Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define __STDC_LIMIT_MACROS
     18 
     19 #include <assert.h>
     20 #include <stdint.h>
     21 
     22 #include <utils/LinearTransform.h>
     23 
     24 namespace android {
     25 
     26 template<class T> static inline T ABS(T x) { return (x < 0) ? -x : x; }
     27 
     28 // Static math methods involving linear transformations
     29 static bool scale_u64_to_u64(
     30         uint64_t val,
     31         uint32_t N,
     32         uint32_t D,
     33         uint64_t* res,
     34         bool round_up_not_down) {
     35     uint64_t tmp1, tmp2;
     36     uint32_t r;
     37 
     38     assert(res);
     39     assert(D);
     40 
     41     // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit
     42     // integer X.
     43     // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit
     44     // integer X.
     45     // Let X[A, B] with A <= B denote bits A through B of the integer X.
     46     // Let (A | B) denote the concatination of two 32 bit ints, A and B.
     47     // IOW X = (A | B) => U32(X) == A && L32(X) == B
     48     //
     49     // compute M = val * N (a 96 bit int)
     50     // ---------------------------------
     51     // tmp2 = U32(val) * N (a 64 bit int)
     52     // tmp1 = L32(val) * N (a 64 bit int)
     53     // which means
     54     // M = val * N = (tmp2 << 32) + tmp1
     55     tmp2 = (val >> 32) * N;
     56     tmp1 = (val & UINT32_MAX) * N;
     57 
     58     // compute M[32, 95]
     59     // tmp2 = tmp2 + U32(tmp1)
     60     //      = (U32(val) * N) + U32(L32(val) * N)
     61     //      = M[32, 95]
     62     tmp2 += tmp1 >> 32;
     63 
     64     // if M[64, 95] >= D, then M/D has bits > 63 set and we have
     65     // an overflow.
     66     if ((tmp2 >> 32) >= D) {
     67         *res = UINT64_MAX;
     68         return false;
     69     }
     70 
     71     // Divide.  Going in we know
     72     // tmp2 = M[32, 95]
     73     // U32(tmp2) < D
     74     r = tmp2 % D;
     75     tmp2 /= D;
     76 
     77     // At this point
     78     // tmp1      = L32(val) * N
     79     // tmp2      = M[32, 95] / D
     80     //           = (M / D)[32, 95]
     81     // r         = M[32, 95] % D
     82     // U32(tmp2) = 0
     83     //
     84     // compute tmp1 = (r | M[0, 31])
     85     tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32);
     86 
     87     // Divide again.  Keep the remainder around in order to round properly.
     88     r = tmp1 % D;
     89     tmp1 /= D;
     90 
     91     // At this point
     92     // tmp2      = (M / D)[32, 95]
     93     // tmp1      = (M / D)[ 0, 31]
     94     // r         =  M % D
     95     // U32(tmp1) = 0
     96     // U32(tmp2) = 0
     97 
     98     // Pack the result and deal with the round-up case (As well as the
     99     // remote possiblility over overflow in such a case).
    100     *res = (tmp2 << 32) | tmp1;
    101     if (r && round_up_not_down) {
    102         ++(*res);
    103         if (!(*res)) {
    104             *res = UINT64_MAX;
    105             return false;
    106         }
    107     }
    108 
    109     return true;
    110 }
    111 
    112 static bool linear_transform_s64_to_s64(
    113         int64_t  val,
    114         int64_t  basis1,
    115         int32_t  N,
    116         uint32_t D,
    117         int64_t  basis2,
    118         int64_t* out) {
    119     uint64_t scaled, res;
    120     uint64_t abs_val;
    121     bool is_neg;
    122 
    123     if (!out)
    124         return false;
    125 
    126     // Compute abs(val - basis_64). Keep track of whether or not this delta
    127     // will be negative after the scale opertaion.
