Home | History | Annotate | Download | only in ext
      1 // Bitmap Allocator. -*- C++ -*-
      2 
      3 // Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
      4 // Free Software Foundation, Inc.
      5 //
      6 // This file is part of the GNU ISO C++ Library.  This library is free
      7 // software; you can redistribute it and/or modify it under the
      8 // terms of the GNU General Public License as published by the
      9 // Free Software Foundation; either version 3, or (at your option)
     10 // any later version.
     11 
     12 // This library is distributed in the hope that it will be useful,
     13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     15 // GNU General Public License for more details.
     16 
     17 // Under Section 7 of GPL version 3, you are granted additional
     18 // permissions described in the GCC Runtime Library Exception, version
     19 // 3.1, as published by the Free Software Foundation.
     20 
     21 // You should have received a copy of the GNU General Public License and
     22 // a copy of the GCC Runtime Library Exception along with this program;
     23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
     24 // <http://www.gnu.org/licenses/>.
     25 
     26 /** @file ext/bitmap_allocator.h
     27  *  This file is a GNU extension to the Standard C++ Library.
     28  */
     29 
     30 #ifndef _BITMAP_ALLOCATOR_H
     31 #define _BITMAP_ALLOCATOR_H 1
     32 
     33 #include <utility> // For std::pair.
     34 #include <bits/functexcept.h> // For __throw_bad_alloc().
     35 #include <functional> // For greater_equal, and less_equal.
     36 #include <new> // For operator new.
     37 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
     38 #include <ext/concurrence.h>
     39 #include <bits/move.h>
     40 
     41 /** @brief The constant in the expression below is the alignment
     42  * required in bytes.
     43  */
     44 #define _BALLOC_ALIGN_BYTES 8
     45 
     46 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
     47 {
     48   using std::size_t;
     49   using std::ptrdiff_t;
     50 
     51   namespace __detail
     52   {
     53   _GLIBCXX_BEGIN_NAMESPACE_VERSION
     54     /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
     55      *
     56      *  @brief  __mini_vector<> is a stripped down version of the
     57      *  full-fledged std::vector<>.
     58      *
     59      *  It is to be used only for built-in types or PODs. Notable
     60      *  differences are:
     61      *
     62      *  @detail
     63      *  1. Not all accessor functions are present.
     64      *  2. Used ONLY for PODs.
     65      *  3. No Allocator template argument. Uses ::operator new() to get
     66      *  memory, and ::operator delete() to free it.
     67      *  Caveat: The dtor does NOT free the memory allocated, so this a
     68      *  memory-leaking vector!
     69      */
     70     template<typename _Tp>
     71       class __mini_vector
     72       {
     73 	__mini_vector(const __mini_vector&);
     74 	__mini_vector& operator=(const __mini_vector&);
     75 
     76       public:
     77 	typedef _Tp value_type;
     78 	typedef _Tp* pointer;
     79 	typedef _Tp& reference;
     80 	typedef const _Tp& const_reference;
     81 	typedef size_t size_type;
     82 	typedef ptrdiff_t difference_type;
     83 	typedef pointer iterator;
     84 
     85       private:
     86 	pointer _M_start;
     87 	pointer _M_finish;
     88 	pointer _M_end_of_storage;
     89 
     90 	size_type
     91 	_M_space_left() const throw()
     92 	{ return _M_end_of_storage - _M_finish; }
     93 
     94 	pointer
     95 	allocate(size_type __n)
     96 	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
     97 
     98 	void
     99 	deallocate(pointer __p, size_type)
    100 	{ ::operator delete(__p); }
    101 
    102       public:
    103 	// Members used: size(), push_back(), pop_back(),
    104 	// insert(iterator, const_reference), erase(iterator),
    105 	// begin(), end(), back(), operator[].
    106 
    107 	__mini_vector()
    108         : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
    109 
    110 	size_type
    111 	size() const throw()
    112 	{ return _M_finish - _M_start; }
    113 
    114 	iterator
    115 	begin() const throw()
    116 	{ return this->_M_start; }
    117 
    118 	iterator
    119 	end() const throw()
    120 	{ return this->_M_finish; }
    121 
    122 	reference
    123 	back() const throw()
    124 	{ return *(this->end() - 1); }
    125 
    126 	reference
    127 	operator[](const size_type __pos) const throw()
    128 	{ return this->_M_start[__pos]; }
    129 
    130 	void
    131 	insert(iterator __pos, const_reference __x);
    132 
    133 	void
    134 	push_back(const_reference __x)
    135 	{
    136 	  if (this->_M_space_left())
    137 	    {
    138 	      *this->end() = __x;
    139 	      ++this->_M_finish;
    140 	    }
    141 	  else
    142 	    this->insert(this->end(), __x);
    143 	}
    144 
    145 	void
    146 	pop_back() throw()
    147 	{ --this->_M_finish; }
    148 
    149 	void
    150 	erase(iterator __pos) throw();
    151 
    152 	void
    153 	clear() throw()
    154 	{ this->_M_finish = this->_M_start; }
    155       };
    156 
    157     // Out of line function definitions.
