Home | History | Annotate | Download | only in JIT
      1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines a MachineCodeEmitter object that is used by the JIT to
     11 // write machine code to memory and remember where relocatable values are.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "JIT.h"
     17 #include "JITDwarfEmitter.h"
     18 #include "llvm/ADT/OwningPtr.h"
     19 #include "llvm/Constants.h"
     20 #include "llvm/DebugInfo.h"
     21 #include "llvm/DerivedTypes.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/CodeGen/JITCodeEmitter.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineCodeInfo.h"
     26 #include "llvm/CodeGen/MachineConstantPool.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfo.h"
     29 #include "llvm/CodeGen/MachineRelocation.h"
     30 #include "llvm/ExecutionEngine/GenericValue.h"
     31 #include "llvm/ExecutionEngine/JITEventListener.h"
     32 #include "llvm/ExecutionEngine/JITMemoryManager.h"
     33 #include "llvm/Target/TargetData.h"
     34 #include "llvm/Target/TargetInstrInfo.h"
     35 #include "llvm/Target/TargetJITInfo.h"
     36 #include "llvm/Target/TargetMachine.h"
     37 #include "llvm/Target/TargetOptions.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/ErrorHandling.h"
     40 #include "llvm/Support/ManagedStatic.h"
     41 #include "llvm/Support/MutexGuard.h"
     42 #include "llvm/Support/ValueHandle.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Support/Disassembler.h"
     45 #include "llvm/Support/Memory.h"
     46 #include "llvm/ADT/DenseMap.h"
     47 #include "llvm/ADT/SmallPtrSet.h"
     48 #include "llvm/ADT/SmallVector.h"
     49 #include "llvm/ADT/Statistic.h"
     50 #include "llvm/ADT/ValueMap.h"
     51 #include <algorithm>
     52 #ifndef NDEBUG
     53 #include <iomanip>
     54 #endif
     55 using namespace llvm;
     56 
     57 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
     58 STATISTIC(NumRelos, "Number of relocations applied");
     59 STATISTIC(NumRetries, "Number of retries with more memory");
     60 
     61 
     62 // A declaration may stop being a declaration once it's fully read from bitcode.
     63 // This function returns true if F is fully read and is still a declaration.
     64 static bool isNonGhostDeclaration(const Function *F) {
     65   return F->isDeclaration() && !F->isMaterializable();
     66 }
     67 
     68 //===----------------------------------------------------------------------===//
     69 // JIT lazy compilation code.
     70 //
     71 namespace {
     72   class JITEmitter;
     73   class JITResolverState;
     74 
     75   template<typename ValueTy>
     76   struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
     77     typedef JITResolverState *ExtraData;
     78     static void onRAUW(JITResolverState *, Value *Old, Value *New) {
     79       llvm_unreachable("The JIT doesn't know how to handle a"
     80                        " RAUW on a value it has emitted.");
     81     }
     82   };
     83 
     84   struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
     85     typedef JITResolverState *ExtraData;
     86     static void onDelete(JITResolverState *JRS, Function *F);
     87   };
     88 
     89   class JITResolverState {
     90   public:
     91     typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
     92       FunctionToLazyStubMapTy;
     93     typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
     94     typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
     95                      CallSiteValueMapConfig> FunctionToCallSitesMapTy;
     96     typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
     97   private:
     98     /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
     99     /// particular function so that we can reuse them if necessary.
    100     FunctionToLazyStubMapTy FunctionToLazyStubMap;
    101 
    102     /// CallSiteToFunctionMap - Keep track of the function that each lazy call
    103     /// site corresponds to, and vice versa.
    104     CallSiteToFunctionMapTy CallSiteToFunctionMap;
    105     FunctionToCallSitesMapTy FunctionToCallSitesMap;
    106 
    107     /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
    108     /// particular GlobalVariable so that we can reuse them if necessary.
    109     GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
    110 
    111 #ifndef NDEBUG
    112     /// Instance of the JIT this ResolverState serves.
    113     JIT *TheJIT;
    114 #endif
    115 
    116   public:
    117     JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
    118                                  FunctionToCallSitesMap(this) {
    119 #ifndef NDEBUG
    120       TheJIT = jit;
    121 #endif
    122     }
    123 
    124     FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
    125       const MutexGuard& locked) {
    126       assert(locked.holds(TheJIT->lock));
    127       return FunctionToLazyStubMap;
    128     }
    129 
    130     GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) {
    131       assert(lck.holds(TheJIT->lock));
    132       return GlobalToIndirectSymMap;
    133     }
    134 
    135     std::pair<void *, Function *> LookupFunctionFromCallSite(
    136         const MutexGuard &locked, void *CallSite) const {
    137       assert(locked.holds(TheJIT->lock));
    138 
    139       // The address given to us for the stub may not be exactly right, it
    140       // might be a little bit after the stub.  As such, use upper_bound to
    141       // find it.
    142       CallSiteToFunctionMapTy::const_iterator I =
    143         CallSiteToFunctionMap.upper_bound(CallSite);
    144       assert(I != CallSiteToFunctionMap.begin() &&
    145              "This is not a known call site!");
    146       --I;
    147       return *I;
    148     }
    149 
    150     void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
    151       assert(locked.holds(TheJIT->lock));
    152 
    153       bool Inserted = CallSiteToFunctionMap.insert(
    154           std::make_pair(CallSite, F)).second;
    155       (void)Inserted;
    156       assert(Inserted && "Pair was already in CallSiteToFunctionMap");
    157       FunctionToCallSitesMap[F].insert(CallSite);
    158     }
    159 
    160     void EraseAllCallSitesForPrelocked(Function *F);
    161 
    162     // Erases _all_ call sites regardless of their function.  This is used to
    163     // unregister the stub addresses from the StubToResolverMap in
    164     // ~JITResolver().
