Home | History | Annotate | Download | only in Core
      1 // BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines BugReporter, a utility class for generating
     11 //  PathDiagnostics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
     16 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     18 #include "clang/AST/ASTContext.h"
     19 #include "clang/Analysis/CFG.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ParentMap.h"
     23 #include "clang/AST/StmtObjC.h"
     24 #include "clang/Basic/SourceManager.h"
     25 #include "clang/Analysis/ProgramPoint.h"
     26 #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/SmallString.h"
     30 #include "llvm/ADT/STLExtras.h"
     31 #include "llvm/ADT/OwningPtr.h"
     32 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     33 #include <queue>
     34 
     35 using namespace clang;
     36 using namespace ento;
     37 
     38 BugReporterVisitor::~BugReporterVisitor() {}
     39 
     40 void BugReporterContext::anchor() {}
     41 
     42 //===----------------------------------------------------------------------===//
     43 // Helper routines for walking the ExplodedGraph and fetching statements.
     44 //===----------------------------------------------------------------------===//
     45 
     46 static inline const Stmt *GetStmt(const ProgramPoint &P) {
     47   if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
     48     return SP->getStmt();
     49   else if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
     50     return BE->getSrc()->getTerminator();
     51   else if (const CallEnter *CE = dyn_cast<CallEnter>(&P))
     52     return CE->getCallExpr();
     53   else if (const CallExitEnd *CEE = dyn_cast<CallExitEnd>(&P))
     54     return CEE->getCalleeContext()->getCallSite();
     55 
     56   return 0;
     57 }
     58 
     59 static inline const ExplodedNode*
     60 GetPredecessorNode(const ExplodedNode *N) {
     61   return N->pred_empty() ? NULL : *(N->pred_begin());
     62 }
     63 
     64 static inline const ExplodedNode*
     65 GetSuccessorNode(const ExplodedNode *N) {
     66   return N->succ_empty() ? NULL : *(N->succ_begin());
     67 }
     68 
     69 static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
     70   for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
     71     if (const Stmt *S = GetStmt(N->getLocation()))
     72       return S;
     73 
     74   return 0;
     75 }
     76 
     77 static const Stmt *GetNextStmt(const ExplodedNode *N) {
     78   for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
     79     if (const Stmt *S = GetStmt(N->getLocation())) {
     80       // Check if the statement is '?' or '&&'/'||'.  These are "merges",
     81       // not actual statement points.
     82       switch (S->getStmtClass()) {
     83         case Stmt::ChooseExprClass:
     84         case Stmt::BinaryConditionalOperatorClass: continue;
     85         case Stmt::ConditionalOperatorClass: continue;
     86         case Stmt::BinaryOperatorClass: {
     87           BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
     88           if (Op == BO_LAnd || Op == BO_LOr)
     89             continue;
     90           break;
     91         }
     92         default:
     93           break;
     94       }
     95       return S;
     96     }
     97 
     98   return 0;
     99 }
    100 
    101 static inline const Stmt*
    102 GetCurrentOrPreviousStmt(const ExplodedNode *N) {
    103   if (const Stmt *S = GetStmt(N->getLocation()))
    104     return S;
    105 
    106   return GetPreviousStmt(N);
    107 }
    108 
    109 static inline const Stmt*
    110 GetCurrentOrNextStmt(const ExplodedNode *N) {
    111   if (const Stmt *S = GetStmt(N->getLocation()))
    112     return S;
    113 
    114   return GetNextStmt(N);
    115 }
    116 
    117 //===----------------------------------------------------------------------===//
    118 // Diagnostic cleanup.
    119 //===----------------------------------------------------------------------===//
    120 
    121 /// Recursively scan through a path and prune out calls and macros pieces
    122 /// that aren't needed.  Return true if afterwards the path contains
    123 /// "interesting stuff" which means it should be pruned from the parent path.
    124 bool BugReporter::RemoveUneededCalls(PathPieces &pieces, BugReport *R) {
    125   bool containsSomethingInteresting = false;
    126   const unsigned N = pieces.size();
    127 
    128   for (unsigned i = 0 ; i < N ; ++i) {
    129     // Remove the front piece from the path.  If it is still something we
    130     // want to keep once we are done, we will push it back on the end.
    131     IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
    132     pieces.pop_front();
    133 
    134     switch (piece->getKind()) {
    135       case PathDiagnosticPiece::Call: {
    136         PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
    137         // Check if the location context is interesting.
    138         assert(LocationContextMap.count(call));
    139         if (R->isInteresting(LocationContextMap[call])) {
    140           containsSomethingInteresting = true;
    141           break;
    142         }
    143         // Recursively clean out the subclass.  Keep this call around if
    144         // it contains any informative diagnostics.
    145         if (!RemoveUneededCalls(call->path, R))
    146           continue;
    147         containsSomethingInteresting = true;
    148         break;
    149       }
    150       case PathDiagnosticPiece::Macro: {
    151         PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
    152         if (!RemoveUneededCalls(macro->subPieces, R))
    153           continue;
    154         containsSomethingInteresting = true;
    155         break;
    156       }
    157       case PathDiagnosticPiece::Event: {
    158         PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
    159         // We never throw away an event, but we do throw it away wholesale
    160         // as part of a path if we throw the entire path away.
    161         containsSomethingInteresting |= !event->isPrunable();
    162         break;
    163       }
    164       case PathDiagnosticPiece::ControlFlow:
    165         break;
    166     }
    167 
    168     pieces.push_back(piece);
    169   }
    170 
    171   return containsSomethingInteresting;
    172 }
    173 
    174 //===----------------------------------------------------------------------===//
    175 // PathDiagnosticBuilder and its associated routines and helper objects.
    176 //===----------------------------------------------------------------------===//
    177 
    178 typedef llvm::DenseMap<const ExplodedNode*,
    179 const ExplodedNode*> NodeBackMap;
    180 
    181 namespace {
    182 class NodeMapClosure : public BugReport::NodeResolver {
    183   NodeBackMap& M;
    184 public:
    185   NodeMapClosure(NodeBackMap *m) : M(*m) {}
    186   ~NodeMapClosure() {}
    187 
    188   const ExplodedNode *getOriginalNode(const ExplodedNode *N) {
    189     NodeBackMap::iterator I = M.find(N);
    190     return I == M.end() ? 0 : I->second;
    191   }
    192 };
    193 
    194 class PathDiagnosticBuilder : public BugReporterContext {
    195   BugReport *R;
    196   PathDiagnosticConsumer *PDC;
    197   OwningPtr<ParentMap> PM;
    198   NodeMapClosure NMC;
    199 public:
    200   const LocationContext *LC;
    201 
    202   PathDiagnosticBuilder(GRBugReporter &br,
    203                         BugReport *r, NodeBackMap *Backmap,
    204                         PathDiagnosticConsumer *pdc)
    205     : BugReporterContext(br),
    206       R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
    207   {}
    208 
    209   PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
    210 
    211   PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
    212                                             const ExplodedNode *N);
    213 
    214   BugReport *getBugReport() { return R; }
    215 
    216   Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
    217 
    218   ParentMap& getParentMap() { return LC->getParentMap(); }
    219 
    220   const Stmt *getParent(const Stmt *S) {
    221     return getParentMap().getParent(S);
    222   }
    223 
    224   virtual NodeMapClosure& getNodeResolver() { return NMC; }
    225 
    226   PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
    227 
    228   PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
    229     return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
    230   }
    231 
    232   bool supportsLogicalOpControlFlow() const {
    233     return PDC ? PDC->supportsLogicalOpControlFlow() : true;
    234   }
    235 };
    236 } // end anonymous namespace
    237 
    238 PathDiagnosticLocation
    239 PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
    240   if (const Stmt *S = GetNextStmt(N))
    241     return PathDiagnosticLocation(S, getSourceManager(), LC);
    242 
    243   return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
    244                                                getSourceManager());
    245 }
    246 
    247 PathDiagnosticLocation
    248 PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
    249                                           const ExplodedNode *N) {
    250 
    251   // Slow, but probably doesn't matter.
    252   if (os.str().empty())
    253     os << ' ';
    254 
    255   const PathDiagnosticLocation &Loc = ExecutionContinues(N);
    256 
    257   if (Loc.asStmt())
    258     os << "Execution continues on line "
    259        << getSourceManager().getExpansionLineNumber(Loc.asLocation())
    260        << '.';
    261   else {
    262     os << "Execution jumps to the end of the ";
    263     const Decl *D = N->getLocationContext()->getDecl();
    264     if (isa<ObjCMethodDecl>(D))
    265       os << "method";
    266     else if (isa<FunctionDecl>(D))
    267       os << "function";
    268     else {
    269       assert(isa<BlockDecl>(D));
    270       os << "anonymous block";
    271     }
    272     os << '.';
    273   }
    274 
    275   return Loc;
    276 }
    277 
    278 static bool IsNested(const Stmt *S, ParentMap &PM) {
    279   if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
    280     return true;
    281 
    282   const Stmt *Parent = PM.getParentIgnoreParens(S);
    283 
    284   if (Parent)
    285     switch (Parent->getStmtClass()) {
    286       case Stmt::ForStmtClass:
    287       case Stmt::DoStmtClass:
    288       case Stmt::WhileStmtClass:
    289         return true;
    290       default:
    291         break;
    292     }
    293 
    294   return false;
    295 }
    296 
    297 PathDiagnosticLocation
    298 PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
    299   assert(S && "Null Stmt *passed to getEnclosingStmtLocation");
    300   ParentMap &P = getParentMap();
    301   SourceManager &SMgr = getSourceManager();
    302 
    303   while (IsNested(S, P)) {
    304     const Stmt *Parent = P.getParentIgnoreParens(S);
    305 
    306     if (!Parent)
    307       break;
    308 
    309     switch (Parent->getStmtClass()) {
    310       case Stmt::BinaryOperatorClass: {
    311         const BinaryOperator *B = cast<BinaryOperator>(Parent);
    312         if (B->isLogicalOp())
    313           return PathDiagnosticLocation(S, SMgr, LC);
    314         break;
    315       }
    316       case Stmt::CompoundStmtClass:
    317       case Stmt::StmtExprClass:
    318         return PathDiagnosticLocation(S, SMgr, LC);
    319       case Stmt::ChooseExprClass:
    320         // Similar to '?' if we are referring to condition, just have the edge
    321         // point to the entire choose expression.