    158     template<typename _Tp>
    159       void __mini_vector<_Tp>::
    160       insert(iterator __pos, const_reference __x)
    161       {
    162 	if (this->_M_space_left())
    163 	  {
    164 	    size_type __to_move = this->_M_finish - __pos;
    165 	    iterator __dest = this->end();
    166 	    iterator __src = this->end() - 1;
    167 
    168 	    ++this->_M_finish;
    169 	    while (__to_move)
    170 	      {
    171 		*__dest = *__src;
    172 		--__dest; --__src; --__to_move;
    173 	      }
    174 	    *__pos = __x;
    175 	  }
    176 	else
    177 	  {
    178 	    size_type __new_size = this->size() ? this->size() * 2 : 1;
    179 	    iterator __new_start = this->allocate(__new_size);
    180 	    iterator __first = this->begin();
    181 	    iterator __start = __new_start;
    182 	    while (__first != __pos)
    183 	      {
    184 		*__start = *__first;
    185 		++__start; ++__first;
    186 	      }
    187 	    *__start = __x;
    188 	    ++__start;
    189 	    while (__first != this->end())
    190 	      {
    191 		*__start = *__first;
    192 		++__start; ++__first;
    193 	      }
    194 	    if (this->_M_start)
    195 	      this->deallocate(this->_M_start, this->size());
    196 
    197 	    this->_M_start = __new_start;
    198 	    this->_M_finish = __start;
    199 	    this->_M_end_of_storage = this->_M_start + __new_size;
    200 	  }
    201       }
    202 
    203     template<typename _Tp>
    204       void __mini_vector<_Tp>::
    205       erase(iterator __pos) throw()
    206       {
    207 	while (__pos + 1 != this->end())
    208 	  {
    209 	    *__pos = __pos[1];
    210 	    ++__pos;
    211 	  }
    212 	--this->_M_finish;
    213       }
    214 
    215 
    216     template<typename _Tp>
    217       struct __mv_iter_traits
    218       {
    219 	typedef typename _Tp::value_type value_type;
    220 	typedef typename _Tp::difference_type difference_type;
    221       };
    222 
    223     template<typename _Tp>
    224       struct __mv_iter_traits<_Tp*>
    225       {
    226 	typedef _Tp value_type;
    227 	typedef ptrdiff_t difference_type;
    228       };
    229 
    230     enum
    231       {
    232 	bits_per_byte = 8,
    233 	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
    234       };
    235 
    236     template<typename _ForwardIterator, typename _Tp, typename _Compare>
    237       _ForwardIterator
    238       __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
    239 		    const _Tp& __val, _Compare __comp)
    240       {
    241 	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
    242 	  _ValueType;
    243 	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
    244 	  _DistanceType;
    245 
    246 	_DistanceType __len = __last - __first;
    247 	_DistanceType __half;
    248 	_ForwardIterator __middle;
    249 
    250 	while (__len > 0)
    251 	  {
    252 	    __half = __len >> 1;
    253 	    __middle = __first;
    254 	    __middle += __half;
    255 	    if (__comp(*__middle, __val))
    256 	      {
    257 		__first = __middle;
    258 		++__first;
    259 		__len = __len - __half - 1;
    260 	      }
    261 	    else
    262 	      __len = __half;
    263 	  }
    264 	return __first;
    265       }
    266 
    267     /** @brief The number of Blocks pointed to by the address pair
    268      *  passed to the function.
    269      */
    270     template<typename _AddrPair>
    271       inline size_t
    272       __num_blocks(_AddrPair __ap)
    273       { return (__ap.second - __ap.first) + 1; }
    274 
    275     /** @brief The number of Bit-maps pointed to by the address pair
    276      *  passed to the function.
    277      */
    278     template<typename _AddrPair>
    279       inline size_t
    280       __num_bitmaps(_AddrPair __ap)
    281       { return __num_blocks(__ap) / size_t(bits_per_block); }
    282 
    283     // _Tp should be a pointer type.
