Home | History | Annotate | Download | only in CodeGen
      1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This coordinates the per-function state used while generating code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CodeGenModule.h"
     16 #include "CGCUDARuntime.h"
     17 #include "CGCXXABI.h"
     18 #include "CGDebugInfo.h"
     19 #include "clang/Basic/TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclCXX.h"
     23 #include "clang/AST/StmtCXX.h"
     24 #include "clang/Frontend/CodeGenOptions.h"
     25 #include "llvm/Intrinsics.h"
     26 #include "llvm/MDBuilder.h"
     27 #include "llvm/Target/TargetData.h"
     28 using namespace clang;
     29 using namespace CodeGen;
     30 
     31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
     32   : CodeGenTypeCache(cgm), CGM(cgm),
     33     Target(CGM.getContext().getTargetInfo()),
     34     Builder(cgm.getModule().getContext()),
     35     AutoreleaseResult(false), BlockInfo(0), BlockPointer(0),
     36     LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1),
     37     FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0),
     38     DebugInfo(0), DisableDebugInfo(false), DidCallStackSave(false),
     39     IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0),
     40     CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), CXXVTTDecl(0),
     41     CXXVTTValue(0), OutermostConditional(0), TerminateLandingPad(0),
     42     TerminateHandler(0), TrapBB(0) {
     43 
     44   CatchUndefined = getContext().getLangOpts().CatchUndefined;
     45   if (!suppressNewContext)
     46     CGM.getCXXABI().getMangleContext().startNewFunction();
     47 }
     48 
     49 CodeGenFunction::~CodeGenFunction() {
     50   // If there are any unclaimed block infos, go ahead and destroy them
     51   // now.  This can happen if IR-gen gets clever and skips evaluating
     52   // something.
     53   if (FirstBlockInfo)
     54     destroyBlockInfos(FirstBlockInfo);
     55 }
     56 
     57 
     58 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
     59   return CGM.getTypes().ConvertTypeForMem(T);
     60 }
     61 
     62 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
     63   return CGM.getTypes().ConvertType(T);
     64 }
     65 
     66 bool CodeGenFunction::hasAggregateLLVMType(QualType type) {
     67   switch (type.getCanonicalType()->getTypeClass()) {
     68 #define TYPE(name, parent)
     69 #define ABSTRACT_TYPE(name, parent)
     70 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
     71 #define DEPENDENT_TYPE(name, parent) case Type::name:
     72 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
     73 #include "clang/AST/TypeNodes.def"
     74     llvm_unreachable("non-canonical or dependent type in IR-generation");
     75 
     76   case Type::Builtin:
     77   case Type::Pointer:
     78   case Type::BlockPointer:
     79   case Type::LValueReference:
     80   case Type::RValueReference:
     81   case Type::MemberPointer:
     82   case Type::Vector:
     83   case Type::ExtVector:
     84   case Type::FunctionProto:
     85   case Type::FunctionNoProto:
     86   case Type::Enum:
     87   case Type::ObjCObjectPointer:
     88     return false;
     89 
     90   // Complexes, arrays, records, and Objective-C objects.
     91   case Type::Complex:
     92   case Type::ConstantArray:
     93   case Type::IncompleteArray:
     94   case Type::VariableArray:
     95   case Type::Record:
     96   case Type::ObjCObject:
     97   case Type::ObjCInterface:
     98     return true;
     99 
    100   // In IRGen, atomic types are just the underlying type
    101   case Type::Atomic:
    102     return hasAggregateLLVMType(type->getAs<AtomicType>()->getValueType());
    103   }
    104   llvm_unreachable("unknown type kind!");
    105 }
    106 
    107 void CodeGenFunction::EmitReturnBlock() {
    108   // For cleanliness, we try to avoid emitting the return block for
    109   // simple cases.
    110   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
    111 
    112   if (CurBB) {
    113     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
    114 
    115     // We have a valid insert point, reuse it if it is empty or there are no
    116     // explicit jumps to the return block.
    117     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
    118       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
    119       delete ReturnBlock.getBlock();
    120     } else
    121       EmitBlock(ReturnBlock.getBlock());
    122     return;
    123   }
    124 
    125   // Otherwise, if the return block is the target of a single direct
    126   // branch then we can just put the code in that block instead. This
    127   // cleans up functions which started with a unified return block.