    322         if (cast<ChooseExpr>(Parent)->getCond() == S)
    323           return PathDiagnosticLocation(Parent, SMgr, LC);
    324         else
    325           return PathDiagnosticLocation(S, SMgr, LC);
    326       case Stmt::BinaryConditionalOperatorClass:
    327       case Stmt::ConditionalOperatorClass:
    328         // For '?', if we are referring to condition, just have the edge point
    329         // to the entire '?' expression.
    330         if (cast<AbstractConditionalOperator>(Parent)->getCond() == S)
    331           return PathDiagnosticLocation(Parent, SMgr, LC);
    332         else
    333           return PathDiagnosticLocation(S, SMgr, LC);
    334       case Stmt::DoStmtClass:
    335           return PathDiagnosticLocation(S, SMgr, LC);
    336       case Stmt::ForStmtClass:
    337         if (cast<ForStmt>(Parent)->getBody() == S)
    338           return PathDiagnosticLocation(S, SMgr, LC);
    339         break;
    340       case Stmt::IfStmtClass:
    341         if (cast<IfStmt>(Parent)->getCond() != S)
    342           return PathDiagnosticLocation(S, SMgr, LC);
    343         break;
    344       case Stmt::ObjCForCollectionStmtClass:
    345         if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
    346           return PathDiagnosticLocation(S, SMgr, LC);
    347         break;
    348       case Stmt::WhileStmtClass:
    349         if (cast<WhileStmt>(Parent)->getCond() != S)
    350           return PathDiagnosticLocation(S, SMgr, LC);
    351         break;
    352       default:
    353         break;
    354     }
    355 
    356     S = Parent;
    357   }
    358 
    359   assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
    360 
    361   // Special case: DeclStmts can appear in for statement declarations, in which
    362   //  case the ForStmt is the context.
    363   if (isa<DeclStmt>(S)) {
    364     if (const Stmt *Parent = P.getParent(S)) {
    365       switch (Parent->getStmtClass()) {
    366         case Stmt::ForStmtClass:
    367         case Stmt::ObjCForCollectionStmtClass:
    368           return PathDiagnosticLocation(Parent, SMgr, LC);
    369         default:
    370           break;
    371       }
    372     }
    373   }
    374   else if (isa<BinaryOperator>(S)) {
    375     // Special case: the binary operator represents the initialization
    376     // code in a for statement (this can happen when the variable being
    377     // initialized is an old variable.
    378     if (const ForStmt *FS =
    379           dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
    380       if (FS->getInit() == S)
    381         return PathDiagnosticLocation(FS, SMgr, LC);
    382     }
    383   }
    384 
    385   return PathDiagnosticLocation(S, SMgr, LC);
    386 }
    387 
    388 //===----------------------------------------------------------------------===//
    389 // "Minimal" path diagnostic generation algorithm.
    390 //===----------------------------------------------------------------------===//
    391 typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
    392 typedef SmallVector<StackDiagPair, 6> StackDiagVector;
    393 
    394 static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
    395                                          StackDiagVector &CallStack) {
    396   // If the piece contains a special message, add it to all the call
    397   // pieces on the active stack.
    398   if (PathDiagnosticEventPiece *ep =
    399         dyn_cast<PathDiagnosticEventPiece>(P)) {
    400 
    401     if (ep->hasCallStackHint())
    402       for (StackDiagVector::iterator I = CallStack.begin(),
    403                                      E = CallStack.end(); I != E; ++I) {
    404         PathDiagnosticCallPiece *CP = I->first;
    405         const ExplodedNode *N = I->second;
    406         std::string stackMsg = ep->getCallStackMessage(N);
    407 
    408         // The last message on the path to final bug is the most important
    409         // one. Since we traverse the path backwards, do not add the message
    410         // if one has been previously added.
    411         if  (!CP->hasCallStackMessage())
    412           CP->setCallStackMessage(stackMsg);
    413       }
    414   }
    415 }
    416 
    417 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
    418 
    419 static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
    420                                           PathDiagnosticBuilder &PDB,
    421                                           const ExplodedNode *N,
    422                                       ArrayRef<BugReporterVisitor *> visitors) {
    423 
    424   SourceManager& SMgr = PDB.getSourceManager();
    425   const LocationContext *LC = PDB.LC;
    426   const ExplodedNode *NextNode = N->pred_empty()
    427                                         ? NULL : *(N->pred_begin());
    428 
    429   StackDiagVector CallStack;
    430 
    431   while (NextNode) {
    432     N = NextNode;
    433     PDB.LC = N->getLocationContext();
    434     NextNode = GetPredecessorNode(N);
    435 
    436     ProgramPoint P = N->getLocation();
    437 
    438     do {
    439       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
    440         PathDiagnosticCallPiece *C =
    441             PathDiagnosticCallPiece::construct(N, *CE, SMgr);
    442         GRBugReporter& BR = PDB.getBugReporter();
    443         BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
    444         PD.getActivePath().push_front(C);
    445         PD.pushActivePath(&C->path);
    446         CallStack.push_back(StackDiagPair(C, N));
    447         break;
    448       }
    449 
    450       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
    451         // Flush all locations, and pop the active path.
    452         bool VisitedEntireCall = PD.isWithinCall();
    453         PD.popActivePath();
    454 
    455         // Either we just added a bunch of stuff to the top-level path, or
    456         // we have a previous CallExitEnd.  If the former, it means that the
    457         // path terminated within a function call.  We must then take the
    458         // current contents of the active path and place it within
    459         // a new PathDiagnosticCallPiece.
    460         PathDiagnosticCallPiece *C;
    461         if (VisitedEntireCall) {
    462           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
    463         } else {
    464           const Decl *Caller = CE->getLocationContext()->getDecl();
    465           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
    466           GRBugReporter& BR = PDB.getBugReporter();
    467           BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
    468         }
    469 
    470         C->setCallee(*CE, SMgr);
    471         if (!CallStack.empty()) {
    472           assert(CallStack.back().first == C);
    473           CallStack.pop_back();
    474         }
    475         break;
    476       }
    477 
    478       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
    479         const CFGBlock *Src = BE->getSrc();
    480         const CFGBlock *Dst = BE->getDst();
    481         const Stmt *T = Src->getTerminator();
    482 
    483         if (!T)
    484           break;
    485 
    486         PathDiagnosticLocation Start =
    487             PathDiagnosticLocation::createBegin(T, SMgr,
    488                 N->getLocationContext());
    489 
    490         switch (T->getStmtClass()) {
    491         default:
    492           break;
    493 
    494         case Stmt::GotoStmtClass:
    495         case Stmt::IndirectGotoStmtClass: {
    496           const Stmt *S = GetNextStmt(N);
    497 
    498           if (!S)
    499             break;
    500 
    501           std::string sbuf;
    502           llvm::raw_string_ostream os(sbuf);
    503           const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
    504 
    505           os << "Control jumps to line "
    506               << End.asLocation().getExpansionLineNumber();
    507           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    508               Start, End, os.str()));
    509           break;
    510         }
    511 
    512         case Stmt::SwitchStmtClass: {
    513           // Figure out what case arm we took.
    514           std::string sbuf;
    515           llvm::raw_string_ostream os(sbuf);
    516 
    517           if (const Stmt *S = Dst->getLabel()) {
    518             PathDiagnosticLocation End(S, SMgr, LC);
    519 
    520             switch (S->getStmtClass()) {
    521             default:
    522               os << "No cases match in the switch statement. "
    523               "Control jumps to line "
    524               << End.asLocation().getExpansionLineNumber();
    525               break;
    526             case Stmt::DefaultStmtClass:
    527               os << "Control jumps to the 'default' case at line "
    528               << End.asLocation().getExpansionLineNumber();
    529               break;
    530 
    531             case Stmt::CaseStmtClass: {
    532               os << "Control jumps to 'case ";
    533               const CaseStmt *Case = cast<CaseStmt>(S);
    534               const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
    535 
    536               // Determine if it is an enum.
    537               bool GetRawInt = true;
    538 
    539               if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
    540                 // FIXME: Maybe this should be an assertion.  Are there cases
    541                 // were it is not an EnumConstantDecl?
    542                 const EnumConstantDecl *D =
    543                     dyn_cast<EnumConstantDecl>(DR->getDecl());
    544 
    545                 if (D) {
    546                   GetRawInt = false;
    547                   os << *D;
    548                 }
    549               }
    550 
    551               if (GetRawInt)
    552                 os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
    553 
    554               os << ":'  at line "
    555                   << End.asLocation().getExpansionLineNumber();
    556               break;
    557             }
    558             }
    559             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    560                 Start, End, os.str()));
    561           }
    562           else {
    563             os << "'Default' branch taken. ";
    564             const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
    565             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    566                 Start, End, os.str()));
    567           }
    568 
    569           break;
    570         }
    571 
    572         case Stmt::BreakStmtClass:
    573         case Stmt::ContinueStmtClass: {
    574           std::string sbuf;
    575           llvm::raw_string_ostream os(sbuf);
    576           PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    577           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    578               Start, End, os.str()));
    579           break;
    580         }
    581 
    582         // Determine control-flow for ternary '?'.