    284     template<typename _Tp>
    285       class _Inclusive_between
    286       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    287       {
    288 	typedef _Tp pointer;
    289 	pointer _M_ptr_value;
    290 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    291 
    292       public:
    293 	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
    294 	{ }
    295 
    296 	bool
    297 	operator()(_Block_pair __bp) const throw()
    298 	{
    299 	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
    300 	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
    301 	    return true;
    302 	  else
    303 	    return false;
    304 	}
    305       };
    306 
    307     // Used to pass a Functor to functions by reference.
    308     template<typename _Functor>
    309       class _Functor_Ref
    310       : public std::unary_function<typename _Functor::argument_type,
    311 				   typename _Functor::result_type>
    312       {
    313 	_Functor& _M_fref;
    314 
    315       public:
    316 	typedef typename _Functor::argument_type argument_type;
    317 	typedef typename _Functor::result_type result_type;
    318 
    319 	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
    320 	{ }
    321 
    322 	result_type
    323 	operator()(argument_type __arg)
    324 	{ return _M_fref(__arg); }
    325       };
    326 
    327     /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
    328      *
    329      *  @brief  The class which acts as a predicate for applying the
    330      *  first-fit memory allocation policy for the bitmap allocator.
    331      */
    332     // _Tp should be a pointer type, and _Alloc is the Allocator for
    333     // the vector.
    334     template<typename _Tp>
    335       class _Ffit_finder
    336       : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
    337       {
    338 	typedef typename std::pair<_Tp, _Tp> _Block_pair;
    339 	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    340 	typedef typename _BPVector::difference_type _Counter_type;
    341 
    342 	size_t* _M_pbitmap;
    343 	_Counter_type _M_data_offset;
    344 
    345       public:
    346 	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
    347 	{ }
    348 
    349 	bool
    350 	operator()(_Block_pair __bp) throw()
    351 	{
    352 	  // Set the _rover to the last physical location bitmap,
    353 	  // which is the bitmap which belongs to the first free
    354 	  // block. Thus, the bitmaps are in exact reverse order of
    355 	  // the actual memory layout. So, we count down the bitmaps,
    356 	  // which is the same as moving up the memory.
    357 
    358 	  // If the used count stored at the start of the Bit Map headers
    359 	  // is equal to the number of Objects that the current Block can
    360 	  // store, then there is definitely no space for another single
    361 	  // object, so just return false.
    362 	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
    363 
    364 	  if (*(reinterpret_cast<size_t*>
    365 		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
    366 	    return false;
    367 
    368 	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
    369 
    370 	  for (_Counter_type __i = 0; __i < __diff; ++__i)
    371 	    {
    372 	      _M_data_offset = __i;
    373 	      if (*__rover)
    374 		{
    375 		  _M_pbitmap = __rover;
    376 		  return true;
    377 		}
    378 	      --__rover;
    379 	    }
    380 	  return false;
    381 	}
    382 
    383 	size_t*
    384 	_M_get() const throw()
    385 	{ return _M_pbitmap; }
    386 
    387 	_Counter_type
    388 	_M_offset() const throw()
    389 	{ return _M_data_offset * size_t(bits_per_block); }
    390       };
    391 
    392     /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
    393      *
    394      *  @brief  The bitmap counter which acts as the bitmap
    395      *  manipulator, and manages the bit-manipulation functions and
    396      *  the searching and identification functions on the bit-map.
    397      */
    398     // _Tp should be a pointer type.
    399     template<typename _Tp>
    400       class _Bitmap_counter
    401       {
    402 	typedef typename
    403 	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
    404 	typedef typename _BPVector::size_type _Index_type;
    405 	typedef _Tp pointer;
    406 
    407 	_BPVector& _M_vbp;
    408 	size_t* _M_curr_bmap;
    409 	size_t* _M_last_bmap_in_block;
    410 	_Index_type _M_curr_index;
    411 
    412       public:
    413 	// Use the 2nd parameter with care. Make sure that such an
    414 	// entry exists in the vector before passing that particular
    415 	// index to this ctor.
    416 	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
    417 	{ this->_M_reset(__index); }
    418 
    419 	void
    420 	_M_reset(long __index = -1) throw()
    421 	{
    422 	  if (__index == -1)
    423 	    {
    424 	      _M_curr_bmap = 0;
    425 	      _M_curr_index = static_cast<_Index_type>(-1);
    426 	      return;
    427 	    }
    428 
    429 	  _M_curr_index = __index;
    430 	  _M_curr_bmap = reinterpret_cast<size_t*>
    431 	    (_M_vbp[_M_curr_index].first) - 1;
    432 
    433 	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
    434 
    435 	  _M_last_bmap_in_block = _M_curr_bmap
    436 	    - ((_M_vbp[_M_curr_index].second
    437 		- _M_vbp[_M_curr_index].first + 1)
    438 	       / size_t(bits_per_block) - 1);
    439 	}
    440 
    441 	// Dangerous Function! Use with extreme care. Pass to this
    442 	// function ONLY those values that are known to be correct,
    443 	// otherwise this will mess up big time.