    128   if (ReturnBlock.getBlock()->hasOneUse()) {
    129     llvm::BranchInst *BI =
    130       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
    131     if (BI && BI->isUnconditional() &&
    132         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
    133       // Reset insertion point, including debug location, and delete the branch.
    134       Builder.SetCurrentDebugLocation(BI->getDebugLoc());
    135       Builder.SetInsertPoint(BI->getParent());
    136       BI->eraseFromParent();
    137       delete ReturnBlock.getBlock();
    138       return;
    139     }
    140   }
    141 
    142   // FIXME: We are at an unreachable point, there is no reason to emit the block
    143   // unless it has uses. However, we still need a place to put the debug
    144   // region.end for now.
    145 
    146   EmitBlock(ReturnBlock.getBlock());
    147 }
    148 
    149 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
    150   if (!BB) return;
    151   if (!BB->use_empty())
    152     return CGF.CurFn->getBasicBlockList().push_back(BB);
    153   delete BB;
    154 }
    155 
    156 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
    157   assert(BreakContinueStack.empty() &&
    158          "mismatched push/pop in break/continue stack!");
    159 
    160   // Pop any cleanups that might have been associated with the
    161   // parameters.  Do this in whatever block we're currently in; it's
    162   // important to do this before we enter the return block or return
    163   // edges will be *really* confused.
    164   if (EHStack.stable_begin() != PrologueCleanupDepth)
    165     PopCleanupBlocks(PrologueCleanupDepth);
    166 
    167   // Emit function epilog (to return).
    168   EmitReturnBlock();
    169 
    170   if (ShouldInstrumentFunction())
    171     EmitFunctionInstrumentation("__cyg_profile_func_exit");
    172 
    173   // Emit debug descriptor for function end.
    174   if (CGDebugInfo *DI = getDebugInfo()) {
    175     DI->setLocation(EndLoc);
    176     DI->EmitFunctionEnd(Builder);
    177   }
    178 
    179   EmitFunctionEpilog(*CurFnInfo);
    180   EmitEndEHSpec(CurCodeDecl);
    181 
    182   assert(EHStack.empty() &&
    183          "did not remove all scopes from cleanup stack!");
    184 
    185   // If someone did an indirect goto, emit the indirect goto block at the end of
    186   // the function.
    187   if (IndirectBranch) {
    188     EmitBlock(IndirectBranch->getParent());
    189     Builder.ClearInsertionPoint();
    190   }
    191 
    192   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
    193   llvm::Instruction *Ptr = AllocaInsertPt;
    194   AllocaInsertPt = 0;
    195   Ptr->eraseFromParent();
    196 
    197   // If someone took the address of a label but never did an indirect goto, we
    198   // made a zero entry PHI node, which is illegal, zap it now.
    199   if (IndirectBranch) {
    200     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    201     if (PN->getNumIncomingValues() == 0) {
    202       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
    203       PN->eraseFromParent();
    204     }
    205   }
    206 
    207   EmitIfUsed(*this, EHResumeBlock);
    208   EmitIfUsed(*this, TerminateLandingPad);
    209   EmitIfUsed(*this, TerminateHandler);
    210   EmitIfUsed(*this, UnreachableBlock);
    211 
    212   if (CGM.getCodeGenOpts().EmitDeclMetadata)
    213     EmitDeclMetadata();
    214 }
    215 
    216 /// ShouldInstrumentFunction - Return true if the current function should be
    217 /// instrumented with __cyg_profile_func_* calls
    218 bool CodeGenFunction::ShouldInstrumentFunction() {
    219   if (!CGM.getCodeGenOpts().InstrumentFunctions)
    220     return false;
    221   if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    222     return false;
    223   return true;
    224 }
    225 
    226 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
    227 /// instrumentation function with the current function and the call site, if
    228 /// function instrumentation is enabled.
