Home | History | Annotate | Download | only in eap_peer
      1 /*
      2  * EAP peer state machines (RFC 4137)
      3  * Copyright (c) 2004-2010, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  *
      8  * This file implements the Peer State Machine as defined in RFC 4137. The used
      9  * states and state transitions match mostly with the RFC. However, there are
     10  * couple of additional transitions for working around small issues noticed
     11  * during testing. These exceptions are explained in comments within the
     12  * functions in this file. The method functions, m.func(), are similar to the
     13  * ones used in RFC 4137, but some small changes have used here to optimize
     14  * operations and to add functionality needed for fast re-authentication
     15  * (session resumption).
     16  */
     17 
     18 #include "includes.h"
     19 
     20 #include "common.h"
     21 #include "pcsc_funcs.h"
     22 #include "state_machine.h"
     23 #include "crypto/crypto.h"
     24 #include "crypto/tls.h"
     25 #include "common/wpa_ctrl.h"
     26 #include "eap_common/eap_wsc_common.h"
     27 #include "eap_i.h"
     28 #include "eap_config.h"
     29 
     30 #define STATE_MACHINE_DATA struct eap_sm
     31 #define STATE_MACHINE_DEBUG_PREFIX "EAP"
     32 
     33 #define EAP_MAX_AUTH_ROUNDS 50
     34 #define EAP_CLIENT_TIMEOUT_DEFAULT 60
     35 
     36 
     37 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
     38 				  EapType method);
     39 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id);
     40 static void eap_sm_processIdentity(struct eap_sm *sm,
     41 				   const struct wpabuf *req);
     42 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req);
     43 static struct wpabuf * eap_sm_buildNotify(int id);
     44 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req);
     45 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
     46 static const char * eap_sm_method_state_txt(EapMethodState state);
     47 static const char * eap_sm_decision_txt(EapDecision decision);
     48 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
     49 
     50 
     51 
     52 static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var)
     53 {
     54 	return sm->eapol_cb->get_bool(sm->eapol_ctx, var);
     55 }
     56 
     57 
     58 static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var,
     59 			   Boolean value)
     60 {
     61 	sm->eapol_cb->set_bool(sm->eapol_ctx, var, value);
     62 }
     63 
     64 
     65 static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var)
     66 {
     67 	return sm->eapol_cb->get_int(sm->eapol_ctx, var);
     68 }
     69 
     70 
     71 static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var,
     72 			  unsigned int value)
     73 {
     74 	sm->eapol_cb->set_int(sm->eapol_ctx, var, value);
     75 }
     76 
     77 
     78 static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm)
     79 {
     80 	return sm->eapol_cb->get_eapReqData(sm->eapol_ctx);
     81 }
     82 
     83 
     84 static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt)
     85 {
     86 	if (sm->m == NULL || sm->eap_method_priv == NULL)
     87 		return;
     88 
     89 	wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method "
     90 		   "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt);
     91 	sm->m->deinit(sm, sm->eap_method_priv);
     92 	sm->eap_method_priv = NULL;
     93 	sm->m = NULL;
     94 }
     95 
     96 
     97 /**
     98  * eap_allowed_method - Check whether EAP method is allowed
     99  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
    100  * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types
    101  * @method: EAP type
    102  * Returns: 1 = allowed EAP method, 0 = not allowed
    103  */
    104 int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method)
    105 {
    106 	struct eap_peer_config *config = eap_get_config(sm);
    107 	int i;
    108 	struct eap_method_type *m;
    109 
    110 	if (config == NULL || config->eap_methods == NULL)
    111 		return 1;
    112 
    113 	m = config->eap_methods;
    114 	for (i = 0; m[i].vendor != EAP_VENDOR_IETF ||
    115 		     m[i].method != EAP_TYPE_NONE; i++) {
    116 		if (m[i].vendor == vendor && m[i].method == method)
    117 			return 1;
    118 	}
    119 	return 0;
    120 }
    121 
    122 
    123 /*
    124  * This state initializes state machine variables when the machine is
    125  * activated (portEnabled = TRUE). This is also used when re-starting
    126  * authentication (eapRestart == TRUE).
    127  */
    128 SM_STATE(EAP, INITIALIZE)
    129 {
    130 	SM_ENTRY(EAP, INITIALIZE);
    131 	if (sm->fast_reauth && sm->m && sm->m->has_reauth_data &&
    132 	    sm->m->has_reauth_data(sm, sm->eap_method_priv) &&
    133 	    !sm->prev_failure) {
    134 		wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for "
    135 			   "fast reauthentication");
    136 		sm->m->deinit_for_reauth(sm, sm->eap_method_priv);
    137 	} else {
    138 		eap_deinit_prev_method(sm, "INITIALIZE");
    139 	}
    140 	sm->selectedMethod = EAP_TYPE_NONE;
    141 	sm->methodState = METHOD_NONE;
    142 	sm->allowNotifications = TRUE;
    143 	sm->decision = DECISION_FAIL;
    144 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    145 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    146 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
    147 	eapol_set_bool(sm, EAPOL_eapFail, FALSE);
    148 	os_free(sm->eapKeyData);
    149 	sm->eapKeyData = NULL;
    150 	sm->eapKeyAvailable = FALSE;
    151 	eapol_set_bool(sm, EAPOL_eapRestart, FALSE);
    152 	sm->lastId = -1; /* new session - make sure this does not match with
    153 			  * the first EAP-Packet */
    154 	/*
    155 	 * RFC 4137 does not reset eapResp and eapNoResp here. However, this
    156 	 * seemed to be able to trigger cases where both were set and if EAPOL
    157 	 * state machine uses eapNoResp first, it may end up not sending a real
    158 	 * reply correctly. This occurred when the workaround in FAIL state set
    159 	 * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do
    160 	 * something else(?)
    161 	 */
    162 	eapol_set_bool(sm, EAPOL_eapResp, FALSE);
    163 	eapol_set_bool(sm, EAPOL_eapNoResp, FALSE);
    164 	sm->num_rounds = 0;
    165 	sm->prev_failure = 0;
    166 }
    167 
    168 
    169 /*
    170  * This state is reached whenever service from the lower layer is interrupted
    171  * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE
    172  * occurs when the port becomes enabled.
    173  */
    174 SM_STATE(EAP, DISABLED)
    175 {
    176 	SM_ENTRY(EAP, DISABLED);
    177 	sm->num_rounds = 0;
    178 }
    179 
    180 
    181 /*
    182  * The state machine spends most of its time here, waiting for something to
    183  * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and
    184  * SEND_RESPONSE states.
    185  */
    186 SM_STATE(EAP, IDLE)
    187 {
    188 	SM_ENTRY(EAP, IDLE);
    189 }
    190 
    191 
    192 /*
    193  * This state is entered when an EAP packet is received (eapReq == TRUE) to
    194  * parse the packet header.
    195  */
    196 SM_STATE(EAP, RECEIVED)
    197 {
    198 	const struct wpabuf *eapReqData;
    199 
    200 	SM_ENTRY(EAP, RECEIVED);
    201 	eapReqData = eapol_get_eapReqData(sm);
    202 	/* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */
    203 	eap_sm_parseEapReq(sm, eapReqData);
    204 	sm->num_rounds++;
    205 }
    206 
    207 
    208 /*
    209  * This state is entered when a request for a new type comes in. Either the
    210  * correct method is started, or a Nak response is built.
    211  */
    212 SM_STATE(EAP, GET_METHOD)
    213 {
    214 	int reinit;
    215 	EapType method;
    216 
    217 	SM_ENTRY(EAP, GET_METHOD);
    218 
    219 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    220 		method = sm->reqVendorMethod;
    221 	else
    222 		method = sm->reqMethod;
    223 
    224 	if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) {
    225 		wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed",
    226 			   sm->reqVendor, method);
    227 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    228 			"vendor=%u method=%u -> NAK",
    229 			sm->reqVendor, method);
    230 		goto nak;
    231 	}
    232 
    233 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD
    234 		"vendor=%u method=%u", sm->reqVendor, method);
    235 
    236 	/*
    237 	 * RFC 4137 does not define specific operation for fast
    238 	 * re-authentication (session resumption). The design here is to allow
    239 	 * the previously used method data to be maintained for
    240 	 * re-authentication if the method support session resumption.
    241 	 * Otherwise, the previously used method data is freed and a new method
    242 	 * is allocated here.
    243 	 */
    244 	if (sm->fast_reauth &&
    245 	    sm->m && sm->m->vendor == sm->reqVendor &&
    246 	    sm->m->method == method &&
    247 	    sm->m->has_reauth_data &&
    248 	    sm->m->has_reauth_data(sm, sm->eap_method_priv)) {
    249 		wpa_printf(MSG_DEBUG, "EAP: Using previous method data"
    250 			   " for fast re-authentication");
    251 		reinit = 1;
    252 	} else {
    253 		eap_deinit_prev_method(sm, "GET_METHOD");
    254 		reinit = 0;
    255 	}
    256 
    257 	sm->selectedMethod = sm->reqMethod;
    258 	if (sm->m == NULL)
    259 		sm->m = eap_peer_get_eap_method(sm->reqVendor, method);
    260 	if (!sm->m) {
    261 		wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: "
    262 			   "vendor %d method %d",
    263 			   sm->reqVendor, method);
    264 		goto nak;
    265 	}
    266 
    267 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
    268 
    269 	wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: "
    270 		   "vendor %u method %u (%s)",
    271 		   sm->reqVendor, method, sm->m->name);
    272 	if (reinit)
    273 		sm->eap_method_priv = sm->m->init_for_reauth(
    274 			sm, sm->eap_method_priv);
    275 	else
    276 		sm->eap_method_priv = sm->m->init(sm);
    277 
    278 	if (sm->eap_method_priv == NULL) {
    279 		struct eap_peer_config *config = eap_get_config(sm);
    280 		wpa_msg(sm->msg_ctx, MSG_INFO,
    281 			"EAP: Failed to initialize EAP method: vendor %u "
    282 			"method %u (%s)",
    283 			sm->reqVendor, method, sm->m->name);
    284 		sm->m = NULL;
    285 		sm->methodState = METHOD_NONE;
    286 		sm->selectedMethod = EAP_TYPE_NONE;
    287 		if (sm->reqMethod == EAP_TYPE_TLS && config &&
    288 		    (config->pending_req_pin ||
    289 		     config->pending_req_passphrase)) {
    290 			/*
    291 			 * Return without generating Nak in order to allow
    292 			 * entering of PIN code or passphrase to retry the
    293 			 * current EAP packet.