    165     void EraseAllCallSitesPrelocked();
    166   };
    167 
    168   /// JITResolver - Keep track of, and resolve, call sites for functions that
    169   /// have not yet been compiled.
    170   class JITResolver {
    171     typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
    172     typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
    173     typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
    174 
    175     /// LazyResolverFn - The target lazy resolver function that we actually
    176     /// rewrite instructions to use.
    177     TargetJITInfo::LazyResolverFn LazyResolverFn;
    178 
    179     JITResolverState state;
    180 
    181     /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
    182     /// for external functions.  TODO: Of course, external functions don't need
    183     /// a lazy stub.  It's actually here to make it more likely that far calls
    184     /// succeed, but no single stub can guarantee that.  I'll remove this in a
    185     /// subsequent checkin when I actually fix far calls.
    186     std::map<void*, void*> ExternalFnToStubMap;
    187 
    188     /// revGOTMap - map addresses to indexes in the GOT
    189     std::map<void*, unsigned> revGOTMap;
    190     unsigned nextGOTIndex;
    191 
    192     JITEmitter &JE;
    193 
    194     /// Instance of JIT corresponding to this Resolver.
    195     JIT *TheJIT;
    196 
    197   public:
    198     explicit JITResolver(JIT &jit, JITEmitter &je)
    199       : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
    200       LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
    201     }
    202 
    203     ~JITResolver();
    204 
    205     /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
    206     /// lazy-compilation stub if it has already been created.
    207     void *getLazyFunctionStubIfAvailable(Function *F);
    208 
    209     /// getLazyFunctionStub - This returns a pointer to a function's
    210     /// lazy-compilation stub, creating one on demand as needed.
    211     void *getLazyFunctionStub(Function *F);
    212 
    213     /// getExternalFunctionStub - Return a stub for the function at the
    214     /// specified address, created lazily on demand.
    215     void *getExternalFunctionStub(void *FnAddr);
    216 
    217     /// getGlobalValueIndirectSym - Return an indirect symbol containing the
    218     /// specified GV address.
    219     void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
    220 
    221     /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    222     /// an address.  This function only manages slots, it does not manage the
    223     /// contents of the slots or the memory associated with the GOT.
    224     unsigned getGOTIndexForAddr(void *addr);
    225 
    226     /// JITCompilerFn - This function is called to resolve a stub to a compiled
    227     /// address.  If the LLVM Function corresponding to the stub has not yet
    228     /// been compiled, this function compiles it first.
    229     static void *JITCompilerFn(void *Stub);
    230   };
    231 
    232   class StubToResolverMapTy {
    233     /// Map a stub address to a specific instance of a JITResolver so that
    234     /// lazily-compiled functions can find the right resolver to use.
    235     ///
    236     /// Guarded by Lock.
    237     std::map<void*, JITResolver*> Map;
    238 
    239     /// Guards Map from concurrent accesses.
    240     mutable sys::Mutex Lock;
    241 
    242   public:
    243     /// Registers a Stub to be resolved by Resolver.
    244     void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
    245       MutexGuard guard(Lock);
    246       Map.insert(std::make_pair(Stub, Resolver));
    247     }
    248     /// Unregisters the Stub when it's invalidated.
    249     void UnregisterStubResolver(void *Stub) {
    250       MutexGuard guard(Lock);
    251       Map.erase(Stub);
    252     }
    253     /// Returns the JITResolver instance that owns the Stub.
    254     JITResolver *getResolverFromStub(void *Stub) const {
    255       MutexGuard guard(Lock);
    256       // The address given to us for the stub may not be exactly right, it might
    257       // be a little bit after the stub.  As such, use upper_bound to find it.
    258       // This is the same trick as in LookupFunctionFromCallSite from
    259       // JITResolverState.
    260       std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
    261       assert(I != Map.begin() && "This is not a known stub!");
    262       --I;
    263       return I->second;
    264     }
    265     /// True if any stubs refer to the given resolver. Only used in an assert().
    266     /// O(N)
    267     bool ResolverHasStubs(JITResolver* Resolver) const {
    268       MutexGuard guard(Lock);
    269       for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
    270              E = Map.end(); I != E; ++I) {
    271         if (I->second == Resolver)
    272           return true;
    273       }
    274       return false;
    275     }
    276   };
    277   /// This needs to be static so that a lazy call stub can access it with no
    278   /// context except the address of the stub.
    279   ManagedStatic<StubToResolverMapTy> StubToResolverMap;
    280 
    281   /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
    282   /// used to output functions to memory for execution.
    283   class JITEmitter : public JITCodeEmitter {
    284     JITMemoryManager *MemMgr;
    285 
    286     // When outputting a function stub in the context of some other function, we
    287     // save BufferBegin/BufferEnd/CurBufferPtr here.
    288     uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    289 
    290     // When reattempting to JIT a function after running out of space, we store
    291     // the estimated size of the function we're trying to JIT here, so we can
    292     // ask the memory manager for at least this much space.  When we
    293     // successfully emit the function, we reset this back to zero.
    294     uintptr_t SizeEstimate;
    295 
    296     /// Relocations - These are the relocations that the function needs, as
    297     /// emitted.
    298     std::vector<MachineRelocation> Relocations;
    299 
    300     /// MBBLocations - This vector is a mapping from MBB ID's to their address.
    301     /// It is filled in by the StartMachineBasicBlock callback and queried by
    302     /// the getMachineBasicBlockAddress callback.
    303     std::vector<uintptr_t> MBBLocations;
    304 
    305     /// ConstantPool - The constant pool for the current function.
    306     ///
    307     MachineConstantPool *ConstantPool;
    308 
    309     /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    310     ///
    311     void *ConstantPoolBase;
    312 
    313     /// ConstPoolAddresses - Addresses of individual constant pool entries.
