Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Aggregate Expr nodes as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGObjCRuntime.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclTemplate.h"
     20 #include "clang/AST/StmtVisitor.h"
     21 #include "llvm/Constants.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/GlobalVariable.h"
     24 #include "llvm/Intrinsics.h"
     25 using namespace clang;
     26 using namespace CodeGen;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //                        Aggregate Expression Emitter
     30 //===----------------------------------------------------------------------===//
     31 
     32 namespace  {
     33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
     34   CodeGenFunction &CGF;
     35   CGBuilderTy &Builder;
     36   AggValueSlot Dest;
     37 
     38   /// We want to use 'dest' as the return slot except under two
     39   /// conditions:
     40   ///   - The destination slot requires garbage collection, so we
     41   ///     need to use the GC API.
     42   ///   - The destination slot is potentially aliased.
     43   bool shouldUseDestForReturnSlot() const {
     44     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
     45   }
     46 
     47   ReturnValueSlot getReturnValueSlot() const {
     48     if (!shouldUseDestForReturnSlot())
     49       return ReturnValueSlot();
     50 
     51     return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
     52   }
     53 
     54   AggValueSlot EnsureSlot(QualType T) {
     55     if (!Dest.isIgnored()) return Dest;
     56     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
     57   }
     58   void EnsureDest(QualType T) {
     59     if (!Dest.isIgnored()) return;
     60     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
     61   }
     62 
     63 public:
     64   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
     65     : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
     66   }
     67 
     68   //===--------------------------------------------------------------------===//
     69   //                               Utilities
     70   //===--------------------------------------------------------------------===//
     71 
     72   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
     73   /// represents a value lvalue, this method emits the address of the lvalue,
     74   /// then loads the result into DestPtr.
     75   void EmitAggLoadOfLValue(const Expr *E);
     76 
     77   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
     78   void EmitFinalDestCopy(QualType type, const LValue &src);
     79   void EmitFinalDestCopy(QualType type, RValue src,
     80                          CharUnits srcAlignment = CharUnits::Zero());
     81   void EmitCopy(QualType type, const AggValueSlot &dest,
     82                 const AggValueSlot &src);
     83 
     84   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
     85 
     86   void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
     87   void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
     88                      QualType elementType, InitListExpr *E);
     89 
     90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
     91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
     92       return AggValueSlot::NeedsGCBarriers;
     93     return AggValueSlot::DoesNotNeedGCBarriers;
     94   }
     95 
     96   bool TypeRequiresGCollection(QualType T);
     97 
     98   //===--------------------------------------------------------------------===//
     99   //                            Visitor Methods
    100   //===--------------------------------------------------------------------===//
    101 
    102   void VisitStmt(Stmt *S) {
    103     CGF.ErrorUnsupported(S, "aggregate expression");
    104   }
    105   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
    106   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    107     Visit(GE->getResultExpr());
    108   }
    109   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
    110   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    111     return Visit(E->getReplacement());
    112   }
    113 
    114   // l-values.
    115   void VisitDeclRefExpr(DeclRefExpr *E) {
    116     // For aggregates, we should always be able to emit the variable
    117     // as an l-value unless it's a reference.  This is due to the fact
    118     // that we can't actually ever see a normal l2r conversion on an
    119     // aggregate in C++, and in C there's no language standard
    120     // actively preventing us from listing variables in the captures
    121     // list of a block.
    122     if (E->getDecl()->getType()->isReferenceType()) {
    123       if (CodeGenFunction::ConstantEmission result
    124             = CGF.tryEmitAsConstant(E)) {
    125         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
    126         return;
    127       }
    128     }
    129 
    130     EmitAggLoadOfLValue(E);
    131   }
    132 
    133   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
    134   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
    135   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
    136   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
    137   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
    138     EmitAggLoadOfLValue(E);
    139   }
    140   void VisitPredefinedExpr(const PredefinedExpr *E) {
    141     EmitAggLoadOfLValue(E);
    142   }
    143 
    144   // Operators.
    145   void VisitCastExpr(CastExpr *E);
    146   void VisitCallExpr(const CallExpr *E);
    147   void VisitStmtExpr(const StmtExpr *E);
    148   void VisitBinaryOperator(const BinaryOperator *BO);
    149   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
    150   void VisitBinAssign(const BinaryOperator *E);
    151   void VisitBinComma(const BinaryOperator *E);
    152 
    153   void VisitObjCMessageExpr(ObjCMessageExpr *E);
    154   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    155     EmitAggLoadOfLValue(E);
    156   }
    157 
    158   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
    159   void VisitChooseExpr(const ChooseExpr *CE);
    160   void VisitInitListExpr(InitListExpr *E);
    161   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
    162   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    163     Visit(DAE->getExpr());
    164   }
    165   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
    166   void VisitCXXConstructExpr(const CXXConstructExpr *E);
    167   void VisitLambdaExpr(LambdaExpr *E);
    168   void VisitExprWithCleanups(ExprWithCleanups *E);
    169   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
    170   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
    171   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
    172   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
    173 
    174   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    175     if (E->isGLValue()) {
    176       LValue LV = CGF.EmitPseudoObjectLValue(E);
    177       return EmitFinalDestCopy(E->getType(), LV);
    178     }
    179 
    180     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
    181   }
    182 
    183   void VisitVAArgExpr(VAArgExpr *E);
    184 
    185   void EmitInitializationToLValue(Expr *E, LValue Address);
    186   void EmitNullInitializationToLValue(LValue Address);
    187   //  case Expr::ChooseExprClass:
    188   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
    189   void VisitAtomicExpr(AtomicExpr *E) {
    190     CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
    191   }
    192 };
    193 }  // end anonymous namespace.
    194 
    195 //===----------------------------------------------------------------------===//
    196 //                                Utilities
    197 //===----------------------------------------------------------------------===//
    198 
    199 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
    200 /// represents a value lvalue, this method emits the address of the lvalue,
    201 /// then loads the result into DestPtr.
    202 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
    203   LValue LV = CGF.EmitLValue(E);
    204   EmitFinalDestCopy(E->getType(), LV);
    205 }
    206 
    207 /// \brief True if the given aggregate type requires special GC API calls.