    294 			 */
    295 			wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase "
    296 				   "request - skip Nak");
    297 			return;
    298 		}
    299 
    300 		goto nak;
    301 	}
    302 
    303 	sm->methodState = METHOD_INIT;
    304 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD
    305 		"EAP vendor %u method %u (%s) selected",
    306 		sm->reqVendor, method, sm->m->name);
    307 	return;
    308 
    309 nak:
    310 	wpabuf_free(sm->eapRespData);
    311 	sm->eapRespData = NULL;
    312 	sm->eapRespData = eap_sm_buildNak(sm, sm->reqId);
    313 }
    314 
    315 
    316 /*
    317  * The method processing happens here. The request from the authenticator is
    318  * processed, and an appropriate response packet is built.
    319  */
    320 SM_STATE(EAP, METHOD)
    321 {
    322 	struct wpabuf *eapReqData;
    323 	struct eap_method_ret ret;
    324 
    325 	SM_ENTRY(EAP, METHOD);
    326 	if (sm->m == NULL) {
    327 		wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected");
    328 		return;
    329 	}
    330 
    331 	eapReqData = eapol_get_eapReqData(sm);
    332 
    333 	/*
    334 	 * Get ignore, methodState, decision, allowNotifications, and
    335 	 * eapRespData. RFC 4137 uses three separate method procedure (check,
    336 	 * process, and buildResp) in this state. These have been combined into
    337 	 * a single function call to m->process() in order to optimize EAP
    338 	 * method implementation interface a bit. These procedures are only
    339 	 * used from within this METHOD state, so there is no need to keep
    340 	 * these as separate C functions.
    341 	 *
    342 	 * The RFC 4137 procedures return values as follows:
    343 	 * ignore = m.check(eapReqData)
    344 	 * (methodState, decision, allowNotifications) = m.process(eapReqData)
    345 	 * eapRespData = m.buildResp(reqId)
    346 	 */
    347 	os_memset(&ret, 0, sizeof(ret));
    348 	ret.ignore = sm->ignore;
    349 	ret.methodState = sm->methodState;
    350 	ret.decision = sm->decision;
    351 	ret.allowNotifications = sm->allowNotifications;
    352 	wpabuf_free(sm->eapRespData);
    353 	sm->eapRespData = NULL;
    354 	sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret,
    355 					 eapReqData);
    356 	wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s "
    357 		   "methodState=%s decision=%s",
    358 		   ret.ignore ? "TRUE" : "FALSE",
    359 		   eap_sm_method_state_txt(ret.methodState),
    360 		   eap_sm_decision_txt(ret.decision));
    361 
    362 	sm->ignore = ret.ignore;
    363 	if (sm->ignore)
    364 		return;
    365 	sm->methodState = ret.methodState;
    366 	sm->decision = ret.decision;
    367 	sm->allowNotifications = ret.allowNotifications;
    368 
    369 	if (sm->m->isKeyAvailable && sm->m->getKey &&
    370 	    sm->m->isKeyAvailable(sm, sm->eap_method_priv)) {
    371 		os_free(sm->eapKeyData);
    372 		sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv,
    373 					       &sm->eapKeyDataLen);
    374 	}
    375 }
    376 
    377 
    378 /*
    379  * This state signals the lower layer that a response packet is ready to be
    380  * sent.
    381  */
    382 SM_STATE(EAP, SEND_RESPONSE)
    383 {
    384 	SM_ENTRY(EAP, SEND_RESPONSE);
    385 	wpabuf_free(sm->lastRespData);
    386 	if (sm->eapRespData) {
    387 		if (sm->workaround)
    388 			os_memcpy(sm->last_md5, sm->req_md5, 16);
    389 		sm->lastId = sm->reqId;
    390 		sm->lastRespData = wpabuf_dup(sm->eapRespData);
    391 		eapol_set_bool(sm, EAPOL_eapResp, TRUE);
    392 	} else
    393 		sm->lastRespData = NULL;
    394 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    395 	eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout);
    396 }
    397 
    398 
    399 /*
    400  * This state signals the lower layer that the request was discarded, and no
    401  * response packet will be sent at this time.
    402  */
    403 SM_STATE(EAP, DISCARD)
    404 {
    405 	SM_ENTRY(EAP, DISCARD);
    406 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    407 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    408 }
    409 
    410 
    411 /*
    412  * Handles requests for Identity method and builds a response.
    413  */
    414 SM_STATE(EAP, IDENTITY)
    415 {
    416 	const struct wpabuf *eapReqData;
    417 
    418 	SM_ENTRY(EAP, IDENTITY);
    419 	eapReqData = eapol_get_eapReqData(sm);
    420 	eap_sm_processIdentity(sm, eapReqData);
    421 	wpabuf_free(sm->eapRespData);
    422 	sm->eapRespData = NULL;
    423 	sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0);
    424 }
    425 
    426 
    427 /*
    428  * Handles requests for Notification method and builds a response.
    429  */
    430 SM_STATE(EAP, NOTIFICATION)
    431 {
    432 	const struct wpabuf *eapReqData;
    433 
    434 	SM_ENTRY(EAP, NOTIFICATION);
    435 	eapReqData = eapol_get_eapReqData(sm);
    436 	eap_sm_processNotify(sm, eapReqData);
    437 	wpabuf_free(sm->eapRespData);
    438 	sm->eapRespData = NULL;
    439 	sm->eapRespData = eap_sm_buildNotify(sm->reqId);
    440 }
    441 
    442 
    443 /*
    444  * This state retransmits the previous response packet.
    445  */
    446 SM_STATE(EAP, RETRANSMIT)
    447 {
    448 	SM_ENTRY(EAP, RETRANSMIT);
    449 	wpabuf_free(sm->eapRespData);
    450 	if (sm->lastRespData)
    451 		sm->eapRespData = wpabuf_dup(sm->lastRespData);
    452 	else
    453 		sm->eapRespData = NULL;
    454 }
    455 
    456 
    457 /*
    458  * This state is entered in case of a successful completion of authentication
    459  * and state machine waits here until port is disabled or EAP authentication is
    460  * restarted.
    461  */
    462 SM_STATE(EAP, SUCCESS)
    463 {
    464 	SM_ENTRY(EAP, SUCCESS);
    465 	if (sm->eapKeyData != NULL)
    466 		sm->eapKeyAvailable = TRUE;
    467 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
    468 
    469 	/*
    470 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    471 	 * to avoid processing the same request twice when state machine is
    472 	 * initialized.
    473 	 */
    474 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    475 
    476 	/*
    477 	 * RFC 4137 does not set eapNoResp here, but this seems to be required
    478 	 * to get EAPOL Supplicant backend state machine into SUCCESS state. In
    479 	 * addition, either eapResp or eapNoResp is required to be set after
    480 	 * processing the received EAP frame.
    481 	 */
    482 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    483 
    484 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
    485 		"EAP authentication completed successfully");
    486 }
    487 
    488 
    489 /*
    490  * This state is entered in case of a failure and state machine waits here
    491  * until port is disabled or EAP authentication is restarted.
    492  */
    493 SM_STATE(EAP, FAILURE)
    494 {
    495 	SM_ENTRY(EAP, FAILURE);
    496 	eapol_set_bool(sm, EAPOL_eapFail, TRUE);
    497 
    498 	/*
    499 	 * RFC 4137 does not clear eapReq here, but this seems to be required
    500 	 * to avoid processing the same request twice when state machine is
    501 	 * initialized.
    502 	 */
    503 	eapol_set_bool(sm, EAPOL_eapReq, FALSE);
    504 
    505 	/*
    506 	 * RFC 4137 does not set eapNoResp here. However, either eapResp or
    507 	 * eapNoResp is required to be set after processing the received EAP
    508 	 * frame.
    509 	 */
    510 	eapol_set_bool(sm, EAPOL_eapNoResp, TRUE);
    511 
    512 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE
    513 		"EAP authentication failed");
    514 
    515 	sm->prev_failure = 1;
    516 }
    517 
    518 
    519 static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId)
    520 {
    521 	/*
    522 	 * At least Microsoft IAS and Meetinghouse Aegis seem to be sending
    523 	 * EAP-Success/Failure with lastId + 1 even though RFC 3748 and
    524 	 * RFC 4137 require that reqId == lastId. In addition, it looks like
    525 	 * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success.
    526 	 *
    527 	 * Accept this kind of Id if EAP workarounds are enabled. These are
    528 	 * unauthenticated plaintext messages, so this should have minimal
    529 	 * security implications (bit easier to fake EAP-Success/Failure).
    530 	 */
    531 	if (sm->workaround && (reqId == ((lastId + 1) & 0xff) ||
    532 			       reqId == ((lastId + 2) & 0xff))) {
    533 		wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected "
    534 			   "identifier field in EAP Success: "
    535 			   "reqId=%d lastId=%d (these are supposed to be "
    536 			   "same)", reqId, lastId);
    537 		return 1;
    538 	}
    539 	wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d "
    540 		   "lastId=%d", reqId, lastId);
    541 	return 0;
    542 }
    543 
    544 
    545 /*
    546  * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions
    547  */
    548 
    549 static void eap_peer_sm_step_idle(struct eap_sm *sm)
    550 {
    551 	/*
    552 	 * The first three transitions are from RFC 4137. The last two are
    553 	 * local additions to handle special cases with LEAP and PEAP server
    554 	 * not sending EAP-Success in some cases.