    314     ///
    315     SmallVector<uintptr_t, 8> ConstPoolAddresses;
    316 
    317     /// JumpTable - The jump tables for the current function.
    318     ///
    319     MachineJumpTableInfo *JumpTable;
    320 
    321     /// JumpTableBase - A pointer to the first entry in the jump table.
    322     ///
    323     void *JumpTableBase;
    324 
    325     /// Resolver - This contains info about the currently resolved functions.
    326     JITResolver Resolver;
    327 
    328     /// DE - The dwarf emitter for the jit.
    329     OwningPtr<JITDwarfEmitter> DE;
    330 
    331     /// LabelLocations - This vector is a mapping from Label ID's to their
    332     /// address.
    333     DenseMap<MCSymbol*, uintptr_t> LabelLocations;
    334 
    335     /// MMI - Machine module info for exception informations
    336     MachineModuleInfo* MMI;
    337 
    338     // CurFn - The llvm function being emitted.  Only valid during
    339     // finishFunction().
    340     const Function *CurFn;
    341 
    342     /// Information about emitted code, which is passed to the
    343     /// JITEventListeners.  This is reset in startFunction and used in
    344     /// finishFunction.
    345     JITEvent_EmittedFunctionDetails EmissionDetails;
    346 
    347     struct EmittedCode {
    348       void *FunctionBody;  // Beginning of the function's allocation.
    349       void *Code;  // The address the function's code actually starts at.
    350       void *ExceptionTable;
    351       EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
    352     };
    353     struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
    354       typedef JITEmitter *ExtraData;
    355       static void onDelete(JITEmitter *, const Function*);
    356       static void onRAUW(JITEmitter *, const Function*, const Function*);
    357     };
    358     ValueMap<const Function *, EmittedCode,
    359              EmittedFunctionConfig> EmittedFunctions;
    360 
    361     DebugLoc PrevDL;
    362 
    363     /// Instance of the JIT
    364     JIT *TheJIT;
    365 
    366     bool JITExceptionHandling;
    367 
    368   public:
    369     JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
    370       : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
    371         EmittedFunctions(this), TheJIT(&jit),
    372         JITExceptionHandling(TM.Options.JITExceptionHandling) {
    373       MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
    374       if (jit.getJITInfo().needsGOT()) {
    375         MemMgr->AllocateGOT();
    376         DEBUG(dbgs() << "JIT is managing a GOT\n");
    377       }
    378 
    379       if (JITExceptionHandling) {
    380         DE.reset(new JITDwarfEmitter(jit));
    381       }
    382     }
    383     ~JITEmitter() {
    384       delete MemMgr;
    385     }
    386 
    387     /// classof - Methods for support type inquiry through isa, cast, and
    388     /// dyn_cast:
    389     ///
    390     static inline bool classof(const MachineCodeEmitter*) { return true; }
    391 
    392     JITResolver &getJITResolver() { return Resolver; }
    393 
    394     virtual void startFunction(MachineFunction &F);
    395     virtual bool finishFunction(MachineFunction &F);
    396 
    397     void emitConstantPool(MachineConstantPool *MCP);
    398     void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    399     void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
    400 
    401     void startGVStub(const GlobalValue* GV,
    402                      unsigned StubSize, unsigned Alignment = 1);
    403     void startGVStub(void *Buffer, unsigned StubSize);
    404     void finishGVStub();
    405     virtual void *allocIndirectGV(const GlobalValue *GV,
    406                                   const uint8_t *Buffer, size_t Size,
    407                                   unsigned Alignment);
    408 
    409     /// allocateSpace - Reserves space in the current block if any, or
    410     /// allocate a new one of the given size.
    411     virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
    412 
    413     /// allocateGlobal - Allocate memory for a global.  Unlike allocateSpace,
    414     /// this method does not allocate memory in the current output buffer,
    415     /// because a global may live longer than the current function.
    416     virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
    417 
    418     virtual void addRelocation(const MachineRelocation &MR) {
    419       Relocations.push_back(MR);
    420     }
    421 
    422     virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
    423       if (MBBLocations.size() <= (unsigned)MBB->getNumber())
    424         MBBLocations.resize((MBB->getNumber()+1)*2);
    425       MBBLocations[MBB->getNumber()] = getCurrentPCValue();
    426       if (MBB->hasAddressTaken())
    427         TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(),
    428                                        (void*)getCurrentPCValue());
    429       DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
    430                    << (void*) getCurrentPCValue() << "]\n");
    431     }
    432 
    433     virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
    434     virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
    435 
    436     virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{
    437       assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
    438              MBBLocations[MBB->getNumber()] && "MBB not emitted!");
    439       return MBBLocations[MBB->getNumber()];
    440     }
    441 
    442     /// retryWithMoreMemory - Log a retry and deallocate all memory for the
    443     /// given function.  Increase the minimum allocation size so that we get
    444     /// more memory next time.
    445     void retryWithMoreMemory(MachineFunction &F);
    446 
    447     /// deallocateMemForFunction - Deallocate all memory for the specified
    448     /// function body.