    444 	void
    445 	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
    446 	{ _M_curr_bmap = __new_internal_marker; }
    447 
    448 	bool
    449 	_M_finished() const throw()
    450 	{ return(_M_curr_bmap == 0); }
    451 
    452 	_Bitmap_counter&
    453 	operator++() throw()
    454 	{
    455 	  if (_M_curr_bmap == _M_last_bmap_in_block)
    456 	    {
    457 	      if (++_M_curr_index == _M_vbp.size())
    458 		_M_curr_bmap = 0;
    459 	      else
    460 		this->_M_reset(_M_curr_index);
    461 	    }
    462 	  else
    463 	    --_M_curr_bmap;
    464 	  return *this;
    465 	}
    466 
    467 	size_t*
    468 	_M_get() const throw()
    469 	{ return _M_curr_bmap; }
    470 
    471 	pointer
    472 	_M_base() const throw()
    473 	{ return _M_vbp[_M_curr_index].first; }
    474 
    475 	_Index_type
    476 	_M_offset() const throw()
    477 	{
    478 	  return size_t(bits_per_block)
    479 	    * ((reinterpret_cast<size_t*>(this->_M_base())
    480 		- _M_curr_bmap) - 1);
    481 	}
    482 
    483 	_Index_type
    484 	_M_where() const throw()
    485 	{ return _M_curr_index; }
    486       };
    487 
    488     /** @brief  Mark a memory address as allocated by re-setting the
    489      *  corresponding bit in the bit-map.
    490      */
    491     inline void
    492     __bit_allocate(size_t* __pbmap, size_t __pos) throw()
    493     {
    494       size_t __mask = 1 << __pos;
    495       __mask = ~__mask;
    496       *__pbmap &= __mask;
    497     }
    498 
    499     /** @brief  Mark a memory address as free by setting the
    500      *  corresponding bit in the bit-map.
    501      */
    502     inline void
    503     __bit_free(size_t* __pbmap, size_t __pos) throw()
    504     {
    505       size_t __mask = 1 << __pos;
    506       *__pbmap |= __mask;
    507     }
    508 
    509   _GLIBCXX_END_NAMESPACE_VERSION
    510   } // namespace __detail
    511 
    512 _GLIBCXX_BEGIN_NAMESPACE_VERSION
    513 
    514   /** @brief  Generic Version of the bsf instruction.
    515    */
    516   inline size_t
    517   _Bit_scan_forward(size_t __num)
    518   { return static_cast<size_t>(__builtin_ctzl(__num)); }
    519 
    520   /** @class  free_list bitmap_allocator.h bitmap_allocator.h
    521    *
    522    *  @brief  The free list class for managing chunks of memory to be
    523    *  given to and returned by the bitmap_allocator.
    524    */
    525   class free_list
    526   {
    527   public:
    528     typedef size_t* 				value_type;
    529     typedef __detail::__mini_vector<value_type> vector_type;
    530     typedef vector_type::iterator 		iterator;
    531     typedef __mutex				__mutex_type;
    532 
    533   private:
    534     struct _LT_pointer_compare
    535     {
    536       bool
    537       operator()(const size_t* __pui,
    538 		 const size_t __cui) const throw()
    539       { return *__pui < __cui; }
    540     };
    541 
    542 #if defined __GTHREADS
    543     __mutex_type&
    544     _M_get_mutex()
    545     {
    546       static __mutex_type _S_mutex;
    547       return _S_mutex;
    548     }
    549 #endif
    550 
    551     vector_type&
    552     _M_get_free_list()
    553     {
    554       static vector_type _S_free_list;
    555       return _S_free_list;
    556     }
    557 
    558     /** @brief  Performs validation of memory based on their size.
    559      *
    560      *  @param  __addr The pointer to the memory block to be
    561      *  validated.
    562      *
    563      *  @detail  Validates the memory block passed to this function and
    564      *  appropriately performs the action of managing the free list of
    565      *  blocks by adding this block to the free list or deleting this
    566      *  or larger blocks from the free list.
    567      */
    568     void
    569     _M_validate(size_t* __addr) throw()
    570     {
    571       vector_type& __free_list = _M_get_free_list();
    572       const vector_type::size_type __max_size = 64;
    573       if (__free_list.size() >= __max_size)
    574 	{
    575 	  // Ok, the threshold value has been reached.  We determine
    576 	  // which block to remove from the list of free blocks.