    555 	 */
    556 	if (eapol_get_bool(sm, EAPOL_eapReq))
    557 		SM_ENTER(EAP, RECEIVED);
    558 	else if ((eapol_get_bool(sm, EAPOL_altAccept) &&
    559 		  sm->decision != DECISION_FAIL) ||
    560 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    561 		  sm->decision == DECISION_UNCOND_SUCC))
    562 		SM_ENTER(EAP, SUCCESS);
    563 	else if (eapol_get_bool(sm, EAPOL_altReject) ||
    564 		 (eapol_get_int(sm, EAPOL_idleWhile) == 0 &&
    565 		  sm->decision != DECISION_UNCOND_SUCC) ||
    566 		 (eapol_get_bool(sm, EAPOL_altAccept) &&
    567 		  sm->methodState != METHOD_CONT &&
    568 		  sm->decision == DECISION_FAIL))
    569 		SM_ENTER(EAP, FAILURE);
    570 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    571 		 sm->leap_done && sm->decision != DECISION_FAIL &&
    572 		 sm->methodState == METHOD_DONE)
    573 		SM_ENTER(EAP, SUCCESS);
    574 	else if (sm->selectedMethod == EAP_TYPE_PEAP &&
    575 		 sm->peap_done && sm->decision != DECISION_FAIL &&
    576 		 sm->methodState == METHOD_DONE)
    577 		SM_ENTER(EAP, SUCCESS);
    578 }
    579 
    580 
    581 static int eap_peer_req_is_duplicate(struct eap_sm *sm)
    582 {
    583 	int duplicate;
    584 
    585 	duplicate = (sm->reqId == sm->lastId) && sm->rxReq;
    586 	if (sm->workaround && duplicate &&
    587 	    os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) {
    588 		/*
    589 		 * RFC 4137 uses (reqId == lastId) as the only verification for
    590 		 * duplicate EAP requests. However, this misses cases where the
    591 		 * AS is incorrectly using the same id again; and
    592 		 * unfortunately, such implementations exist. Use MD5 hash as
    593 		 * an extra verification for the packets being duplicate to
    594 		 * workaround these issues.
    595 		 */
    596 		wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but "
    597 			   "EAP packets were not identical");
    598 		wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a "
    599 			   "duplicate packet");
    600 		duplicate = 0;
    601 	}
    602 
    603 	return duplicate;
    604 }
    605 
    606 
    607 static void eap_peer_sm_step_received(struct eap_sm *sm)
    608 {
    609 	int duplicate = eap_peer_req_is_duplicate(sm);
    610 
    611 	/*
    612 	 * Two special cases below for LEAP are local additions to work around
    613 	 * odd LEAP behavior (EAP-Success in the middle of authentication and
    614 	 * then swapped roles). Other transitions are based on RFC 4137.
    615 	 */
    616 	if (sm->rxSuccess && sm->decision != DECISION_FAIL &&
    617 	    (sm->reqId == sm->lastId ||
    618 	     eap_success_workaround(sm, sm->reqId, sm->lastId)))
    619 		SM_ENTER(EAP, SUCCESS);
    620 	else if (sm->methodState != METHOD_CONT &&
    621 		 ((sm->rxFailure &&
    622 		   sm->decision != DECISION_UNCOND_SUCC) ||
    623 		  (sm->rxSuccess && sm->decision == DECISION_FAIL &&
    624 		   (sm->selectedMethod != EAP_TYPE_LEAP ||
    625 		    sm->methodState != METHOD_MAY_CONT))) &&
    626 		 (sm->reqId == sm->lastId ||
    627 		  eap_success_workaround(sm, sm->reqId, sm->lastId)))
    628 		SM_ENTER(EAP, FAILURE);
    629 	else if (sm->rxReq && duplicate)
    630 		SM_ENTER(EAP, RETRANSMIT);
    631 	else if (sm->rxReq && !duplicate &&
    632 		 sm->reqMethod == EAP_TYPE_NOTIFICATION &&
    633 		 sm->allowNotifications)
    634 		SM_ENTER(EAP, NOTIFICATION);
    635 	else if (sm->rxReq && !duplicate &&
    636 		 sm->selectedMethod == EAP_TYPE_NONE &&
    637 		 sm->reqMethod == EAP_TYPE_IDENTITY)
    638 		SM_ENTER(EAP, IDENTITY);
    639 	else if (sm->rxReq && !duplicate &&
    640 		 sm->selectedMethod == EAP_TYPE_NONE &&
    641 		 sm->reqMethod != EAP_TYPE_IDENTITY &&
    642 		 sm->reqMethod != EAP_TYPE_NOTIFICATION)
    643 		SM_ENTER(EAP, GET_METHOD);
    644 	else if (sm->rxReq && !duplicate &&
    645 		 sm->reqMethod == sm->selectedMethod &&
    646 		 sm->methodState != METHOD_DONE)
    647 		SM_ENTER(EAP, METHOD);
    648 	else if (sm->selectedMethod == EAP_TYPE_LEAP &&
    649 		 (sm->rxSuccess || sm->rxResp))
    650 		SM_ENTER(EAP, METHOD);
    651 	else
    652 		SM_ENTER(EAP, DISCARD);
    653 }
    654 
    655 
    656 static void eap_peer_sm_step_local(struct eap_sm *sm)
    657 {
    658 	switch (sm->EAP_state) {
    659 	case EAP_INITIALIZE:
    660 		SM_ENTER(EAP, IDLE);
    661 		break;
    662 	case EAP_DISABLED:
    663 		if (eapol_get_bool(sm, EAPOL_portEnabled) &&
    664 		    !sm->force_disabled)
    665 			SM_ENTER(EAP, INITIALIZE);
    666 		break;
    667 	case EAP_IDLE:
    668 		eap_peer_sm_step_idle(sm);
    669 		break;
    670 	case EAP_RECEIVED:
    671 		eap_peer_sm_step_received(sm);
    672 		break;
    673 	case EAP_GET_METHOD:
    674 		if (sm->selectedMethod == sm->reqMethod)
    675 			SM_ENTER(EAP, METHOD);
    676 		else
    677 			SM_ENTER(EAP, SEND_RESPONSE);
    678 		break;
    679 	case EAP_METHOD:
    680 		if (sm->ignore)
    681 			SM_ENTER(EAP, DISCARD);
    682 		else
    683 			SM_ENTER(EAP, SEND_RESPONSE);
    684 		break;
    685 	case EAP_SEND_RESPONSE:
    686 		SM_ENTER(EAP, IDLE);
    687 		break;
    688 	case EAP_DISCARD:
    689 		SM_ENTER(EAP, IDLE);
    690 		break;
    691 	case EAP_IDENTITY:
    692 		SM_ENTER(EAP, SEND_RESPONSE);
    693 		break;
    694 	case EAP_NOTIFICATION:
    695 		SM_ENTER(EAP, SEND_RESPONSE);
    696 		break;
    697 	case EAP_RETRANSMIT:
    698 		SM_ENTER(EAP, SEND_RESPONSE);
    699 		break;
    700 	case EAP_SUCCESS:
    701 		break;
    702 	case EAP_FAILURE:
    703 		break;
    704 	}
    705 }
    706 
    707 
    708 SM_STEP(EAP)
    709 {
    710 	/* Global transitions */
    711 	if (eapol_get_bool(sm, EAPOL_eapRestart) &&
    712 	    eapol_get_bool(sm, EAPOL_portEnabled))
    713 		SM_ENTER_GLOBAL(EAP, INITIALIZE);
    714 	else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled)
    715 		SM_ENTER_GLOBAL(EAP, DISABLED);
    716 	else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) {
    717 		/* RFC 4137 does not place any limit on number of EAP messages
    718 		 * in an authentication session. However, some error cases have
    719 		 * ended up in a state were EAP messages were sent between the
    720 		 * peer and server in a loop (e.g., TLS ACK frame in both
    721 		 * direction). Since this is quite undesired outcome, limit the
    722 		 * total number of EAP round-trips and abort authentication if
    723 		 * this limit is exceeded.