    449     void deallocateMemForFunction(const Function *F);
    450 
    451     virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
    452 
    453     virtual void emitLabel(MCSymbol *Label) {
    454       LabelLocations[Label] = getCurrentPCValue();
    455     }
    456 
    457     virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
    458       return &LabelLocations;
    459     }
    460 
    461     virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
    462       assert(LabelLocations.count(Label) && "Label not emitted!");
    463       return LabelLocations.find(Label)->second;
    464     }
    465 
    466     virtual void setModuleInfo(MachineModuleInfo* Info) {
    467       MMI = Info;
    468       if (DE.get()) DE->setModuleInfo(Info);
    469     }
    470 
    471   private:
    472     void *getPointerToGlobal(GlobalValue *GV, void *Reference,
    473                              bool MayNeedFarStub);
    474     void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
    475   };
    476 }
    477 
    478 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
    479   JRS->EraseAllCallSitesForPrelocked(F);
    480 }
    481 
    482 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
    483   FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
    484   if (F2C == FunctionToCallSitesMap.end())
    485     return;
    486   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    487   for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
    488          E = F2C->second.end(); I != E; ++I) {
    489     S2RMap.UnregisterStubResolver(*I);
    490     bool Erased = CallSiteToFunctionMap.erase(*I);
    491     (void)Erased;
    492     assert(Erased && "Missing call site->function mapping");
    493   }
    494   FunctionToCallSitesMap.erase(F2C);
    495 }
    496 
    497 void JITResolverState::EraseAllCallSitesPrelocked() {
    498   StubToResolverMapTy &S2RMap = *StubToResolverMap;
    499   for (CallSiteToFunctionMapTy::const_iterator
    500          I = CallSiteToFunctionMap.begin(),
    501          E = CallSiteToFunctionMap.end(); I != E; ++I) {
    502     S2RMap.UnregisterStubResolver(I->first);
    503   }
    504   CallSiteToFunctionMap.clear();
    505   FunctionToCallSitesMap.clear();
    506 }
    507 
    508 JITResolver::~JITResolver() {
    509   // No need to lock because we're in the destructor, and state isn't shared.
    510   state.EraseAllCallSitesPrelocked();
    511   assert(!StubToResolverMap->ResolverHasStubs(this) &&
    512          "Resolver destroyed with stubs still alive.");
    513 }
    514 
    515 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
    516 /// if it has already been created.
    517 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
    518   MutexGuard locked(TheJIT->lock);
    519 
    520   // If we already have a stub for this function, recycle it.
    521   return state.getFunctionToLazyStubMap(locked).lookup(F);
    522 }
    523 
    524 /// getFunctionStub - This returns a pointer to a function stub, creating
    525 /// one on demand as needed.
    526 void *JITResolver::getLazyFunctionStub(Function *F) {
    527   MutexGuard locked(TheJIT->lock);
    528 
    529   // If we already have a lazy stub for this function, recycle it.
    530   void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
    531   if (Stub) return Stub;
    532 
    533   // Call the lazy resolver function if we are JIT'ing lazily.  Otherwise we
    534   // must resolve the symbol now.
    535   void *Actual = TheJIT->isCompilingLazily()
    536     ? (void *)(intptr_t)LazyResolverFn : (void *)0;
    537 
    538   // If this is an external declaration, attempt to resolve the address now
    539   // to place in the stub.
    540   if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
    541     Actual = TheJIT->getPointerToFunction(F);
    542 
    543     // If we resolved the symbol to a null address (eg. a weak external)
    544     // don't emit a stub. Return a null pointer to the application.
    545     if (!Actual) return 0;
    546   }
    547 
    548   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    549   JE.startGVStub(F, SL.Size, SL.Alignment);
    550   // Codegen a new stub, calling the lazy resolver or the actual address of the
    551   // external function, if it was resolved.
    552   Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
    553   JE.finishGVStub();
    554 
    555   if (Actual != (void*)(intptr_t)LazyResolverFn) {
    556     // If we are getting the stub for an external function, we really want the
    557     // address of the stub in the GlobalAddressMap for the JIT, not the address
    558     // of the external function.
    559     TheJIT->updateGlobalMapping(F, Stub);
    560   }
    561 
    562   DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
    563         << F->getName() << "'\n");
    564 
    565   if (TheJIT->isCompilingLazily()) {
    566     // Register this JITResolver as the one corresponding to this call site so
    567     // JITCompilerFn will be able to find it.
    568     StubToResolverMap->RegisterStubResolver(Stub, this);
    569 
    570     // Finally, keep track of the stub-to-Function mapping so that the
    571     // JITCompilerFn knows which function to compile!
    572     state.AddCallSite(locked, Stub, F);
    573   } else if (!Actual) {
    574     // If we are JIT'ing non-lazily but need to call a function that does not
    575     // exist yet, add it to the JIT's work list so that we can fill in the
    576     // stub address later.
    577     assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
    578            "'Actual' should have been set above.");
    579     TheJIT->addPendingFunction(F);
    580   }
    581 
    582   return Stub;
    583 }
    584 
    585 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
    586 /// GV address.
    587 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
    588   MutexGuard locked(TheJIT->lock);
    589 
    590   // If we already have a stub for this global variable, recycle it.
    591   void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
    592   if (IndirectSym) return IndirectSym;
    593 
    594   // Otherwise, codegen a new indirect symbol.
    595   IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
    596                                                                 JE);
    597 
    598   DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
    599         << "] for GV '" << GV->getName() << "'\n");
    600 
    601   return IndirectSym;
    602 }
    603 
    604 /// getExternalFunctionStub - Return a stub for the function at the
    605 /// specified address, created lazily on demand.
    606 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
    607   // If we already have a stub for this function, recycle it.
    608   void *&Stub = ExternalFnToStubMap[FnAddr];
    609   if (Stub) return Stub;
    610 
    611   TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
    612   JE.startGVStub(0, SL.Size, SL.Alignment);
    613   Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
    614   JE.finishGVStub();
    615 
    616   DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
    617                << "] for external function at '" << FnAddr << "'\n");
    618   return Stub;
    619 }
    620 
    621 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
    622   unsigned idx = revGOTMap[addr];
    623   if (!idx) {
    624     idx = ++nextGOTIndex;
    625     revGOTMap[addr] = idx;
    626     DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
    627                  << addr << "]\n");
    628   }
    629   return idx;
    630 }
    631 
    632 /// JITCompilerFn - This function is called when a lazy compilation stub has
    633 /// been entered.  It looks up which function this stub corresponds to, compiles
    634 /// it if necessary, then returns the resultant function pointer.