    208 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
    209   // Only record types have members that might require garbage collection.
    210   const RecordType *RecordTy = T->getAs<RecordType>();
    211   if (!RecordTy) return false;
    212 
    213   // Don't mess with non-trivial C++ types.
    214   RecordDecl *Record = RecordTy->getDecl();
    215   if (isa<CXXRecordDecl>(Record) &&
    216       (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
    217        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
    218     return false;
    219 
    220   // Check whether the type has an object member.
    221   return Record->hasObjectMember();
    222 }
    223 
    224 /// \brief Perform the final move to DestPtr if for some reason
    225 /// getReturnValueSlot() didn't use it directly.
    226 ///
    227 /// The idea is that you do something like this:
    228 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
    229 ///   EmitMoveFromReturnSlot(E, Result);
    230 ///
    231 /// If nothing interferes, this will cause the result to be emitted
    232 /// directly into the return value slot.  Otherwise, a final move
    233 /// will be performed.
    234 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
    235   if (shouldUseDestForReturnSlot()) {
    236     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
    237     // The possibility of undef rvalues complicates that a lot,
    238     // though, so we can't really assert.
    239     return;
    240   }
    241 
    242   // Otherwise, copy from there to the destination.
    243   assert(Dest.getAddr() != src.getAggregateAddr());
    244   std::pair<CharUnits, CharUnits> typeInfo =
    245     CGF.getContext().getTypeInfoInChars(E->getType());
    246   EmitFinalDestCopy(E->getType(), src, typeInfo.second);
    247 }
    248 
    249 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    250 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
    251                                        CharUnits srcAlign) {
    252   assert(src.isAggregate() && "value must be aggregate value!");
    253   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
    254   EmitFinalDestCopy(type, srcLV);
    255 }
    256 
    257 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
    258 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
    259   // If Dest is ignored, then we're evaluating an aggregate expression
    260   // in a context that doesn't care about the result.  Note that loads
    261   // from volatile l-values force the existence of a non-ignored
    262   // destination.
    263   if (Dest.isIgnored())
    264     return;
    265 
    266   AggValueSlot srcAgg =
    267     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
    268                             needsGC(type), AggValueSlot::IsAliased);
    269   EmitCopy(type, Dest, srcAgg);
    270 }
    271 
    272 /// Perform a copy from the source into the destination.
    273 ///
    274 /// \param type - the type of the aggregate being copied; qualifiers are
    275 ///   ignored
    276 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
    277                               const AggValueSlot &src) {
    278   if (dest.requiresGCollection()) {
    279     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
    280     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
    281     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
    282                                                       dest.getAddr(),
    283                                                       src.getAddr(),
    284                                                       size);
    285     return;
    286   }
    287 
    288   // If the result of the assignment is used, copy the LHS there also.
    289   // It's volatile if either side is.  Use the minimum alignment of
    290   // the two sides.
    291   CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
    292                         dest.isVolatile() || src.isVolatile(),
    293                         std::min(dest.getAlignment(), src.getAlignment()));
    294 }
    295 
    296 static QualType GetStdInitializerListElementType(QualType T) {
    297   // Just assume that this is really std::initializer_list.
    298   ClassTemplateSpecializationDecl *specialization =
    299       cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
    300   return specialization->getTemplateArgs()[0].getAsType();
    301 }
    302 
    303 /// \brief Prepare cleanup for the temporary array.
    304 static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
    305                                           QualType arrayType,
    306                                           llvm::Value *addr,
    307                                           const InitListExpr *initList) {
    308   QualType::DestructionKind dtorKind = arrayType.isDestructedType();
    309   if (!dtorKind)
    310     return; // Type doesn't need destroying.
    311   if (dtorKind != QualType::DK_cxx_destructor) {
    312     CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
    313     return;
    314   }
    315 
    316   CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
    317   CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
    318                   /*EHCleanup=*/true);
    319 }
    320 
    321 /// \brief Emit the initializer for a std::initializer_list initialized with a
    322 /// real initializer list.
    323 void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
    324                                             InitListExpr *initList) {
    325   // We emit an array containing the elements, then have the init list point
    326   // at the array.
    327   ASTContext &ctx = CGF.getContext();
    328   unsigned numInits = initList->getNumInits();
    329   QualType element = GetStdInitializerListElementType(initList->getType());
    330   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
    331   QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
    332   llvm::Type *LTy = CGF.ConvertTypeForMem(array);
    333   llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
    334   alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
    335   alloc->setName(".initlist.");
    336 
    337   EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
    338 
    339   // FIXME: The diagnostics are somewhat out of place here.
    340   RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
    341   RecordDecl::field_iterator field = record->field_begin();
    342   if (field == record->field_end()) {
    343     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    344     return;
    345   }
    346 
    347   QualType elementPtr = ctx.getPointerType(element.withConst());
    348 
    349   // Start pointer.
    350   if (!ctx.hasSameType(field->getType(), elementPtr)) {
    351     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    352     return;
    353   }
    354   LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
    355   LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
    356   llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
    357   CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
    358   ++field;
    359 
    360   if (field == record->field_end()) {
    361     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    362     return;
    363   }
    364   LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
    365   if (ctx.hasSameType(field->getType(), elementPtr)) {
    366     // End pointer.
    367     llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
    368     CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
    369   } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
    370     // Length.
    371     CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
    372   } else {
    373     CGF.ErrorUnsupported(initList, "weird std::initializer_list");
    374     return;
    375   }
    376 
    377   if (!Dest.isExternallyDestructed())
    378     EmitStdInitializerListCleanup(CGF, array, alloc, initList);
    379 }
    380 
    381 /// \brief Emit initialization of an array from an initializer list.
    382 void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
    383                                    QualType elementType, InitListExpr *E) {
    384   uint64_t NumInitElements = E->getNumInits();
    385 
    386   uint64_t NumArrayElements = AType->getNumElements();
    387   assert(NumInitElements <= NumArrayElements);
    388 
    389   // DestPtr is an array*.  Construct an elementType* by drilling
    390   // down a level.