    229 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
    230   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
    231   llvm::PointerType *PointerTy = Int8PtrTy;
    232   llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
    233   llvm::FunctionType *FunctionTy =
    234     llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
    235 
    236   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
    237   llvm::CallInst *CallSite = Builder.CreateCall(
    238     CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
    239     llvm::ConstantInt::get(Int32Ty, 0),
    240     "callsite");
    241 
    242   Builder.CreateCall2(F,
    243                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
    244                       CallSite);
    245 }
    246 
    247 void CodeGenFunction::EmitMCountInstrumentation() {
    248   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
    249 
    250   llvm::Constant *MCountFn = CGM.CreateRuntimeFunction(FTy,
    251                                                        Target.getMCountName());
    252   Builder.CreateCall(MCountFn);
    253 }
    254 
    255 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
    256 // information in the program executable. The argument information stored
    257 // includes the argument name, its type, the address and access qualifiers used.
    258 // FIXME: Add type, address, and access qualifiers.
    259 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
    260                                  CodeGenModule &CGM,llvm::LLVMContext &Context,
    261                                  llvm::SmallVector <llvm::Value*, 5> &kernelMDArgs) {
    262 
    263   // Create MDNodes that represents the kernel arg metadata.
    264   // Each MDNode is a list in the form of "key", N number of values which is
    265   // the same number of values as their are kernel arguments.
    266 
    267   // MDNode for the kernel argument names.
    268   SmallVector<llvm::Value*, 8> argNames;
    269   argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
    270 
    271   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
    272     const ParmVarDecl *parm = FD->getParamDecl(i);
    273 
    274     // Get argument name.
    275     argNames.push_back(llvm::MDString::get(Context, parm->getName()));
    276 
    277   }
    278   // Add MDNode to the list of all metadata.
    279   kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
    280 }
    281 
    282 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
    283                                                llvm::Function *Fn)
    284 {
    285   if (!FD->hasAttr<OpenCLKernelAttr>())
    286     return;
    287 
    288   llvm::LLVMContext &Context = getLLVMContext();
    289 
    290   llvm::SmallVector <llvm::Value*, 5> kernelMDArgs;
    291   kernelMDArgs.push_back(Fn);
    292 
    293   if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
    294     GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs);
    295 
    296   if (FD->hasAttr<WorkGroupSizeHintAttr>()) {
    297     llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
    298     attrMDArgs.push_back(llvm::MDString::get(Context, "work_group_size_hint"));
    299     WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>();
    300     llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
    301     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    302        llvm::APInt(32, (uint64_t)attr->getXDim())));
    303     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    304        llvm::APInt(32, (uint64_t)attr->getYDim())));
    305     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    306        llvm::APInt(32, (uint64_t)attr->getZDim())));
    307     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    308   }
    309 
    310   if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
    311     llvm::SmallVector <llvm::Value*, 5> attrMDArgs;
    312     attrMDArgs.push_back(llvm::MDString::get(Context, "reqd_work_group_size"));
    313     ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
    314     llvm::Type *iTy = llvm::IntegerType::get(Context, 32);
    315     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    316        llvm::APInt(32, (uint64_t)attr->getXDim())));
    317     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    318        llvm::APInt(32, (uint64_t)attr->getYDim())));
    319     attrMDArgs.push_back(llvm::ConstantInt::get(iTy,
    320        llvm::APInt(32, (uint64_t)attr->getZDim())));
    321     kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
    322   }
    323 
    324   llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
    325   llvm::NamedMDNode *OpenCLKernelMetadata =
    326     CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
    327   OpenCLKernelMetadata->addOperand(kernelMDNode);
    328 }
    329 
    330 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
    331                                     llvm::Function *Fn,
    332                                     const CGFunctionInfo &FnInfo,
    333                                     const FunctionArgList &Args,
    334                                     SourceLocation StartLoc) {
    335   const Decl *D = GD.getDecl();
    336 
    337   DidCallStackSave = false;
    338   CurCodeDecl = CurFuncDecl = D;
    339   FnRetTy = RetTy;
    340   CurFn = Fn;
    341   CurFnInfo = &FnInfo;
    342   assert(CurFn->isDeclaration() && "Function already has body?");
    343 
    344   // Pass inline keyword to optimizer if it appears explicitly on any
    345   // declaration.