    583         case Stmt::BinaryConditionalOperatorClass:
    584         case Stmt::ConditionalOperatorClass: {
    585           std::string sbuf;
    586           llvm::raw_string_ostream os(sbuf);
    587           os << "'?' condition is ";
    588 
    589           if (*(Src->succ_begin()+1) == Dst)
    590             os << "false";
    591           else
    592             os << "true";
    593 
    594           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    595 
    596           if (const Stmt *S = End.asStmt())
    597             End = PDB.getEnclosingStmtLocation(S);
    598 
    599           PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    600               Start, End, os.str()));
    601           break;
    602         }
    603 
    604         // Determine control-flow for short-circuited '&&' and '||'.
    605         case Stmt::BinaryOperatorClass: {
    606           if (!PDB.supportsLogicalOpControlFlow())
    607             break;
    608 
    609           const BinaryOperator *B = cast<BinaryOperator>(T);
    610           std::string sbuf;
    611           llvm::raw_string_ostream os(sbuf);
    612           os << "Left side of '";
    613 
    614           if (B->getOpcode() == BO_LAnd) {
    615             os << "&&" << "' is ";
    616 
    617             if (*(Src->succ_begin()+1) == Dst) {
    618               os << "false";
    619               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    620               PathDiagnosticLocation Start =
    621                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    622               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    623                   Start, End, os.str()));
    624             }
    625             else {
    626               os << "true";
    627               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    628               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    629               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    630                   Start, End, os.str()));
    631             }
    632           }
    633           else {
    634             assert(B->getOpcode() == BO_LOr);
    635             os << "||" << "' is ";
    636 
    637             if (*(Src->succ_begin()+1) == Dst) {
    638               os << "false";
    639               PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
    640               PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    641               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    642                   Start, End, os.str()));
    643             }
    644             else {
    645               os << "true";
    646               PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
    647               PathDiagnosticLocation Start =
    648                   PathDiagnosticLocation::createOperatorLoc(B, SMgr);
    649               PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    650                   Start, End, os.str()));
    651             }
    652           }
    653 
    654           break;
    655         }
    656 
    657         case Stmt::DoStmtClass:  {
    658           if (*(Src->succ_begin()) == Dst) {
    659             std::string sbuf;
    660             llvm::raw_string_ostream os(sbuf);
    661 
    662             os << "Loop condition is true. ";
    663             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    664 
    665             if (const Stmt *S = End.asStmt())
    666               End = PDB.getEnclosingStmtLocation(S);
    667 
    668             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    669                 Start, End, os.str()));
    670           }
    671           else {
    672             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    673 
    674             if (const Stmt *S = End.asStmt())
    675               End = PDB.getEnclosingStmtLocation(S);
    676 
    677             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    678                 Start, End, "Loop condition is false.  Exiting loop"));
    679           }
    680 
    681           break;
    682         }
    683 
    684         case Stmt::WhileStmtClass:
    685         case Stmt::ForStmtClass: {
    686           if (*(Src->succ_begin()+1) == Dst) {
    687             std::string sbuf;
    688             llvm::raw_string_ostream os(sbuf);
    689 
    690             os << "Loop condition is false. ";
    691             PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
    692             if (const Stmt *S = End.asStmt())
    693               End = PDB.getEnclosingStmtLocation(S);
    694 
    695             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    696                 Start, End, os.str()));
    697           }
    698           else {
    699             PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    700             if (const Stmt *S = End.asStmt())
    701               End = PDB.getEnclosingStmtLocation(S);
    702 
    703             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    704                 Start, End, "Loop condition is true.  Entering loop body"));
    705           }
    706 
    707           break;
    708         }
    709 
    710         case Stmt::IfStmtClass: {
    711           PathDiagnosticLocation End = PDB.ExecutionContinues(N);
    712 
    713           if (const Stmt *S = End.asStmt())
    714             End = PDB.getEnclosingStmtLocation(S);
    715 
    716           if (*(Src->succ_begin()+1) == Dst)
    717             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    718                 Start, End, "Taking false branch"));
    719           else
    720             PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
    721                 Start, End, "Taking true branch"));
    722 
    723           break;
    724         }
    725         }
    726       }
    727     } while(0);
    728 
    729     if (NextNode) {
    730       // Add diagnostic pieces from custom visitors.
    731       BugReport *R = PDB.getBugReport();
    732       for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
    733                                                     E = visitors.end();
    734            I != E; ++I) {
    735         if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
    736           PD.getActivePath().push_front(p);
    737           updateStackPiecesWithMessage(p, CallStack);
    738         }
    739       }
    740     }
    741   }
    742 
    743   // After constructing the full PathDiagnostic, do a pass over it to compact
    744   // PathDiagnosticPieces that occur within a macro.
    745   CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
    746 }
    747 
    748 //===----------------------------------------------------------------------===//
    749 // "Extensive" PathDiagnostic generation.
    750 //===----------------------------------------------------------------------===//
    751 
    752 static bool IsControlFlowExpr(const Stmt *S) {
    753   const Expr *E = dyn_cast<Expr>(S);
    754 
    755   if (!E)
    756     return false;
    757 
    758   E = E->IgnoreParenCasts();
    759 
    760   if (isa<AbstractConditionalOperator>(E))
    761     return true;
    762 
    763   if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
    764     if (B->isLogicalOp())
    765       return true;
    766 
    767   return false;
    768 }
    769 
    770 namespace {
    771 class ContextLocation : public PathDiagnosticLocation {
    772   bool IsDead;
    773 public:
    774   ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
    775     : PathDiagnosticLocation(L), IsDead(isdead) {}
    776 
    777   void markDead() { IsDead = true; }
    778   bool isDead() const { return IsDead; }
    779 };
    780 
    781 class EdgeBuilder {
    782   std::vector<ContextLocation> CLocs;
    783   typedef std::vector<ContextLocation>::iterator iterator;
    784   PathDiagnostic &PD;
    785   PathDiagnosticBuilder &PDB;
    786   PathDiagnosticLocation PrevLoc;
    787 
    788   bool IsConsumedExpr(const PathDiagnosticLocation &L);
    789 
    790   bool containsLocation(const PathDiagnosticLocation &Container,
    791                         const PathDiagnosticLocation &Containee);
    792 
    793   PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
    794 
    795   PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
    796                                          bool firstCharOnly = false) {
    797     if (const Stmt *S = L.asStmt()) {
    798       const Stmt *Original = S;
    799       while (1) {
    800         // Adjust the location for some expressions that are best referenced
    801         // by one of their subexpressions.
    802         switch (S->getStmtClass()) {
    803           default:
    804             break;
    805           case Stmt::ParenExprClass:
    806           case Stmt::GenericSelectionExprClass:
    807             S = cast<Expr>(S)->IgnoreParens();
    808             firstCharOnly = true;
    809             continue;
    810           case Stmt::BinaryConditionalOperatorClass:
    811           case Stmt::ConditionalOperatorClass:
    812             S = cast<AbstractConditionalOperator>(S)->getCond();
    813             firstCharOnly = true;
    814             continue;
    815           case Stmt::ChooseExprClass:
    816             S = cast<ChooseExpr>(S)->getCond();
    817             firstCharOnly = true;
    818             continue;
    819           case Stmt::BinaryOperatorClass:
    820             S = cast<BinaryOperator>(S)->getLHS();
    821             firstCharOnly = true;
    822             continue;
    823         }
    824 
    825         break;
    826       }
    827 
    828       if (S != Original)
    829         L = PathDiagnosticLocation(S, L.getManager(), PDB.LC);
    830     }
    831 
    832     if (firstCharOnly)
    833       L  = PathDiagnosticLocation::createSingleLocation(L);
    834 
    835     return L;
    836   }
    837 
    838   void popLocation() {
    839     if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
    840       // For contexts, we only one the first character as the range.
    841       rawAddEdge(cleanUpLocation(CLocs.back(), true));
    842     }
    843     CLocs.pop_back();
    844   }
    845 
    846 public:
    847   EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
    848     : PD(pd), PDB(pdb) {
    849 
    850       // If the PathDiagnostic already has pieces, add the enclosing statement
    851       // of the first piece as a context as well.
    852       if (!PD.path.empty()) {
    853         PrevLoc = (*PD.path.begin())->getLocation();
    854 
    855         if (const Stmt *S = PrevLoc.asStmt())
    856           addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
    857       }
    858   }
    859 
    860   ~EdgeBuilder() {
    861     while (!CLocs.empty()) popLocation();
    862 
    863     // Finally, add an initial edge from the start location of the first
    864     // statement (if it doesn't already exist).
