Home | History | Annotate | Download | only in flex-2.5.4a
      1 /* dfa - DFA construction routines */
      2 
      3 /*-
      4  * Copyright (c) 1990 The Regents of the University of California.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Vern Paxson.
      9  *
     10  * The United States Government has rights in this work pursuant
     11  * to contract no. DE-AC03-76SF00098 between the United States
     12  * Department of Energy and the University of California.
     13  *
     14  * Redistribution and use in source and binary forms with or without
     15  * modification are permitted provided that: (1) source distributions retain
     16  * this entire copyright notice and comment, and (2) distributions including
     17  * binaries display the following acknowledgement:  ``This product includes
     18  * software developed by the University of California, Berkeley and its
     19  * contributors'' in the documentation or other materials provided with the
     20  * distribution and in all advertising materials mentioning features or use
     21  * of this software.  Neither the name of the University nor the names of
     22  * its contributors may be used to endorse or promote products derived from
     23  * this software without specific prior written permission.
     24  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
     25  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
     26  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
     27  */
     28 
     29 /* $Header: /home/daffy/u0/vern/flex/RCS/dfa.c,v 2.26 95/04/20 13:53:14 vern Exp $ */
     30 
     31 #include "flexdef.h"
     32 
     33 
     34 /* declare functions that have forward references */
     35 
     36 void dump_associated_rules PROTO((FILE*, int));
     37 void dump_transitions PROTO((FILE*, int[]));
     38 void sympartition PROTO((int[], int, int[], int[]));
     39 int symfollowset PROTO((int[], int, int, int[]));
     40 
     41 
     42 /* check_for_backing_up - check a DFA state for backing up
     43  *
     44  * synopsis
     45  *     void check_for_backing_up( int ds, int state[numecs] );
     46  *
     47  * ds is the number of the state to check and state[] is its out-transitions,
     48  * indexed by equivalence class.
     49  */
     50 
     51 void check_for_backing_up( ds, state )
     52 int ds;
     53 int state[];
     54 	{
     55 	if ( (reject && ! dfaacc[ds].dfaacc_set) ||
     56 	     (! reject && ! dfaacc[ds].dfaacc_state) )
     57 		{ /* state is non-accepting */
     58 		++num_backing_up;
     59 
     60 		if ( backing_up_report )
     61 			{
     62 			fprintf( backing_up_file,
     63 				_( "State #%d is non-accepting -\n" ), ds );
     64 
     65 			/* identify the state */
     66 			dump_associated_rules( backing_up_file, ds );
     67 
     68 			/* Now identify it further using the out- and
     69 			 * jam-transitions.
     70 			 */
     71 			dump_transitions( backing_up_file, state );
     72 
     73 			putc( '\n', backing_up_file );
     74 			}
     75 		}
     76 	}
     77 
     78 
     79 /* check_trailing_context - check to see if NFA state set constitutes
     80  *                          "dangerous" trailing context
     81  *
     82  * synopsis
     83  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
     84  *				int accset[nacc+1], int nacc );
     85  *
     86  * NOTES
     87  *  Trailing context is "dangerous" if both the head and the trailing
     88  *  part are of variable size \and/ there's a DFA state which contains
     89  *  both an accepting state for the head part of the rule and NFA states
     90  *  which occur after the beginning of the trailing context.
     91  *
     92  *  When such a rule is matched, it's impossible to tell if having been
     93  *  in the DFA state indicates the beginning of the trailing context or
     94  *  further-along scanning of the pattern.  In these cases, a warning
     95  *  message is issued.
     96  *
     97  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
     98  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
     99  */
    100 
    101 void check_trailing_context( nfa_states, num_states, accset, nacc )
    102 int *nfa_states, num_states;
    103 int *accset;
    104 int nacc;
    105 	{
    106 	register int i, j;
    107 
    108 	for ( i = 1; i <= num_states; ++i )
    109 		{
    110 		int ns = nfa_states[i];
    111 		register int type = state_type[ns];
    112 		register int ar = assoc_rule[ns];
    113 
    114 		if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
    115 			{ /* do nothing */
    116 			}
    117 
    118 		else if ( type == STATE_TRAILING_CONTEXT )
    119 			{
    120 			/* Potential trouble.  Scan set of accepting numbers
    121 			 * for the one marking the end of the "head".  We
    122 			 * assume that this looping will be fairly cheap
    123 			 * since it's rare that an accepting number set
    124 			 * is large.