    346   if (!CGM.getCodeGenOpts().NoInline)
    347     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    348       for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
    349              RE = FD->redecls_end(); RI != RE; ++RI)
    350         if (RI->isInlineSpecified()) {
    351           Fn->addFnAttr(llvm::Attribute::InlineHint);
    352           break;
    353         }
    354 
    355   if (getContext().getLangOpts().OpenCL) {
    356     // Add metadata for a kernel function.
    357     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    358       EmitOpenCLKernelMetadata(FD, Fn);
    359   }
    360 
    361   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
    362 
    363   // Create a marker to make it easy to insert allocas into the entryblock
    364   // later.  Don't create this with the builder, because we don't want it
    365   // folded.
    366   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
    367   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
    368   if (Builder.isNamePreserving())
    369     AllocaInsertPt->setName("allocapt");
    370 
    371   ReturnBlock = getJumpDestInCurrentScope("return");
    372 
    373   Builder.SetInsertPoint(EntryBB);
    374 
    375   // Emit subprogram debug descriptor.
    376   if (CGDebugInfo *DI = getDebugInfo()) {
    377     unsigned NumArgs = 0;
    378     QualType *ArgsArray = new QualType[Args.size()];
    379     for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    380 	 i != e; ++i) {
    381       ArgsArray[NumArgs++] = (*i)->getType();
    382     }
    383 
    384     QualType FnType =
    385       getContext().getFunctionType(RetTy, ArgsArray, NumArgs,
    386                                    FunctionProtoType::ExtProtoInfo());
    387 
    388     delete[] ArgsArray;
    389 
    390     DI->setLocation(StartLoc);
    391     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
    392   }
    393 
    394   if (ShouldInstrumentFunction())
    395     EmitFunctionInstrumentation("__cyg_profile_func_enter");
    396 
    397   if (CGM.getCodeGenOpts().InstrumentForProfiling)
    398     EmitMCountInstrumentation();
    399 
    400   if (RetTy->isVoidType()) {
    401     // Void type; nothing to return.
    402     ReturnValue = 0;
    403   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
    404              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
    405     // Indirect aggregate return; emit returned value directly into sret slot.
    406     // This reduces code size, and affects correctness in C++.
    407     ReturnValue = CurFn->arg_begin();
    408   } else {
    409     ReturnValue = CreateIRTemp(RetTy, "retval");
    410 
    411     // Tell the epilog emitter to autorelease the result.  We do this
    412     // now so that various specialized functions can suppress it
    413     // during their IR-generation.
    414     if (getLangOpts().ObjCAutoRefCount &&
    415         !CurFnInfo->isReturnsRetained() &&
    416         RetTy->isObjCRetainableType())
    417       AutoreleaseResult = true;
    418   }
    419 
    420   EmitStartEHSpec(CurCodeDecl);
    421 
    422   PrologueCleanupDepth = EHStack.stable_begin();
    423   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
    424 
    425   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    426     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    427     const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    428     if (MD->getParent()->isLambda() &&
    429         MD->getOverloadedOperator() == OO_Call) {
    430       // We're in a lambda; figure out the captures.
    431       MD->getParent()->getCaptureFields(LambdaCaptureFields,
    432                                         LambdaThisCaptureField);
    433       if (LambdaThisCaptureField) {
    434         // If this lambda captures this, load it.
    435         QualType LambdaTagType =
    436             getContext().getTagDeclType(LambdaThisCaptureField->getParent());
    437         LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue,
    438                                                      LambdaTagType);
    439         LValue ThisLValue = EmitLValueForField(LambdaLV,
    440                                                LambdaThisCaptureField);
    441         CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
    442       }
    443     } else {
    444       // Not in a lambda; just use 'this' from the method.
    445       // FIXME: Should we generate a new load for each use of 'this'?  The
    446       // fast register allocator would be happier...
    447       CXXThisValue = CXXABIThisValue;
    448     }
    449   }
    450 
    451   // If any of the arguments have a variably modified type, make sure to
    452   // emit the type size.
    453   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
    454        i != e; ++i) {
    455     QualType Ty = (*i)->getType();
    456 
    457     if (Ty->isVariablyModifiedType())
    458       EmitVariablyModifiedType(Ty);
    459   }
    460   // Emit a location at the end of the prologue.