    865     PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
    866                                                        PDB.LC,
    867                                                        PDB.getSourceManager());
    868     if (L.isValid())
    869       rawAddEdge(L);
    870   }
    871 
    872   void flushLocations() {
    873     while (!CLocs.empty())
    874       popLocation();
    875     PrevLoc = PathDiagnosticLocation();
    876   }
    877 
    878   void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
    879 
    880   void rawAddEdge(PathDiagnosticLocation NewLoc);
    881 
    882   void addContext(const Stmt *S);
    883   void addContext(const PathDiagnosticLocation &L);
    884   void addExtendedContext(const Stmt *S);
    885 };
    886 } // end anonymous namespace
    887 
    888 
    889 PathDiagnosticLocation
    890 EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
    891   if (const Stmt *S = L.asStmt()) {
    892     if (IsControlFlowExpr(S))
    893       return L;
    894 
    895     return PDB.getEnclosingStmtLocation(S);
    896   }
    897 
    898   return L;
    899 }
    900 
    901 bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
    902                                    const PathDiagnosticLocation &Containee) {
    903 
    904   if (Container == Containee)
    905     return true;
    906 
    907   if (Container.asDecl())
    908     return true;
    909 
    910   if (const Stmt *S = Containee.asStmt())
    911     if (const Stmt *ContainerS = Container.asStmt()) {
    912       while (S) {
    913         if (S == ContainerS)
    914           return true;
    915         S = PDB.getParent(S);
    916       }
    917       return false;
    918     }
    919 
    920   // Less accurate: compare using source ranges.
    921   SourceRange ContainerR = Container.asRange();
    922   SourceRange ContaineeR = Containee.asRange();
    923 
    924   SourceManager &SM = PDB.getSourceManager();
    925   SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
    926   SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
    927   SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
    928   SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
    929 
    930   unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
    931   unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
    932   unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
    933   unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
    934 
    935   assert(ContainerBegLine <= ContainerEndLine);
    936   assert(ContaineeBegLine <= ContaineeEndLine);
    937 
    938   return (ContainerBegLine <= ContaineeBegLine &&
    939           ContainerEndLine >= ContaineeEndLine &&
    940           (ContainerBegLine != ContaineeBegLine ||
    941            SM.getExpansionColumnNumber(ContainerRBeg) <=
    942            SM.getExpansionColumnNumber(ContaineeRBeg)) &&
    943           (ContainerEndLine != ContaineeEndLine ||
    944            SM.getExpansionColumnNumber(ContainerREnd) >=
    945            SM.getExpansionColumnNumber(ContaineeREnd)));
    946 }
    947 
    948 void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
    949   if (!PrevLoc.isValid()) {
    950     PrevLoc = NewLoc;
    951     return;
    952   }
    953 
    954   const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
    955   const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
    956 
    957   if (NewLocClean.asLocation() == PrevLocClean.asLocation())
    958     return;
    959 
    960   // FIXME: Ignore intra-macro edges for now.
    961   if (NewLocClean.asLocation().getExpansionLoc() ==
    962       PrevLocClean.asLocation().getExpansionLoc())
    963     return;
    964 
    965   PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
    966   PrevLoc = NewLoc;
    967 }
    968 
    969 void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
    970 
    971   if (!alwaysAdd && NewLoc.asLocation().isMacroID())
    972     return;
    973 
    974   const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
    975 
    976   while (!CLocs.empty()) {
    977     ContextLocation &TopContextLoc = CLocs.back();
    978 
    979     // Is the top location context the same as the one for the new location?
    980     if (TopContextLoc == CLoc) {
    981       if (alwaysAdd) {
    982         if (IsConsumedExpr(TopContextLoc) &&
    983             !IsControlFlowExpr(TopContextLoc.asStmt()))
    984             TopContextLoc.markDead();
    985 
    986         rawAddEdge(NewLoc);
    987       }
    988 
    989       return;
    990     }
    991 
    992     if (containsLocation(TopContextLoc, CLoc)) {
    993       if (alwaysAdd) {
    994         rawAddEdge(NewLoc);
    995 
    996         if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
    997           CLocs.push_back(ContextLocation(CLoc, true));
    998           return;
    999         }
   1000       }
   1001 
   1002       CLocs.push_back(CLoc);
   1003       return;
   1004     }
   1005 
   1006     // Context does not contain the location.  Flush it.
   1007     popLocation();
   1008   }
   1009 
   1010   // If we reach here, there is no enclosing context.  Just add the edge.
   1011   rawAddEdge(NewLoc);
   1012 }
   1013 
   1014 bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
   1015   if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
   1016     return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
   1017 
   1018   return false;
   1019 }
   1020 
   1021 void EdgeBuilder::addExtendedContext(const Stmt *S) {
   1022   if (!S)
   1023     return;
   1024 
   1025   const Stmt *Parent = PDB.getParent(S);
   1026   while (Parent) {
   1027     if (isa<CompoundStmt>(Parent))
   1028       Parent = PDB.getParent(Parent);
   1029     else
   1030       break;
   1031   }
   1032 
   1033   if (Parent) {
   1034     switch (Parent->getStmtClass()) {
   1035       case Stmt::DoStmtClass:
   1036       case Stmt::ObjCAtSynchronizedStmtClass:
   1037         addContext(Parent);
   1038       default:
   1039         break;
   1040     }
   1041   }
   1042 
   1043   addContext(S);
   1044 }
   1045 
   1046 void EdgeBuilder::addContext(const Stmt *S) {
   1047   if (!S)
   1048     return;
   1049 
   1050   PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
   1051   addContext(L);
   1052 }
   1053 
   1054 void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
   1055   while (!CLocs.empty()) {
   1056     const PathDiagnosticLocation &TopContextLoc = CLocs.back();
   1057 
   1058     // Is the top location context the same as the one for the new location?
   1059     if (TopContextLoc == L)
   1060       return;
   1061 
   1062     if (containsLocation(TopContextLoc, L)) {
   1063       CLocs.push_back(L);
   1064       return;
   1065     }
   1066 
   1067     // Context does not contain the location.  Flush it.
   1068     popLocation();
   1069   }
   1070 
   1071   CLocs.push_back(L);
   1072 }
   1073 
   1074 // Cone-of-influence: support the reverse propagation of "interesting" symbols
   1075 // and values by tracing interesting calculations backwards through evaluated
   1076 // expressions along a path.  This is probably overly complicated, but the idea
   1077 // is that if an expression computed an "interesting" value, the child
   1078 // expressions are are also likely to be "interesting" as well (which then
   1079 // propagates to the values they in turn compute).  This reverse propagation
   1080 // is needed to track interesting correlations across function call boundaries,
   1081 // where formal arguments bind to actual arguments, etc.  This is also needed
   1082 // because the constraint solver sometimes simplifies certain symbolic values
   1083 // into constants when appropriate, and this complicates reasoning about
   1084 // interesting values.
   1085 typedef llvm::DenseSet<const Expr *> InterestingExprs;
   1086 
   1087 static void reversePropagateIntererstingSymbols(BugReport &R,
   1088                                                 InterestingExprs &IE,
   1089                                                 const ProgramState *State,
   1090                                                 const Expr *Ex,
   1091                                                 const LocationContext *LCtx) {
   1092   SVal V = State->getSVal(Ex, LCtx);
   1093   if (!(R.isInteresting(V) || IE.count(Ex)))
   1094     return;
   1095 
   1096   switch (Ex->getStmtClass()) {
   1097     default:
   1098       if (!isa<CastExpr>(Ex))
   1099         break;
   1100       // Fall through.
   1101     case Stmt::BinaryOperatorClass:
   1102     case Stmt::UnaryOperatorClass: {
   1103       for (Stmt::const_child_iterator CI = Ex->child_begin(),
   1104             CE = Ex->child_end();
   1105             CI != CE; ++CI) {
   1106         if (const Expr *child = dyn_cast_or_null<Expr>(*CI)) {
   1107           IE.insert(child);
   1108           SVal ChildV = State->getSVal(child, LCtx);
   1109           R.markInteresting(ChildV);
   1110         }
   1111         break;
   1112       }
   1113     }
   1114   }
   1115 
   1116   R.markInteresting(V);
   1117 }
   1118 
   1119 static void reversePropagateInterestingSymbols(BugReport &R,
   1120                                                InterestingExprs &IE,
   1121                                                const ProgramState *State,
   1122                                                const LocationContext *CalleeCtx,
   1123                                                const LocationContext *CallerCtx)
   1124 {
   1125   // FIXME: Handle non-CallExpr-based CallEvents.
   1126   const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
   1127   const Stmt *CallSite = Callee->getCallSite();
   1128   if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
   1129     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
   1130       FunctionDecl::param_const_iterator PI = FD->param_begin(),
   1131                                          PE = FD->param_end();
   1132       CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
   1133       for (; AI != AE && PI != PE; ++AI, ++PI) {
   1134         if (const Expr *ArgE = *AI) {
   1135           if (const ParmVarDecl *PD = *PI) {
   1136             Loc LV = State->getLValue(PD, CalleeCtx);
   1137             if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
   1138               IE.insert(ArgE);
   1139           }
   1140         }
   1141       }
   1142     }
   1143   }
   1144 }
   1145 
   1146 static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
   1147                                             PathDiagnosticBuilder &PDB,
   1148                                             const ExplodedNode *N,
   1149                                       ArrayRef<BugReporterVisitor *> visitors) {
   1150   EdgeBuilder EB(PD, PDB);
   1151   const SourceManager& SM = PDB.getSourceManager();
   1152   StackDiagVector CallStack;
   1153   InterestingExprs IE;
   1154 
   1155   const ExplodedNode *NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
   1156   while (NextNode) {
   1157     N = NextNode;
   1158     NextNode = GetPredecessorNode(N);
   1159     ProgramPoint P = N->getLocation();
   1160 
   1161     do {
   1162       if (const PostStmt *PS = dyn_cast<PostStmt>(&P)) {
   1163         if (const Expr *Ex = PS->getStmtAs<Expr>())
   1164           reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1165                                               N->getState().getPtr(), Ex,
   1166                                               N->getLocationContext());
   1167       }
   1168 
   1169       if (const CallExitEnd *CE = dyn_cast<CallExitEnd>(&P)) {
   1170         const Stmt *S = CE->getCalleeContext()->getCallSite();
   1171         if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
   1172             reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
   1173                                                 N->getState().getPtr(), Ex,
   1174                                                 N->getLocationContext());
   1175         }
   1176 
   1177         PathDiagnosticCallPiece *C =
   1178           PathDiagnosticCallPiece::construct(N, *CE, SM);
   1179         GRBugReporter& BR = PDB.getBugReporter();
   1180         BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
   1181 
   1182         EB.addEdge(C->callReturn, true);
   1183         EB.flushLocations();
   1184 
   1185         PD.getActivePath().push_front(C);
   1186         PD.pushActivePath(&C->path);
   1187         CallStack.push_back(StackDiagPair(C, N));
   1188         break;
   1189       }
   1190 
   1191       // Pop the call hierarchy if we are done walking the contents
   1192       // of a function call.