    128     if (val < basis1) {
    129         is_neg = true;
    130         abs_val = basis1 - val;
    131     } else {
    132         is_neg = false;
    133         abs_val = val - basis1;
    134     }
    135 
    136     if (N < 0)
    137         is_neg = !is_neg;
    138 
    139     if (!scale_u64_to_u64(abs_val,
    140                           ABS(N),
    141                           D,
    142                           &scaled,
    143                           is_neg))
    144         return false; // overflow/undeflow
    145 
    146     // if scaled is >= 0x8000<etc>, then we are going to overflow or
    147     // underflow unless ABS(basis2) is large enough to pull us back into the
    148     // non-overflow/underflow region.
    149     if (scaled & INT64_MIN) {
    150         if (is_neg && (basis2 < 0))
    151             return false; // certain underflow
    152 
    153         if (!is_neg && (basis2 >= 0))
    154             return false; // certain overflow
    155 
    156         if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX))
    157             return false; // not enough
    158 
    159         // Looks like we are OK
    160         *out = (is_neg ? (-scaled) : scaled) + basis2;
    161     } else {
    162         // Scaled fits within signed bounds, so we just need to check for
    163         // over/underflow for two signed integers.  Basically, if both scaled
    164         // and basis2 have the same sign bit, and the result has a different
    165         // sign bit, then we have under/overflow.  An easy way to compute this
    166         // is
    167         // (scaled_signbit XNOR basis_signbit) &&
    168         // (scaled_signbit XOR res_signbit)
    169         // ==
    170         // (scaled_signbit XOR basis_signbit XOR 1) &&
    171         // (scaled_signbit XOR res_signbit)
    172 
    173         if (is_neg)
    174             scaled = -scaled;
    175         res = scaled + basis2;
    176 
    177         if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN)
    178             return false;
    179 
    180         *out = res;
    181     }
    182 
    183     return true;
    184 }
    185 
    186 bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const {
    187     if (0 == a_to_b_denom)
    188         return false;
    189 
    190     return linear_transform_s64_to_s64(a_in,
    191                                        a_zero,
    192                                        a_to_b_numer,
    193                                        a_to_b_denom,
    194                                        b_zero,
    195                                        b_out);
    196 }
    197 
    198 bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const {
    199     if (0 == a_to_b_numer)
    200         return false;
    201 
    202     return linear_transform_s64_to_s64(b_in,
    203                                        b_zero,
    204                                        a_to_b_denom,
    205                                        a_to_b_numer,
    206                                        a_zero,
    207                                        a_out);
    208 }
    209 
    210 template <class T> void LinearTransform::reduce(T* N, T* D) {
    211     T a, b;
    212     if (!N || !D || !(*D)) {
    213         assert(false);
    214         return;
    215     }
    216 
    217     a = *N;
    218     b = *D;
    219 
    220     if (a == 0) {
    221         *D = 1;
    222         return;
    223     }
    224 
    225     // This implements Euclid's method to find GCD.
    226     if (a < b) {
    227         T tmp = a;
    228         a = b;
    229         b = tmp;
    230     }
    231 
    232     while (1) {
    233         // a is now the greater of the two.
    234         const T remainder = a % b;
    235         if (remainder == 0) {
    236             *N /= b;
    237             *D /= b;
    238             return;
    239         }
    240         // by swapping remainder and b, we are guaranteeing that a is
    241         // still the greater of the two upon entrance to the loop.
    242         a = b;
    243         b = remainder;
    244     }
    245 };
    246 
    247 template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D);
    248 template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D);
    249 
    250 void LinearTransform::reduce(int32_t* N, uint32_t* D) {
    251     if (N && D && *D) {
    252         if (*N < 0) {
    253             *N = -(*N);
    254             reduce(reinterpret_cast<uint32_t*>(N), D);
    255             *N = -(*N);
    256         } else {
    257             reduce(reinterpret_cast<uint32_t*>(N), D);
    258         }
    259     }
    260 }
    261 
    262 }  // namespace android
    263