    391   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
    392   llvm::Value *indices[] = { zero, zero };
    393   llvm::Value *begin =
    394     Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
    395 
    396   // Exception safety requires us to destroy all the
    397   // already-constructed members if an initializer throws.
    398   // For that, we'll need an EH cleanup.
    399   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    400   llvm::AllocaInst *endOfInit = 0;
    401   EHScopeStack::stable_iterator cleanup;
    402   llvm::Instruction *cleanupDominator = 0;
    403   if (CGF.needsEHCleanup(dtorKind)) {
    404     // In principle we could tell the cleanup where we are more
    405     // directly, but the control flow can get so varied here that it
    406     // would actually be quite complex.  Therefore we go through an
    407     // alloca.
    408     endOfInit = CGF.CreateTempAlloca(begin->getType(),
    409                                      "arrayinit.endOfInit");
    410     cleanupDominator = Builder.CreateStore(begin, endOfInit);
    411     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
    412                                          CGF.getDestroyer(dtorKind));
    413     cleanup = CGF.EHStack.stable_begin();
    414 
    415   // Otherwise, remember that we didn't need a cleanup.
    416   } else {
    417     dtorKind = QualType::DK_none;
    418   }
    419 
    420   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
    421 
    422   // The 'current element to initialize'.  The invariants on this
    423   // variable are complicated.  Essentially, after each iteration of
    424   // the loop, it points to the last initialized element, except
    425   // that it points to the beginning of the array before any
    426   // elements have been initialized.
    427   llvm::Value *element = begin;
    428 
    429   // Emit the explicit initializers.
    430   for (uint64_t i = 0; i != NumInitElements; ++i) {
    431     // Advance to the next element.
    432     if (i > 0) {
    433       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
    434 
    435       // Tell the cleanup that it needs to destroy up to this
    436       // element.  TODO: some of these stores can be trivially
    437       // observed to be unnecessary.
    438       if (endOfInit) Builder.CreateStore(element, endOfInit);
    439     }
    440 
    441     // If these are nested std::initializer_list inits, do them directly,
    442     // because they are conceptually the same "location".
    443     InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
    444     if (initList && initList->initializesStdInitializerList()) {
    445       EmitStdInitializerList(element, initList);
    446     } else {
    447       LValue elementLV = CGF.MakeAddrLValue(element, elementType);
    448       EmitInitializationToLValue(E->getInit(i), elementLV);
    449     }
    450   }
    451 
    452   // Check whether there's a non-trivial array-fill expression.
    453   // Note that this will be a CXXConstructExpr even if the element
    454   // type is an array (or array of array, etc.) of class type.
    455   Expr *filler = E->getArrayFiller();
    456   bool hasTrivialFiller = true;
    457   if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
    458     assert(cons->getConstructor()->isDefaultConstructor());
    459     hasTrivialFiller = cons->getConstructor()->isTrivial();
    460   }
    461 
    462   // Any remaining elements need to be zero-initialized, possibly
    463   // using the filler expression.  We can skip this if the we're
    464   // emitting to zeroed memory.
    465   if (NumInitElements != NumArrayElements &&
    466       !(Dest.isZeroed() && hasTrivialFiller &&
    467         CGF.getTypes().isZeroInitializable(elementType))) {
    468 
    469     // Use an actual loop.  This is basically
    470     //   do { *array++ = filler; } while (array != end);
    471 
    472     // Advance to the start of the rest of the array.
    473     if (NumInitElements) {
    474       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
    475       if (endOfInit) Builder.CreateStore(element, endOfInit);
    476     }
    477 
    478     // Compute the end of the array.
    479     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
    480                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
    481                                                  "arrayinit.end");
    482 
    483     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    484     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
    485 
    486     // Jump into the body.
    487     CGF.EmitBlock(bodyBB);
    488     llvm::PHINode *currentElement =
    489       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
    490     currentElement->addIncoming(element, entryBB);
    491 
    492     // Emit the actual filler expression.
    493     LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
    494     if (filler)
    495       EmitInitializationToLValue(filler, elementLV);
    496     else
    497       EmitNullInitializationToLValue(elementLV);
    498 
    499     // Move on to the next element.
    500     llvm::Value *nextElement =
    501       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
    502 
    503     // Tell the EH cleanup that we finished with the last element.
    504     if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
    505 
    506     // Leave the loop if we're done.
    507     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
    508                                              "arrayinit.done");
    509     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
    510     Builder.CreateCondBr(done, endBB, bodyBB);
    511     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
    512 
    513     CGF.EmitBlock(endBB);
    514   }
    515 
    516   // Leave the partial-array cleanup if we entered one.
    517   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
    518 }
    519 
    520 //===----------------------------------------------------------------------===//
    521 //                            Visitor Methods
    522 //===----------------------------------------------------------------------===//
    523 
    524 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
    525   Visit(E->GetTemporaryExpr());
    526 }
    527 
    528 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
    529   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
    530 }
    531 
    532 void
    533 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    534   if (E->getType().isPODType(CGF.getContext())) {
    535     // For a POD type, just emit a load of the lvalue + a copy, because our
    536     // compound literal might alias the destination.
    537     // FIXME: This is a band-aid; the real problem appears to be in our handling
    538     // of assignments, where we store directly into the LHS without checking
    539     // whether anything in the RHS aliases.
    540     EmitAggLoadOfLValue(E);
    541     return;
    542   }
    543 
    544   AggValueSlot Slot = EnsureSlot(E->getType());
    545   CGF.EmitAggExpr(E->getInitializer(), Slot);
    546 }
    547 
    548 
    549 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
    550   switch (E->getCastKind()) {
    551   case CK_Dynamic: {
    552     // FIXME: Can this actually happen? We have no test coverage for it.
    553     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
    554     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
    555                                       CodeGenFunction::TCK_Load);
    556     // FIXME: Do we also need to handle property references here?