    635 void *JITResolver::JITCompilerFn(void *Stub) {
    636   JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
    637   assert(JR && "Unable to find the corresponding JITResolver to the call site");
    638 
    639   Function* F = 0;
    640   void* ActualPtr = 0;
    641 
    642   {
    643     // Only lock for getting the Function. The call getPointerToFunction made
    644     // in this function might trigger function materializing, which requires
    645     // JIT lock to be unlocked.
    646     MutexGuard locked(JR->TheJIT->lock);
    647 
    648     // The address given to us for the stub may not be exactly right, it might
    649     // be a little bit after the stub.  As such, use upper_bound to find it.
    650     std::pair<void*, Function*> I =
    651       JR->state.LookupFunctionFromCallSite(locked, Stub);
    652     F = I.second;
    653     ActualPtr = I.first;
    654   }
    655 
    656   // If we have already code generated the function, just return the address.
    657   void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
    658 
    659   if (!Result) {
    660     // Otherwise we don't have it, do lazy compilation now.
    661 
    662     // If lazy compilation is disabled, emit a useful error message and abort.
    663     if (!JR->TheJIT->isCompilingLazily()) {
    664       report_fatal_error("LLVM JIT requested to do lazy compilation of"
    665                          " function '"
    666                         + F->getName() + "' when lazy compiles are disabled!");
    667     }
    668 
    669     DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
    670           << "' In stub ptr = " << Stub << " actual ptr = "
    671           << ActualPtr << "\n");
    672     (void)ActualPtr;
    673 
    674     Result = JR->TheJIT->getPointerToFunction(F);
    675   }
    676 
    677   // Reacquire the lock to update the GOT map.
    678   MutexGuard locked(JR->TheJIT->lock);
    679 
    680   // We might like to remove the call site from the CallSiteToFunction map, but
    681   // we can't do that! Multiple threads could be stuck, waiting to acquire the
    682   // lock above. As soon as the 1st function finishes compiling the function,
    683   // the next one will be released, and needs to be able to find the function it
    684   // needs to call.
    685 
    686   // FIXME: We could rewrite all references to this stub if we knew them.
    687 
    688   // What we will do is set the compiled function address to map to the
    689   // same GOT entry as the stub so that later clients may update the GOT
    690   // if they see it still using the stub address.
    691   // Note: this is done so the Resolver doesn't have to manage GOT memory
    692   // Do this without allocating map space if the target isn't using a GOT
    693   if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
    694     JR->revGOTMap[Result] = JR->revGOTMap[Stub];
    695 
    696   return Result;
    697 }
    698 
    699 //===----------------------------------------------------------------------===//
    700 // JITEmitter code.
    701 //
    702 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
    703                                      bool MayNeedFarStub) {
    704   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    705     return TheJIT->getOrEmitGlobalVariable(GV);
    706 
    707   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
    708     return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
    709 
    710   // If we have already compiled the function, return a pointer to its body.
    711   Function *F = cast<Function>(V);
    712 
    713   void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
    714   if (FnStub) {
    715     // Return the function stub if it's already created.  We do this first so
    716     // that we're returning the same address for the function as any previous
    717     // call.  TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
    718     // close enough to call.
    719     return FnStub;
    720   }
    721 
    722   // If we know the target can handle arbitrary-distance calls, try to
    723   // return a direct pointer.
    724   if (!MayNeedFarStub) {
    725     // If we have code, go ahead and return that.
    726     void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
    727     if (ResultPtr) return ResultPtr;
    728 
    729     // If this is an external function pointer, we can force the JIT to
    730     // 'compile' it, which really just adds it to the map.
    731     if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
    732       return TheJIT->getPointerToFunction(F);
    733   }
    734 
    735   // Otherwise, we may need a to emit a stub, and, conservatively, we always do
    736   // so.  Note that it's possible to return null from getLazyFunctionStub in the
    737   // case of a weak extern that fails to resolve.
    738   return Resolver.getLazyFunctionStub(F);
    739 }
    740 
    741 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
    742   // Make sure GV is emitted first, and create a stub containing the fully
    743   // resolved address.
    744   void *GVAddress = getPointerToGlobal(V, Reference, false);
    745   void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
    746   return StubAddr;
    747 }
    748 
    749 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
    750   if (DL.isUnknown()) return;
    751   if (!BeforePrintingInsn) return;
    752 
    753   const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext();
    754 
    755   if (DL.getScope(Context) != 0 && PrevDL != DL) {
    756     JITEvent_EmittedFunctionDetails::LineStart NextLine;
    757     NextLine.Address = getCurrentPCValue();
    758     NextLine.Loc = DL;
    759     EmissionDetails.LineStarts.push_back(NextLine);
    760   }
    761 
    762   PrevDL = DL;
    763 }
    764 
    765 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
    766                                            const TargetData *TD) {
    767   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
    768   if (Constants.empty()) return 0;
    769 
    770   unsigned Size = 0;
    771   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    772     MachineConstantPoolEntry CPE = Constants[i];
    773     unsigned AlignMask = CPE.getAlignment() - 1;
    774     Size = (Size + AlignMask) & ~AlignMask;
    775     Type *Ty = CPE.getType();
    776     Size += TD->getTypeAllocSize(Ty);
    777   }
    778   return Size;
    779 }
    780 
    781 void JITEmitter::startFunction(MachineFunction &F) {
    782   DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
    783         << F.getName() << "\n");
    784 
    785   uintptr_t ActualSize = 0;
    786   // Set the memory writable, if it's not already
    787   MemMgr->setMemoryWritable();
    788 
    789   if (SizeEstimate > 0) {
    790     // SizeEstimate will be non-zero on reallocation attempts.