    461   if (CGDebugInfo *DI = getDebugInfo())
    462     DI->EmitLocation(Builder, StartLoc);
    463 }
    464 
    465 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
    466   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
    467   assert(FD->getBody());
    468   EmitStmt(FD->getBody());
    469 }
    470 
    471 /// Tries to mark the given function nounwind based on the
    472 /// non-existence of any throwing calls within it.  We believe this is
    473 /// lightweight enough to do at -O0.
    474 static void TryMarkNoThrow(llvm::Function *F) {
    475   // LLVM treats 'nounwind' on a function as part of the type, so we
    476   // can't do this on functions that can be overwritten.
    477   if (F->mayBeOverridden()) return;
    478 
    479   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
    480     for (llvm::BasicBlock::iterator
    481            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
    482       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
    483         if (!Call->doesNotThrow())
    484           return;
    485       } else if (isa<llvm::ResumeInst>(&*BI)) {
    486         return;
    487       }
    488   F->setDoesNotThrow(true);
    489 }
    490 
    491 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
    492                                    const CGFunctionInfo &FnInfo) {
    493   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    494 
    495   // Check if we should generate debug info for this function.
    496   if (CGM.getModuleDebugInfo() && !FD->hasAttr<NoDebugAttr>())
    497     DebugInfo = CGM.getModuleDebugInfo();
    498 
    499   FunctionArgList Args;
    500   QualType ResTy = FD->getResultType();
    501 
    502   CurGD = GD;
    503   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
    504     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
    505 
    506   for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
    507     Args.push_back(FD->getParamDecl(i));
    508 
    509   SourceRange BodyRange;
    510   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
    511 
    512   // Emit the standard function prologue.
    513   StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin());
    514 
    515   // Generate the body of the function.
    516   if (isa<CXXDestructorDecl>(FD))
    517     EmitDestructorBody(Args);
    518   else if (isa<CXXConstructorDecl>(FD))
    519     EmitConstructorBody(Args);
    520   else if (getContext().getLangOpts().CUDA &&
    521            !CGM.getCodeGenOpts().CUDAIsDevice &&
    522            FD->hasAttr<CUDAGlobalAttr>())
    523     CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
    524   else if (isa<CXXConversionDecl>(FD) &&
    525            cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
    526     // The lambda conversion to block pointer is special; the semantics can't be
    527     // expressed in the AST, so IRGen needs to special-case it.
    528     EmitLambdaToBlockPointerBody(Args);
    529   } else if (isa<CXXMethodDecl>(FD) &&
    530              cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    531     // The lambda "__invoke" function is special, because it forwards or
    532     // clones the body of the function call operator (but is actually static).
    533     EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
    534   }
    535   else
    536     EmitFunctionBody(Args);
    537 
    538   // Emit the standard function epilogue.
    539   FinishFunction(BodyRange.getEnd());
    540 
    541   // If we haven't marked the function nothrow through other means, do
    542   // a quick pass now to see if we can.
    543   if (!CurFn->doesNotThrow())
    544     TryMarkNoThrow(CurFn);
    545 }
    546 
    547 /// ContainsLabel - Return true if the statement contains a label in it.  If
    548 /// this statement is not executed normally, it not containing a label means
    549 /// that we can just remove the code.
    550 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
    551   // Null statement, not a label!
    552   if (S == 0) return false;
    553 
    554   // If this is a label, we have to emit the code, consider something like:
    555   // if (0) {  ...  foo:  bar(); }  goto foo;
    556   //
    557   // TODO: If anyone cared, we could track __label__'s, since we know that you
    558   // can't jump to one from outside their declared region.
    559   if (isa<LabelStmt>(S))
    560     return true;
    561 
    562   // If this is a case/default statement, and we haven't seen a switch, we have
    563   // to emit the code.
    564   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    565     return true;
    566 
    567   // If this is a switch statement, we want to ignore cases below it.
    568   if (isa<SwitchStmt>(S))
    569     IgnoreCaseStmts = true;
    570 
    571   // Scan subexpressions for verboten labels.