    557     if (LV.isSimple())
    558       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
    559     else
    560       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
    561 
    562     if (!Dest.isIgnored())
    563       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
    564     break;
    565   }
    566 
    567   case CK_ToUnion: {
    568     if (Dest.isIgnored()) break;
    569 
    570     // GCC union extension
    571     QualType Ty = E->getSubExpr()->getType();
    572     QualType PtrTy = CGF.getContext().getPointerType(Ty);
    573     llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
    574                                                  CGF.ConvertType(PtrTy));
    575     EmitInitializationToLValue(E->getSubExpr(),
    576                                CGF.MakeAddrLValue(CastPtr, Ty));
    577     break;
    578   }
    579 
    580   case CK_DerivedToBase:
    581   case CK_BaseToDerived:
    582   case CK_UncheckedDerivedToBase: {
    583     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
    584                 "should have been unpacked before we got here");
    585   }
    586 
    587   case CK_LValueToRValue:
    588     // If we're loading from a volatile type, force the destination
    589     // into existence.
    590     if (E->getSubExpr()->getType().isVolatileQualified()) {
    591       EnsureDest(E->getType());
    592       return Visit(E->getSubExpr());
    593     }
    594     // fallthrough
    595 
    596   case CK_NoOp:
    597   case CK_AtomicToNonAtomic:
    598   case CK_NonAtomicToAtomic:
    599   case CK_UserDefinedConversion:
    600   case CK_ConstructorConversion:
    601     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
    602                                                    E->getType()) &&
    603            "Implicit cast types must be compatible");
    604     Visit(E->getSubExpr());
    605     break;
    606 
    607   case CK_LValueBitCast:
    608     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
    609 
    610   case CK_Dependent:
    611   case CK_BitCast:
    612   case CK_ArrayToPointerDecay:
    613   case CK_FunctionToPointerDecay:
    614   case CK_NullToPointer:
    615   case CK_NullToMemberPointer:
    616   case CK_BaseToDerivedMemberPointer:
    617   case CK_DerivedToBaseMemberPointer:
    618   case CK_MemberPointerToBoolean:
    619   case CK_ReinterpretMemberPointer:
    620   case CK_IntegralToPointer:
    621   case CK_PointerToIntegral:
    622   case CK_PointerToBoolean:
    623   case CK_ToVoid:
    624   case CK_VectorSplat:
    625   case CK_IntegralCast:
    626   case CK_IntegralToBoolean:
    627   case CK_IntegralToFloating:
    628   case CK_FloatingToIntegral:
    629   case CK_FloatingToBoolean:
    630   case CK_FloatingCast:
    631   case CK_CPointerToObjCPointerCast:
    632   case CK_BlockPointerToObjCPointerCast:
    633   case CK_AnyPointerToBlockPointerCast:
    634   case CK_ObjCObjectLValueCast:
    635   case CK_FloatingRealToComplex:
    636   case CK_FloatingComplexToReal:
    637   case CK_FloatingComplexToBoolean:
    638   case CK_FloatingComplexCast:
    639   case CK_FloatingComplexToIntegralComplex:
    640   case CK_IntegralRealToComplex:
    641   case CK_IntegralComplexToReal:
    642   case CK_IntegralComplexToBoolean:
    643   case CK_IntegralComplexCast:
    644   case CK_IntegralComplexToFloatingComplex:
    645   case CK_ARCProduceObject:
    646   case CK_ARCConsumeObject:
    647   case CK_ARCReclaimReturnedObject:
    648   case CK_ARCExtendBlockObject:
    649   case CK_CopyAndAutoreleaseBlockObject:
    650   case CK_BuiltinFnToFnPtr:
    651     llvm_unreachable("cast kind invalid for aggregate types");
    652   }
    653 }
    654 
    655 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
    656   if (E->getCallReturnType()->isReferenceType()) {
    657     EmitAggLoadOfLValue(E);
    658     return;
    659   }
    660 
    661   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
    662   EmitMoveFromReturnSlot(E, RV);
    663 }
    664 
    665 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
    666   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
    667   EmitMoveFromReturnSlot(E, RV);
    668 }
    669 
    670 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
    671   CGF.EmitIgnoredExpr(E->getLHS());
    672   Visit(E->getRHS());
    673 }
    674 
    675 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
    676   CodeGenFunction::StmtExprEvaluation eval(CGF);
    677   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
    678 }
    679 
    680 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
    681   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
    682     VisitPointerToDataMemberBinaryOperator(E);
    683   else
    684     CGF.ErrorUnsupported(E, "aggregate binary expression");
    685 }
    686 
    687 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
    688                                                     const BinaryOperator *E) {
    689   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
    690   EmitFinalDestCopy(E->getType(), LV);
    691 }
    692 
    693 /// Is the value of the given expression possibly a reference to or
    694 /// into a __block variable?
    695 static bool isBlockVarRef(const Expr *E) {
    696   // Make sure we look through parens.
    697   E = E->IgnoreParens();
    698 
    699   // Check for a direct reference to a __block variable.
    700   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
    701     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
    702     return (var && var->hasAttr<BlocksAttr>());
    703   }
    704 
    705   // More complicated stuff.
    706 
    707   // Binary operators.
    708   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
    709     // For an assignment or pointer-to-member operation, just care
    710     // about the LHS.
    711     if (op->isAssignmentOp() || op->isPtrMemOp())
    712       return isBlockVarRef(op->getLHS());
    713 
    714     // For a comma, just care about the RHS.
    715     if (op->getOpcode() == BO_Comma)
    716       return isBlockVarRef(op->getRHS());
    717 
    718     // FIXME: pointer arithmetic?
    719     return false;
    720 
    721   // Check both sides of a conditional operator.
    722   } else if (const AbstractConditionalOperator *op
    723                = dyn_cast<AbstractConditionalOperator>(E)) {
    724     return isBlockVarRef(op->getTrueExpr())
    725         || isBlockVarRef(op->getFalseExpr());
    726 
    727   // OVEs are required to support BinaryConditionalOperators.
    728   } else if (const OpaqueValueExpr *op
    729                = dyn_cast<OpaqueValueExpr>(E)) {
    730     if (const Expr *src = op->getSourceExpr())
    731       return isBlockVarRef(src);
    732 
    733   // Casts are necessary to get things like (*(int*)&var) = foo().
