTION) {
   3598     li(dst, Operand(Smi::FromInt(1)));
   3599   } else {
   3600     li(dst, Operand(Smi::FromInt(0)));
   3601   }
   3602 }
   3603 
   3604 
   3605 // -----------------------------------------------------------------------------
   3606 // JavaScript invokes.
   3607 
   3608 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
   3609                                     const ParameterCount& actual,
   3610                                     Handle<Code> code_constant,
   3611                                     Register code_reg,
   3612                                     Label* done,
   3613                                     bool* definitely_mismatches,
   3614                                     InvokeFlag flag,
   3615                                     const CallWrapper& call_wrapper,
   3616                                     CallKind call_kind) {
   3617   bool definitely_matches = false;
   3618   *definitely_mismatches = false;
   3619   Label regular_invoke;
   3620 
   3621   // Check whether the expected and actual arguments count match. If not,
   3622   // setup registers according to contract with ArgumentsAdaptorTrampoline:
   3623   //  a0: actual arguments count
   3624   //  a1: function (passed through to callee)
   3625   //  a2: expected arguments count
   3626   //  a3: callee code entry
   3627 
   3628   // The code below is made a lot easier because the calling code already sets
   3629   // up actual and expected registers according to the contract if values are
   3630   // passed in registers.
   3631   ASSERT(actual.is_immediate() || actual.reg().is(a0));
   3632   ASSERT(expected.is_immediate() || expected.reg().is(a2));
   3633   ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
   3634 
   3635   if (expected.is_immediate()) {
   3636     ASSERT(actual.is_immediate());
   3637     if (expected.immediate() == actual.immediate()) {
   3638       definitely_matches = true;
   3639     } else {
   3640       li(a0, Operand(actual.immediate()));
   3641       const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
   3642       if (expected.immediate() == sentinel) {
   3643         // Don't worry about adapting arguments for builtins that
   3644         // don't want that done. Skip adaption code by making it look
   3645         // like we have a match between expected and actual number of
   3646         // arguments.
   3647         definitely_matches = true;
   3648       } else {
   3649         *definitely_mismatches = true;
   3650         li(a2, Operand(expected.immediate()));
   3651       }
   3652     }
   3653   } else if (actual.is_immediate()) {
   3654     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
   3655     li(a0, Operand(actual.immediate()));
   3656   } else {
   3657     Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
   3658   }
   3659 
   3660   if (!definitely_matches) {
   3661     if (!code_constant.is_null()) {
   3662       li(a3, Operand(code_constant));
   3663       addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
   3664     }
   3665 
   3666     Handle<Code> adaptor =
   3667         isolate()->builtins()->ArgumentsAdaptorTrampoline();
   3668     if (flag == CALL_FUNCTION) {
   3669       call_wrapper.BeforeCall(CallSize(adaptor));
   3670       SetCallKind(t1, call_kind);
   3671       Call(adaptor);
   3672       call_wrapper.AfterCall();
   3673       if (!*definitely_mismatches) {
   3674         Branch(done);
   3675       }
   3676     } else {
   3677       SetCallKind(t1, call_kind);
   3678       Jump(adaptor, RelocInfo::CODE_TARGET);
   3679     }
   3680     bind(&regular_invoke);
   3681   }
   3682 }
   3683 
   3684 
   3685 void MacroAssembler::InvokeCode(Register code,
   3686                                 const ParameterCount& expected,
   3687                                 const ParameterCount& actual,
   3688                                 InvokeFlag flag,
   3689                                 const CallWrapper& call_wrapper,
   3690                                 CallKind call_kind) {
   3691   // You can't call a function without a valid frame.
   3692   ASSERT(flag == JUMP_FUNCTION || has_frame());
   3693 
   3694   Label done;
   3695 
   3696   bool definitely_mismatches = false;
   3697   InvokePrologue(expected, actual, Handle<Code>::null(), code,
   3698                  &done, &definitely_mismatches, flag,
   3699                  call_wrapper, call_kind);
   3700   if (!definitely_mismatches) {
   3701     if (flag == CALL_FUNCTION) {
   3702       call_wrapper.BeforeCall(CallSize(code));
   3703       SetCallKind(t1, call_kind);
   3704       Call(code);
   3705       call_wrapper.AfterCall();
   3706     } else {
   3707       ASSERT(flag == JUMP_FUNCTION);
   3708       SetCallKind(t1, call_kind);
   3709       Jump(code);
   3710     }
   3711     // Continue here if InvokePrologue does handle the invocation due to
   3712     // mismatched parameter counts.
   3713     bind(&done);
   3714   }
   3715 }
   3716 
   3717 
   3718 void MacroAssembler::InvokeCode(Handle<Code> code,
   3719                                 const ParameterCount& expected,
   3720                                 const ParameterCount& actual,
   3721                                 RelocInfo::Mode rmode,
   3722                                 InvokeFlag flag,
   3723                                 CallKind call_kind) {
   3724   // You can't call a function without a valid frame.
   3725   ASSERT(flag == JUMP_FUNCTION || has_frame());
   3726 
   3727   Label done;
   3728 
   3729   bool definitely_mismatches = false;
   3730   InvokePrologue(expected, actual, code, no_reg,
   3731                  &done, &definitely_mismatches, flag,
   3732                  NullCallWrapper(), call_kind);
   3733   if (!definitely_mismatches) {
   3734     if (flag == CALL_FUNCTION) {
   3735       SetCallKind(t1, call_kind);
   3736       Call(code, rmode);
   3737     } else {
   3738       SetCallKind(t1, call_kind);
   3739       Jump(code, rmode);
   3740     }
   3741     // Continue here if InvokePrologue does handle the invocation due to
   3742     // mismatched parameter counts.
   3743     bind(&done);
   3744   }
   3745 }
   3746 
   3747 
   3748 void MacroAssembler::InvokeFunction(Register function,
   3749                                     const ParameterCount& actual,
   3750                                     InvokeFlag flag,
   3751                                     const CallWrapper& call_wrapper,
   3752                                     CallKind call_kind) {
   3753   // You can't call a function without a valid frame.
   3754   ASSERT(flag == JUMP_FUNCTION || has_frame());
   3755 
   3756   // Contract with called JS functions requires that function is passed in a1.
   3757   ASSERT(function.is(a1));
   3758   Register expected_reg = a2;
   3759   Register code_reg = a3;
   3760 
   3761   lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
   3762   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   3763   lw(expected_reg,
   3764       FieldMemOperand(code_reg,
   3765                       SharedFunctionInfo::kFormalParameterCountOffset));
   3766   sra(expected_reg, expected_reg, kSmiTagSize);
   3767   lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   3768 
   3769   ParameterCount expected(expected_reg);
   3770   InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind);
   3771 }
   3772 
   3773 
   3774 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
   3775                                     const ParameterCount& actual,
   3776                                     InvokeFlag flag,
   3777                                     const CallWrapper& call_wrapper,
   3778                                     CallKind call_kind) {
   3779   // You can't call a function without a valid frame.
   3780   ASSERT(flag == JUMP_FUNCTION || has_frame());
   3781 
   3782   // Get the function and setup the context.
   3783   LoadHeapObject(a1, function);
   3784   lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
   3785 
   3786   ParameterCount expected(function->shared()->formal_parameter_count());
   3787   // We call indirectly through the code field in the function to
   3788   // allow recompilation to take effect without changing any of the
   3789   // call sites.
   3790   lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   3791   InvokeCode(a3, expected, actual, flag, call_wrapper, call_kind);
   3792 }
   3793 
   3794 
   3795 void MacroAssembler::IsObjectJSObjectType(Register heap_object,
   3796                                           Register map,
   3797                                           Register scratch,
   3798                                           Label* fail) {
   3799   lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
   3800   IsInstanceJSObjectType(map, scratch, fail);
   3801 }
   3802 
   3803 
   3804 void MacroAssembler::IsInstanceJSObjectType(Register map,
   3805                                             Register scratch,
   3806                                             Label* fail) {
   3807   lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
   3808   Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
   3809   Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
   3810 }
   3811 
   3812 
   3813 void MacroAssembler::IsObjectJSStringType(Register object,
   3814                                           Register scratch,
   3815                                           Label* fail) {
   3816   ASSERT(kNotStringTag != 0);
   3817 
   3818   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   3819   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   3820   And(scratch, scratch, Operand(kIsNotStringMask));
   3821   Branch(fail, ne, scratch, Operand(zero_reg));
   3822 }
   3823 
   3824 
   3825 // ---------------------------------------------------------------------------
   3826 // Support functions.
   3827 
   3828 
   3829 void MacroAssembler::TryGetFunctionPrototype(Register function,
   3830                                              Register result,
   3831                                              Register scratch,
   3832                                              Label* miss,
   3833                                              bool miss_on_bound_function) {
   3834   // Check that the receiver isn't a smi.
