Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2005 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ANDROID_SORTED_VECTOR_H
     18 #define ANDROID_SORTED_VECTOR_H
     19 
     20 #include <assert.h>
     21 #include <stdint.h>
     22 #include <sys/types.h>
     23 
     24 #include <utils/Vector.h>
     25 #include <utils/VectorImpl.h>
     26 #include <utils/TypeHelpers.h>
     27 
     28 // ---------------------------------------------------------------------------
     29 
     30 namespace android {
     31 
     32 template <class TYPE>
     33 class SortedVector : private SortedVectorImpl
     34 {
     35     friend class Vector<TYPE>;
     36 
     37 public:
     38             typedef TYPE    value_type;
     39 
     40     /*!
     41      * Constructors and destructors
     42      */
     43 
     44                             SortedVector();
     45                             SortedVector(const SortedVector<TYPE>& rhs);
     46     virtual                 ~SortedVector();
     47 
     48     /*! copy operator */
     49     const SortedVector<TYPE>&   operator = (const SortedVector<TYPE>& rhs) const;
     50     SortedVector<TYPE>&         operator = (const SortedVector<TYPE>& rhs);
     51 
     52     /*
     53      * empty the vector
     54      */
     55 
     56     inline  void            clear()             { VectorImpl::clear(); }
     57 
     58     /*!
     59      * vector stats
     60      */
     61 
     62     //! returns number of items in the vector
     63     inline  size_t          size() const                { return VectorImpl::size(); }
     64     //! returns wether or not the vector is empty
     65     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
     66     //! returns how many items can be stored without reallocating the backing store
     67     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
     68     //! setst the capacity. capacity can never be reduced less than size()
     69     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
     70 
     71     /*!
     72      * C-style array access
     73      */
     74 
     75     //! read-only C-style access
     76     inline  const TYPE*     array() const;
     77 
     78     //! read-write C-style access. BE VERY CAREFUL when modifying the array
     79     //! you ust keep it sorted! You usually don't use this function.
     80             TYPE*           editArray();
     81 
     82             //! finds the index of an item
     83             ssize_t         indexOf(const TYPE& item) const;
     84 
     85             //! finds where this item should be inserted
     86             size_t          orderOf(const TYPE& item) const;
     87 
     88 
     89     /*!
     90      * accessors
     91      */
     92 
     93     //! read-only access to an item at a given index
     94     inline  const TYPE&     operator [] (size_t index) const;
     95     //! alternate name for operator []
     96     inline  const TYPE&     itemAt(size_t index) const;
     97     //! stack-usage of the vector. returns the top of the stack (last element)
     98             const TYPE&     top() const;
     99     //! same as operator [], but allows to access the vector backward (from the end) with a negative index
    100             const TYPE&     mirrorItemAt(ssize_t index) const;
    101 
    102     /*!
    103      * modifing the array
    104      */
    105 
    106             //! add an item in the right place (and replace the one that is there)
    107             ssize_t         add(const TYPE& item);
    108 
    109             //! editItemAt() MUST NOT change the order of this item
    110             TYPE&           editItemAt(size_t index) {
    111                 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) );
    112             }
    113 
    114             //! merges a vector into this one
    115             ssize_t         merge(const Vector<TYPE>& vector);
    116             ssize_t         merge(const SortedVector<TYPE>& vector);
    117 
    118             //! removes an item
    119             ssize_t         remove(const TYPE&);
    120 
    121     //! remove several items
    122     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
    123     //! remove one item
    124     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
    125 
    126 protected:
    127     virtual void    do_construct(void* storage, size_t num) const;
    128     virtual void    do_destroy(void* storage, size_t num) const;
    129     virtual void    do_copy(void* dest, const void* from, size_t num) const;
    130     virtual void    do_splat(void* dest, const void* item, size_t num) const;
    131     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
    132     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
    133     virtual int     do_compare(const void* lhs, const void* rhs) const;
    134 };
    135 
    136 // SortedVector<T> can be trivially moved using memcpy() because moving does not
    137 // require any change to the underlying SharedBuffer contents or reference count.