   1193       if (const CallEnter *CE = dyn_cast<CallEnter>(&P)) {
   1194         // Add an edge to the start of the function.
   1195         const Decl *D = CE->getCalleeContext()->getDecl();
   1196         PathDiagnosticLocation pos =
   1197           PathDiagnosticLocation::createBegin(D, SM);
   1198         EB.addEdge(pos);
   1199 
   1200         // Flush all locations, and pop the active path.
   1201         bool VisitedEntireCall = PD.isWithinCall();
   1202         EB.flushLocations();
   1203         PD.popActivePath();
   1204         PDB.LC = N->getLocationContext();
   1205 
   1206         // Either we just added a bunch of stuff to the top-level path, or
   1207         // we have a previous CallExitEnd.  If the former, it means that the
   1208         // path terminated within a function call.  We must then take the
   1209         // current contents of the active path and place it within
   1210         // a new PathDiagnosticCallPiece.
   1211         PathDiagnosticCallPiece *C;
   1212         if (VisitedEntireCall) {
   1213           C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
   1214         } else {
   1215           const Decl *Caller = CE->getLocationContext()->getDecl();
   1216           C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
   1217           GRBugReporter& BR = PDB.getBugReporter();
   1218           BR.addCallPieceLocationContextPair(C, CE->getCalleeContext());
   1219         }
   1220 
   1221         C->setCallee(*CE, SM);
   1222         EB.addContext(C->getLocation());
   1223 
   1224         if (!CallStack.empty()) {
   1225           assert(CallStack.back().first == C);
   1226           CallStack.pop_back();
   1227         }
   1228         break;
   1229       }
   1230 
   1231       // Note that is important that we update the LocationContext
   1232       // after looking at CallExits.  CallExit basically adds an
   1233       // edge in the *caller*, so we don't want to update the LocationContext
   1234       // too soon.
   1235       PDB.LC = N->getLocationContext();
   1236 
   1237       // Block edges.
   1238       if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
   1239         // Does this represent entering a call?  If so, look at propagating
   1240         // interesting symbols across call boundaries.
   1241         if (NextNode) {
   1242           const LocationContext *CallerCtx = NextNode->getLocationContext();
   1243           const LocationContext *CalleeCtx = PDB.LC;
   1244           if (CallerCtx != CalleeCtx) {
   1245             reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
   1246                                                N->getState().getPtr(),
   1247                                                CalleeCtx, CallerCtx);
   1248           }
   1249         }
   1250 
   1251         const CFGBlock &Blk = *BE->getSrc();
   1252         const Stmt *Term = Blk.getTerminator();
   1253 
   1254         // Are we jumping to the head of a loop?  Add a special diagnostic.
   1255         if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
   1256           PathDiagnosticLocation L(Loop, SM, PDB.LC);
   1257           const CompoundStmt *CS = NULL;
   1258 
   1259           if (!Term) {
   1260             if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
   1261               CS = dyn_cast<CompoundStmt>(FS->getBody());
   1262             else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
   1263               CS = dyn_cast<CompoundStmt>(WS->getBody());
   1264           }
   1265 
   1266           PathDiagnosticEventPiece *p =
   1267             new PathDiagnosticEventPiece(L,
   1268                                         "Looping back to the head of the loop");
   1269           p->setPrunable(true);
   1270 
   1271           EB.addEdge(p->getLocation(), true);
   1272           PD.getActivePath().push_front(p);
   1273 
   1274           if (CS) {
   1275             PathDiagnosticLocation BL =
   1276               PathDiagnosticLocation::createEndBrace(CS, SM);
   1277             EB.addEdge(BL);
   1278           }
   1279         }
   1280 
   1281         if (Term)
   1282           EB.addContext(Term);
   1283 
   1284         break;
   1285       }
   1286 
   1287       if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
   1288         if (const CFGStmt *S = BE->getFirstElement().getAs<CFGStmt>()) {
   1289           const Stmt *stmt = S->getStmt();
   1290           if (IsControlFlowExpr(stmt)) {
   1291             // Add the proper context for '&&', '||', and '?'.
   1292             EB.addContext(stmt);
   1293           }
   1294           else
   1295             EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
   1296         }
   1297 
   1298         break;
   1299       }
   1300 
   1301 
   1302     } while (0);
   1303 
   1304     if (!NextNode)
   1305       continue;
   1306 
   1307     // Add pieces from custom visitors.
   1308     BugReport *R = PDB.getBugReport();
   1309     for (ArrayRef<BugReporterVisitor *>::iterator I = visitors.begin(),
   1310                                                   E = visitors.end();
   1311          I != E; ++I) {
   1312       if (PathDiagnosticPiece *p = (*I)->VisitNode(N, NextNode, PDB, *R)) {
   1313         const PathDiagnosticLocation &Loc = p->getLocation();
   1314         EB.addEdge(Loc, true);
   1315         PD.getActivePath().push_front(p);
   1316         updateStackPiecesWithMessage(p, CallStack);
   1317 
   1318         if (const Stmt *S = Loc.asStmt())
   1319           EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
   1320       }
   1321     }
   1322   }
   1323 }
   1324 
   1325 //===----------------------------------------------------------------------===//
   1326 // Methods for BugType and subclasses.
   1327 //===----------------------------------------------------------------------===//
   1328 BugType::~BugType() { }
   1329 
   1330 void BugType::FlushReports(BugReporter &BR) {}
   1331 
   1332 void BuiltinBug::anchor() {}
   1333 
   1334 //===----------------------------------------------------------------------===//
   1335 // Methods for BugReport and subclasses.
   1336 //===----------------------------------------------------------------------===//
   1337 
   1338 void BugReport::NodeResolver::anchor() {}
   1339 
   1340 void BugReport::addVisitor(BugReporterVisitor* visitor) {
   1341   if (!visitor)
   1342     return;
   1343 
   1344   llvm::FoldingSetNodeID ID;
   1345   visitor->Profile(ID);
   1346   void *InsertPos;
   1347 
   1348   if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
   1349     delete visitor;
   1350     return;
   1351   }
   1352 
   1353   CallbacksSet.InsertNode(visitor, InsertPos);
   1354   Callbacks.push_back(visitor);
   1355   ++ConfigurationChangeToken;
   1356 }
   1357 
   1358 BugReport::~BugReport() {
   1359   for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I) {
   1360     delete *I;
   1361   }
   1362   while (!interestingSymbols.empty()) {
   1363     popInterestingSymbolsAndRegions();
   1364   }
   1365 }
   1366 
   1367 const Decl *BugReport::getDeclWithIssue() const {
   1368   if (DeclWithIssue)
   1369     return DeclWithIssue;
   1370 
   1371   const ExplodedNode *N = getErrorNode();
   1372   if (!N)
   1373     return 0;
   1374 
   1375   const LocationContext *LC = N->getLocationContext();
   1376   return LC->getCurrentStackFrame()->getDecl();
   1377 }
   1378 
   1379 void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
   1380   hash.AddPointer(&BT);
   1381   hash.AddString(Description);
   1382   if (UniqueingLocation.isValid()) {
   1383     UniqueingLocation.Profile(hash);
   1384   } else if (Location.isValid()) {
   1385     Location.Profile(hash);
   1386   } else {
   1387     assert(ErrorNode);
   1388     hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
   1389   }
   1390 
   1391   for (SmallVectorImpl<SourceRange>::const_iterator I =
   1392       Ranges.begin(), E = Ranges.end(); I != E; ++I) {
   1393     const SourceRange range = *I;
   1394     if (!range.isValid())
   1395       continue;
   1396     hash.AddInteger(range.getBegin().getRawEncoding());
   1397     hash.AddInteger(range.getEnd().getRawEncoding());
   1398   }
   1399 }
   1400 
   1401 void BugReport::markInteresting(SymbolRef sym) {
   1402   if (!sym)
   1403     return;
   1404 
   1405   // If the symbol wasn't already in our set, note a configuration change.
   1406   if (getInterestingSymbols().insert(sym).second)
   1407     ++ConfigurationChangeToken;
   1408 
   1409   if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
   1410     getInterestingRegions().insert(meta->getRegion());
   1411 }
   1412 
   1413 void BugReport::markInteresting(const MemRegion *R) {
   1414   if (!R)
   1415     return;
   1416 
   1417   // If the base region wasn't already in our set, note a configuration change.