    734   // We don't really care about the kind of cast here, except
    735   // we don't want to look through l2r casts, because it's okay
    736   // to get the *value* in a __block variable.
    737   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
    738     if (cast->getCastKind() == CK_LValueToRValue)
    739       return false;
    740     return isBlockVarRef(cast->getSubExpr());
    741 
    742   // Handle unary operators.  Again, just aggressively look through
    743   // it, ignoring the operation.
    744   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
    745     return isBlockVarRef(uop->getSubExpr());
    746 
    747   // Look into the base of a field access.
    748   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
    749     return isBlockVarRef(mem->getBase());
    750 
    751   // Look into the base of a subscript.
    752   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
    753     return isBlockVarRef(sub->getBase());
    754   }
    755 
    756   return false;
    757 }
    758 
    759 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
    760   // For an assignment to work, the value on the right has
    761   // to be compatible with the value on the left.
    762   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
    763                                                  E->getRHS()->getType())
    764          && "Invalid assignment");
    765 
    766   // If the LHS might be a __block variable, and the RHS can
    767   // potentially cause a block copy, we need to evaluate the RHS first
    768   // so that the assignment goes the right place.
    769   // This is pretty semantically fragile.
    770   if (isBlockVarRef(E->getLHS()) &&
    771       E->getRHS()->HasSideEffects(CGF.getContext())) {
    772     // Ensure that we have a destination, and evaluate the RHS into that.
    773     EnsureDest(E->getRHS()->getType());
    774     Visit(E->getRHS());
    775 
    776     // Now emit the LHS and copy into it.
    777     LValue LHS = CGF.EmitLValue(E->getLHS());
    778 
    779     EmitCopy(E->getLHS()->getType(),
    780              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    781                                      needsGC(E->getLHS()->getType()),
    782                                      AggValueSlot::IsAliased),
    783              Dest);
    784     return;
    785   }
    786 
    787   LValue LHS = CGF.EmitLValue(E->getLHS());
    788 
    789   // Codegen the RHS so that it stores directly into the LHS.
    790   AggValueSlot LHSSlot =
    791     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
    792                             needsGC(E->getLHS()->getType()),
    793                             AggValueSlot::IsAliased);
    794   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
    795 
    796   // Copy into the destination if the assignment isn't ignored.
    797   EmitFinalDestCopy(E->getType(), LHS);
    798 }
    799 
    800 void AggExprEmitter::
    801 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
    802   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
    803   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
    804   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
    805 
    806   // Bind the common expression if necessary.
    807   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
    808 
    809   CodeGenFunction::ConditionalEvaluation eval(CGF);
    810   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
    811 
    812   // Save whether the destination's lifetime is externally managed.
    813   bool isExternallyDestructed = Dest.isExternallyDestructed();
    814 
    815   eval.begin(CGF);
    816   CGF.EmitBlock(LHSBlock);
    817   Visit(E->getTrueExpr());
    818   eval.end(CGF);
    819 
    820   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
    821   CGF.Builder.CreateBr(ContBlock);
    822 
    823   // If the result of an agg expression is unused, then the emission
    824   // of the LHS might need to create a destination slot.  That's fine
    825   // with us, and we can safely emit the RHS into the same slot, but
    826   // we shouldn't claim that it's already being destructed.
    827   Dest.setExternallyDestructed(isExternallyDestructed);
    828 
    829   eval.begin(CGF);
    830   CGF.EmitBlock(RHSBlock);
    831   Visit(E->getFalseExpr());
    832   eval.end(CGF);
    833 
    834   CGF.EmitBlock(ContBlock);
    835 }
    836 
    837 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
    838   Visit(CE->getChosenSubExpr(CGF.getContext()));
    839 }
    840 
    841 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
    842   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
    843   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
    844 
    845   if (!ArgPtr) {
    846     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
    847     return;
    848   }
    849 
    850   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
    851 }
    852 
    853 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
    854   // Ensure that we have a slot, but if we already do, remember
    855   // whether it was externally destructed.
    856   bool wasExternallyDestructed = Dest.isExternallyDestructed();
    857   EnsureDest(E->getType());
    858 
    859   // We're going to push a destructor if there isn't already one.
    860   Dest.setExternallyDestructed();
    861 
    862   Visit(E->getSubExpr());
    863 
    864   // Push that destructor we promised.
    865   if (!wasExternallyDestructed)
    866     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
    867 }
    868 
    869 void
    870 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
    871   AggValueSlot Slot = EnsureSlot(E->getType());
    872   CGF.EmitCXXConstructExpr(E, Slot);
    873 }
    874 
    875 void
    876 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
    877   AggValueSlot Slot = EnsureSlot(E->getType());
    878   CGF.EmitLambdaExpr(E, Slot);
    879 }
    880 
    881 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
    882   CGF.enterFullExpression(E);
    883   CodeGenFunction::RunCleanupsScope cleanups(CGF);
    884   Visit(E->getSubExpr());
    885 }
    886 
    887 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
    888   QualType T = E->getType();
    889   AggValueSlot Slot = EnsureSlot(T);
    890   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    891 }
    892 
    893 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
    894   QualType T = E->getType();
    895   AggValueSlot Slot = EnsureSlot(T);
    896   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
    897 }
    898 
    899 /// isSimpleZero - If emitting this value will obviously just cause a store of
    900 /// zero to memory, return true.  This can return false if uncertain, so it just
    901 /// handles simple cases.
    902 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
    903   E = E->IgnoreParens();
    904 
    905   // 0
    906   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
    907     return IL->getValue() == 0;
    908   // +0.0
    909   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
    910     return FL->getValue().isPosZero();
    911   // int()
    912   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
    913       CGF.getTypes().isZeroInitializable(E->getType()))
    914     return true;
    915   // (int*)0 - Null pointer expressions.
    916   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
    917     return ICE->getCastKind() == CK_NullToPointer;
    918   // '\0'
    919   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
    920     return CL->getValue() == 0;
    921 
    922   // Otherwise, hard case: conservatively return false.