   3835   JumpIfSmi(function, miss);
   3836 
   3837   // Check that the function really is a function.  Load map into result reg.
   3838   GetObjectType(function, result, scratch);
   3839   Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
   3840 
   3841   if (miss_on_bound_function) {
   3842     lw(scratch,
   3843        FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
   3844     lw(scratch,
   3845        FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
   3846     And(scratch, scratch,
   3847         Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction)));
   3848     Branch(miss, ne, scratch, Operand(zero_reg));
   3849   }
   3850 
   3851   // Make sure that the function has an instance prototype.
   3852   Label non_instance;
   3853   lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
   3854   And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
   3855   Branch(&non_instance, ne, scratch, Operand(zero_reg));
   3856 
   3857   // Get the prototype or initial map from the function.
   3858   lw(result,
   3859      FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   3860 
   3861   // If the prototype or initial map is the hole, don't return it and
   3862   // simply miss the cache instead. This will allow us to allocate a
   3863   // prototype object on-demand in the runtime system.
   3864   LoadRoot(t8, Heap::kTheHoleValueRootIndex);
   3865   Branch(miss, eq, result, Operand(t8));
   3866 
   3867   // If the function does not have an initial map, we're done.
   3868   Label done;
   3869   GetObjectType(result, scratch, scratch);
   3870   Branch(&done, ne, scratch, Operand(MAP_TYPE));
   3871 
   3872   // Get the prototype from the initial map.
   3873   lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
   3874   jmp(&done);
   3875 
   3876   // Non-instance prototype: Fetch prototype from constructor field
   3877   // in initial map.
   3878   bind(&non_instance);
   3879   lw(result, FieldMemOperand(result, Map::kConstructorOffset));
   3880 
   3881   // All done.
   3882   bind(&done);
   3883 }
   3884 
   3885 
   3886 void MacroAssembler::GetObjectType(Register object,
   3887                                    Register map,
   3888                                    Register type_reg) {
   3889   lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
   3890   lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
   3891 }
   3892 
   3893 
   3894 // -----------------------------------------------------------------------------
   3895 // Runtime calls.
   3896 
   3897 void MacroAssembler::CallStub(CodeStub* stub,
   3898                               Condition cond,
   3899                               Register r1,
   3900                               const Operand& r2,
   3901                               BranchDelaySlot bd) {
   3902   ASSERT(AllowThisStubCall(stub));  // Stub calls are not allowed in some stubs.
   3903   Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond, r1, r2, bd);
   3904 }
   3905 
   3906 
   3907 void MacroAssembler::TailCallStub(CodeStub* stub) {
   3908   ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe());
   3909   Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
   3910 }
   3911 
   3912 
   3913 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
   3914   return ref0.address() - ref1.address();
   3915 }
   3916 
   3917 
   3918 void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function,
   3919                                               int stack_space) {
   3920   ExternalReference next_address =
   3921       ExternalReference::handle_scope_next_address();
   3922   const int kNextOffset = 0;
   3923   const int kLimitOffset = AddressOffset(
   3924       ExternalReference::handle_scope_limit_address(),
   3925       next_address);
   3926   const int kLevelOffset = AddressOffset(
   3927       ExternalReference::handle_scope_level_address(),
   3928       next_address);
   3929 
   3930   // Allocate HandleScope in callee-save registers.
   3931   li(s3, Operand(next_address));
   3932   lw(s0, MemOperand(s3, kNextOffset));
   3933   lw(s1, MemOperand(s3, kLimitOffset));
   3934   lw(s2, MemOperand(s3, kLevelOffset));
   3935   Addu(s2, s2, Operand(1));
   3936   sw(s2, MemOperand(s3, kLevelOffset));
   3937 
   3938   // The O32 ABI requires us to pass a pointer in a0 where the returned struct
   3939   // (4 bytes) will be placed. This is also built into the Simulator.
   3940   // Set up the pointer to the returned value (a0). It was allocated in
   3941   // EnterExitFrame.
   3942   addiu(a0, fp, ExitFrameConstants::kStackSpaceOffset);
   3943 
   3944   // Native call returns to the DirectCEntry stub which redirects to the
   3945   // return address pushed on stack (could have moved after GC).
   3946   // DirectCEntry stub itself is generated early and never moves.
   3947   DirectCEntryStub stub;
   3948   stub.GenerateCall(this, function);
   3949 
   3950   // As mentioned above, on MIPS a pointer is returned - we need to dereference
   3951   // it to get the actual return value (which is also a pointer).
   3952   lw(v0, MemOperand(v0));
   3953 
   3954   Label promote_scheduled_exception;
   3955   Label delete_allocated_handles;
   3956   Label leave_exit_frame;
   3957 
   3958   // If result is non-zero, dereference to get the result value
   3959   // otherwise set it to undefined.
   3960   Label skip;
   3961   LoadRoot(a0, Heap::kUndefinedValueRootIndex);
   3962   Branch(&skip, eq, v0, Operand(zero_reg));
   3963   lw(a0, MemOperand(v0));
   3964   bind(&skip);
   3965   mov(v0, a0);
   3966 
   3967   // No more valid handles (the result handle was the last one). Restore
   3968   // previous handle scope.
   3969   sw(s0, MemOperand(s3, kNextOffset));
   3970   if (emit_debug_code()) {
   3971     lw(a1, MemOperand(s3, kLevelOffset));
   3972     Check(eq, "Unexpected level after return from api call", a1, Operand(s2));
   3973   }
   3974   Subu(s2, s2, Operand(1));
   3975   sw(s2, MemOperand(s3, kLevelOffset));
   3976   lw(at, MemOperand(s3, kLimitOffset));
   3977   Branch(&delete_allocated_handles, ne, s1, Operand(at));
   3978 
   3979   // Check if the function scheduled an exception.
   3980   bind(&leave_exit_frame);
   3981   LoadRoot(t0, Heap::kTheHoleValueRootIndex);
   3982   li(at, Operand(ExternalReference::scheduled_exception_address(isolate())));
   3983   lw(t1, MemOperand(at));
   3984   Branch(&promote_scheduled_exception, ne, t0, Operand(t1));
   3985   li(s0, Operand(stack_space));
   3986   LeaveExitFrame(false, s0, true);
   3987 
   3988   bind(&promote_scheduled_exception);
   3989   TailCallExternalReference(
   3990       ExternalReference(Runtime::kPromoteScheduledException, isolate()),
   3991       0,
   3992       1);
   3993 
   3994   // HandleScope limit has changed. Delete allocated extensions.
   3995   bind(&delete_allocated_handles);
   3996   sw(s1, MemOperand(s3, kLimitOffset));
   3997   mov(s0, v0);
   3998   mov(a0, v0);
   3999   PrepareCallCFunction(1, s1);
   4000   li(a0, Operand(ExternalReference::isolate_address()));
   4001   CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
   4002       1);
   4003   mov(v0, s0);
   4004   jmp(&leave_exit_frame);
   4005 }
   4006 
   4007 
   4008 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
   4009   if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false;
   4010   return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe();
   4011 }
   4012 
   4013 
   4014 void MacroAssembler::IllegalOperation(int num_arguments) {
   4015   if (num_arguments > 0) {
   4016     addiu(sp, sp, num_arguments * kPointerSize);
   4017   }
   4018   LoadRoot(v0, Heap::kUndefinedValueRootIndex);
   4019 }
   4020 
   4021 
   4022 void MacroAssembler::IndexFromHash(Register hash,
   4023                                    Register index) {
   4024   // If the hash field contains an array index pick it out. The assert checks
   4025   // that the constants for the maximum number of digits for an array index
   4026   // cached in the hash field and the number of bits reserved for it does not
   4027   // conflict.
   4028   ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
   4029          (1 << String::kArrayIndexValueBits));
   4030   // We want the smi-tagged index in key.  kArrayIndexValueMask has zeros in
   4031   // the low kHashShift bits.
   4032   STATIC_ASSERT(kSmiTag == 0);
   4033   Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
   4034   sll(index, hash, kSmiTagSize);
   4035 }
   4036 
   4037 
   4038 void MacroAssembler::ObjectToDoubleFPURegister(Register object,
   4039                                                FPURegister result,
   4040                                                Register scratch1,
   4041                                                Register scratch2,
   4042                                                Register heap_number_map,
   4043                                                Label* not_number,
   4044                                                ObjectToDoubleFlags flags) {
   4045   Label done;
   4046   if ((flags & OBJECT_NOT_SMI) == 0) {
   4047     Label not_smi;
   4048     JumpIfNotSmi(object, &not_smi);
   4049     // Remove smi tag and convert to double.
   4050     sra(scratch1, object, kSmiTagSize);
   4051     mtc1(scratch1, result);
   4052     cvt_d_w(result, result);
   4053     Branch(&done);
   4054     bind(&not_smi);
   4055   }
   4056   // Check for heap number and load double value from it.