    572   for (Stmt::const_child_range I = S->children(); I; ++I)
    573     if (ContainsLabel(*I, IgnoreCaseStmts))
    574       return true;
    575 
    576   return false;
    577 }
    578 
    579 /// containsBreak - Return true if the statement contains a break out of it.
    580 /// If the statement (recursively) contains a switch or loop with a break
    581 /// inside of it, this is fine.
    582 bool CodeGenFunction::containsBreak(const Stmt *S) {
    583   // Null statement, not a label!
    584   if (S == 0) return false;
    585 
    586   // If this is a switch or loop that defines its own break scope, then we can
    587   // include it and anything inside of it.
    588   if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
    589       isa<ForStmt>(S))
    590     return false;
    591 
    592   if (isa<BreakStmt>(S))
    593     return true;
    594 
    595   // Scan subexpressions for verboten breaks.
    596   for (Stmt::const_child_range I = S->children(); I; ++I)
    597     if (containsBreak(*I))
    598       return true;
    599 
    600   return false;
    601 }
    602 
    603 
    604 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    605 /// to a constant, or if it does but contains a label, return false.  If it
    606 /// constant folds return true and set the boolean result in Result.
    607 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
    608                                                    bool &ResultBool) {
    609   llvm::APSInt ResultInt;
    610   if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
    611     return false;
    612 
    613   ResultBool = ResultInt.getBoolValue();
    614   return true;
    615 }
    616 
    617 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
    618 /// to a constant, or if it does but contains a label, return false.  If it
    619 /// constant folds return true and set the folded value.
    620 bool CodeGenFunction::
    621 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
    622   // FIXME: Rename and handle conversion of other evaluatable things
    623   // to bool.
    624   llvm::APSInt Int;
    625   if (!Cond->EvaluateAsInt(Int, getContext()))
    626     return false;  // Not foldable, not integer or not fully evaluatable.
    627 
    628   if (CodeGenFunction::ContainsLabel(Cond))
    629     return false;  // Contains a label.
    630 
    631   ResultInt = Int;
    632   return true;
    633 }
    634 
    635 
    636 
    637 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
    638 /// statement) to the specified blocks.  Based on the condition, this might try
    639 /// to simplify the codegen of the conditional based on the branch.
    640 ///
    641 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
    642                                            llvm::BasicBlock *TrueBlock,
    643                                            llvm::BasicBlock *FalseBlock) {
    644   Cond = Cond->IgnoreParens();
    645 
    646   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
    647     // Handle X && Y in a condition.
    648     if (CondBOp->getOpcode() == BO_LAnd) {
    649       // If we have "1 && X", simplify the code.  "0 && X" would have constant
    650       // folded if the case was simple enough.
    651       bool ConstantBool = false;
    652       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    653           ConstantBool) {
    654         // br(1 && X) -> br(X).
    655         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    656       }
    657 
    658       // If we have "X && 1", simplify the code to use an uncond branch.
    659       // "X && 0" would have been constant folded to 0.
    660       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    661           ConstantBool) {
    662         // br(X && 1) -> br(X).
    663         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    664       }
    665 
    666       // Emit the LHS as a conditional.  If the LHS conditional is false, we
    667       // want to jump to the FalseBlock.
    668       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
    669 
    670       ConditionalEvaluation eval(*this);
    671       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
    672       EmitBlock(LHSTrue);
    673 
    674       // Any temporaries created here are conditional.
    675       eval.begin(*this);
    676       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    677       eval.end(*this);
    678 
    679       return;
    680     }
    681 
    682     if (CondBOp->getOpcode() == BO_LOr) {
    683       // If we have "0 || X", simplify the code.  "1 || X" would have constant
    684       // folded if the case was simple enough.
    685       bool ConstantBool = false;
    686       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
    687           !ConstantBool) {
    688         // br(0 || X) -> br(X).
    689         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    690       }
    691 
    692       // If we have "X || 0", simplify the code to use an uncond branch.
    693       // "X || 1" would have been constant folded to 1.
    694       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
    695           !ConstantBool) {
    696         // br(X || 0) -> br(X).
    697         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
    698       }
    699 
    700       // Emit the LHS as a conditional.  If the LHS conditional is true, we
    701       // want to jump to the TrueBlock.