    125 			 */
    126 			for ( j = 1; j <= nacc; ++j )
    127 				if ( accset[j] & YY_TRAILING_HEAD_MASK )
    128 					{
    129 					line_warning(
    130 					_( "dangerous trailing context" ),
    131 						rule_linenum[ar] );
    132 					return;
    133 					}
    134 			}
    135 		}
    136 	}
    137 
    138 
    139 /* dump_associated_rules - list the rules associated with a DFA state
    140  *
    141  * Goes through the set of NFA states associated with the DFA and
    142  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
    143  * and writes a report to the given file.
    144  */
    145 
    146 void dump_associated_rules( file, ds )
    147 FILE *file;
    148 int ds;
    149 	{
    150 	register int i, j;
    151 	register int num_associated_rules = 0;
    152 	int rule_set[MAX_ASSOC_RULES + 1];
    153 	int *dset = dss[ds];
    154 	int size = dfasiz[ds];
    155 
    156 	for ( i = 1; i <= size; ++i )
    157 		{
    158 		register int rule_num = rule_linenum[assoc_rule[dset[i]]];
    159 
    160 		for ( j = 1; j <= num_associated_rules; ++j )
    161 			if ( rule_num == rule_set[j] )
    162 				break;
    163 
    164 		if ( j > num_associated_rules )
    165 			{ /* new rule */
    166 			if ( num_associated_rules < MAX_ASSOC_RULES )
    167 				rule_set[++num_associated_rules] = rule_num;
    168 			}
    169 		}
    170 
    171 	bubble( rule_set, num_associated_rules );
    172 
    173 	fprintf( file, _( " associated rule line numbers:" ) );
    174 
    175 	for ( i = 1; i <= num_associated_rules; ++i )
    176 		{
    177 		if ( i % 8 == 1 )
    178 			putc( '\n', file );
    179 
    180 		fprintf( file, "\t%d", rule_set[i] );
    181 		}
    182 
    183 	putc( '\n', file );
    184 	}
    185 
    186 
    187 /* dump_transitions - list the transitions associated with a DFA state
    188  *
    189  * synopsis
    190  *     dump_transitions( FILE *file, int state[numecs] );
    191  *
    192  * Goes through the set of out-transitions and lists them in human-readable
    193  * form (i.e., not as equivalence classes); also lists jam transitions
    194  * (i.e., all those which are not out-transitions, plus EOF).  The dump
    195  * is done to the given file.
    196  */
    197 
    198 void dump_transitions( file, state )
    199 FILE *file;
    200 int state[];
    201 	{
    202 	register int i, ec;
    203 	int out_char_set[CSIZE];
    204 
    205 	for ( i = 0; i < csize; ++i )
    206 		{
    207 		ec = ABS( ecgroup[i] );
    208 		out_char_set[i] = state[ec];
    209 		}
    210 
    211 	fprintf( file, _( " out-transitions: " ) );
    212 
    213 	list_character_set( file, out_char_set );
    214 
    215 	/* now invert the members of the set to get the jam transitions */
    216 	for ( i = 0; i < csize; ++i )
    217 		out_char_set[i] = ! out_char_set[i];
    218 
    219 	fprintf( file, _( "\n jam-transitions: EOF " ) );
    220 
    221 	list_character_set( file, out_char_set );
    222 
    223 	putc( '\n', file );
    224 	}
    225 
    226 
    227 /* epsclosure - construct the epsilon closure of a set of ndfa states
    228  *
    229  * synopsis
    230  *    int *epsclosure( int t[num_states], int *numstates_addr,
    231  *			int accset[num_rules+1], int *nacc_addr,
    232  *			int *hashval_addr );
    233  *
    234  * NOTES
    235  *  The epsilon closure is the set of all states reachable by an arbitrary
    236  *  number of epsilon transitions, which themselves do not have epsilon
    237  *  transitions going out, unioned with the set of states which have non-null
    238  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
    239  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
    240  *  accset holds a list of the accepting numbers, and the size of accset is
    241  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
    242  *  large enough to hold the epsilon closure.
    243  *
    244  *  hashval is the hash value for the dfa corresponding to the state set.