    577 	  if (*__addr >= *__free_list.back())
    578 	    {
    579 	      // Ok, the new block is greater than or equal to the
    580 	      // last block in the list of free blocks. We just free
    581 	      // the new block.
    582 	      ::operator delete(static_cast<void*>(__addr));
    583 	      return;
    584 	    }
    585 	  else
    586 	    {
    587 	      // Deallocate the last block in the list of free lists,
    588 	      // and insert the new one in its correct position.
    589 	      ::operator delete(static_cast<void*>(__free_list.back()));
    590 	      __free_list.pop_back();
    591 	    }
    592 	}
    593 
    594       // Just add the block to the list of free lists unconditionally.
    595       iterator __temp = __detail::__lower_bound
    596 	(__free_list.begin(), __free_list.end(),
    597 	 *__addr, _LT_pointer_compare());
    598 
    599       // We may insert the new free list before _temp;
    600       __free_list.insert(__temp, __addr);
    601     }
    602 
    603     /** @brief  Decides whether the wastage of memory is acceptable for
    604      *  the current memory request and returns accordingly.
    605      *
    606      *  @param __block_size The size of the block available in the free
    607      *  list.
    608      *
    609      *  @param __required_size The required size of the memory block.
    610      *
    611      *  @return true if the wastage incurred is acceptable, else returns
    612      *  false.
    613      */
    614     bool
    615     _M_should_i_give(size_t __block_size,
    616 		     size_t __required_size) throw()
    617     {
    618       const size_t __max_wastage_percentage = 36;
    619       if (__block_size >= __required_size &&
    620 	  (((__block_size - __required_size) * 100 / __block_size)
    621 	   < __max_wastage_percentage))
    622 	return true;
    623       else
    624 	return false;
    625     }
    626 
    627   public:
    628     /** @brief This function returns the block of memory to the
    629      *  internal free list.
    630      *
    631      *  @param  __addr The pointer to the memory block that was given
    632      *  by a call to the _M_get function.
    633      */
    634     inline void
    635     _M_insert(size_t* __addr) throw()
    636     {
    637 #if defined __GTHREADS
    638       __scoped_lock __bfl_lock(_M_get_mutex());
    639 #endif
    640       // Call _M_validate to decide what should be done with
    641       // this particular free list.
    642       this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
    643       // See discussion as to why this is 1!
    644     }
    645 
    646     /** @brief  This function gets a block of memory of the specified
    647      *  size from the free list.
    648      *
    649      *  @param  __sz The size in bytes of the memory required.
    650      *
    651      *  @return  A pointer to the new memory block of size at least
    652      *  equal to that requested.
    653      */
    654     size_t*
    655     _M_get(size_t __sz) throw(std::bad_alloc);
    656 
    657     /** @brief  This function just clears the internal Free List, and
    658      *  gives back all the memory to the OS.
    659      */
    660     void
    661     _M_clear();
    662   };
    663 
    664 
    665   // Forward declare the class.
    666   template<typename _Tp>
    667     class bitmap_allocator;
    668 
    669   // Specialize for void:
    670   template<>
    671     class bitmap_allocator<void>
    672     {
    673     public:
    674       typedef void*       pointer;
    675       typedef const void* const_pointer;
    676 
    677       // Reference-to-void members are impossible.
    678       typedef void  value_type;
    679       template<typename _Tp1>
    680         struct rebind
    681 	{
    682 	  typedef bitmap_allocator<_Tp1> other;
    683 	};
    684     };
    685 
    686   /**
    687    * @brief Bitmap Allocator, primary template.
    688    * @ingroup allocators
    689    */
    690   template<typename _Tp>
    691     class bitmap_allocator : private free_list
    692     {
    693     public:
    694       typedef size_t    		size_type;
    695       typedef ptrdiff_t 		difference_type;
    696       typedef _Tp*        		pointer;
    697       typedef const _Tp*  		const_pointer;
    698       typedef _Tp&        		reference;
    699       typedef const _Tp&  		const_reference;
    700       typedef _Tp         		value_type;
    701       typedef free_list::__mutex_type 	__mutex_type;
    702 
    703       template<typename _Tp1>
    704         struct rebind
    705 	{
    706 	  typedef bitmap_allocator<_Tp1> other;
    707 	};
    708 
    709     private:
    710       template<size_t _BSize, size_t _AlignSize>
    711         struct aligned_size
    712 	{
    713 	  enum
    714 	    {
    715 	      modulus = _BSize % _AlignSize,
    716 	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
    717 	    };
    718 	};
    719 
    720       struct _Alloc_block
    721       {
    722 	char __M_unused[aligned_size<sizeof(value_type),
    723 			_BALLOC_ALIGN_BYTES>::value];
    724       };
    725 
    726 
    727       typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
    728 
    729       typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
    730       typedef typename _BPVector::iterator _BPiter;
    731 
    732       template<typename _Predicate>
    733         static _BPiter
    734         _S_find(_Predicate __p)
    735         {
    736 	  _BPiter __first = _S_mem_blocks.begin();
    737 	  while (__first != _S_mem_blocks.end() && !__p(*__first))
    738 	    ++__first;
    739 	  return __first;
    740 	}
    741 
    742 #if defined _GLIBCXX_DEBUG
    743       // Complexity: O(lg(N)). Where, N is the number of block of size
    744       // sizeof(value_type).