    923   return false;
    924 }
    925 
    926 
    927 void
    928 AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
    929   QualType type = LV.getType();
    930   // FIXME: Ignore result?
    931   // FIXME: Are initializers affected by volatile?
    932   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
    933     // Storing "i32 0" to a zero'd memory location is a noop.
    934   } else if (isa<ImplicitValueInitExpr>(E)) {
    935     EmitNullInitializationToLValue(LV);
    936   } else if (type->isReferenceType()) {
    937     RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
    938     CGF.EmitStoreThroughLValue(RV, LV);
    939   } else if (type->isAnyComplexType()) {
    940     CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
    941   } else if (CGF.hasAggregateLLVMType(type)) {
    942     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
    943                                                AggValueSlot::IsDestructed,
    944                                       AggValueSlot::DoesNotNeedGCBarriers,
    945                                                AggValueSlot::IsNotAliased,
    946                                                Dest.isZeroed()));
    947   } else if (LV.isSimple()) {
    948     CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
    949   } else {
    950     CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
    951   }
    952 }
    953 
    954 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
    955   QualType type = lv.getType();
    956 
    957   // If the destination slot is already zeroed out before the aggregate is
    958   // copied into it, we don't have to emit any zeros here.
    959   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
    960     return;
    961 
    962   if (!CGF.hasAggregateLLVMType(type)) {
    963     // For non-aggregates, we can store zero.
    964     llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
    965     // Note that the following is not equivalent to
    966     // EmitStoreThroughBitfieldLValue for ARC types.
    967     if (lv.isBitField()) {
    968       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
    969     } else {
    970       assert(lv.isSimple());
    971       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
    972     }
    973   } else {
    974     // There's a potential optimization opportunity in combining
    975     // memsets; that would be easy for arrays, but relatively
    976     // difficult for structures with the current code.
    977     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
    978   }
    979 }
    980 
    981 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
    982 #if 0
    983   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
    984   // (Length of globals? Chunks of zeroed-out space?).
    985   //
    986   // If we can, prefer a copy from a global; this is a lot less code for long
    987   // globals, and it's easier for the current optimizers to analyze.
    988   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
    989     llvm::GlobalVariable* GV =
    990     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
    991                              llvm::GlobalValue::InternalLinkage, C, "");
    992     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
    993     return;
    994   }
    995 #endif
    996   if (E->hadArrayRangeDesignator())
    997     CGF.ErrorUnsupported(E, "GNU array range designator extension");
    998 
    999   if (E->initializesStdInitializerList()) {
   1000     EmitStdInitializerList(Dest.getAddr(), E);
   1001     return;
   1002   }
   1003 
   1004   AggValueSlot Dest = EnsureSlot(E->getType());
   1005   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
   1006                                      Dest.getAlignment());
   1007 
   1008   // Handle initialization of an array.
   1009   if (E->getType()->isArrayType()) {
   1010     if (E->isStringLiteralInit())
   1011       return Visit(E->getInit(0));
   1012 
   1013     QualType elementType =
   1014         CGF.getContext().getAsArrayType(E->getType())->getElementType();
   1015 
   1016     llvm::PointerType *APType =
   1017       cast<llvm::PointerType>(Dest.getAddr()->getType());
   1018     llvm::ArrayType *AType =
   1019       cast<llvm::ArrayType>(APType->getElementType());
   1020 
   1021     EmitArrayInit(Dest.getAddr(), AType, elementType, E);
   1022     return;
   1023   }
   1024 
   1025   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
   1026 
   1027   // Do struct initialization; this code just sets each individual member
   1028   // to the approprate value.  This makes bitfield support automatic;
   1029   // the disadvantage is that the generated code is more difficult for
   1030   // the optimizer, especially with bitfields.
   1031   unsigned NumInitElements = E->getNumInits();
   1032   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
   1033 
   1034   if (record->isUnion()) {
   1035     // Only initialize one field of a union. The field itself is
   1036     // specified by the initializer list.
   1037     if (!E->getInitializedFieldInUnion()) {
   1038       // Empty union; we have nothing to do.
   1039 
   1040 #ifndef NDEBUG
   1041       // Make sure that it's really an empty and not a failure of
   1042       // semantic analysis.
   1043       for (RecordDecl::field_iterator Field = record->field_begin(),
   1044                                    FieldEnd = record->field_end();
   1045            Field != FieldEnd; ++Field)
   1046         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
   1047 #endif
   1048       return;
   1049     }
   1050 
   1051     // FIXME: volatility
   1052     FieldDecl *Field = E->getInitializedFieldInUnion();
   1053 
   1054     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
   1055     if (NumInitElements) {
   1056       // Store the initializer into the field
   1057       EmitInitializationToLValue(E->getInit(0), FieldLoc);
   1058     } else {
   1059       // Default-initialize to null.
   1060       EmitNullInitializationToLValue(FieldLoc);
   1061     }
   1062 
   1063     return;
   1064   }
   1065 
   1066   // We'll need to enter cleanup scopes in case any of the member
   1067   // initializers throw an exception.
   1068   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
   1069   llvm::Instruction *cleanupDominator = 0;
   1070 
   1071   // Here we iterate over the fields; this makes it simpler to both
   1072   // default-initialize fields and skip over unnamed fields.
   1073   unsigned curInitIndex = 0;
   1074   for (RecordDecl::field_iterator field = record->field_begin(),
   1075                                fieldEnd = record->field_end();
   1076        field != fieldEnd; ++field) {
   1077     // We're done once we hit the flexible array member.
   1078     if (field->getType()->isIncompleteArrayType())
   1079       break;
   1080 
   1081     // Always skip anonymous bitfields.
   1082     if (field->isUnnamedBitfield())
   1083       continue;
   1084 
   1085     // We're done if we reach the end of the explicit initializers, we
   1086     // have a zeroed object, and the rest of the fields are
   1087     // zero-initializable.
   1088     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
   1089         CGF.getTypes().isZeroInitializable(E->getType()))
   1090       break;
   1091 
   1092 
   1093     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
   1094     // We never generate write-barries for initialized fields.