    245  */
    246 
    247 int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
    248 int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
    249 	{
    250 	register int stkpos, ns, tsp;
    251 	int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
    252 	int stkend, nstate;
    253 	static int did_stk_init = false, *stk;
    254 
    255 #define MARK_STATE(state) \
    256 trans1[state] = trans1[state] - MARKER_DIFFERENCE;
    257 
    258 #define IS_MARKED(state) (trans1[state] < 0)
    259 
    260 #define UNMARK_STATE(state) \
    261 trans1[state] = trans1[state] + MARKER_DIFFERENCE;
    262 
    263 #define CHECK_ACCEPT(state) \
    264 { \
    265 nfaccnum = accptnum[state]; \
    266 if ( nfaccnum != NIL ) \
    267 accset[++nacc] = nfaccnum; \
    268 }
    269 
    270 #define DO_REALLOCATION \
    271 { \
    272 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
    273 ++num_reallocs; \
    274 t = reallocate_integer_array( t, current_max_dfa_size ); \
    275 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
    276 } \
    277 
    278 #define PUT_ON_STACK(state) \
    279 { \
    280 if ( ++stkend >= current_max_dfa_size ) \
    281 DO_REALLOCATION \
    282 stk[stkend] = state; \
    283 MARK_STATE(state) \
    284 }
    285 
    286 #define ADD_STATE(state) \
    287 { \
    288 if ( ++numstates >= current_max_dfa_size ) \
    289 DO_REALLOCATION \
    290 t[numstates] = state; \
    291 hashval += state; \
    292 }
    293 
    294 #define STACK_STATE(state) \
    295 { \
    296 PUT_ON_STACK(state) \
    297 CHECK_ACCEPT(state) \
    298 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
    299 ADD_STATE(state) \
    300 }
    301 
    302 
    303 	if ( ! did_stk_init )
    304 		{
    305 		stk = allocate_integer_array( current_max_dfa_size );
    306 		did_stk_init = true;
    307 		}
    308 
    309 	nacc = stkend = hashval = 0;
    310 
    311 	for ( nstate = 1; nstate <= numstates; ++nstate )
    312 		{
    313 		ns = t[nstate];
    314 
    315 		/* The state could be marked if we've already pushed it onto
    316 		 * the stack.
    317 		 */
    318 		if ( ! IS_MARKED(ns) )
    319 			{
    320 			PUT_ON_STACK(ns)
    321 			CHECK_ACCEPT(ns)
    322 			hashval += ns;
    323 			}
    324 		}
    325 
    326 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
    327 		{
    328 		ns = stk[stkpos];
    329 		transsym = transchar[ns];
    330 
    331 		if ( transsym == SYM_EPSILON )
    332 			{
    333 			tsp = trans1[ns] + MARKER_DIFFERENCE;
    334 
    335 			if ( tsp != NO_TRANSITION )
    336 				{
    337 				if ( ! IS_MARKED(tsp) )
    338 					STACK_STATE(tsp)
    339 
    340 				tsp = trans2[ns];
    341 
    342 				if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
    343 					STACK_STATE(tsp)
    344 				}
    345 			}
    346 		}
    347 
    348 	/* Clear out "visit" markers. */
    349 
    350 	for ( stkpos = 1; stkpos <= stkend; ++stkpos )
    351 		{
    352 		if ( IS_MARKED(stk[stkpos]) )
    353 			UNMARK_STATE(stk[stkpos])
    354 		else
    355 			flexfatal(
    356 			_( "consistency check failed in epsclosure()" ) );
    357 		}
    358 
    359 	*ns_addr = numstates;
    360 	*hv_addr = hashval;
    361 	*nacc_addr = nacc;
    362 
    363 	return t;
    364 	}
    365 
    366 
    367 /* increase_max_dfas - increase the maximum number of DFAs */
    368 
    369 void increase_max_dfas()
    370 	{
    371 	current_max_dfas += MAX_DFAS_INCREMENT;
    372 
    373 	++num_reallocs;
    374 
    375 	base = reallocate_integer_array( base, current_max_dfas );
    376 	def = reallocate_integer_array( def, current_max_dfas );
    377 	dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
    378 	accsiz = reallocate_integer_array( accsiz, current_max_dfas );
    379 	dhash = reallocate_integer_array( dhash, current_max_dfas );
    380 	dss = reallocate_int_ptr_array( dss, current_max_dfas );
    381 	dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
    382 
    383 	if ( nultrans )
    384 		nultrans =
    385 			reallocate_integer_array( nultrans, current_max_dfas );
    386 	}
    387 
    388 
    389 /* ntod - convert an ndfa to a dfa
    390  *
    391  * Creates the dfa corresponding to the ndfa we've constructed.  The
    392  * dfa starts out in state #1.