    745       void
    746       _S_check_for_free_blocks() throw()
    747       {
    748 	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    749 	_BPiter __bpi = _S_find(_FFF());
    750 
    751 	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
    752       }
    753 #endif
    754 
    755       /** @brief  Responsible for exponentially growing the internal
    756        *  memory pool.
    757        *
    758        *  @throw  std::bad_alloc. If memory can not be allocated.
    759        *
    760        *  @detail  Complexity: O(1), but internally depends upon the
    761        *  complexity of the function free_list::_M_get. The part where
    762        *  the bitmap headers are written has complexity: O(X),where X
    763        *  is the number of blocks of size sizeof(value_type) within
    764        *  the newly acquired block. Having a tight bound.
    765        */
    766       void
    767       _S_refill_pool() throw(std::bad_alloc)
    768       {
    769 #if defined _GLIBCXX_DEBUG
    770 	_S_check_for_free_blocks();
    771 #endif
    772 
    773 	const size_t __num_bitmaps = (_S_block_size
    774 				      / size_t(__detail::bits_per_block));
    775 	const size_t __size_to_allocate = sizeof(size_t)
    776 	  + _S_block_size * sizeof(_Alloc_block)
    777 	  + __num_bitmaps * sizeof(size_t);
    778 
    779 	size_t* __temp =
    780 	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
    781 	*__temp = 0;
    782 	++__temp;
    783 
    784 	// The Header information goes at the Beginning of the Block.
    785 	_Block_pair __bp =
    786 	  std::make_pair(reinterpret_cast<_Alloc_block*>
    787 			 (__temp + __num_bitmaps),
    788 			 reinterpret_cast<_Alloc_block*>
    789 			 (__temp + __num_bitmaps)
    790 			 + _S_block_size - 1);
    791 
    792 	// Fill the Vector with this information.
    793 	_S_mem_blocks.push_back(__bp);
    794 
    795 	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
    796 	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
    797 
    798 	_S_block_size *= 2;
    799       }
    800 
    801       static _BPVector _S_mem_blocks;
    802       static size_t _S_block_size;
    803       static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
    804       static typename _BPVector::size_type _S_last_dealloc_index;
    805 #if defined __GTHREADS
    806       static __mutex_type _S_mut;
    807 #endif
    808 
    809     public:
    810 
    811       /** @brief  Allocates memory for a single object of size
    812        *  sizeof(_Tp).
    813        *
    814        *  @throw  std::bad_alloc. If memory can not be allocated.
    815        *
    816        *  @detail  Complexity: Worst case complexity is O(N), but that
    817        *  is hardly ever hit. If and when this particular case is
    818        *  encountered, the next few cases are guaranteed to have a
    819        *  worst case complexity of O(1)!  That's why this function
    820        *  performs very well on average. You can consider this
    821        *  function to have a complexity referred to commonly as:
    822        *  Amortized Constant time.
    823        */
    824       pointer
    825       _M_allocate_single_object() throw(std::bad_alloc)
    826       {
    827 #if defined __GTHREADS
    828 	__scoped_lock __bit_lock(_S_mut);
    829 #endif
    830 
    831 	// The algorithm is something like this: The last_request
    832 	// variable points to the last accessed Bit Map. When such a
    833 	// condition occurs, we try to find a free block in the
    834 	// current bitmap, or succeeding bitmaps until the last bitmap
    835 	// is reached. If no free block turns up, we resort to First
    836 	// Fit method.
    837 
    838 	// WARNING: Do not re-order the condition in the while
    839 	// statement below, because it relies on C++'s short-circuit
    840 	// evaluation. The return from _S_last_request->_M_get() will
    841 	// NOT be dereference able if _S_last_request->_M_finished()
    842 	// returns true. This would inevitably lead to a NULL pointer
    843 	// dereference if tinkered with.