   1095     LV.setNonGC(true);
   1096 
   1097     if (curInitIndex < NumInitElements) {
   1098       // Store the initializer into the field.
   1099       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
   1100     } else {
   1101       // We're out of initalizers; default-initialize to null
   1102       EmitNullInitializationToLValue(LV);
   1103     }
   1104 
   1105     // Push a destructor if necessary.
   1106     // FIXME: if we have an array of structures, all explicitly
   1107     // initialized, we can end up pushing a linear number of cleanups.
   1108     bool pushedCleanup = false;
   1109     if (QualType::DestructionKind dtorKind
   1110           = field->getType().isDestructedType()) {
   1111       assert(LV.isSimple());
   1112       if (CGF.needsEHCleanup(dtorKind)) {
   1113         if (!cleanupDominator)
   1114           cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
   1115 
   1116         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
   1117                         CGF.getDestroyer(dtorKind), false);
   1118         cleanups.push_back(CGF.EHStack.stable_begin());
   1119         pushedCleanup = true;
   1120       }
   1121     }
   1122 
   1123     // If the GEP didn't get used because of a dead zero init or something
   1124     // else, clean it up for -O0 builds and general tidiness.
   1125     if (!pushedCleanup && LV.isSimple())
   1126       if (llvm::GetElementPtrInst *GEP =
   1127             dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
   1128         if (GEP->use_empty())
   1129           GEP->eraseFromParent();
   1130   }
   1131 
   1132   // Deactivate all the partial cleanups in reverse order, which
   1133   // generally means popping them.
   1134   for (unsigned i = cleanups.size(); i != 0; --i)
   1135     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
   1136 
   1137   // Destroy the placeholder if we made one.
   1138   if (cleanupDominator)
   1139     cleanupDominator->eraseFromParent();
   1140 }
   1141 
   1142 //===----------------------------------------------------------------------===//
   1143 //                        Entry Points into this File
   1144 //===----------------------------------------------------------------------===//
   1145 
   1146 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
   1147 /// non-zero bytes that will be stored when outputting the initializer for the
   1148 /// specified initializer expression.
   1149 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
   1150   E = E->IgnoreParens();
   1151 
   1152   // 0 and 0.0 won't require any non-zero stores!
   1153   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
   1154 
   1155   // If this is an initlist expr, sum up the size of sizes of the (present)
   1156   // elements.  If this is something weird, assume the whole thing is non-zero.
   1157   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
   1158   if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
   1159     return CGF.getContext().getTypeSizeInChars(E->getType());
   1160 
   1161   // InitListExprs for structs have to be handled carefully.  If there are
   1162   // reference members, we need to consider the size of the reference, not the
   1163   // referencee.  InitListExprs for unions and arrays can't have references.
   1164   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
   1165     if (!RT->isUnionType()) {
   1166       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
   1167       CharUnits NumNonZeroBytes = CharUnits::Zero();
   1168 
   1169       unsigned ILEElement = 0;
   1170       for (RecordDecl::field_iterator Field = SD->field_begin(),
   1171            FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
   1172         // We're done once we hit the flexible array member or run out of
   1173         // InitListExpr elements.
   1174         if (Field->getType()->isIncompleteArrayType() ||
   1175             ILEElement == ILE->getNumInits())
   1176           break;
   1177         if (Field->isUnnamedBitfield())
   1178           continue;
   1179 
   1180         const Expr *E = ILE->getInit(ILEElement++);
   1181 
   1182         // Reference values are always non-null and have the width of a pointer.
   1183         if (Field->getType()->isReferenceType())
   1184           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
   1185               CGF.getContext().getTargetInfo().getPointerWidth(0));
   1186         else
   1187           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
   1188       }
   1189 
   1190       return NumNonZeroBytes;
   1191     }
   1192   }
   1193 
   1194 
   1195   CharUnits NumNonZeroBytes = CharUnits::Zero();
   1196   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
   1197     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
   1198   return NumNonZeroBytes;
   1199 }
   1200 
   1201 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
   1202 /// zeros in it, emit a memset and avoid storing the individual zeros.
   1203 ///
   1204 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
   1205                                      CodeGenFunction &CGF) {
   1206   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
   1207   // volatile stores.
   1208   if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
   1209 
   1210   // C++ objects with a user-declared constructor don't need zero'ing.
   1211   if (CGF.getContext().getLangOpts().CPlusPlus)
   1212     if (const RecordType *RT = CGF.getContext()
   1213                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
   1214       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1215       if (RD->hasUserDeclaredConstructor())
   1216         return;
   1217     }
   1218 
   1219   // If the type is 16-bytes or smaller, prefer individual stores over memset.
   1220   std::pair<CharUnits, CharUnits> TypeInfo =
   1221     CGF.getContext().getTypeInfoInChars(E->getType());
   1222   if (TypeInfo.first <= CharUnits::fromQuantity(16))
   1223     return;
   1224 
   1225   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
   1226   // we prefer to emit memset + individual stores for the rest.
   1227   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
   1228   if (NumNonZeroBytes*4 > TypeInfo.first)
   1229     return;
   1230 
   1231   // Okay, it seems like a good idea to use an initial memset, emit the call.
   1232   llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
   1233   CharUnits Align = TypeInfo.second;
   1234 
   1235   llvm::Value *Loc = Slot.getAddr();
   1236 
   1237   Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
   1238   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
   1239                            Align.getQuantity(), false);
   1240 
   1241   // Tell the AggExprEmitter that the slot is known zero.
   1242   Slot.setZeroed();
   1243 }
   1244 
   1245 
   1246 
   1247 
   1248 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
   1249 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
   1250 /// the value of the aggregate expression is not needed.  If VolatileDest is
   1251 /// true, DestPtr cannot be 0.
   1252 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
   1253   assert(E && hasAggregateLLVMType(E->getType()) &&
   1254          "Invalid aggregate expression to emit");
   1255   assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
   1256          "slot has bits but no address");
   1257 
   1258   // Optimize the slot if possible.