   1418   R = R->getBaseRegion();
   1419   if (getInterestingRegions().insert(R).second)
   1420     ++ConfigurationChangeToken;
   1421 
   1422   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   1423     getInterestingSymbols().insert(SR->getSymbol());
   1424 }
   1425 
   1426 void BugReport::markInteresting(SVal V) {
   1427   markInteresting(V.getAsRegion());
   1428   markInteresting(V.getAsSymbol());
   1429 }
   1430 
   1431 void BugReport::markInteresting(const LocationContext *LC) {
   1432   if (!LC)
   1433     return;
   1434   InterestingLocationContexts.insert(LC);
   1435 }
   1436 
   1437 bool BugReport::isInteresting(SVal V) {
   1438   return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
   1439 }
   1440 
   1441 bool BugReport::isInteresting(SymbolRef sym) {
   1442   if (!sym)
   1443     return false;
   1444   // We don't currently consider metadata symbols to be interesting
   1445   // even if we know their region is interesting. Is that correct behavior?
   1446   return getInterestingSymbols().count(sym);
   1447 }
   1448 
   1449 bool BugReport::isInteresting(const MemRegion *R) {
   1450   if (!R)
   1451     return false;
   1452   R = R->getBaseRegion();
   1453   bool b = getInterestingRegions().count(R);
   1454   if (b)
   1455     return true;
   1456   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
   1457     return getInterestingSymbols().count(SR->getSymbol());
   1458   return false;
   1459 }
   1460 
   1461 bool BugReport::isInteresting(const LocationContext *LC) {
   1462   if (!LC)
   1463     return false;
   1464   return InterestingLocationContexts.count(LC);
   1465 }
   1466 
   1467 void BugReport::lazyInitializeInterestingSets() {
   1468   if (interestingSymbols.empty()) {
   1469     interestingSymbols.push_back(new Symbols());
   1470     interestingRegions.push_back(new Regions());
   1471   }
   1472 }
   1473 
   1474 BugReport::Symbols &BugReport::getInterestingSymbols() {
   1475   lazyInitializeInterestingSets();
   1476   return *interestingSymbols.back();
   1477 }
   1478 
   1479 BugReport::Regions &BugReport::getInterestingRegions() {
   1480   lazyInitializeInterestingSets();
   1481   return *interestingRegions.back();
   1482 }
   1483 
   1484 void BugReport::pushInterestingSymbolsAndRegions() {
   1485   interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
   1486   interestingRegions.push_back(new Regions(getInterestingRegions()));
   1487 }
   1488 
   1489 void BugReport::popInterestingSymbolsAndRegions() {
   1490   delete interestingSymbols.back();
   1491   interestingSymbols.pop_back();
   1492   delete interestingRegions.back();
   1493   interestingRegions.pop_back();
   1494 }
   1495 
   1496 const Stmt *BugReport::getStmt() const {
   1497   if (!ErrorNode)
   1498     return 0;
   1499 
   1500   ProgramPoint ProgP = ErrorNode->getLocation();
   1501   const Stmt *S = NULL;
   1502 
   1503   if (BlockEntrance *BE = dyn_cast<BlockEntrance>(&ProgP)) {
   1504     CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
   1505     if (BE->getBlock() == &Exit)
   1506       S = GetPreviousStmt(ErrorNode);
   1507   }
   1508   if (!S)
   1509     S = GetStmt(ProgP);
   1510 
   1511   return S;
   1512 }
   1513 
   1514 std::pair<BugReport::ranges_iterator, BugReport::ranges_iterator>
   1515 BugReport::getRanges() {
   1516     // If no custom ranges, add the range of the statement corresponding to
   1517     // the error node.
   1518     if (Ranges.empty()) {
   1519       if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
   1520         addRange(E->getSourceRange());
   1521       else
   1522         return std::make_pair(ranges_iterator(), ranges_iterator());
   1523     }
   1524 
   1525     // User-specified absence of range info.
   1526     if (Ranges.size() == 1 && !Ranges.begin()->isValid())
   1527       return std::make_pair(ranges_iterator(), ranges_iterator());
   1528 
   1529     return std::make_pair(Ranges.begin(), Ranges.end());
   1530 }
   1531 
   1532 PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
   1533   if (ErrorNode) {
   1534     assert(!Location.isValid() &&
   1535      "Either Location or ErrorNode should be specified but not both.");
   1536 
   1537     if (const Stmt *S = GetCurrentOrPreviousStmt(ErrorNode)) {
   1538       const LocationContext *LC = ErrorNode->getLocationContext();
   1539 
   1540       // For member expressions, return the location of the '.' or '->'.
   1541       if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
   1542         return PathDiagnosticLocation::createMemberLoc(ME, SM);
   1543       // For binary operators, return the location of the operator.
   1544       if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
   1545         return PathDiagnosticLocation::createOperatorLoc(B, SM);
   1546 
   1547       return PathDiagnosticLocation::createBegin(S, SM, LC);
   1548     }
   1549   } else {
   1550     assert(Location.isValid());
   1551     return Location;
   1552   }
   1553 
   1554   return PathDiagnosticLocation();
   1555 }
   1556 
   1557 //===----------------------------------------------------------------------===//
   1558 // Methods for BugReporter and subclasses.
   1559 //===----------------------------------------------------------------------===//
   1560 
   1561 BugReportEquivClass::~BugReportEquivClass() { }
   1562 GRBugReporter::~GRBugReporter() { }
   1563 BugReporterData::~BugReporterData() {}
   1564 
   1565 ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
   1566 
   1567 ProgramStateManager&
   1568 GRBugReporter::getStateManager() { return Eng.getStateManager(); }
   1569 
   1570 BugReporter::~BugReporter() {
   1571   FlushReports();
   1572 
   1573   // Free the bug reports we are tracking.
   1574   typedef std::vector<BugReportEquivClass *> ContTy;
   1575   for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
   1576        I != E; ++I) {
   1577     delete *I;
   1578   }
   1579 }
   1580 
   1581 void BugReporter::FlushReports() {
   1582   if (BugTypes.isEmpty())
   1583     return;
   1584 
   1585   // First flush the warnings for each BugType.  This may end up creating new
   1586   // warnings and new BugTypes.
   1587   // FIXME: Only NSErrorChecker needs BugType's FlushReports.
   1588   // Turn NSErrorChecker into a proper checker and remove this.
   1589   SmallVector<const BugType*, 16> bugTypes;
   1590   for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
   1591     bugTypes.push_back(*I);
   1592   for (SmallVector<const BugType*, 16>::iterator
   1593          I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
   1594     const_cast<BugType*>(*I)->FlushReports(*this);
   1595 
   1596   // We need to flush reports in deterministic order to ensure the order
   1597   // of the reports is consistent between runs.
   1598   typedef std::vector<BugReportEquivClass *> ContVecTy;
   1599   for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
   1600        EI != EE; ++EI){
   1601     BugReportEquivClass& EQ = **EI;
   1602     FlushReport(EQ);
   1603   }
   1604 
   1605   // BugReporter owns and deletes only BugTypes created implicitly through
   1606   // EmitBasicReport.
   1607   // FIXME: There are leaks from checkers that assume that the BugTypes they
   1608   // create will be destroyed by the BugReporter.
   1609   for (llvm::StringMap<BugType*>::iterator
   1610          I = StrBugTypes.begin(), E = StrBugTypes.end(); I != E; ++I)
   1611     delete I->second;
   1612 
   1613   // Remove all references to the BugType objects.
   1614   BugTypes = F.getEmptySet();
   1615 }
   1616 
   1617 //===----------------------------------------------------------------------===//
   1618 // PathDiagnostics generation.
   1619 //===----------------------------------------------------------------------===//
   1620 
   1621 static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
   1622                  std::pair<ExplodedNode*, unsigned> >
   1623 MakeReportGraph(const ExplodedGraph* G,
   1624                 SmallVectorImpl<const ExplodedNode*> &nodes) {
   1625 
   1626   // Create the trimmed graph.  It will contain the shortest paths from the
   1627   // error nodes to the root.  In the new graph we should only have one
   1628   // error node unless there are two or more error nodes with the same minimum
   1629   // path length.
   1630   ExplodedGraph* GTrim;
   1631   InterExplodedGraphMap* NMap;
   1632 
   1633   llvm::DenseMap<const void*, const void*> InverseMap;
   1634   llvm::tie(GTrim, NMap) = G->Trim(nodes.data(), nodes.data() + nodes.size(),
   1635                                    &InverseMap);
   1636 
   1637   // Create owning pointers for GTrim and NMap just to ensure that they are
   1638   // released when this function exists.
   1639   OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
   1640   OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
   1641 
   1642   // Find the (first) error node in the trimmed graph.  We just need to consult
   1643   // the node map (NMap) which maps from nodes in the original graph to nodes
   1644   // in the new graph.
   1645 
   1646   std::queue<const ExplodedNode*> WS;
   1647   typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
   1648   IndexMapTy IndexMap;
   1649 
   1650   for (unsigned nodeIndex = 0 ; nodeIndex < nodes.size(); ++nodeIndex) {
   1651     const ExplodedNode *originalNode = nodes[nodeIndex];
   1652     if (const ExplodedNode *N = NMap->getMappedNode(originalNode)) {
   1653       WS.push(N);
   1654       IndexMap[originalNode] = nodeIndex;
   1655     }
   1656   }
   1657 
   1658   assert(!WS.empty() && "No error node found in the trimmed graph.");
   1659 
   1660   // Create a new (third!) graph with a single path.  This is the graph
   1661   // that will be returned to the caller.
   1662   ExplodedGraph *GNew = new ExplodedGraph();
   1663 
   1664   // Sometimes the trimmed graph can contain a cycle.  Perform a reverse BFS
   1665   // to the root node, and then construct a new graph that contains only
   1666   // a single path.