    724 		 */
    725 		if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) {
    726 			wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d "
    727 				"authentication rounds - abort",
    728 				EAP_MAX_AUTH_ROUNDS);
    729 			sm->num_rounds++;
    730 			SM_ENTER_GLOBAL(EAP, FAILURE);
    731 		}
    732 	} else {
    733 		/* Local transitions */
    734 		eap_peer_sm_step_local(sm);
    735 	}
    736 }
    737 
    738 
    739 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor,
    740 				  EapType method)
    741 {
    742 	if (!eap_allowed_method(sm, vendor, method)) {
    743 		wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: "
    744 			   "vendor %u method %u", vendor, method);
    745 		return FALSE;
    746 	}
    747 	if (eap_peer_get_eap_method(vendor, method))
    748 		return TRUE;
    749 	wpa_printf(MSG_DEBUG, "EAP: not included in build: "
    750 		   "vendor %u method %u", vendor, method);
    751 	return FALSE;
    752 }
    753 
    754 
    755 static struct wpabuf * eap_sm_build_expanded_nak(
    756 	struct eap_sm *sm, int id, const struct eap_method *methods,
    757 	size_t count)
    758 {
    759 	struct wpabuf *resp;
    760 	int found = 0;
    761 	const struct eap_method *m;
    762 
    763 	wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak");
    764 
    765 	/* RFC 3748 - 5.3.2: Expanded Nak */
    766 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED,
    767 			     8 + 8 * (count + 1), EAP_CODE_RESPONSE, id);
    768 	if (resp == NULL)
    769 		return NULL;
    770 
    771 	wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    772 	wpabuf_put_be32(resp, EAP_TYPE_NAK);
    773 
    774 	for (m = methods; m; m = m->next) {
    775 		if (sm->reqVendor == m->vendor &&
    776 		    sm->reqVendorMethod == m->method)
    777 			continue; /* do not allow the current method again */
    778 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    779 			wpa_printf(MSG_DEBUG, "EAP: allowed type: "
    780 				   "vendor=%u method=%u",
    781 				   m->vendor, m->method);
    782 			wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    783 			wpabuf_put_be24(resp, m->vendor);
    784 			wpabuf_put_be32(resp, m->method);
    785 
    786 			found++;
    787 		}
    788 	}
    789 	if (!found) {
    790 		wpa_printf(MSG_DEBUG, "EAP: no more allowed methods");
    791 		wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    792 		wpabuf_put_be24(resp, EAP_VENDOR_IETF);
    793 		wpabuf_put_be32(resp, EAP_TYPE_NONE);
    794 	}
    795 
    796 	eap_update_len(resp);
    797 
    798 	return resp;
    799 }
    800 
    801 
    802 static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id)
    803 {
    804 	struct wpabuf *resp;
    805 	u8 *start;
    806 	int found = 0, expanded_found = 0;
    807 	size_t count;
    808 	const struct eap_method *methods, *m;
    809 
    810 	wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u "
    811 		   "vendor=%u method=%u not allowed)", sm->reqMethod,
    812 		   sm->reqVendor, sm->reqVendorMethod);
    813 	methods = eap_peer_get_methods(&count);
    814 	if (methods == NULL)
    815 		return NULL;
    816 	if (sm->reqMethod == EAP_TYPE_EXPANDED)
    817 		return eap_sm_build_expanded_nak(sm, id, methods, count);
    818 
    819 	/* RFC 3748 - 5.3.1: Legacy Nak */
    820 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK,
    821 			     sizeof(struct eap_hdr) + 1 + count + 1,
    822 			     EAP_CODE_RESPONSE, id);
    823 	if (resp == NULL)
    824 		return NULL;
    825 
    826 	start = wpabuf_put(resp, 0);
    827 	for (m = methods; m; m = m->next) {
    828 		if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod)
    829 			continue; /* do not allow the current method again */
    830 		if (eap_allowed_method(sm, m->vendor, m->method)) {
    831 			if (m->vendor != EAP_VENDOR_IETF) {
    832 				if (expanded_found)
    833 					continue;
    834 				expanded_found = 1;
    835 				wpabuf_put_u8(resp, EAP_TYPE_EXPANDED);
    836 			} else
    837 				wpabuf_put_u8(resp, m->method);
    838 			found++;
    839 		}
    840 	}
    841 	if (!found)
    842 		wpabuf_put_u8(resp, EAP_TYPE_NONE);
    843 	wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found);
    844 
    845 	eap_update_len(resp);
    846 
    847 	return resp;
    848 }
    849 
    850 
    851 static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req)
    852 {
    853 	const struct eap_hdr *hdr = wpabuf_head(req);
    854 	const u8 *pos = (const u8 *) (hdr + 1);
    855 	pos++;
    856 
    857 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED
    858 		"EAP authentication started");
    859 
    860 	/*
    861 	 * RFC 3748 - 5.1: Identity
    862 	 * Data field may contain a displayable message in UTF-8. If this
    863 	 * includes NUL-character, only the data before that should be
    864 	 * displayed. Some EAP implementasitons may piggy-back additional
    865 	 * options after the NUL.
    866 	 */
    867 	/* TODO: could save displayable message so that it can be shown to the
    868 	 * user in case of interaction is required */
    869 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data",
    870 			  pos, be_to_host16(hdr->length) - 5);
    871 }
    872 
    873 
    874 #ifdef PCSC_FUNCS
    875 
    876 /*
    877  * Rules for figuring out MNC length based on IMSI for SIM cards that do not
    878  * include MNC length field.
    879  */
    880 static int mnc_len_from_imsi(const char *imsi)
    881 {
    882 	char mcc_str[4];
    883 	unsigned int mcc;
    884 
    885 	os_memcpy(mcc_str, imsi, 3);
    886 	mcc_str[3] = '\0';
    887 	mcc = atoi(mcc_str);
    888 
    889 	if (mcc == 244)
    890 		return 2; /* Networks in Finland use 2-digit MNC */
    891 
    892 	return -1;
    893 }
    894 
    895 
    896 static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi,
    897 				    size_t max_len, size_t *imsi_len)
    898 {
    899 	int mnc_len;
    900 	char *pos, mnc[4];
    901 
    902 	if (*imsi_len + 36 > max_len) {
    903 		wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer");
    904 		return -1;
    905 	}
    906 
    907 	/* MNC (2 or 3 digits) */
    908 	mnc_len = scard_get_mnc_len(sm->scard_ctx);
    909 	if (mnc_len < 0)
    910 		mnc_len = mnc_len_from_imsi(imsi);
    911 	if (mnc_len < 0) {
    912 		wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM "
    913 			   "assuming 3");
    914 		mnc_len = 3;
    915 	}
    916 
    917 	if (mnc_len == 2) {
    918 		mnc[0] = '0';
    919 		mnc[1] = imsi[3];
    920 		mnc[2] = imsi[4];
    921 	} else if (mnc_len == 3) {
    922 		mnc[0] = imsi[3];
    923 		mnc[1] = imsi[4];
    924 		mnc[2] = imsi[5];
    925 	}
    926 	mnc[3] = '\0';
    927 
    928 	pos = imsi + *imsi_len;
    929 	pos += os_snprintf(pos, imsi + max_len - pos,
    930 			   "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org",
    931 			   mnc, imsi[0], imsi[1], imsi[2]);
    932 	*imsi_len = pos - imsi;
    933 
    934 	return 0;
    935 }
    936 
    937 
    938 static int eap_sm_imsi_identity(struct eap_sm *sm,
    939 				struct eap_peer_config *conf)
    940 {
    941 	int aka = 0;
    942 	char imsi[100];
    943 	size_t imsi_len;
    944 	struct eap_method_type *m = conf->eap_methods;
    945 	int i;
    946 
    947 	imsi_len = sizeof(imsi);
    948 	if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) {
    949 		wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM");
    950 		return -1;
    951 	}
    952 
    953 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len);
    954 
    955 	if (imsi_len < 7) {
    956 		wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity");
    957 		return -1;
    958 	}
    959 
    960 	if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) {
    961 		wpa_printf(MSG_WARNING, "Could not add realm to SIM identity");
    962 		return -1;
    963 	}
    964 	wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len);
    965 
    966 	for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF ||
    967 			  m[i].method != EAP_TYPE_NONE); i++) {
    968 		if (m[i].vendor == EAP_VENDOR_IETF &&
    969 		    m[i].method == EAP_TYPE_AKA) {
    970 			aka = 1;
    971 			break;
    972 		}
    973 	}
    974 
    975 	os_free(conf->identity);
    976 	conf->identity = os_malloc(1 + imsi_len);
    977 	if (conf->identity == NULL) {
    978 		wpa_printf(MSG_WARNING, "Failed to allocate buffer for "
    979 			   "IMSI-based identity");
    980 		return -1;
    981 	}
    982 
    983 	conf->identity[0] = aka ? '0' : '1';
    984 	os_memcpy(conf->identity + 1, imsi, imsi_len);
    985 	conf->identity_len = 1 + imsi_len;
    986 
    987 	return 0;
    988 }
    989 
    990 #endif /* PCSC_FUNCS */
    991 
    992 
    993 static int eap_sm_set_scard_pin(struct eap_sm *sm,
    994 				struct eap_peer_config *conf)
    995 {
    996 #ifdef PCSC_FUNCS
    997 	if (scard_set_pin(sm->scard_ctx, conf->pin)) {
    998 		/*
    999 		 * Make sure the same PIN is not tried again in order to avoid
   1000 		 * blocking SIM.
   1001 		 */
   1002 		os_free(conf->pin);
   1003 		conf->pin = NULL;
   1004 
   1005 		wpa_printf(MSG_WARNING, "PIN validation failed");
   1006 		eap_sm_request_pin(sm);
   1007 		return -1;
   1008 	}
   1009 	return 0;
   1010 #else /* PCSC_FUNCS */
   1011 	return -1;
   1012 #endif /* PCSC_FUNCS */
   1013 }
   1014 
   1015 static int eap_sm_get_scard_identity(struct eap_sm *sm,
   1016 				     struct eap_peer_config *conf)
   1017 {
   1018 #ifdef PCSC_FUNCS
   1019 	if (eap_sm_set_scard_pin(sm, conf))
   1020 		return -1;
   1021 
   1022 	return eap_sm_imsi_identity(sm, conf);
   1023 #else /* PCSC_FUNCS */
   1024 	return -1;
   1025 #endif /* PCSC_FUNCS */
   1026 }
   1027 
   1028 
   1029 /**
   1030  * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network
   1031  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1032  * @id: EAP identifier for the packet
   1033  * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2)
   1034  * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on
   1035  * failure
   1036  *
   1037  * This function allocates and builds an EAP-Identity/Response packet for the
   1038  * current network. The caller is responsible for freeing the returned data.