    138 template<typename T> struct trait_trivial_move<SortedVector<T> > { enum { value = true }; };
    139 
    140 // ---------------------------------------------------------------------------
    141 // No user serviceable parts from here...
    142 // ---------------------------------------------------------------------------
    143 
    144 template<class TYPE> inline
    145 SortedVector<TYPE>::SortedVector()
    146     : SortedVectorImpl(sizeof(TYPE),
    147                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
    148                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
    149                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
    150                 )
    151 {
    152 }
    153 
    154 template<class TYPE> inline
    155 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs)
    156     : SortedVectorImpl(rhs) {
    157 }
    158 
    159 template<class TYPE> inline
    160 SortedVector<TYPE>::~SortedVector() {
    161     finish_vector();
    162 }
    163 
    164 template<class TYPE> inline
    165 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
    166     SortedVectorImpl::operator = (rhs);
    167     return *this;
    168 }
    169 
    170 template<class TYPE> inline
    171 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
    172     SortedVectorImpl::operator = (rhs);
    173     return *this;
    174 }
    175 
    176 template<class TYPE> inline
    177 const TYPE* SortedVector<TYPE>::array() const {
    178     return static_cast<const TYPE *>(arrayImpl());
    179 }
    180 
    181 template<class TYPE> inline
    182 TYPE* SortedVector<TYPE>::editArray() {
    183     return static_cast<TYPE *>(editArrayImpl());
    184 }
    185 
    186 
    187 template<class TYPE> inline
    188 const TYPE& SortedVector<TYPE>::operator[](size_t index) const {
    189     assert( index<size() );
    190     return *(array() + index);
    191 }
    192 
    193 template<class TYPE> inline
    194 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const {
    195     return operator[](index);
    196 }
    197 
    198 template<class TYPE> inline
    199 const TYPE& SortedVector<TYPE>::mirrorItemAt(ssize_t index) const {
    200     assert( (index>0 ? index : -index)<size() );
    201     return *(array() + ((index<0) ? (size()-index) : index));
    202 }
    203 
    204 template<class TYPE> inline
    205 const TYPE& SortedVector<TYPE>::top() const {
    206     return *(array() + size() - 1);
    207 }
    208 
    209 template<class TYPE> inline
    210 ssize_t SortedVector<TYPE>::add(const TYPE& item) {
    211     return SortedVectorImpl::add(&item);
    212 }
    213 
    214 template<class TYPE> inline
    215 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const {
    216     return SortedVectorImpl::indexOf(&item);
    217 }
    218 
    219 template<class TYPE> inline
    220 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const {
    221     return SortedVectorImpl::orderOf(&item);
    222 }
    223 
    224 template<class TYPE> inline
    225 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) {
    226     return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector));
    227 }
    228 
    229 template<class TYPE> inline
    230 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) {
    231     return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector));
    232 }
    233 
    234 template<class TYPE> inline
    235 ssize_t SortedVector<TYPE>::remove(const TYPE& item) {
    236     return SortedVectorImpl::remove(&item);
    237 }
    238 
    239 template<class TYPE> inline
    240 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) {
    241     return VectorImpl::removeItemsAt(index, count);
    242 }
    243 
    244 // ---------------------------------------------------------------------------
    245 
    246 template<class TYPE>
    247 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const {
    248     construct_type( reinterpret_cast<TYPE*>(storage), num );
    249 }
    250 
    251 template<class TYPE>
    252 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const {
    253     destroy_type( reinterpret_cast<TYPE*>(storage), num );
    254 }
    255 
    256 template<class TYPE>
    257 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
    258     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    259 }
    260 
    261 template<class TYPE>
    262 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
    263     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
    264 }
    265 
    266 template<class TYPE>
    267 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
    268     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    269 }
    270 
    271 template<class TYPE>
    272 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
    273     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
    274 }
    275 
    276 template<class TYPE>
    277 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const {
    278     return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) );
    279 }
    280 
    281 }; // namespace android
    282 
    283 
    284 // ---------------------------------------------------------------------------
    285 
    286 #endif // ANDROID_SORTED_VECTOR_H
    287