    393  */
    394 
    395 void ntod()
    396 	{
    397 	int *accset, ds, nacc, newds;
    398 	int sym, hashval, numstates, dsize;
    399 	int num_full_table_rows;	/* used only for -f */
    400 	int *nset, *dset;
    401 	int targptr, totaltrans, i, comstate, comfreq, targ;
    402 	int symlist[CSIZE + 1];
    403 	int num_start_states;
    404 	int todo_head, todo_next;
    405 
    406 	/* Note that the following are indexed by *equivalence classes*
    407 	 * and not by characters.  Since equivalence classes are indexed
    408 	 * beginning with 1, even if the scanner accepts NUL's, this
    409 	 * means that (since every character is potentially in its own
    410 	 * equivalence class) these arrays must have room for indices
    411 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
    412 	 */
    413 	int duplist[CSIZE + 1], state[CSIZE + 1];
    414 	int targfreq[CSIZE + 1], targstate[CSIZE + 1];
    415 
    416 	accset = allocate_integer_array( num_rules + 1 );
    417 	nset = allocate_integer_array( current_max_dfa_size );
    418 
    419 	/* The "todo" queue is represented by the head, which is the DFA
    420 	 * state currently being processed, and the "next", which is the
    421 	 * next DFA state number available (not in use).  We depend on the
    422 	 * fact that snstods() returns DFA's \in increasing order/, and thus
    423 	 * need only know the bounds of the dfas to be processed.
    424 	 */
    425 	todo_head = todo_next = 0;
    426 
    427 	for ( i = 0; i <= csize; ++i )
    428 		{
    429 		duplist[i] = NIL;
    430 		symlist[i] = false;
    431 		}
    432 
    433 	for ( i = 0; i <= num_rules; ++i )
    434 		accset[i] = NIL;
    435 
    436 	if ( trace )
    437 		{
    438 		dumpnfa( scset[1] );
    439 		fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
    440 		}
    441 
    442 	inittbl();
    443 
    444 	/* Check to see whether we should build a separate table for
    445 	 * transitions on NUL characters.  We don't do this for full-speed
    446 	 * (-F) scanners, since for them we don't have a simple state
    447 	 * number lying around with which to index the table.  We also
    448 	 * don't bother doing it for scanners unless (1) NUL is in its own
    449 	 * equivalence class (indicated by a positive value of
    450 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
    451 	 * equivalence class, and (3) the number of equivalence classes is
    452 	 * the same as the number of characters.  This latter case comes
    453 	 * about when useecs is false or when it's true but every character
    454 	 * still manages to land in its own class (unlikely, but it's
    455 	 * cheap to check for).  If all these things are true then the
    456 	 * character code needed to represent NUL's equivalence class for
    457 	 * indexing the tables is going to take one more bit than the
    458 	 * number of characters, and therefore we won't be assured of
    459 	 * being able to fit it into a YY_CHAR variable.  This rules out
    460 	 * storing the transitions in a compressed table, since the code
    461 	 * for interpreting them uses a YY_CHAR variable (perhaps it
    462 	 * should just use an integer, though; this is worth pondering ...
    463 	 * ###).
    464 	 *
    465 	 * Finally, for full tables, we want the number of entries in the
    466 	 * table to be a power of two so the array references go fast (it
    467 	 * will just take a shift to compute the major index).  If
    468 	 * encoding NUL's transitions in the table will spoil this, we
    469 	 * give it its own table (note that this will be the case if we're
    470 	 * not using equivalence classes).
    471 	 */
    472 
    473 	/* Note that the test for ecgroup[0] == numecs below accomplishes
    474 	 * both (1) and (2) above
    475 	 */
    476 	if ( ! fullspd && ecgroup[0] == numecs )
    477 		{
    478 		/* NUL is alone in its equivalence class, which is the
    479 		 * last one.
    480 		 */
    481 		int use_NUL_table = (numecs == csize);
    482 
    483 		if ( fulltbl && ! use_NUL_table )
    484 			{
    485 			/* We still may want to use the table if numecs
    486 			 * is a power of 2.
    487 			 */
    488 			int power_of_two;
    489 
    490 			for ( power_of_two = 1; power_of_two <= csize;
    491 			      power_of_two *= 2 )
    492 				if ( numecs == power_of_two )
    493 					{
    494 					use_NUL_table = true;
    495 					break;
    496 					}
    497 			}
    498 
    499 		if ( use_NUL_table )
    500 			nultrans = allocate_integer_array( current_max_dfas );
    501 
    502 		/* From now on, nultrans != nil indicates that we're
    503 		 * saving null transitions for later, separate encoding.