    844 	while (_S_last_request._M_finished() == false
    845 	       && (*(_S_last_request._M_get()) == 0))
    846 	  _S_last_request.operator++();
    847 
    848 	if (__builtin_expect(_S_last_request._M_finished() == true, false))
    849 	  {
    850 	    // Fall Back to First Fit algorithm.
    851 	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
    852 	    _FFF __fff;
    853 	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
    854 
    855 	    if (__bpi != _S_mem_blocks.end())
    856 	      {
    857 		// Search was successful. Ok, now mark the first bit from
    858 		// the right as 0, meaning Allocated. This bit is obtained
    859 		// by calling _M_get() on __fff.
    860 		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
    861 		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
    862 
    863 		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
    864 
    865 		// Now, get the address of the bit we marked as allocated.
    866 		pointer __ret = reinterpret_cast<pointer>
    867 		  (__bpi->first + __fff._M_offset() + __nz_bit);
    868 		size_t* __puse_count =
    869 		  reinterpret_cast<size_t*>
    870 		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
    871 
    872 		++(*__puse_count);
    873 		return __ret;
    874 	      }
    875 	    else
    876 	      {
    877 		// Search was unsuccessful. We Add more memory to the
    878 		// pool by calling _S_refill_pool().
    879 		_S_refill_pool();
    880 
    881 		// _M_Reset the _S_last_request structure to the first
    882 		// free block's bit map.
    883 		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
    884 
    885 		// Now, mark that bit as allocated.
    886 	      }
    887 	  }
    888 
    889 	// _S_last_request holds a pointer to a valid bit map, that
    890 	// points to a free block in memory.
    891 	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
    892 	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
    893 
    894 	pointer __ret = reinterpret_cast<pointer>
    895 	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
    896 
    897 	size_t* __puse_count = reinterpret_cast<size_t*>
    898 	  (_S_mem_blocks[_S_last_request._M_where()].first)
    899 	  - (__detail::
    900 	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
    901 
    902 	++(*__puse_count);
    903 	return __ret;
    904       }
    905 
    906       /** @brief  Deallocates memory that belongs to a single object of
    907        *  size sizeof(_Tp).
    908        *
    909        *  @detail  Complexity: O(lg(N)), but the worst case is not hit
    910        *  often!  This is because containers usually deallocate memory
    911        *  close to each other and this case is handled in O(1) time by
    912        *  the deallocate function.
    913        */
    914       void
    915       _M_deallocate_single_object(pointer __p) throw()
    916       {
    917 #if defined __GTHREADS
    918 	__scoped_lock __bit_lock(_S_mut);
    919 #endif
    920 	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
    921 
    922 	typedef typename _BPVector::iterator _Iterator;
    923 	typedef typename _BPVector::difference_type _Difference_type;
    924 
    925 	_Difference_type __diff;
    926 	long __displacement;
    927 
    928 	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    929 
    930 	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
    931 	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
    932 	  {
    933 	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
    934 				  <= _S_mem_blocks.size() - 1);
    935 
    936 	    // Initial Assumption was correct!
    937 	    __diff = _S_last_dealloc_index;
    938 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    939 	  }
    940 	else
    941 	  {
    942 	    _Iterator _iter = _S_find(__ibt);
    943 
    944 	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
    945 
    946 	    __diff = _iter - _S_mem_blocks.begin();
    947 	    __displacement = __real_p - _S_mem_blocks[__diff].first;
    948 	    _S_last_dealloc_index = __diff;
    949 	  }
    950 
    951 	// Get the position of the iterator that has been found.
    952 	const size_t __rotate = (__displacement
    953 				 % size_t(__detail::bits_per_block));
    954 	size_t* __bitmapC =
    955 	  reinterpret_cast<size_t*>
    956 	  (_S_mem_blocks[__diff].first) - 1;
    957 	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
    958 
    959 	__detail::__bit_free(__bitmapC, __rotate);
    960 	size_t* __puse_count = reinterpret_cast<size_t*>
    961 	  (_S_mem_blocks[__diff].first)
    962 	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
    963 
    964 	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
    965 
    966 	--(*__puse_count);
    967 
    968 	if (__builtin_expect(*__puse_count == 0, false))
    969 	  {
    970 	    _S_block_size /= 2;
    971 
    972 	    // We can safely remove this block.
    973 	    // _Block_pair __bp = _S_mem_blocks[__diff];
    974 	    this->_M_insert(__puse_count);
    975 	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
    976 
    977 	    // Reset the _S_last_request variable to reflect the
    978 	    // erased block. We do this to protect future requests
    979 	    // after the last block has been removed from a particular
    980 	    // memory Chunk, which in turn has been returned to the
    981 	    // free list, and hence had been erased from the vector,
    982 	    // so the size of the vector gets reduced by 1.