   4057   lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
   4058   Branch(not_number, ne, scratch1, Operand(heap_number_map));
   4059 
   4060   if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
   4061     // If exponent is all ones the number is either a NaN or +/-Infinity.
   4062     Register exponent = scratch1;
   4063     Register mask_reg = scratch2;
   4064     lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
   4065     li(mask_reg, HeapNumber::kExponentMask);
   4066 
   4067     And(exponent, exponent, mask_reg);
   4068     Branch(not_number, eq, exponent, Operand(mask_reg));
   4069   }
   4070   ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
   4071   bind(&done);
   4072 }
   4073 
   4074 
   4075 void MacroAssembler::SmiToDoubleFPURegister(Register smi,
   4076                                             FPURegister value,
   4077                                             Register scratch1) {
   4078   sra(scratch1, smi, kSmiTagSize);
   4079   mtc1(scratch1, value);
   4080   cvt_d_w(value, value);
   4081 }
   4082 
   4083 
   4084 void MacroAssembler::AdduAndCheckForOverflow(Register dst,
   4085                                              Register left,
   4086                                              Register right,
   4087                                              Register overflow_dst,
   4088                                              Register scratch) {
   4089   ASSERT(!dst.is(overflow_dst));
   4090   ASSERT(!dst.is(scratch));
   4091   ASSERT(!overflow_dst.is(scratch));
   4092   ASSERT(!overflow_dst.is(left));
   4093   ASSERT(!overflow_dst.is(right));
   4094 
   4095   if (left.is(right) && dst.is(left)) {
   4096     ASSERT(!dst.is(t9));
   4097     ASSERT(!scratch.is(t9));
   4098     ASSERT(!left.is(t9));
   4099     ASSERT(!right.is(t9));
   4100     ASSERT(!overflow_dst.is(t9));
   4101     mov(t9, right);
   4102     right = t9;
   4103   }
   4104 
   4105   if (dst.is(left)) {
   4106     mov(scratch, left);  // Preserve left.
   4107     addu(dst, left, right);  // Left is overwritten.
   4108     xor_(scratch, dst, scratch);  // Original left.
   4109     xor_(overflow_dst, dst, right);
   4110     and_(overflow_dst, overflow_dst, scratch);
   4111   } else if (dst.is(right)) {
   4112     mov(scratch, right);  // Preserve right.
   4113     addu(dst, left, right);  // Right is overwritten.
   4114     xor_(scratch, dst, scratch);  // Original right.
   4115     xor_(overflow_dst, dst, left);
   4116     and_(overflow_dst, overflow_dst, scratch);
   4117   } else {
   4118     addu(dst, left, right);
   4119     xor_(overflow_dst, dst, left);
   4120     xor_(scratch, dst, right);
   4121     and_(overflow_dst, scratch, overflow_dst);
   4122   }
   4123 }
   4124 
   4125 
   4126 void MacroAssembler::SubuAndCheckForOverflow(Register dst,
   4127                                              Register left,
   4128                                              Register right,
   4129                                              Register overflow_dst,
   4130                                              Register scratch) {
   4131   ASSERT(!dst.is(overflow_dst));
   4132   ASSERT(!dst.is(scratch));
   4133   ASSERT(!overflow_dst.is(scratch));
   4134   ASSERT(!overflow_dst.is(left));
   4135   ASSERT(!overflow_dst.is(right));
   4136   ASSERT(!scratch.is(left));
   4137   ASSERT(!scratch.is(right));
   4138 
   4139   // This happens with some crankshaft code. Since Subu works fine if
   4140   // left == right, let's not make that restriction here.
   4141   if (left.is(right)) {
   4142     mov(dst, zero_reg);
   4143     mov(overflow_dst, zero_reg);
   4144     return;
   4145   }
   4146 
   4147   if (dst.is(left)) {
   4148     mov(scratch, left);  // Preserve left.
   4149     subu(dst, left, right);  // Left is overwritten.
   4150     xor_(overflow_dst, dst, scratch);  // scratch is original left.
   4151     xor_(scratch, scratch, right);  // scratch is original left.
   4152     and_(overflow_dst, scratch, overflow_dst);
   4153   } else if (dst.is(right)) {
   4154     mov(scratch, right);  // Preserve right.
   4155     subu(dst, left, right);  // Right is overwritten.
   4156     xor_(overflow_dst, dst, left);
   4157     xor_(scratch, left, scratch);  // Original right.
   4158     and_(overflow_dst, scratch, overflow_dst);
   4159   } else {
   4160     subu(dst, left, right);
   4161     xor_(overflow_dst, dst, left);
   4162     xor_(scratch, left, right);
   4163     and_(overflow_dst, scratch, overflow_dst);
   4164   }
   4165 }
   4166 
   4167 
   4168 void MacroAssembler::CallRuntime(const Runtime::Function* f,
   4169                                  int num_arguments) {
   4170   // All parameters are on the stack. v0 has the return value after call.
   4171 
   4172   // If the expected number of arguments of the runtime function is
   4173   // constant, we check that the actual number of arguments match the
   4174   // expectation.
   4175   if (f->nargs >= 0 && f->nargs != num_arguments) {
   4176     IllegalOperation(num_arguments);
   4177     return;
   4178   }
   4179 
   4180   // TODO(1236192): Most runtime routines don't need the number of
   4181   // arguments passed in because it is constant. At some point we
   4182   // should remove this need and make the runtime routine entry code
   4183   // smarter.
   4184   PrepareCEntryArgs(num_arguments);
   4185   PrepareCEntryFunction(ExternalReference(f, isolate()));
   4186   CEntryStub stub(1);
   4187   CallStub(&stub);
   4188 }
   4189 
   4190 
   4191 void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
   4192   const Runtime::Function* function = Runtime::FunctionForId(id);
   4193   PrepareCEntryArgs(function->nargs);
   4194   PrepareCEntryFunction(ExternalReference(function, isolate()));
   4195   CEntryStub stub(1, kSaveFPRegs);
   4196   CallStub(&stub);
   4197 }
   4198 
   4199 
   4200 void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
   4201   CallRuntime(Runtime::FunctionForId(fid), num_arguments);
   4202 }
   4203 
   4204 
   4205 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
   4206                                            int num_arguments,
   4207                                            BranchDelaySlot bd) {
   4208   PrepareCEntryArgs(num_arguments);
   4209   PrepareCEntryFunction(ext);
   4210 
   4211   CEntryStub stub(1);
   4212   CallStub(&stub, al, zero_reg, Operand(zero_reg), bd);
   4213 }
   4214 
   4215 
   4216 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
   4217                                                int num_arguments,
   4218                                                int result_size) {
   4219   // TODO(1236192): Most runtime routines don't need the number of
   4220   // arguments passed in because it is constant. At some point we
   4221   // should remove this need and make the runtime routine entry code
   4222   // smarter.
   4223   PrepareCEntryArgs(num_arguments);
   4224   JumpToExternalReference(ext);
   4225 }
   4226 
   4227 
   4228 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
   4229                                      int num_arguments,
   4230                                      int result_size) {
   4231   TailCallExternalReference(ExternalReference(fid, isolate()),
   4232                             num_arguments,
   4233                             result_size);
   4234 }
   4235 
   4236 
   4237 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
   4238                                              BranchDelaySlot bd) {
   4239   PrepareCEntryFunction(builtin);
   4240   CEntryStub stub(1);
   4241   Jump(stub.GetCode(),
   4242        RelocInfo::CODE_TARGET,
   4243        al,
   4244        zero_reg,
   4245        Operand(zero_reg),
   4246        bd);
   4247 }
   4248 
   4249 
   4250 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
   4251                                    InvokeFlag flag,
   4252                                    const CallWrapper& call_wrapper) {
   4253   // You can't call a builtin without a valid frame.
   4254   ASSERT(flag == JUMP_FUNCTION || has_frame());
   4255 
   4256   GetBuiltinEntry(t9, id);
   4257   if (flag == CALL_FUNCTION) {
   4258     call_wrapper.BeforeCall(CallSize(t9));
   4259     SetCallKind(t1, CALL_AS_METHOD);
   4260     Call(t9);
   4261     call_wrapper.AfterCall();
   4262   } else {
   4263     ASSERT(flag == JUMP_FUNCTION);
   4264     SetCallKind(t1, CALL_AS_METHOD);
   4265     Jump(t9);
   4266   }
   4267 }
   4268 
   4269 
   4270 void MacroAssembler::GetBuiltinFunction(Register target,
   4271                                         Builtins::JavaScript id) {
   4272   // Load the builtins object into target register.
   4273   lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
   4274   lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
   4275   // Load the JavaScript builtin function from the builtins object.
   4276   lw(target, FieldMemOperand(target,
   4277                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
   4278 }
   4279 
   4280 
   4281 void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
   4282   ASSERT(!target.is(a1));
   4283   GetBuiltinFunction(a1, id);
   4284   // Load the code entry point from the builtins object.