    504 		 */
    505 		}
    506 
    507 
    508 	if ( fullspd )
    509 		{
    510 		for ( i = 0; i <= numecs; ++i )
    511 			state[i] = 0;
    512 
    513 		place_state( state, 0, 0 );
    514 		dfaacc[0].dfaacc_state = 0;
    515 		}
    516 
    517 	else if ( fulltbl )
    518 		{
    519 		if ( nultrans )
    520 			/* We won't be including NUL's transitions in the
    521 			 * table, so build it for entries from 0 .. numecs - 1.
    522 			 */
    523 			num_full_table_rows = numecs;
    524 
    525 		else
    526 			/* Take into account the fact that we'll be including
    527 			 * the NUL entries in the transition table.  Build it
    528 			 * from 0 .. numecs.
    529 			 */
    530 			num_full_table_rows = numecs + 1;
    531 
    532 		/* Unless -Ca, declare it "short" because it's a real
    533 		 * long-shot that that won't be large enough.
    534 		 */
    535 		out_str_dec( "static yyconst %s yy_nxt[][%d] =\n    {\n",
    536 			/* '}' so vi doesn't get too confused */
    537 			long_align ? "long" : "short", num_full_table_rows );
    538 
    539 		outn( "    {" );
    540 
    541 		/* Generate 0 entries for state #0. */
    542 		for ( i = 0; i < num_full_table_rows; ++i )
    543 			mk2data( 0 );
    544 
    545 		dataflush();
    546 		outn( "    },\n" );
    547 		}
    548 
    549 	/* Create the first states. */
    550 
    551 	num_start_states = lastsc * 2;
    552 
    553 	for ( i = 1; i <= num_start_states; ++i )
    554 		{
    555 		numstates = 1;
    556 
    557 		/* For each start condition, make one state for the case when
    558 		 * we're at the beginning of the line (the '^' operator) and
    559 		 * one for the case when we're not.
    560 		 */
    561 		if ( i % 2 == 1 )
    562 			nset[numstates] = scset[(i / 2) + 1];
    563 		else
    564 			nset[numstates] =
    565 				mkbranch( scbol[i / 2], scset[i / 2] );
    566 
    567 		nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
    568 
    569 		if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
    570 			{
    571 			numas += nacc;
    572 			totnst += numstates;
    573 			++todo_next;
    574 
    575 			if ( variable_trailing_context_rules && nacc > 0 )
    576 				check_trailing_context( nset, numstates,
    577 							accset, nacc );
    578 			}
    579 		}
    580 
    581 	if ( ! fullspd )
    582 		{
    583 		if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
    584 			flexfatal(
    585 			_( "could not create unique end-of-buffer state" ) );
    586 
    587 		++numas;
    588 		++num_start_states;
    589 		++todo_next;
    590 		}
    591 
    592 	while ( todo_head < todo_next )
    593 		{
    594 		targptr = 0;
    595 		totaltrans = 0;
    596 
    597 		for ( i = 1; i <= numecs; ++i )
    598 			state[i] = 0;
    599 
    600 		ds = ++todo_head;
    601 
    602 		dset = dss[ds];
    603 		dsize = dfasiz[ds];
    604 
    605 		if ( trace )
    606 			fprintf( stderr, _( "state # %d:\n" ), ds );
    607 
    608 		sympartition( dset, dsize, symlist, duplist );
    609 
    610 		for ( sym = 1; sym <= numecs; ++sym )
    611 			{
    612 			if ( symlist[sym] )
    613 				{
    614 				symlist[sym] = 0;
    615 
    616 				if ( duplist[sym] == NIL )
    617 					{
    618 					/* Symbol has unique out-transitions. */
    619 					numstates = symfollowset( dset, dsize,
    620 								sym, nset );
    621 					nset = epsclosure( nset, &numstates,
    622 						accset, &nacc, &hashval );
    623 
    624 					if ( snstods( nset, numstates, accset,
    625 						nacc, hashval, &newds ) )
    626 						{
    627 						totnst = totnst + numstates;
    628 						++todo_next;
    629 						numas += nacc;
    630 
    631 						if (
    632 					variable_trailing_context_rules &&
    633 							nacc > 0 )
    634 							check_trailing_context(
    635 								nset, numstates,
    636 								accset, nacc );
    637 						}
    638 
    639 					state[sym] = newds;
    640 
    641 					if ( trace )
    642 						fprintf( stderr, "\t%d\t%d\n",
    643 							sym, newds );
    644 
    645 					targfreq[++targptr] = 1;
    646 					targstate[targptr] = newds;
    647 					++numuniq;
    648 					}
    649 
    650 				else
    651 					{
    652 					/* sym's equivalence class has the same
    653 					 * transitions as duplist(sym)'s
    654 					 * equivalence class.