   1039  */
   1040 struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted)
   1041 {
   1042 	struct eap_peer_config *config = eap_get_config(sm);
   1043 	struct wpabuf *resp;
   1044 	const u8 *identity;
   1045 	size_t identity_len;
   1046 
   1047 	if (config == NULL) {
   1048 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration "
   1049 			   "was not available");
   1050 		return NULL;
   1051 	}
   1052 
   1053 	if (sm->m && sm->m->get_identity &&
   1054 	    (identity = sm->m->get_identity(sm, sm->eap_method_priv,
   1055 					    &identity_len)) != NULL) {
   1056 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth "
   1057 				  "identity", identity, identity_len);
   1058 	} else if (!encrypted && config->anonymous_identity) {
   1059 		identity = config->anonymous_identity;
   1060 		identity_len = config->anonymous_identity_len;
   1061 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity",
   1062 				  identity, identity_len);
   1063 	} else {
   1064 		identity = config->identity;
   1065 		identity_len = config->identity_len;
   1066 		wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity",
   1067 				  identity, identity_len);
   1068 	}
   1069 
   1070 	if (identity == NULL) {
   1071 		wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity "
   1072 			   "configuration was not available");
   1073 		if (config->pcsc) {
   1074 			if (eap_sm_get_scard_identity(sm, config) < 0)
   1075 				return NULL;
   1076 			identity = config->identity;
   1077 			identity_len = config->identity_len;
   1078 			wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from "
   1079 					  "IMSI", identity, identity_len);
   1080 		} else {
   1081 			eap_sm_request_identity(sm);
   1082 			return NULL;
   1083 		}
   1084 	} else if (config->pcsc) {
   1085 		if (eap_sm_set_scard_pin(sm, config) < 0)
   1086 			return NULL;
   1087 	}
   1088 
   1089 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len,
   1090 			     EAP_CODE_RESPONSE, id);
   1091 	if (resp == NULL)
   1092 		return NULL;
   1093 
   1094 	wpabuf_put_data(resp, identity, identity_len);
   1095 
   1096 	return resp;
   1097 }
   1098 
   1099 
   1100 static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req)
   1101 {
   1102 	const u8 *pos;
   1103 	char *msg;
   1104 	size_t i, msg_len;
   1105 
   1106 	pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req,
   1107 			       &msg_len);
   1108 	if (pos == NULL)
   1109 		return;
   1110 	wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data",
   1111 			  pos, msg_len);
   1112 
   1113 	msg = os_malloc(msg_len + 1);
   1114 	if (msg == NULL)
   1115 		return;
   1116 	for (i = 0; i < msg_len; i++)
   1117 		msg[i] = isprint(pos[i]) ? (char) pos[i] : '_';
   1118 	msg[msg_len] = '\0';
   1119 	wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s",
   1120 		WPA_EVENT_EAP_NOTIFICATION, msg);
   1121 	os_free(msg);
   1122 }
   1123 
   1124 
   1125 static struct wpabuf * eap_sm_buildNotify(int id)
   1126 {
   1127 	struct wpabuf *resp;
   1128 
   1129 	wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification");
   1130 	resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0,
   1131 			     EAP_CODE_RESPONSE, id);
   1132 	if (resp == NULL)
   1133 		return NULL;
   1134 
   1135 	return resp;
   1136 }
   1137 
   1138 
   1139 static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req)
   1140 {
   1141 	const struct eap_hdr *hdr;
   1142 	size_t plen;
   1143 	const u8 *pos;
   1144 
   1145 	sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE;
   1146 	sm->reqId = 0;
   1147 	sm->reqMethod = EAP_TYPE_NONE;
   1148 	sm->reqVendor = EAP_VENDOR_IETF;
   1149 	sm->reqVendorMethod = EAP_TYPE_NONE;
   1150 
   1151 	if (req == NULL || wpabuf_len(req) < sizeof(*hdr))
   1152 		return;
   1153 
   1154 	hdr = wpabuf_head(req);
   1155 	plen = be_to_host16(hdr->length);
   1156 	if (plen > wpabuf_len(req)) {
   1157 		wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet "
   1158 			   "(len=%lu plen=%lu)",
   1159 			   (unsigned long) wpabuf_len(req),
   1160 			   (unsigned long) plen);
   1161 		return;
   1162 	}
   1163 
   1164 	sm->reqId = hdr->identifier;
   1165 
   1166 	if (sm->workaround) {
   1167 		const u8 *addr[1];
   1168 		addr[0] = wpabuf_head(req);
   1169 		md5_vector(1, addr, &plen, sm->req_md5);
   1170 	}
   1171 
   1172 	switch (hdr->code) {
   1173 	case EAP_CODE_REQUEST:
   1174 		if (plen < sizeof(*hdr) + 1) {
   1175 			wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - "
   1176 				   "no Type field");
   1177 			return;
   1178 		}
   1179 		sm->rxReq = TRUE;
   1180 		pos = (const u8 *) (hdr + 1);
   1181 		sm->reqMethod = *pos++;
   1182 		if (sm->reqMethod == EAP_TYPE_EXPANDED) {
   1183 			if (plen < sizeof(*hdr) + 8) {
   1184 				wpa_printf(MSG_DEBUG, "EAP: Ignored truncated "
   1185 					   "expanded EAP-Packet (plen=%lu)",
   1186 					   (unsigned long) plen);
   1187 				return;
   1188 			}
   1189 			sm->reqVendor = WPA_GET_BE24(pos);
   1190 			pos += 3;
   1191 			sm->reqVendorMethod = WPA_GET_BE32(pos);
   1192 		}
   1193 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d "
   1194 			   "method=%u vendor=%u vendorMethod=%u",
   1195 			   sm->reqId, sm->reqMethod, sm->reqVendor,
   1196 			   sm->reqVendorMethod);
   1197 		break;
   1198 	case EAP_CODE_RESPONSE:
   1199 		if (sm->selectedMethod == EAP_TYPE_LEAP) {
   1200 			/*
   1201 			 * LEAP differs from RFC 4137 by using reversed roles
   1202 			 * for mutual authentication and because of this, we
   1203 			 * need to accept EAP-Response frames if LEAP is used.
   1204 			 */
   1205 			if (plen < sizeof(*hdr) + 1) {
   1206 				wpa_printf(MSG_DEBUG, "EAP: Too short "
   1207 					   "EAP-Response - no Type field");
   1208 				return;
   1209 			}
   1210 			sm->rxResp = TRUE;
   1211 			pos = (const u8 *) (hdr + 1);
   1212 			sm->reqMethod = *pos;
   1213 			wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for "
   1214 				   "LEAP method=%d id=%d",
   1215 				   sm->reqMethod, sm->reqId);
   1216 			break;
   1217 		}
   1218 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response");
   1219 		break;
   1220 	case EAP_CODE_SUCCESS:
   1221 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success");
   1222 		sm->rxSuccess = TRUE;
   1223 		break;
   1224 	case EAP_CODE_FAILURE:
   1225 		wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure");
   1226 		sm->rxFailure = TRUE;
   1227 		break;
   1228 	default:
   1229 		wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown "
   1230 			   "code %d", hdr->code);
   1231 		break;
   1232 	}
   1233 }
   1234 
   1235 
   1236 static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev,
   1237 				  union tls_event_data *data)
   1238 {
   1239 	struct eap_sm *sm = ctx;
   1240 	char *hash_hex = NULL;
   1241 
   1242 	switch (ev) {
   1243 	case TLS_CERT_CHAIN_FAILURE:
   1244 		wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR
   1245 			"reason=%d depth=%d subject='%s' err='%s'",
   1246 			data->cert_fail.reason,
   1247 			data->cert_fail.depth,
   1248 			data->cert_fail.subject,
   1249 			data->cert_fail.reason_txt);
   1250 		break;
   1251 	case TLS_PEER_CERTIFICATE:
   1252 		if (!sm->eapol_cb->notify_cert)
   1253 			break;
   1254 
   1255 		if (data->peer_cert.hash) {
   1256 			size_t len = data->peer_cert.hash_len * 2 + 1;
   1257 			hash_hex = os_malloc(len);
   1258 			if (hash_hex) {
   1259 				wpa_snprintf_hex(hash_hex, len,
   1260 						 data->peer_cert.hash,
   1261 						 data->peer_cert.hash_len);
   1262 			}
   1263 		}
   1264 
   1265 		sm->eapol_cb->notify_cert(sm->eapol_ctx,
   1266 					  data->peer_cert.depth,
   1267 					  data->peer_cert.subject,
   1268 					  hash_hex, data->peer_cert.cert);
   1269 		break;
   1270 	}
   1271 
   1272 	os_free(hash_hex);
   1273 }
   1274 
   1275 
   1276 /**
   1277  * eap_peer_sm_init - Allocate and initialize EAP peer state machine
   1278  * @eapol_ctx: Context data to be used with eapol_cb calls
   1279  * @eapol_cb: Pointer to EAPOL callback functions
   1280  * @msg_ctx: Context data for wpa_msg() calls
   1281  * @conf: EAP configuration
   1282  * Returns: Pointer to the allocated EAP state machine or %NULL on failure
   1283  *
   1284  * This function allocates and initializes an EAP state machine. In addition,
   1285  * this initializes TLS library for the new EAP state machine. eapol_cb pointer
   1286  * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP
   1287  * state machine. Consequently, the caller must make sure that this data
   1288  * structure remains alive while the EAP state machine is active.
   1289  */
   1290 struct eap_sm * eap_peer_sm_init(void *eapol_ctx,
   1291 				 struct eapol_callbacks *eapol_cb,
   1292 				 void *msg_ctx, struct eap_config *conf)
   1293 {
   1294 	struct eap_sm *sm;
   1295 	struct tls_config tlsconf;
   1296 
   1297 	sm = os_zalloc(sizeof(*sm));
   1298 	if (sm == NULL)
   1299 		return NULL;
   1300 	sm->eapol_ctx = eapol_ctx;
   1301 	sm->eapol_cb = eapol_cb;
   1302 	sm->msg_ctx = msg_ctx;
   1303 	sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT;
   1304 	sm->wps = conf->wps;
   1305 
   1306 	os_memset(&tlsconf, 0, sizeof(tlsconf));
   1307 	tlsconf.opensc_engine_path = conf->opensc_engine_path;
   1308 	tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path;
   1309 	tlsconf.pkcs11_module_path = conf->pkcs11_module_path;
   1310 #ifdef CONFIG_FIPS
   1311 	tlsconf.fips_mode = 1;
   1312 #endif /* CONFIG_FIPS */
   1313 	tlsconf.event_cb = eap_peer_sm_tls_event;
   1314 	tlsconf.cb_ctx = sm;
   1315 	tlsconf.cert_in_cb = conf->cert_in_cb;
   1316 	sm->ssl_ctx = tls_init(&tlsconf);
   1317 	if (sm->ssl_ctx == NULL) {
   1318 		wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS "
   1319 			   "context.");
   1320 		os_free(sm);
   1321 		return NULL;
   1322 	}
   1323 
   1324 	return sm;
   1325 }
   1326 
   1327 
   1328 /**
   1329  * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine
   1330  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1331  *
   1332  * This function deinitializes EAP state machine and frees all allocated
   1333  * resources.