   4285   lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
   4286 }
   4287 
   4288 
   4289 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
   4290                                 Register scratch1, Register scratch2) {
   4291   if (FLAG_native_code_counters && counter->Enabled()) {
   4292     li(scratch1, Operand(value));
   4293     li(scratch2, Operand(ExternalReference(counter)));
   4294     sw(scratch1, MemOperand(scratch2));
   4295   }
   4296 }
   4297 
   4298 
   4299 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
   4300                                       Register scratch1, Register scratch2) {
   4301   ASSERT(value > 0);
   4302   if (FLAG_native_code_counters && counter->Enabled()) {
   4303     li(scratch2, Operand(ExternalReference(counter)));
   4304     lw(scratch1, MemOperand(scratch2));
   4305     Addu(scratch1, scratch1, Operand(value));
   4306     sw(scratch1, MemOperand(scratch2));
   4307   }
   4308 }
   4309 
   4310 
   4311 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
   4312                                       Register scratch1, Register scratch2) {
   4313   ASSERT(value > 0);
   4314   if (FLAG_native_code_counters && counter->Enabled()) {
   4315     li(scratch2, Operand(ExternalReference(counter)));
   4316     lw(scratch1, MemOperand(scratch2));
   4317     Subu(scratch1, scratch1, Operand(value));
   4318     sw(scratch1, MemOperand(scratch2));
   4319   }
   4320 }
   4321 
   4322 
   4323 // -----------------------------------------------------------------------------
   4324 // Debugging.
   4325 
   4326 void MacroAssembler::Assert(Condition cc, const char* msg,
   4327                             Register rs, Operand rt) {
   4328   if (emit_debug_code())
   4329     Check(cc, msg, rs, rt);
   4330 }
   4331 
   4332 
   4333 void MacroAssembler::AssertRegisterIsRoot(Register reg,
   4334                                           Heap::RootListIndex index) {
   4335   if (emit_debug_code()) {
   4336     LoadRoot(at, index);
   4337     Check(eq, "Register did not match expected root", reg, Operand(at));
   4338   }
   4339 }
   4340 
   4341 
   4342 void MacroAssembler::AssertFastElements(Register elements) {
   4343   if (emit_debug_code()) {
   4344     ASSERT(!elements.is(at));
   4345     Label ok;
   4346     push(elements);
   4347     lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
   4348     LoadRoot(at, Heap::kFixedArrayMapRootIndex);
   4349     Branch(&ok, eq, elements, Operand(at));
   4350     LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
   4351     Branch(&ok, eq, elements, Operand(at));
   4352     LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
   4353     Branch(&ok, eq, elements, Operand(at));
   4354     Abort("JSObject with fast elements map has slow elements");
   4355     bind(&ok);
   4356     pop(elements);
   4357   }
   4358 }
   4359 
   4360 
   4361 void MacroAssembler::Check(Condition cc, const char* msg,
   4362                            Register rs, Operand rt) {
   4363   Label L;
   4364   Branch(&L, cc, rs, rt);
   4365   Abort(msg);
   4366   // Will not return here.
   4367   bind(&L);
   4368 }
   4369 
   4370 
   4371 void MacroAssembler::Abort(const char* msg) {
   4372   Label abort_start;
   4373   bind(&abort_start);
   4374   // We want to pass the msg string like a smi to avoid GC
   4375   // problems, however msg is not guaranteed to be aligned
   4376   // properly. Instead, we pass an aligned pointer that is
   4377   // a proper v8 smi, but also pass the alignment difference
   4378   // from the real pointer as a smi.
   4379   intptr_t p1 = reinterpret_cast<intptr_t>(msg);
   4380   intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
   4381   ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
   4382 #ifdef DEBUG
   4383   if (msg != NULL) {
   4384     RecordComment("Abort message: ");
   4385     RecordComment(msg);
   4386   }
   4387 #endif
   4388 
   4389   li(a0, Operand(p0));
   4390   push(a0);
   4391   li(a0, Operand(Smi::FromInt(p1 - p0)));
   4392   push(a0);
   4393   // Disable stub call restrictions to always allow calls to abort.
   4394   if (!has_frame_) {
   4395     // We don't actually want to generate a pile of code for this, so just
   4396     // claim there is a stack frame, without generating one.
   4397     FrameScope scope(this, StackFrame::NONE);
   4398     CallRuntime(Runtime::kAbort, 2);
   4399   } else {
   4400     CallRuntime(Runtime::kAbort, 2);
   4401   }
   4402   // Will not return here.
   4403   if (is_trampoline_pool_blocked()) {
   4404     // If the calling code cares about the exact number of
   4405     // instructions generated, we insert padding here to keep the size
   4406     // of the Abort macro constant.
   4407     // Currently in debug mode with debug_code enabled the number of
   4408     // generated instructions is 14, so we use this as a maximum value.
   4409     static const int kExpectedAbortInstructions = 14;
   4410     int abort_instructions = InstructionsGeneratedSince(&abort_start);
   4411     ASSERT(abort_instructions <= kExpectedAbortInstructions);
   4412     while (abort_instructions++ < kExpectedAbortInstructions) {
   4413       nop();
   4414     }
   4415   }
   4416 }
   4417 
   4418 
   4419 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
   4420   if (context_chain_length > 0) {
   4421     // Move up the chain of contexts to the context containing the slot.
   4422     lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   4423     for (int i = 1; i < context_chain_length; i++) {
   4424       lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
   4425     }
   4426   } else {
   4427     // Slot is in the current function context.  Move it into the
   4428     // destination register in case we store into it (the write barrier
   4429     // cannot be allowed to destroy the context in esi).
   4430     Move(dst, cp);
   4431   }
   4432 }
   4433 
   4434 
   4435 void MacroAssembler::LoadTransitionedArrayMapConditional(
   4436     ElementsKind expected_kind,
   4437     ElementsKind transitioned_kind,
   4438     Register map_in_out,
   4439     Register scratch,
   4440     Label* no_map_match) {
   4441   // Load the global or builtins object from the current context.
   4442   lw(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
   4443   lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
   4444 
   4445   // Check that the function's map is the same as the expected cached map.
   4446   int expected_index =
   4447       Context::GetContextMapIndexFromElementsKind(expected_kind);
   4448   lw(at, MemOperand(scratch, Context::SlotOffset(expected_index)));
   4449   Branch(no_map_match, ne, map_in_out, Operand(at));
   4450 
   4451   // Use the transitioned cached map.
   4452   int trans_index =
   4453       Context::GetContextMapIndexFromElementsKind(transitioned_kind);
   4454   lw(map_in_out, MemOperand(scratch, Context::SlotOffset(trans_index)));
   4455 }
   4456 
   4457 
   4458 void MacroAssembler::LoadInitialArrayMap(
   4459     Register function_in, Register scratch, Register map_out) {
   4460   ASSERT(!function_in.is(map_out));
   4461   Label done;
   4462   lw(map_out, FieldMemOperand(function_in,
   4463                               JSFunction::kPrototypeOrInitialMapOffset));
   4464   if (!FLAG_smi_only_arrays) {
   4465     LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS,
   4466                                         FAST_ELEMENTS,
   4467                                         map_out,
   4468                                         scratch,
   4469                                         &done);
   4470   }
   4471   bind(&done);
   4472 }
   4473 
   4474 
   4475 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
   4476   // Load the global or builtins object from the current context.
   4477   lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
   4478   // Load the global context from the global or builtins object.
   4479   lw(function, FieldMemOperand(function,
   4480                                GlobalObject::kGlobalContextOffset));
   4481   // Load the function from the global context.
   4482   lw(function, MemOperand(function, Context::SlotOffset(index)));
   4483 }
   4484 
   4485 
   4486 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
   4487                                                   Register map,
   4488                                                   Register scratch) {
   4489   // Load the initial map. The global functions all have initial maps.
   4490   lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
   4491   if (emit_debug_code()) {
   4492     Label ok, fail;
   4493     CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
   4494     Branch(&ok);
   4495     bind(&fail);
   4496     Abort("Global functions must have initial map");
   4497     bind(&ok);
   4498   }
   4499 }
   4500 
   4501 
   4502 void MacroAssembler::EnterFrame(StackFrame::Type type) {
   4503   addiu(sp, sp, -5 * kPointerSize);
   4504   li(t8, Operand(Smi::FromInt(type)));
   4505   li(t9, Operand(CodeObject()), CONSTANT_SIZE);
   4506   sw(ra, MemOperand(sp, 4 * kPointerSize));
   4507   sw(fp, MemOperand(sp, 3 * kPointerSize));
   4508   sw(cp, MemOperand(sp, 2 * kPointerSize));
   4509   sw(t8, MemOperand(sp, 1 * kPointerSize));
   4510   sw(t9, MemOperand(sp, 0 * kPointerSize));
   4511   addiu(fp, sp, 3 * kPointerSize);
   4512 }
   4513 
   4514 
   4515 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
   4516   mov(sp, fp);
   4517   lw(fp, MemOperand(sp, 0 * kPointerSize));
   4518   lw(ra, MemOperand(sp, 1 * kPointerSize));
   4519   addiu(sp, sp, 2 * kPointerSize);
   4520 }
   4521 
   4522 
   4523 void MacroAssembler::EnterExitFrame(bool save_doubles,
   4524                                     int stack_space) {
   4525   // Set up the frame structure on the stack.