    655 					 */
    656 					targ = state[duplist[sym]];
    657 					state[sym] = targ;
    658 
    659 					if ( trace )
    660 						fprintf( stderr, "\t%d\t%d\n",
    661 							sym, targ );
    662 
    663 					/* Update frequency count for
    664 					 * destination state.
    665 					 */
    666 
    667 					i = 0;
    668 					while ( targstate[++i] != targ )
    669 						;
    670 
    671 					++targfreq[i];
    672 					++numdup;
    673 					}
    674 
    675 				++totaltrans;
    676 				duplist[sym] = NIL;
    677 				}
    678 			}
    679 
    680 		if ( caseins && ! useecs )
    681 			{
    682 			register int j;
    683 
    684 			for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
    685 				{
    686 				if ( state[i] == 0 && state[j] != 0 )
    687 					/* We're adding a transition. */
    688 					++totaltrans;
    689 
    690 				else if ( state[i] != 0 && state[j] == 0 )
    691 					/* We're taking away a transition. */
    692 					--totaltrans;
    693 
    694 				state[i] = state[j];
    695 				}
    696 			}
    697 
    698 		numsnpairs += totaltrans;
    699 
    700 		if ( ds > num_start_states )
    701 			check_for_backing_up( ds, state );
    702 
    703 		if ( nultrans )
    704 			{
    705 			nultrans[ds] = state[NUL_ec];
    706 			state[NUL_ec] = 0;	/* remove transition */
    707 			}
    708 
    709 		if ( fulltbl )
    710 			{
    711 			outn( "    {" );
    712 
    713 			/* Supply array's 0-element. */
    714 			if ( ds == end_of_buffer_state )
    715 				mk2data( -end_of_buffer_state );
    716 			else
    717 				mk2data( end_of_buffer_state );
    718 
    719 			for ( i = 1; i < num_full_table_rows; ++i )
    720 				/* Jams are marked by negative of state
    721 				 * number.
    722 				 */
    723 				mk2data( state[i] ? state[i] : -ds );
    724 
    725 			dataflush();
    726 			outn( "    },\n" );
    727 			}
    728 
    729 		else if ( fullspd )
    730 			place_state( state, ds, totaltrans );
    731 
    732 		else if ( ds == end_of_buffer_state )
    733 			/* Special case this state to make sure it does what
    734 			 * it's supposed to, i.e., jam on end-of-buffer.
    735 			 */
    736 			stack1( ds, 0, 0, JAMSTATE );
    737 
    738 		else /* normal, compressed state */
    739 			{
    740 			/* Determine which destination state is the most
    741 			 * common, and how many transitions to it there are.
    742 			 */
    743 
    744 			comfreq = 0;
    745 			comstate = 0;
    746 
    747 			for ( i = 1; i <= targptr; ++i )
    748 				if ( targfreq[i] > comfreq )
    749 					{
    750 					comfreq = targfreq[i];
    751 					comstate = targstate[i];
    752 					}
    753 
    754 			bldtbl( state, ds, totaltrans, comstate, comfreq );
    755 			}
    756 		}
    757 
    758 	if ( fulltbl )
    759 		dataend();
    760 
    761 	else if ( ! fullspd )
    762 		{
    763 		cmptmps();  /* create compressed template entries */
    764 
    765 		/* Create tables for all the states with only one
    766 		 * out-transition.
    767 		 */
    768 		while ( onesp > 0 )
    769 			{
    770 			mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
    771 			onedef[onesp] );
    772 			--onesp;
    773 			}
    774 
    775 		mkdeftbl();
    776 		}
    777 
    778 	flex_free( (void *) accset );
    779 	flex_free( (void *) nset );
    780 	}
    781 
    782 
    783 /* snstods - converts a set of ndfa states into a dfa state
    784  *
    785  * synopsis
    786  *    is_new_state = snstods( int sns[numstates], int numstates,
    787  *				int accset[num_rules+1], int nacc,
    788  *				int hashval, int *newds_addr );
    789  *
    790  * On return, the dfa state number is in newds.
    791  */
    792 
    793 int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
    794 int sns[], numstates, accset[], nacc, hashval, *newds_addr;
    795 	{
    796 	int didsort = 0;
    797 	register int i, j;
    798 	int newds, *oldsns;
    799 
    800 	for ( i = 1; i <= lastdfa; ++i )
    801 		if ( hashval == dhash[i] )
    802 			{
    803 			if ( numstates == dfasiz[i] )
    804 				{
    805 				oldsns = dss[i];
    806 
    807 				if ( ! didsort )
    808 					{
    809 					/* We sort the states in sns so we
    810 					 * can compare it to oldsns quickly.