   1667   llvm::DenseMap<const void*,unsigned> Visited;
   1668 
   1669   unsigned cnt = 0;
   1670   const ExplodedNode *Root = 0;
   1671 
   1672   while (!WS.empty()) {
   1673     const ExplodedNode *Node = WS.front();
   1674     WS.pop();
   1675 
   1676     if (Visited.find(Node) != Visited.end())
   1677       continue;
   1678 
   1679     Visited[Node] = cnt++;
   1680 
   1681     if (Node->pred_empty()) {
   1682       Root = Node;
   1683       break;
   1684     }
   1685 
   1686     for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
   1687          E=Node->pred_end(); I!=E; ++I)
   1688       WS.push(*I);
   1689   }
   1690 
   1691   assert(Root);
   1692 
   1693   // Now walk from the root down the BFS path, always taking the successor
   1694   // with the lowest number.
   1695   ExplodedNode *Last = 0, *First = 0;
   1696   NodeBackMap *BM = new NodeBackMap();
   1697   unsigned NodeIndex = 0;
   1698 
   1699   for ( const ExplodedNode *N = Root ;;) {
   1700     // Lookup the number associated with the current node.
   1701     llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
   1702     assert(I != Visited.end());
   1703 
   1704     // Create the equivalent node in the new graph with the same state
   1705     // and location.
   1706     ExplodedNode *NewN = GNew->getNode(N->getLocation(), N->getState());
   1707 
   1708     // Store the mapping to the original node.
   1709     llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
   1710     assert(IMitr != InverseMap.end() && "No mapping to original node.");
   1711     (*BM)[NewN] = (const ExplodedNode*) IMitr->second;
   1712 
   1713     // Link up the new node with the previous node.
   1714     if (Last)
   1715       NewN->addPredecessor(Last, *GNew);
   1716 
   1717     Last = NewN;
   1718 
   1719     // Are we at the final node?
   1720     IndexMapTy::iterator IMI =
   1721       IndexMap.find((const ExplodedNode*)(IMitr->second));
   1722     if (IMI != IndexMap.end()) {
   1723       First = NewN;
   1724       NodeIndex = IMI->second;
   1725       break;
   1726     }
   1727 
   1728     // Find the next successor node.  We choose the node that is marked
   1729     // with the lowest DFS number.
   1730     ExplodedNode::const_succ_iterator SI = N->succ_begin();
   1731     ExplodedNode::const_succ_iterator SE = N->succ_end();
   1732     N = 0;
   1733 
   1734     for (unsigned MinVal = 0; SI != SE; ++SI) {
   1735 
   1736       I = Visited.find(*SI);
   1737 
   1738       if (I == Visited.end())
   1739         continue;
   1740 
   1741       if (!N || I->second < MinVal) {
   1742         N = *SI;
   1743         MinVal = I->second;
   1744       }
   1745     }
   1746 
   1747     assert(N);
   1748   }
   1749 
   1750   assert(First);
   1751 
   1752   return std::make_pair(std::make_pair(GNew, BM),
   1753                         std::make_pair(First, NodeIndex));
   1754 }
   1755 
   1756 /// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
   1757 ///  and collapses PathDiagosticPieces that are expanded by macros.
   1758 static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
   1759   typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
   1760                                 SourceLocation> > MacroStackTy;
   1761 
   1762   typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
   1763           PiecesTy;
   1764 
   1765   MacroStackTy MacroStack;
   1766   PiecesTy Pieces;
   1767 
   1768   for (PathPieces::const_iterator I = path.begin(), E = path.end();
   1769        I!=E; ++I) {
   1770 
   1771     PathDiagnosticPiece *piece = I->getPtr();
   1772 
   1773     // Recursively compact calls.
   1774     if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
   1775       CompactPathDiagnostic(call->path, SM);
   1776     }
   1777 
   1778     // Get the location of the PathDiagnosticPiece.
   1779     const FullSourceLoc Loc = piece->getLocation().asLocation();
   1780 
   1781     // Determine the instantiation location, which is the location we group
   1782     // related PathDiagnosticPieces.
   1783     SourceLocation InstantiationLoc = Loc.isMacroID() ?
   1784                                       SM.getExpansionLoc(Loc) :
   1785                                       SourceLocation();
   1786 
   1787     if (Loc.isFileID()) {
   1788       MacroStack.clear();
   1789       Pieces.push_back(piece);
   1790       continue;
   1791     }
   1792 
   1793     assert(Loc.isMacroID());
   1794 
   1795     // Is the PathDiagnosticPiece within the same macro group?
   1796     if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
   1797       MacroStack.back().first->subPieces.push_back(piece);
   1798       continue;
   1799     }
   1800 
   1801     // We aren't in the same group.  Are we descending into a new macro
   1802     // or are part of an old one?
   1803     IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
   1804 
   1805     SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
   1806                                           SM.getExpansionLoc(Loc) :
   1807                                           SourceLocation();
   1808 
   1809     // Walk the entire macro stack.
   1810     while (!MacroStack.empty()) {
   1811       if (InstantiationLoc == MacroStack.back().second) {
   1812         MacroGroup = MacroStack.back().first;
   1813         break;
   1814       }
   1815 
   1816       if (ParentInstantiationLoc == MacroStack.back().second) {
   1817         MacroGroup = MacroStack.back().first;
   1818         break;
   1819       }
   1820 
   1821       MacroStack.pop_back();
   1822     }
   1823 
   1824     if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
   1825       // Create a new macro group and add it to the stack.
   1826       PathDiagnosticMacroPiece *NewGroup =
   1827         new PathDiagnosticMacroPiece(
   1828           PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
   1829 
   1830       if (MacroGroup)
   1831         MacroGroup->subPieces.push_back(NewGroup);
   1832       else {
   1833         assert(InstantiationLoc.isFileID());
   1834         Pieces.push_back(NewGroup);
   1835       }
   1836 
   1837       MacroGroup = NewGroup;
   1838       MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
   1839     }
   1840 
   1841     // Finally, add the PathDiagnosticPiece to the group.
   1842     MacroGroup->subPieces.push_back(piece);
   1843   }
   1844 
   1845   // Now take the pieces and construct a new PathDiagnostic.
   1846   path.clear();
   1847 
   1848   for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I)
   1849     path.push_back(*I);
   1850 }
   1851 
   1852 void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
   1853                                            PathDiagnosticConsumer &PC,
   1854                                            ArrayRef<BugReport *> &bugReports) {
   1855 
   1856   assert(!bugReports.empty());
   1857   SmallVector<const ExplodedNode *, 10> errorNodes;
   1858   for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
   1859                                       E = bugReports.end(); I != E; ++I) {
   1860       errorNodes.push_back((*I)->getErrorNode());
   1861   }
   1862 
   1863   // Construct a new graph that contains only a single path from the error
   1864   // node to a root.
   1865   const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
   1866   std::pair<ExplodedNode*, unsigned> >&
   1867     GPair = MakeReportGraph(&getGraph(), errorNodes);
   1868 
   1869   // Find the BugReport with the original location.
   1870   assert(GPair.second.second < bugReports.size());
   1871   BugReport *R = bugReports[GPair.second.second];
   1872   assert(R && "No original report found for sliced graph.");
   1873 
   1874   OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
   1875   OwningPtr<NodeBackMap> BackMap(GPair.first.second);
   1876   const ExplodedNode *N = GPair.second.first;
   1877 
   1878   // Start building the path diagnostic...
   1879   PathDiagnosticBuilder PDB(*this, R, BackMap.get(), &PC);
   1880 
   1881   // Register additional node visitors.
   1882   R->addVisitor(new NilReceiverBRVisitor());
   1883   R->addVisitor(new ConditionBRVisitor());
   1884 
   1885   BugReport::VisitorList visitors;
   1886   unsigned originalReportConfigToken, finalReportConfigToken;
   1887 
   1888   // While generating diagnostics, it's possible the visitors will decide
   1889   // new symbols and regions are interesting, or add other visitors based on
   1890   // the information they find. If they do, we need to regenerate the path
   1891   // based on our new report configuration.
   1892   do {
   1893     // Get a clean copy of all the visitors.
   1894     for (BugReport::visitor_iterator I = R->visitor_begin(),
   1895                                      E = R->visitor_end(); I != E; ++I)
   1896        visitors.push_back((*I)->clone());
   1897 
   1898     // Clear out the active path from any previous work.
   1899     PD.resetPath();
   1900     originalReportConfigToken = R->getConfigurationChangeToken();
   1901 
   1902     // Generate the very last diagnostic piece - the piece is visible before
   1903     // the trace is expanded.
   1904     PathDiagnosticPiece *LastPiece = 0;
   1905     for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
   1906          I != E; ++I) {
   1907       if (PathDiagnosticPiece *Piece = (*I)->getEndPath(PDB, N, *R)) {
   1908         assert (!LastPiece &&
   1909                 "There can only be one final piece in a diagnostic.");
   1910         LastPiece = Piece;
   1911       }
   1912     }
   1913     if (!LastPiece)
   1914       LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
   1915     if (LastPiece)
   1916       PD.setEndOfPath(LastPiece);
   1917     else
   1918       return;
   1919 
   1920     switch (PDB.getGenerationScheme()) {
   1921     case PathDiagnosticConsumer::Extensive:
   1922       GenerateExtensivePathDiagnostic(PD, PDB, N, visitors);
   1923       break;
   1924     case PathDiagnosticConsumer::Minimal:
   1925       GenerateMinimalPathDiagnostic(PD, PDB, N, visitors);
   1926       break;
   1927     case PathDiagnosticConsumer::None:
   1928       llvm_unreachable("PathDiagnosticConsumer::None should never appear here");
   1929     }
   1930 
   1931     // Clean up the visitors we used.