   4526   STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
   4527   STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
   4528   STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
   4529 
   4530   // This is how the stack will look:
   4531   // fp + 2 (==kCallerSPDisplacement) - old stack's end
   4532   // [fp + 1 (==kCallerPCOffset)] - saved old ra
   4533   // [fp + 0 (==kCallerFPOffset)] - saved old fp
   4534   // [fp - 1 (==kSPOffset)] - sp of the called function
   4535   // [fp - 2 (==kCodeOffset)] - CodeObject
   4536   // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
   4537   //   new stack (will contain saved ra)
   4538 
   4539   // Save registers.
   4540   addiu(sp, sp, -4 * kPointerSize);
   4541   sw(ra, MemOperand(sp, 3 * kPointerSize));
   4542   sw(fp, MemOperand(sp, 2 * kPointerSize));
   4543   addiu(fp, sp, 2 * kPointerSize);  // Set up new frame pointer.
   4544 
   4545   if (emit_debug_code()) {
   4546     sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
   4547   }
   4548 
   4549   // Accessed from ExitFrame::code_slot.
   4550   li(t8, Operand(CodeObject()), CONSTANT_SIZE);
   4551   sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
   4552 
   4553   // Save the frame pointer and the context in top.
   4554   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   4555   sw(fp, MemOperand(t8));
   4556   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   4557   sw(cp, MemOperand(t8));
   4558 
   4559   const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
   4560   if (save_doubles) {
   4561     // The stack  must be allign to 0 modulo 8 for stores with sdc1.
   4562     ASSERT(kDoubleSize == frame_alignment);
   4563     if (frame_alignment > 0) {
   4564       ASSERT(IsPowerOf2(frame_alignment));
   4565       And(sp, sp, Operand(-frame_alignment));  // Align stack.
   4566     }
   4567     int space = FPURegister::kNumRegisters * kDoubleSize;
   4568     Subu(sp, sp, Operand(space));
   4569     // Remember: we only need to save every 2nd double FPU value.
   4570     for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
   4571       FPURegister reg = FPURegister::from_code(i);
   4572       sdc1(reg, MemOperand(sp, i * kDoubleSize));
   4573     }
   4574   }
   4575 
   4576   // Reserve place for the return address, stack space and an optional slot
   4577   // (used by the DirectCEntryStub to hold the return value if a struct is
   4578   // returned) and align the frame preparing for calling the runtime function.
   4579   ASSERT(stack_space >= 0);
   4580   Subu(sp, sp, Operand((stack_space + 2) * kPointerSize));
   4581   if (frame_alignment > 0) {
   4582     ASSERT(IsPowerOf2(frame_alignment));
   4583     And(sp, sp, Operand(-frame_alignment));  // Align stack.
   4584   }
   4585 
   4586   // Set the exit frame sp value to point just before the return address
   4587   // location.
   4588   addiu(at, sp, kPointerSize);
   4589   sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset));
   4590 }
   4591 
   4592 
   4593 void MacroAssembler::LeaveExitFrame(bool save_doubles,
   4594                                     Register argument_count,
   4595                                     bool do_return) {
   4596   // Optionally restore all double registers.
   4597   if (save_doubles) {
   4598     // Remember: we only need to restore every 2nd double FPU value.
   4599     lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset));
   4600     for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
   4601       FPURegister reg = FPURegister::from_code(i);
   4602       ldc1(reg, MemOperand(t8, i  * kDoubleSize + kPointerSize));
   4603     }
   4604   }
   4605 
   4606   // Clear top frame.
   4607   li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
   4608   sw(zero_reg, MemOperand(t8));
   4609 
   4610   // Restore current context from top and clear it in debug mode.
   4611   li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
   4612   lw(cp, MemOperand(t8));
   4613 #ifdef DEBUG
   4614   sw(a3, MemOperand(t8));
   4615 #endif
   4616 
   4617   // Pop the arguments, restore registers, and return.
   4618   mov(sp, fp);  // Respect ABI stack constraint.
   4619   lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
   4620   lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
   4621 
   4622   if (argument_count.is_valid()) {
   4623     sll(t8, argument_count, kPointerSizeLog2);
   4624     addu(sp, sp, t8);
   4625   }
   4626 
   4627   if (do_return) {
   4628     Ret(USE_DELAY_SLOT);
   4629     // If returning, the instruction in the delay slot will be the addiu below.
   4630   }
   4631   addiu(sp, sp, 8);
   4632 }
   4633 
   4634 
   4635 void MacroAssembler::InitializeNewString(Register string,
   4636                                          Register length,
   4637                                          Heap::RootListIndex map_index,
   4638                                          Register scratch1,
   4639                                          Register scratch2) {
   4640   sll(scratch1, length, kSmiTagSize);
   4641   LoadRoot(scratch2, map_index);
   4642   sw(scratch1, FieldMemOperand(string, String::kLengthOffset));
   4643   li(scratch1, Operand(String::kEmptyHashField));
   4644   sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
   4645   sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
   4646 }
   4647 
   4648 
   4649 int MacroAssembler::ActivationFrameAlignment() {
   4650 #if defined(V8_HOST_ARCH_MIPS)
   4651   // Running on the real platform. Use the alignment as mandated by the local
   4652   // environment.
   4653   // Note: This will break if we ever start generating snapshots on one Mips
   4654   // platform for another Mips platform with a different alignment.
   4655   return OS::ActivationFrameAlignment();
   4656 #else  // defined(V8_HOST_ARCH_MIPS)
   4657   // If we are using the simulator then we should always align to the expected
   4658   // alignment. As the simulator is used to generate snapshots we do not know
   4659   // if the target platform will need alignment, so this is controlled from a
   4660   // flag.
   4661   return FLAG_sim_stack_alignment;
   4662 #endif  // defined(V8_HOST_ARCH_MIPS)
   4663 }
   4664 
   4665 
   4666 void MacroAssembler::AssertStackIsAligned() {
   4667   if (emit_debug_code()) {
   4668       const int frame_alignment = ActivationFrameAlignment();
   4669       const int frame_alignment_mask = frame_alignment - 1;
   4670 
   4671       if (frame_alignment > kPointerSize) {
   4672         Label alignment_as_expected;
   4673         ASSERT(IsPowerOf2(frame_alignment));
   4674         andi(at, sp, frame_alignment_mask);
   4675         Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
   4676         // Don't use Check here, as it will call Runtime_Abort re-entering here.
   4677         stop("Unexpected stack alignment");
   4678         bind(&alignment_as_expected);
   4679       }
   4680     }
   4681 }
   4682 
   4683 
   4684 void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
   4685     Register reg,
   4686     Register scratch,
   4687     Label* not_power_of_two_or_zero) {
   4688   Subu(scratch, reg, Operand(1));
   4689   Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
   4690          scratch, Operand(zero_reg));
   4691   and_(at, scratch, reg);  // In the delay slot.
   4692   Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
   4693 }
   4694 
   4695 
   4696 void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
   4697   ASSERT(!reg.is(overflow));
   4698   mov(overflow, reg);  // Save original value.
   4699   SmiTag(reg);
   4700   xor_(overflow, overflow, reg);  // Overflow if (value ^ 2 * value) < 0.
   4701 }
   4702 
   4703 
   4704 void MacroAssembler::SmiTagCheckOverflow(Register dst,
   4705                                          Register src,
   4706                                          Register overflow) {
   4707   if (dst.is(src)) {
   4708     // Fall back to slower case.
   4709     SmiTagCheckOverflow(dst, overflow);
   4710   } else {
   4711     ASSERT(!dst.is(src));
   4712     ASSERT(!dst.is(overflow));
   4713     ASSERT(!src.is(overflow));
   4714     SmiTag(dst, src);
   4715     xor_(overflow, dst, src);  // Overflow if (value ^ 2 * value) < 0.