    811 					 * We use bubble because there probably
    812 					 * aren't very many states.
    813 					 */
    814 					bubble( sns, numstates );
    815 					didsort = 1;
    816 					}
    817 
    818 				for ( j = 1; j <= numstates; ++j )
    819 					if ( sns[j] != oldsns[j] )
    820 						break;
    821 
    822 				if ( j > numstates )
    823 					{
    824 					++dfaeql;
    825 					*newds_addr = i;
    826 					return 0;
    827 					}
    828 
    829 				++hshcol;
    830 				}
    831 
    832 			else
    833 				++hshsave;
    834 			}
    835 
    836 	/* Make a new dfa. */
    837 
    838 	if ( ++lastdfa >= current_max_dfas )
    839 		increase_max_dfas();
    840 
    841 	newds = lastdfa;
    842 
    843 	dss[newds] = allocate_integer_array( numstates + 1 );
    844 
    845 	/* If we haven't already sorted the states in sns, we do so now,
    846 	 * so that future comparisons with it can be made quickly.
    847 	 */
    848 
    849 	if ( ! didsort )
    850 		bubble( sns, numstates );
    851 
    852 	for ( i = 1; i <= numstates; ++i )
    853 		dss[newds][i] = sns[i];
    854 
    855 	dfasiz[newds] = numstates;
    856 	dhash[newds] = hashval;
    857 
    858 	if ( nacc == 0 )
    859 		{
    860 		if ( reject )
    861 			dfaacc[newds].dfaacc_set = (int *) 0;
    862 		else
    863 			dfaacc[newds].dfaacc_state = 0;
    864 
    865 		accsiz[newds] = 0;
    866 		}
    867 
    868 	else if ( reject )
    869 		{
    870 		/* We sort the accepting set in increasing order so the
    871 		 * disambiguating rule that the first rule listed is considered
    872 		 * match in the event of ties will work.  We use a bubble
    873 		 * sort since the list is probably quite small.
    874 		 */
    875 
    876 		bubble( accset, nacc );
    877 
    878 		dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
    879 
    880 		/* Save the accepting set for later */
    881 		for ( i = 1; i <= nacc; ++i )
    882 			{
    883 			dfaacc[newds].dfaacc_set[i] = accset[i];
    884 
    885 			if ( accset[i] <= num_rules )
    886 				/* Who knows, perhaps a REJECT can yield
    887 				 * this rule.
    888 				 */
    889 				rule_useful[accset[i]] = true;
    890 			}
    891 
    892 		accsiz[newds] = nacc;
    893 		}
    894 
    895 	else
    896 		{
    897 		/* Find lowest numbered rule so the disambiguating rule
    898 		 * will work.
    899 		 */
    900 		j = num_rules + 1;
    901 
    902 		for ( i = 1; i <= nacc; ++i )
    903 			if ( accset[i] < j )
    904 				j = accset[i];
    905 
    906 		dfaacc[newds].dfaacc_state = j;
    907 
    908 		if ( j <= num_rules )
    909 			rule_useful[j] = true;
    910 		}
    911 
    912 	*newds_addr = newds;
    913 
    914 	return 1;
    915 	}
    916 
    917 
    918 /* symfollowset - follow the symbol transitions one step
    919  *
    920  * synopsis
    921  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
    922  *				int transsym, int nset[current_max_dfa_size] );
    923  */
    924 
    925 int symfollowset( ds, dsize, transsym, nset )
    926 int ds[], dsize, transsym, nset[];
    927 	{
    928 	int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
    929 
    930 	numstates = 0;
    931 
    932 	for ( i = 1; i <= dsize; ++i )
    933 		{ /* for each nfa state ns in the state set of ds */
    934 		ns = ds[i];
    935 		sym = transchar[ns];
    936 		tsp = trans1[ns];
    937 
    938 		if ( sym < 0 )
    939 			{ /* it's a character class */
    940 			sym = -sym;
    941 			ccllist = cclmap[sym];
    942 			lenccl = ccllen[sym];
    943 
    944 			if ( cclng[sym] )
    945 				{
    946 				for ( j = 0; j < lenccl; ++j )
    947 					{
    948 					/* Loop through negated character
    949 					 * class.