   1334  */
   1335 void eap_peer_sm_deinit(struct eap_sm *sm)
   1336 {
   1337 	if (sm == NULL)
   1338 		return;
   1339 	eap_deinit_prev_method(sm, "EAP deinit");
   1340 	eap_sm_abort(sm);
   1341 	tls_deinit(sm->ssl_ctx);
   1342 	os_free(sm);
   1343 }
   1344 
   1345 
   1346 /**
   1347  * eap_peer_sm_step - Step EAP peer state machine
   1348  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1349  * Returns: 1 if EAP state was changed or 0 if not
   1350  *
   1351  * This function advances EAP state machine to a new state to match with the
   1352  * current variables. This should be called whenever variables used by the EAP
   1353  * state machine have changed.
   1354  */
   1355 int eap_peer_sm_step(struct eap_sm *sm)
   1356 {
   1357 	int res = 0;
   1358 	do {
   1359 		sm->changed = FALSE;
   1360 		SM_STEP_RUN(EAP);
   1361 		if (sm->changed)
   1362 			res = 1;
   1363 	} while (sm->changed);
   1364 	return res;
   1365 }
   1366 
   1367 
   1368 /**
   1369  * eap_sm_abort - Abort EAP authentication
   1370  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1371  *
   1372  * Release system resources that have been allocated for the authentication
   1373  * session without fully deinitializing the EAP state machine.
   1374  */
   1375 void eap_sm_abort(struct eap_sm *sm)
   1376 {
   1377 	wpabuf_free(sm->lastRespData);
   1378 	sm->lastRespData = NULL;
   1379 	wpabuf_free(sm->eapRespData);
   1380 	sm->eapRespData = NULL;
   1381 	os_free(sm->eapKeyData);
   1382 	sm->eapKeyData = NULL;
   1383 
   1384 	/* This is not clearly specified in the EAP statemachines draft, but
   1385 	 * it seems necessary to make sure that some of the EAPOL variables get
   1386 	 * cleared for the next authentication. */
   1387 	eapol_set_bool(sm, EAPOL_eapSuccess, FALSE);
   1388 }
   1389 
   1390 
   1391 #ifdef CONFIG_CTRL_IFACE
   1392 static const char * eap_sm_state_txt(int state)
   1393 {
   1394 	switch (state) {
   1395 	case EAP_INITIALIZE:
   1396 		return "INITIALIZE";
   1397 	case EAP_DISABLED:
   1398 		return "DISABLED";
   1399 	case EAP_IDLE:
   1400 		return "IDLE";
   1401 	case EAP_RECEIVED:
   1402 		return "RECEIVED";
   1403 	case EAP_GET_METHOD:
   1404 		return "GET_METHOD";
   1405 	case EAP_METHOD:
   1406 		return "METHOD";
   1407 	case EAP_SEND_RESPONSE:
   1408 		return "SEND_RESPONSE";
   1409 	case EAP_DISCARD:
   1410 		return "DISCARD";
   1411 	case EAP_IDENTITY:
   1412 		return "IDENTITY";
   1413 	case EAP_NOTIFICATION:
   1414 		return "NOTIFICATION";
   1415 	case EAP_RETRANSMIT:
   1416 		return "RETRANSMIT";
   1417 	case EAP_SUCCESS:
   1418 		return "SUCCESS";
   1419 	case EAP_FAILURE:
   1420 		return "FAILURE";
   1421 	default:
   1422 		return "UNKNOWN";
   1423 	}
   1424 }
   1425 #endif /* CONFIG_CTRL_IFACE */
   1426 
   1427 
   1428 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1429 static const char * eap_sm_method_state_txt(EapMethodState state)
   1430 {
   1431 	switch (state) {
   1432 	case METHOD_NONE:
   1433 		return "NONE";
   1434 	case METHOD_INIT:
   1435 		return "INIT";
   1436 	case METHOD_CONT:
   1437 		return "CONT";
   1438 	case METHOD_MAY_CONT:
   1439 		return "MAY_CONT";
   1440 	case METHOD_DONE:
   1441 		return "DONE";
   1442 	default:
   1443 		return "UNKNOWN";
   1444 	}
   1445 }
   1446 
   1447 
   1448 static const char * eap_sm_decision_txt(EapDecision decision)
   1449 {
   1450 	switch (decision) {
   1451 	case DECISION_FAIL:
   1452 		return "FAIL";
   1453 	case DECISION_COND_SUCC:
   1454 		return "COND_SUCC";
   1455 	case DECISION_UNCOND_SUCC:
   1456 		return "UNCOND_SUCC";
   1457 	default:
   1458 		return "UNKNOWN";
   1459 	}
   1460 }
   1461 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1462 
   1463 
   1464 #ifdef CONFIG_CTRL_IFACE
   1465 
   1466 /**
   1467  * eap_sm_get_status - Get EAP state machine status
   1468  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1469  * @buf: Buffer for status information
   1470  * @buflen: Maximum buffer length
   1471  * @verbose: Whether to include verbose status information
   1472  * Returns: Number of bytes written to buf.
   1473  *
   1474  * Query EAP state machine for status information. This function fills in a
   1475  * text area with current status information from the EAPOL state machine. If
   1476  * the buffer (buf) is not large enough, status information will be truncated
   1477  * to fit the buffer.
   1478  */
   1479 int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose)
   1480 {
   1481 	int len, ret;
   1482 
   1483 	if (sm == NULL)
   1484 		return 0;
   1485 
   1486 	len = os_snprintf(buf, buflen,
   1487 			  "EAP state=%s\n",
   1488 			  eap_sm_state_txt(sm->EAP_state));
   1489 	if (len < 0 || (size_t) len >= buflen)
   1490 		return 0;
   1491 
   1492 	if (sm->selectedMethod != EAP_TYPE_NONE) {
   1493 		const char *name;
   1494 		if (sm->m) {
   1495 			name = sm->m->name;
   1496 		} else {
   1497 			const struct eap_method *m =
   1498 				eap_peer_get_eap_method(EAP_VENDOR_IETF,
   1499 							sm->selectedMethod);
   1500 			if (m)
   1501 				name = m->name;
   1502 			else
   1503 				name = "?";
   1504 		}
   1505 		ret = os_snprintf(buf + len, buflen - len,
   1506 				  "selectedMethod=%d (EAP-%s)\n",
   1507 				  sm->selectedMethod, name);
   1508 		if (ret < 0 || (size_t) ret >= buflen - len)
   1509 			return len;
   1510 		len += ret;
   1511 
   1512 		if (sm->m && sm->m->get_status) {
   1513 			len += sm->m->get_status(sm, sm->eap_method_priv,
   1514 						 buf + len, buflen - len,
   1515 						 verbose);
   1516 		}
   1517 	}
   1518 
   1519 	if (verbose) {
   1520 		ret = os_snprintf(buf + len, buflen - len,
   1521 				  "reqMethod=%d\n"
   1522 				  "methodState=%s\n"
   1523 				  "decision=%s\n"
   1524 				  "ClientTimeout=%d\n",
   1525 				  sm->reqMethod,
   1526 				  eap_sm_method_state_txt(sm->methodState),
   1527 				  eap_sm_decision_txt(sm->decision),
   1528 				  sm->ClientTimeout);
   1529 		if (ret < 0 || (size_t) ret >= buflen - len)
   1530 			return len;
   1531 		len += ret;
   1532 	}
   1533 
   1534 	return len;
   1535 }
   1536 #endif /* CONFIG_CTRL_IFACE */
   1537 
   1538 
   1539 #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG)
   1540 static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field,
   1541 			   const char *msg, size_t msglen)
   1542 {
   1543 	struct eap_peer_config *config;
   1544 	char *txt = NULL, *tmp;
   1545 
   1546 	if (sm == NULL)
   1547 		return;
   1548 	config = eap_get_config(sm);
   1549 	if (config == NULL)
   1550 		return;
   1551 
   1552 	switch (field) {
   1553 	case WPA_CTRL_REQ_EAP_IDENTITY:
   1554 		config->pending_req_identity++;
   1555 		break;
   1556 	case WPA_CTRL_REQ_EAP_PASSWORD:
   1557 		config->pending_req_password++;
   1558 		break;
   1559 	case WPA_CTRL_REQ_EAP_NEW_PASSWORD:
   1560 		config->pending_req_new_password++;
   1561 		break;
   1562 	case WPA_CTRL_REQ_EAP_PIN:
   1563 		config->pending_req_pin++;
   1564 		break;
   1565 	case WPA_CTRL_REQ_EAP_OTP:
   1566 		if (msg) {
   1567 			tmp = os_malloc(msglen + 3);
   1568 			if (tmp == NULL)
   1569 				return;
   1570 			tmp[0] = '[';
   1571 			os_memcpy(tmp + 1, msg, msglen);
   1572 			tmp[msglen + 1] = ']';
   1573 			tmp[msglen + 2] = '\0';
   1574 			txt = tmp;
   1575 			os_free(config->pending_req_otp);
   1576 			config->pending_req_otp = tmp;
   1577 			config->pending_req_otp_len = msglen + 3;
   1578 		} else {
   1579 			if (config->pending_req_otp == NULL)
   1580 				return;
   1581 			txt = config->pending_req_otp;
   1582 		}
   1583 		break;
   1584 	case WPA_CTRL_REQ_EAP_PASSPHRASE:
   1585 		config->pending_req_passphrase++;
   1586 		break;
   1587 	default:
   1588 		return;
   1589 	}
   1590 
   1591 	if (sm->eapol_cb->eap_param_needed)
   1592 		sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt);
   1593 }
   1594 #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1595 #define eap_sm_request(sm, type, msg, msglen) do { } while (0)
   1596 #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */
   1597 
   1598 const char * eap_sm_get_method_name(struct eap_sm *sm)
   1599 {
   1600 	if (sm->m == NULL)
   1601 		return "UNKNOWN";
   1602 	return sm->m->name;
   1603 }
   1604 
   1605 
   1606 /**
   1607  * eap_sm_request_identity - Request identity from user (ctrl_iface)
   1608  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1609  *
   1610  * EAP methods can call this function to request identity information for the
   1611  * current network. This is normally called when the identity is not included
   1612  * in the network configuration. The request will be sent to monitor programs
   1613  * through the control interface.