   4716   }
   4717 }
   4718 
   4719 
   4720 void MacroAssembler::UntagAndJumpIfSmi(Register dst,
   4721                                        Register src,
   4722                                        Label* smi_case) {
   4723   JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT);
   4724   SmiUntag(dst, src);
   4725 }
   4726 
   4727 
   4728 void MacroAssembler::UntagAndJumpIfNotSmi(Register dst,
   4729                                           Register src,
   4730                                           Label* non_smi_case) {
   4731   JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT);
   4732   SmiUntag(dst, src);
   4733 }
   4734 
   4735 void MacroAssembler::JumpIfSmi(Register value,
   4736                                Label* smi_label,
   4737                                Register scratch,
   4738                                BranchDelaySlot bd) {
   4739   ASSERT_EQ(0, kSmiTag);
   4740   andi(scratch, value, kSmiTagMask);
   4741   Branch(bd, smi_label, eq, scratch, Operand(zero_reg));
   4742 }
   4743 
   4744 void MacroAssembler::JumpIfNotSmi(Register value,
   4745                                   Label* not_smi_label,
   4746                                   Register scratch,
   4747                                   BranchDelaySlot bd) {
   4748   ASSERT_EQ(0, kSmiTag);
   4749   andi(scratch, value, kSmiTagMask);
   4750   Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg));
   4751 }
   4752 
   4753 
   4754 void MacroAssembler::JumpIfNotBothSmi(Register reg1,
   4755                                       Register reg2,
   4756                                       Label* on_not_both_smi) {
   4757   STATIC_ASSERT(kSmiTag == 0);
   4758   ASSERT_EQ(1, kSmiTagMask);
   4759   or_(at, reg1, reg2);
   4760   JumpIfNotSmi(at, on_not_both_smi);
   4761 }
   4762 
   4763 
   4764 void MacroAssembler::JumpIfEitherSmi(Register reg1,
   4765                                      Register reg2,
   4766                                      Label* on_either_smi) {
   4767   STATIC_ASSERT(kSmiTag == 0);
   4768   ASSERT_EQ(1, kSmiTagMask);
   4769   // Both Smi tags must be 1 (not Smi).
   4770   and_(at, reg1, reg2);
   4771   JumpIfSmi(at, on_either_smi);
   4772 }
   4773 
   4774 
   4775 void MacroAssembler::AbortIfSmi(Register object) {
   4776   STATIC_ASSERT(kSmiTag == 0);
   4777   andi(at, object, kSmiTagMask);
   4778   Assert(ne, "Operand is a smi", at, Operand(zero_reg));
   4779 }
   4780 
   4781 
   4782 void MacroAssembler::AbortIfNotSmi(Register object) {
   4783   STATIC_ASSERT(kSmiTag == 0);
   4784   andi(at, object, kSmiTagMask);
   4785   Assert(eq, "Operand is a smi", at, Operand(zero_reg));
   4786 }
   4787 
   4788 
   4789 void MacroAssembler::AbortIfNotString(Register object) {
   4790   STATIC_ASSERT(kSmiTag == 0);
   4791   And(t0, object, Operand(kSmiTagMask));
   4792   Assert(ne, "Operand is not a string", t0, Operand(zero_reg));
   4793   push(object);
   4794   lw(object, FieldMemOperand(object, HeapObject::kMapOffset));
   4795   lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset));
   4796   Assert(lo, "Operand is not a string", object, Operand(FIRST_NONSTRING_TYPE));
   4797   pop(object);
   4798 }
   4799 
   4800 
   4801 void MacroAssembler::AbortIfNotRootValue(Register src,
   4802                                          Heap::RootListIndex root_value_index,
   4803                                          const char* message) {
   4804   ASSERT(!src.is(at));
   4805   LoadRoot(at, root_value_index);
   4806   Assert(eq, message, src, Operand(at));
   4807 }
   4808 
   4809 
   4810 void MacroAssembler::JumpIfNotHeapNumber(Register object,
   4811                                          Register heap_number_map,
   4812                                          Register scratch,
   4813                                          Label* on_not_heap_number) {
   4814   lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
   4815   AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
   4816   Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
   4817 }
   4818 
   4819 
   4820 void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
   4821     Register first,
   4822     Register second,
   4823     Register scratch1,
   4824     Register scratch2,
   4825     Label* failure) {
   4826   // Test that both first and second are sequential ASCII strings.
   4827   // Assume that they are non-smis.
   4828   lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
   4829   lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
   4830   lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
   4831   lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
   4832 
   4833   JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
   4834                                                scratch2,
   4835                                                scratch1,
   4836                                                scratch2,
   4837                                                failure);
   4838 }
   4839 
   4840 
   4841 void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
   4842                                                          Register second,
   4843                                                          Register scratch1,
   4844                                                          Register scratch2,
   4845                                                          Label* failure) {
   4846   // Check that neither is a smi.
   4847   STATIC_ASSERT(kSmiTag == 0);
   4848   And(scratch1, first, Operand(second));
   4849   JumpIfSmi(scratch1, failure);
   4850   JumpIfNonSmisNotBothSequentialAsciiStrings(first,
   4851                                              second,
   4852                                              scratch1,
   4853                                              scratch2,
   4854                                              failure);
   4855 }
   4856 
   4857 
   4858 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
   4859     Register first,
   4860     Register second,
   4861     Register scratch1,
   4862     Register scratch2,
   4863     Label* failure) {
   4864   int kFlatAsciiStringMask =
   4865       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   4866   int kFlatAsciiStringTag = ASCII_STRING_TYPE;
   4867   ASSERT(kFlatAsciiStringTag <= 0xffff);  // Ensure this fits 16-bit immed.
   4868   andi(scratch1, first, kFlatAsciiStringMask);
   4869   Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag));
   4870   andi(scratch2, second, kFlatAsciiStringMask);
   4871   Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag));
   4872 }
   4873 
   4874 
   4875 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
   4876                                                             Register scratch,
   4877                                                             Label* failure) {
   4878   int kFlatAsciiStringMask =
   4879       kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
   4880   int kFlatAsciiStringTag = ASCII_STRING_TYPE;
   4881   And(scratch, type, Operand(kFlatAsciiStringMask));
   4882   Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag));
   4883 }
   4884 
   4885 
   4886 static const int kRegisterPassedArguments = 4;
   4887 
   4888 int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
   4889                                               int num_double_arguments) {
   4890   int stack_passed_words = 0;
   4891   num_reg_arguments += 2 * num_double_arguments;
   4892 
   4893   // Up to four simple arguments are passed in registers a0..a3.
   4894   if (num_reg_arguments > kRegisterPassedArguments) {
   4895     stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
   4896   }
   4897   stack_passed_words += kCArgSlotCount;
   4898   return stack_passed_words;
   4899 }
   4900 
   4901 
   4902 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   4903                                           int num_double_arguments,
   4904                                           Register scratch) {
   4905   int frame_alignment = ActivationFrameAlignment();
   4906 
   4907   // Up to four simple arguments are passed in registers a0..a3.
   4908   // Those four arguments must have reserved argument slots on the stack for
   4909   // mips, even though those argument slots are not normally used.
   4910   // Remaining arguments are pushed on the stack, above (higher address than)
   4911   // the argument slots.
   4912   int stack_passed_arguments = CalculateStackPassedWords(
   4913       num_reg_arguments, num_double_arguments);
   4914   if (frame_alignment > kPointerSize) {
   4915     // Make stack end at alignment and make room for num_arguments - 4 words
   4916     // and the original value of sp.
   4917     mov(scratch, sp);
   4918     Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
   4919     ASSERT(IsPowerOf2(frame_alignment));
   4920     And(sp, sp, Operand(-frame_alignment));
   4921     sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
   4922   } else {
   4923     Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
   4924   }
   4925 }
   4926 
   4927 
   4928 void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
   4929                                           Register scratch) {
   4930   PrepareCallCFunction(num_reg_arguments, 0, scratch);
   4931 }
   4932 
   4933 
   4934 void MacroAssembler::CallCFunction(ExternalReference function,
   4935                                    int num_reg_arguments,
   4936                                    int num_double_arguments) {
   4937   li(t8, Operand(function));
   4938   CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments);
   4939 }
   4940 
   4941 
   4942 void MacroAssembler::CallCFunction(Register function,
   4943                                    int num_reg_arguments,
   4944                                    int num_double_arguments) {
   4945   CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
   4946 }
   4947 
   4948 
   4949 void MacroAssembler::CallCFunction(ExternalReference function,
   4950                                    int num_arguments) {
   4951   CallCFunction(function, num_arguments, 0);
   4952 }
   4953 
   4954 
   4955 void MacroAssembler::CallCFunction(Register function,
   4956                                    int num_arguments) {
   4957   CallCFunction(function, num_arguments, 0);
   4958 }
   4959 
   4960 
   4961 void MacroAssembler::CallCFunctionHelper(Register function,
   4962                                          int num_reg_arguments,
   4963                                          int num_double_arguments) {
   4964   ASSERT(has_frame());
   4965   // Make sure that the stack is aligned before calling a C function unless
   4966   // running in the simulator. The simulator has its own alignment check which
   4967   // provides more information.