    791     ActualSize = SizeEstimate;
    792   }
    793 
    794   BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
    795                                                          ActualSize);
    796   BufferEnd = BufferBegin+ActualSize;
    797   EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
    798 
    799   // Ensure the constant pool/jump table info is at least 4-byte aligned.
    800   emitAlignment(16);
    801 
    802   emitConstantPool(F.getConstantPool());
    803   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    804     initJumpTableInfo(MJTI);
    805 
    806   // About to start emitting the machine code for the function.
    807   emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
    808   TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
    809   EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
    810 
    811   MBBLocations.clear();
    812 
    813   EmissionDetails.MF = &F;
    814   EmissionDetails.LineStarts.clear();
    815 }
    816 
    817 bool JITEmitter::finishFunction(MachineFunction &F) {
    818   if (CurBufferPtr == BufferEnd) {
    819     // We must call endFunctionBody before retrying, because
    820     // deallocateMemForFunction requires it.
    821     MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    822     retryWithMoreMemory(F);
    823     return true;
    824   }
    825 
    826   if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
    827     emitJumpTableInfo(MJTI);
    828 
    829   // FnStart is the start of the text, not the start of the constant pool and
    830   // other per-function data.
    831   uint8_t *FnStart =
    832     (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
    833 
    834   // FnEnd is the end of the function's machine code.
    835   uint8_t *FnEnd = CurBufferPtr;
    836 
    837   if (!Relocations.empty()) {
    838     CurFn = F.getFunction();
    839     NumRelos += Relocations.size();
    840 
    841     // Resolve the relocations to concrete pointers.
    842     for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
    843       MachineRelocation &MR = Relocations[i];
    844       void *ResultPtr = 0;
    845       if (!MR.letTargetResolve()) {
    846         if (MR.isExternalSymbol()) {
    847           ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
    848                                                         false);
    849           DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
    850                        << ResultPtr << "]\n");
    851 
    852           // If the target REALLY wants a stub for this function, emit it now.
    853           if (MR.mayNeedFarStub()) {
    854             ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
    855           }
    856         } else if (MR.isGlobalValue()) {
    857           ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
    858                                          BufferBegin+MR.getMachineCodeOffset(),
    859                                          MR.mayNeedFarStub());
    860         } else if (MR.isIndirectSymbol()) {
    861           ResultPtr = getPointerToGVIndirectSym(
    862               MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
    863         } else if (MR.isBasicBlock()) {
    864           ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
    865         } else if (MR.isConstantPoolIndex()) {
    866           ResultPtr =
    867             (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
    868         } else {
    869           assert(MR.isJumpTableIndex());
    870           ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
    871         }
    872 
    873         MR.setResultPointer(ResultPtr);
    874       }
    875 
    876       // if we are managing the GOT and the relocation wants an index,
    877       // give it one
    878       if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
    879         unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
    880         MR.setGOTIndex(idx);
    881         if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
    882           DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
    883                        << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    884                        << "\n");
    885           ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
    886         }
    887       }
    888     }
    889 
    890     CurFn = 0;
    891     TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
    892                                   Relocations.size(), MemMgr->getGOTBase());
    893   }
    894 
    895   // Update the GOT entry for F to point to the new code.
    896   if (MemMgr->isManagingGOT()) {
    897     unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
    898     if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
    899       DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
    900                    << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
    901                    << "\n");
    902       ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
    903     }
    904   }
    905 
    906   // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
    907   // global variables that were referenced in the relocations.
    908   MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
    909 
    910   if (CurBufferPtr == BufferEnd) {
    911     retryWithMoreMemory(F);
    912     return true;
    913   } else {
    914     // Now that we've succeeded in emitting the function, reset the
    915     // SizeEstimate back down to zero.
    916     SizeEstimate = 0;
    917   }
    918 
    919   BufferBegin = CurBufferPtr = 0;
    920   NumBytes += FnEnd-FnStart;
    921 
    922   // Invalidate the icache if necessary.
    923   sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
    924 
    925   TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
    926                                 EmissionDetails);
    927 
    928   // Reset the previous debug location.
    929   PrevDL = DebugLoc();
    930 
    931   DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
    932         << "] Function: " << F.getName()
    933         << ": " << (FnEnd-FnStart) << " bytes of text, "
    934         << Relocations.size() << " relocations\n");
    935 
    936   Relocations.clear();
    937   ConstPoolAddresses.clear();
    938 
    939   // Mark code region readable and executable if it's not so already.
    940   MemMgr->setMemoryExecutable();
    941 
    942   DEBUG({
    943       if (sys::hasDisassembler()) {
    944         dbgs() << "JIT: Disassembled code:\n";
    945         dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
    946                                          (uintptr_t)FnStart);
    947       } else {
    948         dbgs() << "JIT: Binary code:\n";
    949         uint8_t* q = FnStart;
    950         for (int i = 0; q < FnEnd; q += 4, ++i) {
    951           if (i == 4)
    952             i = 0;
    953           if (i == 0)
    954             dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
    955           bool Done = false;
    956           for (int j = 3; j >= 0; --j) {
    957             if (q + j >= FnEnd)
    958               Done = true;
    959             else
    960               dbgs() << (unsigned short)q[j];
    961           }
    962           if (Done)
    963             break;
    964           dbgs() << ' ';
    965           if (i == 3)
    966             dbgs() << '\n';
    967         }
    968         dbgs()<< '\n';
    969       }
    970     });
    971 
    972   if (JITExceptionHandling) {
    973     uintptr_t ActualSize = 0;
    974     SavedBufferBegin = BufferBegin;
    975     SavedBufferEnd = BufferEnd;
    976     SavedCurBufferPtr = CurBufferPtr;
    977 
    978     BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
    979                                                              ActualSize);
    980     BufferEnd = BufferBegin+ActualSize;
    981     EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
    982     uint8_t *EhStart;
    983     uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
    984                                                 EhStart);
    985     MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
    986                               FrameRegister);
    987     BufferBegin = SavedBufferBegin;
    988     BufferEnd = SavedBufferEnd;
    989     CurBufferPtr = SavedCurBufferPtr;
    990 
    991     if (JITExceptionHandling) {
    992       TheJIT->RegisterTable(F.getFunction(), FrameRegister);
    993     }
    994   }
    995 
    996   if (MMI)
    997     MMI->EndFunction();
    998 
    999   return false;