   1932     llvm::DeleteContainerPointers(visitors);
   1933 
   1934     // Did anything change while generating this path?
   1935     finalReportConfigToken = R->getConfigurationChangeToken();
   1936   } while(finalReportConfigToken != originalReportConfigToken);
   1937 
   1938   // Finally, prune the diagnostic path of uninteresting stuff.
   1939   if (R->shouldPrunePath()) {
   1940     bool hasSomethingInteresting = RemoveUneededCalls(PD.getMutablePieces(), R);
   1941     assert(hasSomethingInteresting);
   1942     (void) hasSomethingInteresting;
   1943   }
   1944 }
   1945 
   1946 void BugReporter::Register(BugType *BT) {
   1947   BugTypes = F.add(BugTypes, BT);
   1948 }
   1949 
   1950 void BugReporter::EmitReport(BugReport* R) {
   1951   // Compute the bug report's hash to determine its equivalence class.
   1952   llvm::FoldingSetNodeID ID;
   1953   R->Profile(ID);
   1954 
   1955   // Lookup the equivance class.  If there isn't one, create it.
   1956   BugType& BT = R->getBugType();
   1957   Register(&BT);
   1958   void *InsertPos;
   1959   BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
   1960 
   1961   if (!EQ) {
   1962     EQ = new BugReportEquivClass(R);
   1963     EQClasses.InsertNode(EQ, InsertPos);
   1964     EQClassesVector.push_back(EQ);
   1965   }
   1966   else
   1967     EQ->AddReport(R);
   1968 }
   1969 
   1970 
   1971 //===----------------------------------------------------------------------===//
   1972 // Emitting reports in equivalence classes.
   1973 //===----------------------------------------------------------------------===//
   1974 
   1975 namespace {
   1976 struct FRIEC_WLItem {
   1977   const ExplodedNode *N;
   1978   ExplodedNode::const_succ_iterator I, E;
   1979 
   1980   FRIEC_WLItem(const ExplodedNode *n)
   1981   : N(n), I(N->succ_begin()), E(N->succ_end()) {}
   1982 };
   1983 }
   1984 
   1985 static BugReport *
   1986 FindReportInEquivalenceClass(BugReportEquivClass& EQ,
   1987                              SmallVectorImpl<BugReport*> &bugReports) {
   1988 
   1989   BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
   1990   assert(I != E);
   1991   BugType& BT = I->getBugType();
   1992 
   1993   // If we don't need to suppress any of the nodes because they are
   1994   // post-dominated by a sink, simply add all the nodes in the equivalence class
   1995   // to 'Nodes'.  Any of the reports will serve as a "representative" report.
   1996   if (!BT.isSuppressOnSink()) {
   1997     BugReport *R = I;
   1998     for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
   1999       const ExplodedNode *N = I->getErrorNode();
   2000       if (N) {
   2001         R = I;
   2002         bugReports.push_back(R);
   2003       }
   2004     }
   2005     return R;
   2006   }
   2007 
   2008   // For bug reports that should be suppressed when all paths are post-dominated
   2009   // by a sink node, iterate through the reports in the equivalence class
   2010   // until we find one that isn't post-dominated (if one exists).  We use a
   2011   // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
   2012   // this as a recursive function, but we don't want to risk blowing out the
   2013   // stack for very long paths.
   2014   BugReport *exampleReport = 0;
   2015 
   2016   for (; I != E; ++I) {
   2017     const ExplodedNode *errorNode = I->getErrorNode();
   2018 
   2019     if (!errorNode)
   2020       continue;
   2021     if (errorNode->isSink()) {
   2022       llvm_unreachable(
   2023            "BugType::isSuppressSink() should not be 'true' for sink end nodes");
   2024     }
   2025     // No successors?  By definition this nodes isn't post-dominated by a sink.
   2026     if (errorNode->succ_empty()) {
   2027       bugReports.push_back(I);
   2028       if (!exampleReport)
   2029         exampleReport = I;
   2030       continue;
   2031     }
   2032 
   2033     // At this point we know that 'N' is not a sink and it has at least one
   2034     // successor.  Use a DFS worklist to find a non-sink end-of-path node.
   2035     typedef FRIEC_WLItem WLItem;
   2036     typedef SmallVector<WLItem, 10> DFSWorkList;
   2037     llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
   2038 
   2039     DFSWorkList WL;
   2040     WL.push_back(errorNode);
   2041     Visited[errorNode] = 1;
   2042 
   2043     while (!WL.empty()) {
   2044       WLItem &WI = WL.back();
   2045       assert(!WI.N->succ_empty());
   2046 
   2047       for (; WI.I != WI.E; ++WI.I) {
   2048         const ExplodedNode *Succ = *WI.I;
   2049         // End-of-path node?
   2050         if (Succ->succ_empty()) {
   2051           // If we found an end-of-path node that is not a sink.
   2052           if (!Succ->isSink()) {
   2053             bugReports.push_back(I);
   2054             if (!exampleReport)
   2055               exampleReport = I;
   2056             WL.clear();
   2057             break;
   2058           }
   2059           // Found a sink?  Continue on to the next successor.
   2060           continue;
   2061         }
   2062         // Mark the successor as visited.  If it hasn't been explored,
   2063         // enqueue it to the DFS worklist.
   2064         unsigned &mark = Visited[Succ];
   2065         if (!mark) {
   2066           mark = 1;
   2067           WL.push_back(Succ);
   2068           break;
   2069         }
   2070       }
   2071 
   2072       // The worklist may have been cleared at this point.  First
   2073       // check if it is empty before checking the last item.
   2074       if (!WL.empty() && &WL.back() == &WI)
   2075         WL.pop_back();
   2076     }
   2077   }
   2078 
   2079   // ExampleReport will be NULL if all the nodes in the equivalence class
   2080   // were post-dominated by sinks.
   2081   return exampleReport;
   2082 }
   2083 
   2084 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
   2085   SmallVector<BugReport*, 10> bugReports;
   2086   BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
   2087   if (exampleReport) {
   2088     const PathDiagnosticConsumers &C = getPathDiagnosticConsumers();
   2089     for (PathDiagnosticConsumers::const_iterator I=C.begin(),
   2090                                                  E=C.end(); I != E; ++I) {
   2091       FlushReport(exampleReport, **I, bugReports);
   2092     }
   2093   }
   2094 }
   2095 
   2096 void BugReporter::FlushReport(BugReport *exampleReport,
   2097                               PathDiagnosticConsumer &PD,
   2098                               ArrayRef<BugReport*> bugReports) {
   2099 
   2100   // FIXME: Make sure we use the 'R' for the path that was actually used.
   2101   // Probably doesn't make a difference in practice.
   2102   BugType& BT = exampleReport->getBugType();
   2103 
   2104   OwningPtr<PathDiagnostic>
   2105     D(new PathDiagnostic(exampleReport->getDeclWithIssue(),
   2106                          exampleReport->getBugType().getName(),
   2107                          exampleReport->getDescription(),
   2108                          exampleReport->getShortDescription(/*Fallback=*/false),
   2109                          BT.getCategory()));
   2110 
   2111   // Generate the full path diagnostic, using the generation scheme
   2112   // specified by the PathDiagnosticConsumer.
   2113   if (PD.getGenerationScheme() != PathDiagnosticConsumer::None) {
   2114     if (!bugReports.empty())
   2115       GeneratePathDiagnostic(*D.get(), PD, bugReports);
   2116   }
   2117 
   2118   // If the path is empty, generate a single step path with the location
   2119   // of the issue.
   2120   if (D->path.empty()) {
   2121     PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
   2122     PathDiagnosticPiece *piece =
   2123       new PathDiagnosticEventPiece(L, exampleReport->getDescription());
   2124     BugReport::ranges_iterator Beg, End;
   2125     llvm::tie(Beg, End) = exampleReport->getRanges();
   2126     for ( ; Beg != End; ++Beg)
   2127       piece->addRange(*Beg);
   2128     D->setEndOfPath(piece);
   2129   }
   2130 
   2131   // Get the meta data.
   2132   const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
   2133   for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
   2134                                                 e = Meta.end(); i != e; ++i) {
   2135     D->addMeta(*i);
   2136   }
   2137 
   2138   PD.HandlePathDiagnostic(D.take());
   2139 }
   2140 
   2141 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
   2142                                   StringRef name,
   2143                                   StringRef category,
   2144                                   StringRef str, PathDiagnosticLocation Loc,
   2145                                   SourceRange* RBeg, unsigned NumRanges) {
   2146 
   2147   // 'BT' is owned by BugReporter.
   2148   BugType *BT = getBugTypeForName(name, category);
   2149   BugReport *R = new BugReport(*BT, str, Loc);
   2150   R->setDeclWithIssue(DeclWithIssue);
   2151   for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
   2152   EmitReport(R);
   2153 }
   2154 
   2155 BugType *BugReporter::getBugTypeForName(StringRef name,
   2156                                         StringRef category) {
   2157   SmallString<136> fullDesc;
   2158   llvm::raw_svector_ostream(fullDesc) << name << ":" << category;
   2159   llvm::StringMapEntry<BugType *> &
   2160       entry = StrBugTypes.GetOrCreateValue(fullDesc);
   2161   BugType *BT = entry.getValue();
   2162   if (!BT) {
   2163     BT = new BugType(name, category);
   2164     entry.setValue(BT);
   2165   }
   2166   return BT;
   2167 }
   2168