   4968   // The argument stots are presumed to have been set up by
   4969   // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
   4970 
   4971 #if defined(V8_HOST_ARCH_MIPS)
   4972   if (emit_debug_code()) {
   4973     int frame_alignment = OS::ActivationFrameAlignment();
   4974     int frame_alignment_mask = frame_alignment - 1;
   4975     if (frame_alignment > kPointerSize) {
   4976       ASSERT(IsPowerOf2(frame_alignment));
   4977       Label alignment_as_expected;
   4978       And(at, sp, Operand(frame_alignment_mask));
   4979       Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
   4980       // Don't use Check here, as it will call Runtime_Abort possibly
   4981       // re-entering here.
   4982       stop("Unexpected alignment in CallCFunction");
   4983       bind(&alignment_as_expected);
   4984     }
   4985   }
   4986 #endif  // V8_HOST_ARCH_MIPS
   4987 
   4988   // Just call directly. The function called cannot cause a GC, or
   4989   // allow preemption, so the return address in the link register
   4990   // stays correct.
   4991 
   4992   if (!function.is(t9)) {
   4993     mov(t9, function);
   4994     function = t9;
   4995   }
   4996 
   4997   Call(function);
   4998 
   4999   int stack_passed_arguments = CalculateStackPassedWords(
   5000       num_reg_arguments, num_double_arguments);
   5001 
   5002   if (OS::ActivationFrameAlignment() > kPointerSize) {
   5003     lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
   5004   } else {
   5005     Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
   5006   }
   5007 }
   5008 
   5009 
   5010 #undef BRANCH_ARGS_CHECK
   5011 
   5012 
   5013 void MacroAssembler::PatchRelocatedValue(Register li_location,
   5014                                          Register scratch,
   5015                                          Register new_value) {
   5016   lw(scratch, MemOperand(li_location));
   5017   // At this point scratch is a lui(at, ...) instruction.
   5018   if (emit_debug_code()) {
   5019     And(scratch, scratch, kOpcodeMask);
   5020     Check(eq, "The instruction to patch should be a lui.",
   5021         scratch, Operand(LUI));
   5022     lw(scratch, MemOperand(li_location));
   5023   }
   5024   srl(t9, new_value, kImm16Bits);
   5025   Ins(scratch, t9, 0, kImm16Bits);
   5026   sw(scratch, MemOperand(li_location));
   5027 
   5028   lw(scratch, MemOperand(li_location, kInstrSize));
   5029   // scratch is now ori(at, ...).
   5030   if (emit_debug_code()) {
   5031     And(scratch, scratch, kOpcodeMask);
   5032     Check(eq, "The instruction to patch should be an ori.",
   5033         scratch, Operand(ORI));
   5034     lw(scratch, MemOperand(li_location, kInstrSize));
   5035   }
   5036   Ins(scratch, new_value, 0, kImm16Bits);
   5037   sw(scratch, MemOperand(li_location, kInstrSize));
   5038 
   5039   // Update the I-cache so the new lui and ori can be executed.
   5040   FlushICache(li_location, 2);
   5041 }
   5042 
   5043 void MacroAssembler::GetRelocatedValue(Register li_location,
   5044                                        Register value,
   5045                                        Register scratch) {
   5046   lw(value, MemOperand(li_location));
   5047   if (emit_debug_code()) {
   5048     And(value, value, kOpcodeMask);
   5049     Check(eq, "The instruction should be a lui.",
   5050         value, Operand(LUI));
   5051     lw(value, MemOperand(li_location));
   5052   }
   5053 
   5054   // value now holds a lui instruction. Extract the immediate.
   5055   sll(value, value, kImm16Bits);
   5056 
   5057   lw(scratch, MemOperand(li_location, kInstrSize));
   5058   if (emit_debug_code()) {
   5059     And(scratch, scratch, kOpcodeMask);
   5060     Check(eq, "The instruction should be an ori.",
   5061         scratch, Operand(ORI));
   5062     lw(scratch, MemOperand(li_location, kInstrSize));
   5063   }
   5064   // "scratch" now holds an ori instruction. Extract the immediate.
   5065   andi(scratch, scratch, kImm16Mask);
   5066 
   5067   // Merge the results.
   5068   or_(value, value, scratch);
   5069 }
   5070 
   5071 
   5072 void MacroAssembler::CheckPageFlag(
   5073     Register object,
   5074     Register scratch,
   5075     int mask,
   5076     Condition cc,
   5077     Label* condition_met) {
   5078   And(scratch, object, Operand(~Page::kPageAlignmentMask));
   5079   lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
   5080   And(scratch, scratch, Operand(mask));
   5081   Branch(condition_met, cc, scratch, Operand(zero_reg));
   5082 }
   5083 
   5084 
   5085 void MacroAssembler::JumpIfBlack(Register object,
   5086                                  Register scratch0,
   5087                                  Register scratch1,
   5088                                  Label* on_black) {
   5089   HasColor(object, scratch0, scratch1, on_black, 1, 0);  // kBlackBitPattern.
   5090   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
   5091 }
   5092 
   5093 
   5094 void MacroAssembler::HasColor(Register object,
   5095                               Register bitmap_scratch,
   5096                               Register mask_scratch,
   5097                               Label* has_color,
   5098                               int first_bit,
   5099                               int second_bit) {
   5100   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8));
   5101   ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9));
   5102 
   5103   GetMarkBits(object, bitmap_scratch, mask_scratch);
   5104 
   5105   Label other_color, word_boundary;
   5106   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5107   And(t8, t9, Operand(mask_scratch));
   5108   Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg));
   5109   // Shift left 1 by adding.
   5110   Addu(mask_scratch, mask_scratch, Operand(mask_scratch));
   5111   Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg));
   5112   And(t8, t9, Operand(mask_scratch));
   5113   Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg));
   5114   jmp(&other_color);
   5115 
   5116   bind(&word_boundary);
   5117   lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize));
   5118   And(t9, t9, Operand(1));
   5119   Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg));
   5120   bind(&other_color);
   5121 }
   5122 
   5123 
   5124 // Detect some, but not all, common pointer-free objects.  This is used by the
   5125 // incremental write barrier which doesn't care about oddballs (they are always
   5126 // marked black immediately so this code is not hit).
   5127 void MacroAssembler::JumpIfDataObject(Register value,
   5128                                       Register scratch,
   5129                                       Label* not_data_object) {
   5130   ASSERT(!AreAliased(value, scratch, t8, no_reg));
   5131   Label is_data_object;
   5132   lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
   5133   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   5134   Branch(&is_data_object, eq, t8, Operand(scratch));
   5135   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   5136   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   5137   // If it's a string and it's not a cons string then it's an object containing
   5138   // no GC pointers.
   5139   lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
   5140   And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
   5141   Branch(not_data_object, ne, t8, Operand(zero_reg));
   5142   bind(&is_data_object);
   5143 }
   5144 
   5145 
   5146 void MacroAssembler::GetMarkBits(Register addr_reg,
   5147                                  Register bitmap_reg,
   5148                                  Register mask_reg) {
   5149   ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
   5150   And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask));
   5151   Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
   5152   const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
   5153   Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits);
   5154   sll(t8, t8, kPointerSizeLog2);
   5155   Addu(bitmap_reg, bitmap_reg, t8);
   5156   li(t8, Operand(1));
   5157   sllv(mask_reg, t8, mask_reg);
   5158 }
   5159 
   5160 
   5161 void MacroAssembler::EnsureNotWhite(
   5162     Register value,
   5163     Register bitmap_scratch,
   5164     Register mask_scratch,
   5165     Register load_scratch,
   5166     Label* value_is_white_and_not_data) {
   5167   ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8));
   5168   GetMarkBits(value, bitmap_scratch, mask_scratch);
   5169 
   5170   // If the value is black or grey we don't need to do anything.
   5171   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
   5172   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
   5173   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
   5174   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
   5175 
   5176   Label done;
   5177 
   5178   // Since both black and grey have a 1 in the first position and white does
   5179   // not have a 1 there we only need to check one bit.
   5180   lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5181   And(t8, mask_scratch, load_scratch);
   5182   Branch(&done, ne, t8, Operand(zero_reg));
   5183 
   5184   if (emit_debug_code()) {
   5185     // Check for impossible bit pattern.
   5186     Label ok;
   5187     // sll may overflow, making the check conservative.
   5188     sll(t8, mask_scratch, 1);
   5189     And(t8, load_scratch, t8);
   5190     Branch(&ok, eq, t8, Operand(zero_reg));
   5191     stop("Impossible marking bit pattern");
   5192     bind(&ok);
   5193   }
   5194 
   5195   // Value is white.  We check whether it is data that doesn't need scanning.
   5196   // Currently only checks for HeapNumber and non-cons strings.