   1000 }
   1001 
   1002 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
   1003   DEBUG(dbgs() << "JIT: Ran out of space for native code.  Reattempting.\n");
   1004   Relocations.clear();  // Clear the old relocations or we'll reapply them.
   1005   ConstPoolAddresses.clear();
   1006   ++NumRetries;
   1007   deallocateMemForFunction(F.getFunction());
   1008   // Try again with at least twice as much free space.
   1009   SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
   1010 
   1011   for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){
   1012     if (MBB->hasAddressTaken())
   1013       TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock());
   1014   }
   1015 }
   1016 
   1017 /// deallocateMemForFunction - Deallocate all memory for the specified
   1018 /// function body.  Also drop any references the function has to stubs.
   1019 /// May be called while the Function is being destroyed inside ~Value().
   1020 void JITEmitter::deallocateMemForFunction(const Function *F) {
   1021   ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
   1022     Emitted = EmittedFunctions.find(F);
   1023   if (Emitted != EmittedFunctions.end()) {
   1024     MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
   1025     MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
   1026     TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
   1027 
   1028     EmittedFunctions.erase(Emitted);
   1029   }
   1030 
   1031   if (JITExceptionHandling) {
   1032     TheJIT->DeregisterTable(F);
   1033   }
   1034 }
   1035 
   1036 
   1037 void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
   1038   if (BufferBegin)
   1039     return JITCodeEmitter::allocateSpace(Size, Alignment);
   1040 
   1041   // create a new memory block if there is no active one.
   1042   // care must be taken so that BufferBegin is invalidated when a
   1043   // block is trimmed
   1044   BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
   1045   BufferEnd = BufferBegin+Size;
   1046   return CurBufferPtr;
   1047 }
   1048 
   1049 void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
   1050   // Delegate this call through the memory manager.
   1051   return MemMgr->allocateGlobal(Size, Alignment);
   1052 }
   1053 
   1054 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
   1055   if (TheJIT->getJITInfo().hasCustomConstantPool())
   1056     return;
   1057 
   1058   const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
   1059   if (Constants.empty()) return;
   1060 
   1061   unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
   1062   unsigned Align = MCP->getConstantPoolAlignment();
   1063   ConstantPoolBase = allocateSpace(Size, Align);
   1064   ConstantPool = MCP;
   1065 
   1066   if (ConstantPoolBase == 0) return;  // Buffer overflow.
   1067 
   1068   DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
   1069                << "] (size: " << Size << ", alignment: " << Align << ")\n");
   1070 
   1071   // Initialize the memory for all of the constant pool entries.
   1072   unsigned Offset = 0;
   1073   for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
   1074     MachineConstantPoolEntry CPE = Constants[i];
   1075     unsigned AlignMask = CPE.getAlignment() - 1;
   1076     Offset = (Offset + AlignMask) & ~AlignMask;
   1077 
   1078     uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
   1079     ConstPoolAddresses.push_back(CAddr);
   1080     if (CPE.isMachineConstantPoolEntry()) {
   1081       // FIXME: add support to lower machine constant pool values into bytes!
   1082       report_fatal_error("Initialize memory with machine specific constant pool"
   1083                         "entry has not been implemented!");
   1084     }
   1085     TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
   1086     DEBUG(dbgs() << "JIT:   CP" << i << " at [0x";
   1087           dbgs().write_hex(CAddr) << "]\n");
   1088 
   1089     Type *Ty = CPE.Val.ConstVal->getType();
   1090     Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
   1091   }
   1092 }
   1093 
   1094 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1095   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1096     return;
   1097   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
   1098     return;
   1099 
   1100   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1101   if (JT.empty()) return;
   1102 
   1103   unsigned NumEntries = 0;
   1104   for (unsigned i = 0, e = JT.size(); i != e; ++i)
   1105     NumEntries += JT[i].MBBs.size();
   1106 
   1107   unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
   1108 
   1109   // Just allocate space for all the jump tables now.  We will fix up the actual
   1110   // MBB entries in the tables after we emit the code for each block, since then
   1111   // we will know the final locations of the MBBs in memory.
   1112   JumpTable = MJTI;
   1113   JumpTableBase = allocateSpace(NumEntries * EntrySize,
   1114                              MJTI->getEntryAlignment(*TheJIT->getTargetData()));
   1115 }
   1116 
   1117 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
   1118   if (TheJIT->getJITInfo().hasCustomJumpTables())
   1119     return;
   1120 
   1121   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1122   if (JT.empty() || JumpTableBase == 0) return;
   1123 
   1124 
   1125   switch (MJTI->getEntryKind()) {
   1126   case MachineJumpTableInfo::EK_Inline:
   1127     return;
   1128   case MachineJumpTableInfo::EK_BlockAddress: {
   1129     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
   1130     //     .word LBB123
   1131     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
   1132            "Cross JIT'ing?");
   1133 
   1134     // For each jump table, map each target in the jump table to the address of
   1135     // an emitted MachineBasicBlock.
   1136     intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
   1137 
   1138     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1139       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1140       // Store the address of the basic block for this jump table slot in the
   1141       // memory we allocated for the jump table in 'initJumpTableInfo'
   1142       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
   1143         *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
   1144     }
   1145     break;
   1146   }
   1147 
   1148   case MachineJumpTableInfo::EK_Custom32:
   1149   case MachineJumpTableInfo::EK_GPRel32BlockAddress:
   1150   case MachineJumpTableInfo::EK_LabelDifference32: {
   1151     assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
   1152     // For each jump table, place the offset from the beginning of the table
   1153     // to the target address.