   1614  */
   1615 void eap_sm_request_identity(struct eap_sm *sm)
   1616 {
   1617 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0);
   1618 }
   1619 
   1620 
   1621 /**
   1622  * eap_sm_request_password - Request password from user (ctrl_iface)
   1623  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1624  *
   1625  * EAP methods can call this function to request password information for the
   1626  * current network. This is normally called when the password is not included
   1627  * in the network configuration. The request will be sent to monitor programs
   1628  * through the control interface.
   1629  */
   1630 void eap_sm_request_password(struct eap_sm *sm)
   1631 {
   1632 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0);
   1633 }
   1634 
   1635 
   1636 /**
   1637  * eap_sm_request_new_password - Request new password from user (ctrl_iface)
   1638  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1639  *
   1640  * EAP methods can call this function to request new password information for
   1641  * the current network. This is normally called when the EAP method indicates
   1642  * that the current password has expired and password change is required. The
   1643  * request will be sent to monitor programs through the control interface.
   1644  */
   1645 void eap_sm_request_new_password(struct eap_sm *sm)
   1646 {
   1647 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0);
   1648 }
   1649 
   1650 
   1651 /**
   1652  * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface)
   1653  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1654  *
   1655  * EAP methods can call this function to request SIM or smart card PIN
   1656  * information for the current network. This is normally called when the PIN is
   1657  * not included in the network configuration. The request will be sent to
   1658  * monitor programs through the control interface.
   1659  */
   1660 void eap_sm_request_pin(struct eap_sm *sm)
   1661 {
   1662 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0);
   1663 }
   1664 
   1665 
   1666 /**
   1667  * eap_sm_request_otp - Request one time password from user (ctrl_iface)
   1668  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1669  * @msg: Message to be displayed to the user when asking for OTP
   1670  * @msg_len: Length of the user displayable message
   1671  *
   1672  * EAP methods can call this function to request open time password (OTP) for
   1673  * the current network. The request will be sent to monitor programs through
   1674  * the control interface.
   1675  */
   1676 void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len)
   1677 {
   1678 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len);
   1679 }
   1680 
   1681 
   1682 /**
   1683  * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface)
   1684  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1685  *
   1686  * EAP methods can call this function to request passphrase for a private key
   1687  * for the current network. This is normally called when the passphrase is not
   1688  * included in the network configuration. The request will be sent to monitor
   1689  * programs through the control interface.
   1690  */
   1691 void eap_sm_request_passphrase(struct eap_sm *sm)
   1692 {
   1693 	eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0);
   1694 }
   1695 
   1696 
   1697 /**
   1698  * eap_sm_notify_ctrl_attached - Notification of attached monitor
   1699  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1700  *
   1701  * Notify EAP state machines that a monitor was attached to the control
   1702  * interface to trigger re-sending of pending requests for user input.
   1703  */
   1704 void eap_sm_notify_ctrl_attached(struct eap_sm *sm)
   1705 {
   1706 	struct eap_peer_config *config = eap_get_config(sm);
   1707 
   1708 	if (config == NULL)
   1709 		return;
   1710 
   1711 	/* Re-send any pending requests for user data since a new control
   1712 	 * interface was added. This handles cases where the EAP authentication
   1713 	 * starts immediately after system startup when the user interface is
   1714 	 * not yet running. */
   1715 	if (config->pending_req_identity)
   1716 		eap_sm_request_identity(sm);
   1717 	if (config->pending_req_password)
   1718 		eap_sm_request_password(sm);
   1719 	if (config->pending_req_new_password)
   1720 		eap_sm_request_new_password(sm);
   1721 	if (config->pending_req_otp)
   1722 		eap_sm_request_otp(sm, NULL, 0);
   1723 	if (config->pending_req_pin)
   1724 		eap_sm_request_pin(sm);
   1725 	if (config->pending_req_passphrase)
   1726 		eap_sm_request_passphrase(sm);
   1727 }
   1728 
   1729 
   1730 static int eap_allowed_phase2_type(int vendor, int type)
   1731 {
   1732 	if (vendor != EAP_VENDOR_IETF)
   1733 		return 0;
   1734 	return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS &&
   1735 		type != EAP_TYPE_FAST;
   1736 }
   1737 
   1738 
   1739 /**
   1740  * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name
   1741  * @name: EAP method name, e.g., MD5
   1742  * @vendor: Buffer for returning EAP Vendor-Id
   1743  * Returns: EAP method type or %EAP_TYPE_NONE if not found
   1744  *
   1745  * This function maps EAP type names into EAP type numbers that are allowed for
   1746  * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with
   1747  * EAP-PEAP, EAP-TTLS, and EAP-FAST.
   1748  */
   1749 u32 eap_get_phase2_type(const char *name, int *vendor)
   1750 {
   1751 	int v;
   1752 	u8 type = eap_peer_get_type(name, &v);
   1753 	if (eap_allowed_phase2_type(v, type)) {
   1754 		*vendor = v;
   1755 		return type;
   1756 	}
   1757 	*vendor = EAP_VENDOR_IETF;
   1758 	return EAP_TYPE_NONE;
   1759 }
   1760 
   1761 
   1762 /**
   1763  * eap_get_phase2_types - Get list of allowed EAP phase 2 types
   1764  * @config: Pointer to a network configuration
   1765  * @count: Pointer to a variable to be filled with number of returned EAP types
   1766  * Returns: Pointer to allocated type list or %NULL on failure
   1767  *
   1768  * This function generates an array of allowed EAP phase 2 (tunneled) types for
   1769  * the given network configuration.
   1770  */
   1771 struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config,
   1772 					      size_t *count)
   1773 {
   1774 	struct eap_method_type *buf;
   1775 	u32 method;
   1776 	int vendor;
   1777 	size_t mcount;
   1778 	const struct eap_method *methods, *m;
   1779 
   1780 	methods = eap_peer_get_methods(&mcount);
   1781 	if (methods == NULL)
   1782 		return NULL;
   1783 	*count = 0;
   1784 	buf = os_malloc(mcount * sizeof(struct eap_method_type));
   1785 	if (buf == NULL)
   1786 		return NULL;
   1787 
   1788 	for (m = methods; m; m = m->next) {
   1789 		vendor = m->vendor;
   1790 		method = m->method;
   1791 		if (eap_allowed_phase2_type(vendor, method)) {
   1792 			if (vendor == EAP_VENDOR_IETF &&
   1793 			    method == EAP_TYPE_TLS && config &&
   1794 			    config->private_key2 == NULL)
   1795 				continue;
   1796 			buf[*count].vendor = vendor;
   1797 			buf[*count].method = method;
   1798 			(*count)++;
   1799 		}
   1800 	}
   1801 
   1802 	return buf;
   1803 }
   1804 
   1805 
   1806 /**
   1807  * eap_set_fast_reauth - Update fast_reauth setting
   1808  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1809  * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled
   1810  */
   1811 void eap_set_fast_reauth(struct eap_sm *sm, int enabled)
   1812 {
   1813 	sm->fast_reauth = enabled;
   1814 }
   1815 
   1816 
   1817 /**
   1818  * eap_set_workaround - Update EAP workarounds setting
   1819  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1820  * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds
   1821  */
   1822 void eap_set_workaround(struct eap_sm *sm, unsigned int workaround)
   1823 {
   1824 	sm->workaround = workaround;
   1825 }
   1826 
   1827 
   1828 /**
   1829  * eap_get_config - Get current network configuration
   1830  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1831  * Returns: Pointer to the current network configuration or %NULL if not found
   1832  *
   1833  * EAP peer methods should avoid using this function if they can use other
   1834  * access functions, like eap_get_config_identity() and
   1835  * eap_get_config_password(), that do not require direct access to
   1836  * struct eap_peer_config.
   1837  */
   1838 struct eap_peer_config * eap_get_config(struct eap_sm *sm)
   1839 {
   1840 	return sm->eapol_cb->get_config(sm->eapol_ctx);
   1841 }
   1842 
   1843 
   1844 /**
   1845  * eap_get_config_identity - Get identity from the network configuration
   1846  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1847  * @len: Buffer for the length of the identity
   1848  * Returns: Pointer to the identity or %NULL if not found
   1849  */
   1850 const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len)
   1851 {
   1852 	struct eap_peer_config *config = eap_get_config(sm);
   1853 	if (config == NULL)
   1854 		return NULL;
   1855 	*len = config->identity_len;
   1856 	return config->identity;
   1857 }
   1858 
   1859 
   1860 /**
   1861  * eap_get_config_password - Get password from the network configuration
   1862  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1863  * @len: Buffer for the length of the password
   1864  * Returns: Pointer to the password or %NULL if not found
   1865  */
   1866 const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len)
   1867 {
   1868 	struct eap_peer_config *config = eap_get_config(sm);
   1869 	if (config == NULL)
   1870 		return NULL;
   1871 	*len = config->password_len;
   1872 	return config->password;
   1873 }
   1874 
   1875 
   1876 /**
   1877  * eap_get_config_password2 - Get password from the network configuration
   1878  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1879  * @len: Buffer for the length of the password
   1880  * @hash: Buffer for returning whether the password is stored as a
   1881  * NtPasswordHash instead of plaintext password; can be %NULL if this
   1882  * information is not needed
   1883  * Returns: Pointer to the password or %NULL if not found
   1884  */
   1885 const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash)
   1886 {
   1887 	struct eap_peer_config *config = eap_get_config(sm);
   1888 	if (config == NULL)
   1889 		return NULL;
   1890 	*len = config->password_len;
   1891 	if (hash)
   1892 		*hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH);
   1893 	return config->password;
   1894 }
   1895 
   1896 
   1897 /**
   1898  * eap_get_config_new_password - Get new password from network configuration
   1899  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1900  * @len: Buffer for the length of the new password
   1901  * Returns: Pointer to the new password or %NULL if not found
   1902  */
   1903 const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len)
   1904 {
   1905 	struct eap_peer_config *config = eap_get_config(sm);
   1906 	if (config == NULL)
   1907 		return NULL;
   1908 	*len = config->new_password_len;
   1909 	return config->new_password;
   1910 }
   1911 
   1912 
   1913 /**
   1914  * eap_get_config_otp - Get one-time password from the network configuration
   1915  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1916  * @len: Buffer for the length of the one-time password
   1917  * Returns: Pointer to the one-time password or %NULL if not found
   1918  */
   1919 const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len)
   1920 {
   1921 	struct eap_peer_config *config = eap_get_config(sm);
   1922 	if (config == NULL)
   1923 		return NULL;
   1924 	*len = config->otp_len;
   1925 	return config->otp;
   1926 }
   1927 
   1928 
   1929 /**
   1930  * eap_clear_config_otp - Clear used one-time password
   1931  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1932  *
   1933  * This function clears a used one-time password (OTP) from the current network
   1934  * configuration. This should be called when the OTP has been used and is not
   1935  * needed anymore.