   5197   Register map = load_scratch;  // Holds map while checking type.
   5198   Register length = load_scratch;  // Holds length of object after testing type.
   5199   Label is_data_object;
   5200 
   5201   // Check for heap-number
   5202   lw(map, FieldMemOperand(value, HeapObject::kMapOffset));
   5203   LoadRoot(t8, Heap::kHeapNumberMapRootIndex);
   5204   {
   5205     Label skip;
   5206     Branch(&skip, ne, t8, Operand(map));
   5207     li(length, HeapNumber::kSize);
   5208     Branch(&is_data_object);
   5209     bind(&skip);
   5210   }
   5211 
   5212   // Check for strings.
   5213   ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
   5214   ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
   5215   // If it's a string and it's not a cons string then it's an object containing
   5216   // no GC pointers.
   5217   Register instance_type = load_scratch;
   5218   lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
   5219   And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
   5220   Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg));
   5221   // It's a non-indirect (non-cons and non-slice) string.
   5222   // If it's external, the length is just ExternalString::kSize.
   5223   // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
   5224   // External strings are the only ones with the kExternalStringTag bit
   5225   // set.
   5226   ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
   5227   ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
   5228   And(t8, instance_type, Operand(kExternalStringTag));
   5229   {
   5230     Label skip;
   5231     Branch(&skip, eq, t8, Operand(zero_reg));
   5232     li(length, ExternalString::kSize);
   5233     Branch(&is_data_object);
   5234     bind(&skip);
   5235   }
   5236 
   5237   // Sequential string, either ASCII or UC16.
   5238   // For ASCII (char-size of 1) we shift the smi tag away to get the length.
   5239   // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
   5240   // getting the length multiplied by 2.
   5241   ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4);
   5242   ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
   5243   lw(t9, FieldMemOperand(value, String::kLengthOffset));
   5244   And(t8, instance_type, Operand(kStringEncodingMask));
   5245   {
   5246     Label skip;
   5247     Branch(&skip, eq, t8, Operand(zero_reg));
   5248     srl(t9, t9, 1);
   5249     bind(&skip);
   5250   }
   5251   Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
   5252   And(length, length, Operand(~kObjectAlignmentMask));
   5253 
   5254   bind(&is_data_object);
   5255   // Value is a data object, and it is white.  Mark it black.  Since we know
   5256   // that the object is white we can make it black by flipping one bit.
   5257   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5258   Or(t8, t8, Operand(mask_scratch));
   5259   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
   5260 
   5261   And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask));
   5262   lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   5263   Addu(t8, t8, Operand(length));
   5264   sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
   5265 
   5266   bind(&done);
   5267 }
   5268 
   5269 
   5270 void MacroAssembler::LoadInstanceDescriptors(Register map,
   5271                                              Register descriptors) {
   5272   lw(descriptors,
   5273      FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset));
   5274   Label not_smi;
   5275   JumpIfNotSmi(descriptors, &not_smi);
   5276   LoadRoot(descriptors, Heap::kEmptyDescriptorArrayRootIndex);
   5277   bind(&not_smi);
   5278 }
   5279 
   5280 
   5281 void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
   5282   Label next;
   5283   // Preload a couple of values used in the loop.
   5284   Register  empty_fixed_array_value = t2;
   5285   LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
   5286   Register empty_descriptor_array_value = t3;
   5287   LoadRoot(empty_descriptor_array_value,
   5288            Heap::kEmptyDescriptorArrayRootIndex);
   5289   mov(a1, a0);
   5290   bind(&next);
   5291 
   5292   // Check that there are no elements.  Register a1 contains the
   5293   // current JS object we've reached through the prototype chain.
   5294   lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset));
   5295   Branch(call_runtime, ne, a2, Operand(empty_fixed_array_value));
   5296 
   5297   // Check that instance descriptors are not empty so that we can
   5298   // check for an enum cache.  Leave the map in a2 for the subsequent
   5299   // prototype load.
   5300   lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset));
   5301   lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset));
   5302   JumpIfSmi(a3, call_runtime);
   5303 
   5304   // Check that there is an enum cache in the non-empty instance
   5305   // descriptors (a3).  This is the case if the next enumeration
   5306   // index field does not contain a smi.
   5307   lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset));
   5308   JumpIfSmi(a3, call_runtime);
   5309 
   5310   // For all objects but the receiver, check that the cache is empty.
   5311   Label check_prototype;
   5312   Branch(&check_prototype, eq, a1, Operand(a0));
   5313   lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset));
   5314   Branch(call_runtime, ne, a3, Operand(empty_fixed_array_value));
   5315 
   5316   // Load the prototype from the map and loop if non-null.
   5317   bind(&check_prototype);
   5318   lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset));
   5319   Branch(&next, ne, a1, Operand(null_value));
   5320 }
   5321 
   5322 
   5323 void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
   5324   ASSERT(!output_reg.is(input_reg));
   5325   Label done;
   5326   li(output_reg, Operand(255));
   5327   // Normal branch: nop in delay slot.
   5328   Branch(&done, gt, input_reg, Operand(output_reg));
   5329   // Use delay slot in this branch.
   5330   Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg));
   5331   mov(output_reg, zero_reg);  // In delay slot.
   5332   mov(output_reg, input_reg);  // Value is in range 0..255.
   5333   bind(&done);
   5334 }
   5335 
   5336 
   5337 void MacroAssembler::ClampDoubleToUint8(Register result_reg,
   5338                                         DoubleRegister input_reg,
   5339                                         DoubleRegister temp_double_reg) {
   5340   Label above_zero;
   5341   Label done;
   5342   Label in_bounds;
   5343 
   5344   Move(temp_double_reg, 0.0);
   5345   BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg);
   5346 
   5347   // Double value is less than zero, NaN or Inf, return 0.
   5348   mov(result_reg, zero_reg);
   5349   Branch(&done);
   5350 
   5351   // Double value is >= 255, return 255.
   5352   bind(&above_zero);
   5353   Move(temp_double_reg, 255.0);
   5354   BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg);
   5355   li(result_reg, Operand(255));
   5356   Branch(&done);
   5357 
   5358   // In 0-255 range, round and truncate.
   5359   bind(&in_bounds);
   5360   round_w_d(temp_double_reg, input_reg);
   5361   mfc1(result_reg, temp_double_reg);
   5362   bind(&done);
   5363 }
   5364 
   5365 
   5366 bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
   5367   if (r1.is(r2)) return true;
   5368   if (r1.is(r3)) return true;
   5369   if (r1.is(r4)) return true;
   5370   if (r2.is(r3)) return true;
   5371   if (r2.is(r4)) return true;
   5372   if (r3.is(r4)) return true;
   5373   return false;
   5374 }
   5375 
   5376 
   5377 CodePatcher::CodePatcher(byte* address, int instructions)
   5378     : address_(address),
   5379       instructions_(instructions),
   5380       size_(instructions * Assembler::kInstrSize),
   5381       masm_(Isolate::Current(), address, size_ + Assembler::kGap) {
   5382   // Create a new macro assembler pointing to the address of the code to patch.
   5383   // The size is adjusted with kGap on order for the assembler to generate size
   5384   // bytes of instructions without failing with buffer size constraints.
   5385   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   5386 }
   5387 
   5388 
   5389 CodePatcher::~CodePatcher() {
   5390   // Indicate that code has changed.
   5391   CPU::FlushICache(address_, size_);
   5392 
   5393   // Check that the code was patched as expected.
   5394   ASSERT(masm_.pc_ == address_ + size_);
   5395   ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
   5396 }
   5397 
   5398 
   5399 void CodePatcher::Emit(Instr instr) {
   5400   masm()->emit(instr);
   5401 }
   5402 
   5403 
   5404 void CodePatcher::Emit(Address addr) {
   5405   masm()->emit(reinterpret_cast<Instr>(addr));
   5406 }
   5407 
   5408 
   5409 void CodePatcher::ChangeBranchCondition(Condition cond) {
   5410   Instr instr = Assembler::instr_at(masm_.pc_);
   5411   ASSERT(Assembler::IsBranch(instr));
   5412   uint32_t opcode = Assembler::GetOpcodeField(instr);
   5413   // Currently only the 'eq' and 'ne' cond values are supported and the simple
   5414   // branch instructions (with opcode being the branch type).
   5415   // There are some special cases (see Assembler::IsBranch()) so extending this
   5416   // would be tricky.
   5417   ASSERT(opcode == BEQ ||
   5418          opcode == BNE ||
   5419         opcode == BLEZ ||
   5420         opcode == BGTZ ||
   5421         opcode == BEQL ||
   5422         opcode == BNEL ||
   5423        opcode == BLEZL ||
   5424        opcode == BGTZL);
   5425   opcode = (cond == eq) ? BEQ : BNE;
   5426   instr = (instr & ~kOpcodeMask) | opcode;
   5427   masm_.emit(instr);
   5428 }
   5429 
   5430 
   5431 } }  // namespace v8::internal
   5432 
   5433 #endif  // V8_TARGET_ARCH_MIPS
   5434