   1154     int *SlotPtr = (int*)JumpTableBase;
   1155 
   1156     for (unsigned i = 0, e = JT.size(); i != e; ++i) {
   1157       const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
   1158       // Store the offset of the basic block for this jump table slot in the
   1159       // memory we allocated for the jump table in 'initJumpTableInfo'
   1160       uintptr_t Base = (uintptr_t)SlotPtr;
   1161       for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
   1162         uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
   1163         /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
   1164         *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
   1165       }
   1166     }
   1167     break;
   1168   }
   1169   case MachineJumpTableInfo::EK_GPRel64BlockAddress:
   1170     llvm_unreachable(
   1171            "JT Info emission not implemented for GPRel64BlockAddress yet.");
   1172   }
   1173 }
   1174 
   1175 void JITEmitter::startGVStub(const GlobalValue* GV,
   1176                              unsigned StubSize, unsigned Alignment) {
   1177   SavedBufferBegin = BufferBegin;
   1178   SavedBufferEnd = BufferEnd;
   1179   SavedCurBufferPtr = CurBufferPtr;
   1180 
   1181   BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
   1182   BufferEnd = BufferBegin+StubSize+1;
   1183 }
   1184 
   1185 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
   1186   SavedBufferBegin = BufferBegin;
   1187   SavedBufferEnd = BufferEnd;
   1188   SavedCurBufferPtr = CurBufferPtr;
   1189 
   1190   BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
   1191   BufferEnd = BufferBegin+StubSize+1;
   1192 }
   1193 
   1194 void JITEmitter::finishGVStub() {
   1195   assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
   1196   NumBytes += getCurrentPCOffset();
   1197   BufferBegin = SavedBufferBegin;
   1198   BufferEnd = SavedBufferEnd;
   1199   CurBufferPtr = SavedCurBufferPtr;
   1200 }
   1201 
   1202 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
   1203                                   const uint8_t *Buffer, size_t Size,
   1204                                   unsigned Alignment) {
   1205   uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
   1206   memcpy(IndGV, Buffer, Size);
   1207   return IndGV;
   1208 }
   1209 
   1210 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
   1211 // in the constant pool that was last emitted with the 'emitConstantPool'
   1212 // method.
   1213 //
   1214 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
   1215   assert(ConstantNum < ConstantPool->getConstants().size() &&
   1216          "Invalid ConstantPoolIndex!");
   1217   return ConstPoolAddresses[ConstantNum];
   1218 }
   1219 
   1220 // getJumpTableEntryAddress - Return the address of the JumpTable with index
   1221 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
   1222 //
   1223 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
   1224   const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
   1225   assert(Index < JT.size() && "Invalid jump table index!");
   1226 
   1227   unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
   1228 
   1229   unsigned Offset = 0;
   1230   for (unsigned i = 0; i < Index; ++i)
   1231     Offset += JT[i].MBBs.size();
   1232 
   1233    Offset *= EntrySize;
   1234 
   1235   return (uintptr_t)((char *)JumpTableBase + Offset);
   1236 }
   1237 
   1238 void JITEmitter::EmittedFunctionConfig::onDelete(
   1239   JITEmitter *Emitter, const Function *F) {
   1240   Emitter->deallocateMemForFunction(F);
   1241 }
   1242 void JITEmitter::EmittedFunctionConfig::onRAUW(
   1243   JITEmitter *, const Function*, const Function*) {
   1244   llvm_unreachable("The JIT doesn't know how to handle a"
   1245                    " RAUW on a value it has emitted.");
   1246 }
   1247 
   1248 
   1249 //===----------------------------------------------------------------------===//
   1250 //  Public interface to this file
   1251 //===----------------------------------------------------------------------===//
   1252 
   1253 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
   1254                                    TargetMachine &tm) {
   1255   return new JITEmitter(jit, JMM, tm);
   1256 }
   1257 
   1258 // getPointerToFunctionOrStub - If the specified function has been
   1259 // code-gen'd, return a pointer to the function.  If not, compile it, or use
   1260 // a stub to implement lazy compilation if available.
   1261 //
   1262 void *JIT::getPointerToFunctionOrStub(Function *F) {
   1263   // If we have already code generated the function, just return the address.
   1264   if (void *Addr = getPointerToGlobalIfAvailable(F))
   1265     return Addr;
   1266 
   1267   // Get a stub if the target supports it.
   1268   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1269   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
   1270   return JE->getJITResolver().getLazyFunctionStub(F);
   1271 }
   1272 
   1273 void JIT::updateFunctionStub(Function *F) {
   1274   // Get the empty stub we generated earlier.
   1275   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1276   JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
   1277   void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
   1278   void *Addr = getPointerToGlobalIfAvailable(F);
   1279   assert(Addr != Stub && "Function must have non-stub address to be updated.");
   1280 
   1281   // Tell the target jit info to rewrite the stub at the specified address,
   1282   // rather than creating a new one.
   1283   TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
   1284   JE->startGVStub(Stub, layout.Size);
   1285   getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
   1286   JE->finishGVStub();
   1287 }
   1288 
   1289 /// freeMachineCodeForFunction - release machine code memory for given Function.
   1290 ///
   1291 void JIT::freeMachineCodeForFunction(Function *F) {
   1292   // Delete translation for this from the ExecutionEngine, so it will get
   1293   // retranslated next time it is used.
   1294   updateGlobalMapping(F, 0);
   1295 
   1296   // Free the actual memory for the function body and related stuff.
   1297   assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
   1298   cast<JITEmitter>(JCE)->deallocateMemForFunction(F);
   1299 }
   1300