   1259   CheckAggExprForMemSetUse(Slot, E, *this);
   1260 
   1261   AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
   1262 }
   1263 
   1264 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
   1265   assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
   1266   llvm::Value *Temp = CreateMemTemp(E->getType());
   1267   LValue LV = MakeAddrLValue(Temp, E->getType());
   1268   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
   1269                                          AggValueSlot::DoesNotNeedGCBarriers,
   1270                                          AggValueSlot::IsNotAliased));
   1271   return LV;
   1272 }
   1273 
   1274 void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
   1275                                         llvm::Value *SrcPtr, QualType Ty,
   1276                                         bool isVolatile,
   1277                                         CharUnits alignment) {
   1278   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
   1279 
   1280   if (getContext().getLangOpts().CPlusPlus) {
   1281     if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1282       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
   1283       assert((Record->hasTrivialCopyConstructor() ||
   1284               Record->hasTrivialCopyAssignment() ||
   1285               Record->hasTrivialMoveConstructor() ||
   1286               Record->hasTrivialMoveAssignment()) &&
   1287              "Trying to aggregate-copy a type without a trivial copy "
   1288              "constructor or assignment operator");
   1289       // Ignore empty classes in C++.
   1290       if (Record->isEmpty())
   1291         return;
   1292     }
   1293   }
   1294 
   1295   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
   1296   // C99 6.5.16.1p3, which states "If the value being stored in an object is
   1297   // read from another object that overlaps in anyway the storage of the first
   1298   // object, then the overlap shall be exact and the two objects shall have
   1299   // qualified or unqualified versions of a compatible type."
   1300   //
   1301   // memcpy is not defined if the source and destination pointers are exactly
   1302   // equal, but other compilers do this optimization, and almost every memcpy
   1303   // implementation handles this case safely.  If there is a libc that does not
   1304   // safely handle this, we can add a target hook.
   1305 
   1306   // Get data size and alignment info for this aggregate.
   1307   std::pair<CharUnits, CharUnits> TypeInfo =
   1308     getContext().getTypeInfoDataSizeInChars(Ty);
   1309 
   1310   if (alignment.isZero())
   1311     alignment = TypeInfo.second;
   1312 
   1313   // FIXME: Handle variable sized types.
   1314 
   1315   // FIXME: If we have a volatile struct, the optimizer can remove what might
   1316   // appear to be `extra' memory ops:
   1317   //
   1318   // volatile struct { int i; } a, b;
   1319   //
   1320   // int main() {
   1321   //   a = b;
   1322   //   a = b;
   1323   // }
   1324   //
   1325   // we need to use a different call here.  We use isVolatile to indicate when
   1326   // either the source or the destination is volatile.
   1327 
   1328   llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
   1329   llvm::Type *DBP =
   1330     llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
   1331   DestPtr = Builder.CreateBitCast(DestPtr, DBP);
   1332 
   1333   llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
   1334   llvm::Type *SBP =
   1335     llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
   1336   SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
   1337 
   1338   // Don't do any of the memmove_collectable tests if GC isn't set.
   1339   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
   1340     // fall through
   1341   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
   1342     RecordDecl *Record = RecordTy->getDecl();
   1343     if (Record->hasObjectMember()) {
   1344       CharUnits size = TypeInfo.first;
   1345       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1346       llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1347       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1348                                                     SizeVal);
   1349       return;
   1350     }
   1351   } else if (Ty->isArrayType()) {
   1352     QualType BaseType = getContext().getBaseElementType(Ty);
   1353     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
   1354       if (RecordTy->getDecl()->hasObjectMember()) {
   1355         CharUnits size = TypeInfo.first;
   1356         llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
   1357         llvm::Value *SizeVal =
   1358           llvm::ConstantInt::get(SizeTy, size.getQuantity());
   1359         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
   1360                                                       SizeVal);
   1361         return;
   1362       }
   1363     }
   1364   }
   1365 
   1366   Builder.CreateMemCpy(DestPtr, SrcPtr,
   1367                        llvm::ConstantInt::get(IntPtrTy,
   1368                                               TypeInfo.first.getQuantity()),
   1369                        alignment.getQuantity(), isVolatile);
   1370 }
   1371 
   1372 void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
   1373                                                          const Expr *init) {
   1374   const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
   1375   if (cleanups)
   1376     init = cleanups->getSubExpr();
   1377 
   1378   if (isa<InitListExpr>(init) &&
   1379       cast<InitListExpr>(init)->initializesStdInitializerList()) {
   1380     // We initialized this std::initializer_list with an initializer list.
   1381     // A backing array was created. Push a cleanup for it.
   1382     EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
   1383   }
   1384 }
   1385 
   1386 static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
   1387                                                    llvm::Value *arrayStart,
   1388                                                    const InitListExpr *init) {
   1389   // Check if there are any recursive cleanups to do, i.e. if we have
   1390   //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
   1391   // then we need to destroy the inner array as well.
   1392   for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
   1393     const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
   1394     if (!subInit || !subInit->initializesStdInitializerList())
   1395       continue;
   1396 
   1397     // This one needs to be destroyed. Get the address of the std::init_list.
   1398     llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
   1399     llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
   1400                                                  "std.initlist");
   1401     CGF.EmitStdInitializerListCleanup(loc, subInit);
   1402   }
   1403 }
   1404 
   1405 void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
   1406                                                     const InitListExpr *init) {
   1407   ASTContext &ctx = getContext();
   1408   QualType element = GetStdInitializerListElementType(init->getType());
   1409   unsigned numInits = init->getNumInits();
   1410   llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
   1411   QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
   1412   QualType arrayPtr = ctx.getPointerType(array);
   1413   llvm::Type *arrayPtrType = ConvertType(arrayPtr);
   1414 
   1415   // lvalue is the location of a std::initializer_list, which as its first
   1416   // element has a pointer to the array we want to destroy.
   1417   llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
   1418   llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
   1419 
   1420   ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
   1421 
   1422   llvm::Value *arrayAddress =
   1423       Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
   1424   ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
   1425 }
   1426