    983 	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
    984 	      _S_last_request._M_reset(__diff);
    985 
    986 	    // If the Index into the vector of the region of memory
    987 	    // that might hold the next address that will be passed to
    988 	    // deallocated may have been invalidated due to the above
    989 	    // erase procedure being called on the vector, hence we
    990 	    // try to restore this invariant too.
    991 	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
    992 	      {
    993 		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
    994 		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
    995 	      }
    996 	  }
    997       }
    998 
    999     public:
   1000       bitmap_allocator() throw()
   1001       { }
   1002 
   1003       bitmap_allocator(const bitmap_allocator&)
   1004       { }
   1005 
   1006       template<typename _Tp1>
   1007         bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
   1008         { }
   1009 
   1010       ~bitmap_allocator() throw()
   1011       { }
   1012 
   1013       pointer
   1014       allocate(size_type __n)
   1015       {
   1016 	if (__n > this->max_size())
   1017 	  std::__throw_bad_alloc();
   1018 
   1019 	if (__builtin_expect(__n == 1, true))
   1020 	  return this->_M_allocate_single_object();
   1021 	else
   1022 	  {
   1023 	    const size_type __b = __n * sizeof(value_type);
   1024 	    return reinterpret_cast<pointer>(::operator new(__b));
   1025 	  }
   1026       }
   1027 
   1028       pointer
   1029       allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
   1030       { return allocate(__n); }
   1031 
   1032       void
   1033       deallocate(pointer __p, size_type __n) throw()
   1034       {
   1035 	if (__builtin_expect(__p != 0, true))
   1036 	  {
   1037 	    if (__builtin_expect(__n == 1, true))
   1038 	      this->_M_deallocate_single_object(__p);
   1039 	    else
   1040 	      ::operator delete(__p);
   1041 	  }
   1042       }
   1043 
   1044       pointer
   1045       address(reference __r) const
   1046       { return std::__addressof(__r); }
   1047 
   1048       const_pointer
   1049       address(const_reference __r) const
   1050       { return std::__addressof(__r); }
   1051 
   1052       size_type
   1053       max_size() const throw()
   1054       { return size_type(-1) / sizeof(value_type); }
   1055 
   1056       void
   1057       construct(pointer __p, const_reference __data)
   1058       { ::new((void *)__p) value_type(__data); }
   1059 
   1060 #ifdef __GXX_EXPERIMENTAL_CXX0X__
   1061       template<typename... _Args>
   1062         void
   1063         construct(pointer __p, _Args&&... __args)
   1064 	{ ::new((void *)__p) _Tp(std::forward<_Args>(__args)...); }
   1065 #endif
   1066 
   1067       void
   1068       destroy(pointer __p)
   1069       { __p->~value_type(); }
   1070     };
   1071 
   1072   template<typename _Tp1, typename _Tp2>
   1073     bool
   1074     operator==(const bitmap_allocator<_Tp1>&,
   1075 	       const bitmap_allocator<_Tp2>&) throw()
   1076     { return true; }
   1077 
   1078   template<typename _Tp1, typename _Tp2>
   1079     bool
   1080     operator!=(const bitmap_allocator<_Tp1>&,
   1081 	       const bitmap_allocator<_Tp2>&) throw()
   1082   { return false; }
   1083 
   1084   // Static member definitions.
   1085   template<typename _Tp>
   1086     typename bitmap_allocator<_Tp>::_BPVector
   1087     bitmap_allocator<_Tp>::_S_mem_blocks;
   1088 
   1089   template<typename _Tp>
   1090     size_t bitmap_allocator<_Tp>::_S_block_size =
   1091     2 * size_t(__detail::bits_per_block);
   1092 
   1093   template<typename _Tp>
   1094     typename bitmap_allocator<_Tp>::_BPVector::size_type
   1095     bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
   1096 
   1097   template<typename _Tp>
   1098     __detail::_Bitmap_counter
   1099       <typename bitmap_allocator<_Tp>::_Alloc_block*>
   1100     bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
   1101 
   1102 #if defined __GTHREADS
   1103   template<typename _Tp>
   1104     typename bitmap_allocator<_Tp>::__mutex_type
   1105     bitmap_allocator<_Tp>::_S_mut;
   1106 #endif
   1107 
   1108 _GLIBCXX_END_NAMESPACE_VERSION
   1109 } // namespace __gnu_cxx
   1110 
   1111 #endif
   1112 
   1113