    950 					 */
    951 					ch = ccltbl[ccllist + j];
    952 
    953 					if ( ch == 0 )
    954 						ch = NUL_ec;
    955 
    956 					if ( ch > transsym )
    957 						/* Transsym isn't in negated
    958 						 * ccl.
    959 						 */
    960 						break;
    961 
    962 					else if ( ch == transsym )
    963 						/* next 2 */ goto bottom;
    964 					}
    965 
    966 				/* Didn't find transsym in ccl. */
    967 				nset[++numstates] = tsp;
    968 				}
    969 
    970 			else
    971 				for ( j = 0; j < lenccl; ++j )
    972 					{
    973 					ch = ccltbl[ccllist + j];
    974 
    975 					if ( ch == 0 )
    976 						ch = NUL_ec;
    977 
    978 					if ( ch > transsym )
    979 						break;
    980 					else if ( ch == transsym )
    981 						{
    982 						nset[++numstates] = tsp;
    983 						break;
    984 						}
    985 					}
    986 			}
    987 
    988 		else if ( sym >= 'A' && sym <= 'Z' && caseins )
    989 			flexfatal(
    990 			_( "consistency check failed in symfollowset" ) );
    991 
    992 		else if ( sym == SYM_EPSILON )
    993 			{ /* do nothing */
    994 			}
    995 
    996 		else if ( ABS( ecgroup[sym] ) == transsym )
    997 			nset[++numstates] = tsp;
    998 
    999 		bottom: ;
   1000 		}
   1001 
   1002 	return numstates;
   1003 	}
   1004 
   1005 
   1006 /* sympartition - partition characters with same out-transitions
   1007  *
   1008  * synopsis
   1009  *    sympartition( int ds[current_max_dfa_size], int numstates,
   1010  *			int symlist[numecs], int duplist[numecs] );
   1011  */
   1012 
   1013 void sympartition( ds, numstates, symlist, duplist )
   1014 int ds[], numstates;
   1015 int symlist[], duplist[];
   1016 	{
   1017 	int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
   1018 
   1019 	/* Partitioning is done by creating equivalence classes for those
   1020 	 * characters which have out-transitions from the given state.  Thus
   1021 	 * we are really creating equivalence classes of equivalence classes.
   1022 	 */
   1023 
   1024 	for ( i = 1; i <= numecs; ++i )
   1025 		{ /* initialize equivalence class list */
   1026 		duplist[i] = i - 1;
   1027 		dupfwd[i] = i + 1;
   1028 		}
   1029 
   1030 	duplist[1] = NIL;
   1031 	dupfwd[numecs] = NIL;
   1032 
   1033 	for ( i = 1; i <= numstates; ++i )
   1034 		{
   1035 		ns = ds[i];
   1036 		tch = transchar[ns];
   1037 
   1038 		if ( tch != SYM_EPSILON )
   1039 			{
   1040 			if ( tch < -lastccl || tch >= csize )
   1041 				{
   1042 				flexfatal(
   1043 		_( "bad transition character detected in sympartition()" ) );
   1044 				}
   1045 
   1046 			if ( tch >= 0 )
   1047 				{ /* character transition */
   1048 				int ec = ecgroup[tch];
   1049 
   1050 				mkechar( ec, dupfwd, duplist );
   1051 				symlist[ec] = 1;
   1052 				}
   1053 
   1054 			else
   1055 				{ /* character class */
   1056 				tch = -tch;
   1057 
   1058 				lenccl = ccllen[tch];
   1059 				cclp = cclmap[tch];
   1060 				mkeccl( ccltbl + cclp, lenccl, dupfwd,
   1061 					duplist, numecs, NUL_ec );
   1062 
   1063 				if ( cclng[tch] )
   1064 					{
   1065 					j = 0;
   1066 
   1067 					for ( k = 0; k < lenccl; ++k )
   1068 						{
   1069 						ich = ccltbl[cclp + k];
   1070 
   1071 						if ( ich == 0 )
   1072 							ich = NUL_ec;
   1073 
   1074 						for ( ++j; j < ich; ++j )
   1075 							symlist[j] = 1;
   1076 						}
   1077 
   1078 					for ( ++j; j <= numecs; ++j )
   1079 						symlist[j] = 1;
   1080 					}
   1081 
   1082 				else
   1083 					for ( k = 0; k < lenccl; ++k )
   1084 						{
   1085 						ich = ccltbl[cclp + k];
   1086 
   1087 						if ( ich == 0 )
   1088 							ich = NUL_ec;
   1089 
   1090 						symlist[ich] = 1;
   1091 						}
   1092 				}
   1093 			}
   1094 		}
   1095 	}
   1096