   1936  */
   1937 void eap_clear_config_otp(struct eap_sm *sm)
   1938 {
   1939 	struct eap_peer_config *config = eap_get_config(sm);
   1940 	if (config == NULL)
   1941 		return;
   1942 	os_memset(config->otp, 0, config->otp_len);
   1943 	os_free(config->otp);
   1944 	config->otp = NULL;
   1945 	config->otp_len = 0;
   1946 }
   1947 
   1948 
   1949 /**
   1950  * eap_get_config_phase1 - Get phase1 data from the network configuration
   1951  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1952  * Returns: Pointer to the phase1 data or %NULL if not found
   1953  */
   1954 const char * eap_get_config_phase1(struct eap_sm *sm)
   1955 {
   1956 	struct eap_peer_config *config = eap_get_config(sm);
   1957 	if (config == NULL)
   1958 		return NULL;
   1959 	return config->phase1;
   1960 }
   1961 
   1962 
   1963 /**
   1964  * eap_get_config_phase2 - Get phase2 data from the network configuration
   1965  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1966  * Returns: Pointer to the phase1 data or %NULL if not found
   1967  */
   1968 const char * eap_get_config_phase2(struct eap_sm *sm)
   1969 {
   1970 	struct eap_peer_config *config = eap_get_config(sm);
   1971 	if (config == NULL)
   1972 		return NULL;
   1973 	return config->phase2;
   1974 }
   1975 
   1976 
   1977 int eap_get_config_fragment_size(struct eap_sm *sm)
   1978 {
   1979 	struct eap_peer_config *config = eap_get_config(sm);
   1980 	if (config == NULL)
   1981 		return -1;
   1982 	return config->fragment_size;
   1983 }
   1984 
   1985 
   1986 /**
   1987  * eap_key_available - Get key availability (eapKeyAvailable variable)
   1988  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   1989  * Returns: 1 if EAP keying material is available, 0 if not
   1990  */
   1991 int eap_key_available(struct eap_sm *sm)
   1992 {
   1993 	return sm ? sm->eapKeyAvailable : 0;
   1994 }
   1995 
   1996 
   1997 /**
   1998  * eap_notify_success - Notify EAP state machine about external success trigger
   1999  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2000  *
   2001  * This function is called when external event, e.g., successful completion of
   2002  * WPA-PSK key handshake, is indicating that EAP state machine should move to
   2003  * success state. This is mainly used with security modes that do not use EAP
   2004  * state machine (e.g., WPA-PSK).
   2005  */
   2006 void eap_notify_success(struct eap_sm *sm)
   2007 {
   2008 	if (sm) {
   2009 		sm->decision = DECISION_COND_SUCC;
   2010 		sm->EAP_state = EAP_SUCCESS;
   2011 	}
   2012 }
   2013 
   2014 
   2015 /**
   2016  * eap_notify_lower_layer_success - Notification of lower layer success
   2017  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2018  *
   2019  * Notify EAP state machines that a lower layer has detected a successful
   2020  * authentication. This is used to recover from dropped EAP-Success messages.
   2021  */
   2022 void eap_notify_lower_layer_success(struct eap_sm *sm)
   2023 {
   2024 	if (sm == NULL)
   2025 		return;
   2026 
   2027 	if (eapol_get_bool(sm, EAPOL_eapSuccess) ||
   2028 	    sm->decision == DECISION_FAIL ||
   2029 	    (sm->methodState != METHOD_MAY_CONT &&
   2030 	     sm->methodState != METHOD_DONE))
   2031 		return;
   2032 
   2033 	if (sm->eapKeyData != NULL)
   2034 		sm->eapKeyAvailable = TRUE;
   2035 	eapol_set_bool(sm, EAPOL_eapSuccess, TRUE);
   2036 	wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS
   2037 		"EAP authentication completed successfully (based on lower "
   2038 		"layer success)");
   2039 }
   2040 
   2041 
   2042 /**
   2043  * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine
   2044  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2045  * @len: Pointer to variable that will be set to number of bytes in the key
   2046  * Returns: Pointer to the EAP keying data or %NULL on failure
   2047  *
   2048  * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The
   2049  * key is available only after a successful authentication. EAP state machine
   2050  * continues to manage the key data and the caller must not change or free the
   2051  * returned data.
   2052  */
   2053 const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len)
   2054 {
   2055 	if (sm == NULL || sm->eapKeyData == NULL) {
   2056 		*len = 0;
   2057 		return NULL;
   2058 	}
   2059 
   2060 	*len = sm->eapKeyDataLen;
   2061 	return sm->eapKeyData;
   2062 }
   2063 
   2064 
   2065 /**
   2066  * eap_get_eapKeyData - Get EAP response data
   2067  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2068  * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure
   2069  *
   2070  * Fetch EAP response (eapRespData) from the EAP state machine. This data is
   2071  * available when EAP state machine has processed an incoming EAP request. The
   2072  * EAP state machine does not maintain a reference to the response after this
   2073  * function is called and the caller is responsible for freeing the data.
   2074  */
   2075 struct wpabuf * eap_get_eapRespData(struct eap_sm *sm)
   2076 {
   2077 	struct wpabuf *resp;
   2078 
   2079 	if (sm == NULL || sm->eapRespData == NULL)
   2080 		return NULL;
   2081 
   2082 	resp = sm->eapRespData;
   2083 	sm->eapRespData = NULL;
   2084 
   2085 	return resp;
   2086 }
   2087 
   2088 
   2089 /**
   2090  * eap_sm_register_scard_ctx - Notification of smart card context
   2091  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2092  * @ctx: Context data for smart card operations
   2093  *
   2094  * Notify EAP state machines of context data for smart card operations. This
   2095  * context data will be used as a parameter for scard_*() functions.
   2096  */
   2097 void eap_register_scard_ctx(struct eap_sm *sm, void *ctx)
   2098 {
   2099 	if (sm)
   2100 		sm->scard_ctx = ctx;
   2101 }
   2102 
   2103 
   2104 /**
   2105  * eap_set_config_blob - Set or add a named configuration blob
   2106  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2107  * @blob: New value for the blob
   2108  *
   2109  * Adds a new configuration blob or replaces the current value of an existing
   2110  * blob.
   2111  */
   2112 void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob)
   2113 {
   2114 #ifndef CONFIG_NO_CONFIG_BLOBS
   2115 	sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob);
   2116 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2117 }
   2118 
   2119 
   2120 /**
   2121  * eap_get_config_blob - Get a named configuration blob
   2122  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2123  * @name: Name of the blob
   2124  * Returns: Pointer to blob data or %NULL if not found
   2125  */
   2126 const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm,
   2127 						   const char *name)
   2128 {
   2129 #ifndef CONFIG_NO_CONFIG_BLOBS
   2130 	return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name);
   2131 #else /* CONFIG_NO_CONFIG_BLOBS */
   2132 	return NULL;
   2133 #endif /* CONFIG_NO_CONFIG_BLOBS */
   2134 }
   2135 
   2136 
   2137 /**
   2138  * eap_set_force_disabled - Set force_disabled flag
   2139  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2140  * @disabled: 1 = EAP disabled, 0 = EAP enabled
   2141  *
   2142  * This function is used to force EAP state machine to be disabled when it is
   2143  * not in use (e.g., with WPA-PSK or plaintext connections).
   2144  */
   2145 void eap_set_force_disabled(struct eap_sm *sm, int disabled)
   2146 {
   2147 	sm->force_disabled = disabled;
   2148 }
   2149 
   2150 
   2151  /**
   2152  * eap_notify_pending - Notify that EAP method is ready to re-process a request
   2153  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2154  *
   2155  * An EAP method can perform a pending operation (e.g., to get a response from
   2156  * an external process). Once the response is available, this function can be
   2157  * used to request EAPOL state machine to retry delivering the previously
   2158  * received (and still unanswered) EAP request to EAP state machine.
   2159  */
   2160 void eap_notify_pending(struct eap_sm *sm)
   2161 {
   2162 	sm->eapol_cb->notify_pending(sm->eapol_ctx);
   2163 }
   2164 
   2165 
   2166 /**
   2167  * eap_invalidate_cached_session - Mark cached session data invalid
   2168  * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init()
   2169  */
   2170 void eap_invalidate_cached_session(struct eap_sm *sm)
   2171 {
   2172 	if (sm)
   2173 		eap_deinit_prev_method(sm, "invalidate");
   2174 }
   2175 
   2176 
   2177 int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf)
   2178 {
   2179 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2180 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2181 		return 0; /* Not a WPS Enrollee */
   2182 
   2183 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL)
   2184 		return 0; /* Not using PBC */
   2185 
   2186 	return 1;
   2187 }
   2188 
   2189 
   2190 int eap_is_wps_pin_enrollee(struct eap_peer_config *conf)
   2191 {
   2192 	if (conf->identity_len != WSC_ID_ENROLLEE_LEN ||
   2193 	    os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN))
   2194 		return 0; /* Not a WPS Enrollee */
   2195 
   2196 	if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL)
   2197 		return 0; /* Not using PIN */
   2198 
   2199 	return 1;
   2200 }
   2201