    702       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
    703 
    704       ConditionalEvaluation eval(*this);
    705       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
    706       EmitBlock(LHSFalse);
    707 
    708       // Any temporaries created here are conditional.
    709       eval.begin(*this);
    710       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
    711       eval.end(*this);
    712 
    713       return;
    714     }
    715   }
    716 
    717   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    718     // br(!x, t, f) -> br(x, f, t)
    719     if (CondUOp->getOpcode() == UO_LNot)
    720       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
    721   }
    722 
    723   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    724     // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    725     llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    726     llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
    727 
    728     ConditionalEvaluation cond(*this);
    729     EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
    730 
    731     cond.begin(*this);
    732     EmitBlock(LHSBlock);
    733     EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
    734     cond.end(*this);
    735 
    736     cond.begin(*this);
    737     EmitBlock(RHSBlock);
    738     EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
    739     cond.end(*this);
    740 
    741     return;
    742   }
    743 
    744   // Emit the code with the fully general case.
    745   llvm::Value *CondV = EvaluateExprAsBool(Cond);
    746   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
    747 }
    748 
    749 /// ErrorUnsupported - Print out an error that codegen doesn't support the
    750 /// specified stmt yet.
    751 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
    752                                        bool OmitOnError) {
    753   CGM.ErrorUnsupported(S, Type, OmitOnError);
    754 }
    755 
    756 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
    757 /// variable-length array whose elements have a non-zero bit-pattern.
    758 ///
    759 /// \param baseType the inner-most element type of the array
    760 /// \param src - a char* pointing to the bit-pattern for a single
    761 /// base element of the array
    762 /// \param sizeInChars - the total size of the VLA, in chars
    763 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
    764                                llvm::Value *dest, llvm::Value *src,
    765                                llvm::Value *sizeInChars) {
    766   std::pair<CharUnits,CharUnits> baseSizeAndAlign
    767     = CGF.getContext().getTypeInfoInChars(baseType);
    768 
    769   CGBuilderTy &Builder = CGF.Builder;
    770 
    771   llvm::Value *baseSizeInChars
    772     = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
    773 
    774   llvm::Type *i8p = Builder.getInt8PtrTy();
    775 
    776   llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
    777   llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
    778 
    779   llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
    780   llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
    781   llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
    782 
    783   // Make a loop over the VLA.  C99 guarantees that the VLA element
    784   // count must be nonzero.
    785   CGF.EmitBlock(loopBB);
    786 
    787   llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
    788   cur->addIncoming(begin, originBB);
    789 
    790   // memcpy the individual element bit-pattern.
    791   Builder.CreateMemCpy(cur, src, baseSizeInChars,
    792                        baseSizeAndAlign.second.getQuantity(),
    793                        /*volatile*/ false);
    794 
    795   // Go to the next element.
    796   llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
    797 
    798   // Leave if that's the end of the VLA.
    799   llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
    800   Builder.CreateCondBr(done, contBB, loopBB);
    801   cur->addIncoming(next, loopBB);
    802 
    803   CGF.EmitBlock(contBB);
    804 }
    805 
    806 void
    807 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
    808   // Ignore empty classes in C++.
    809   if (getContext().getLangOpts().CPlusPlus) {
    810     if (const RecordType *RT = Ty->getAs<RecordType>()) {
    811       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
    812         return;
    813     }
    814   }
    815 
    816   // Cast the dest ptr to the appropriate i8 pointer type.
    817   unsigned DestAS =
    818     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
    819   llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
    820   if (DestPtr->getType() != BP)
    821     DestPtr = Builder.CreateBitCast(DestPtr, BP);
    822 
    823   // Get size and alignment info for this aggregate.
    824   std::pair<CharUnits, CharUnits> TypeInfo =
    825     getContext().getTypeInfoInChars(Ty);
    826   CharUnits Size = TypeInfo.first;
    827   CharUnits Align = TypeInfo.second;
    828 
    829   llvm::Value *SizeVal;
    830   const VariableArrayType *vla;
    831 
    832   // Don't bother emitting a zero-byte memset.
    833   if (Size.isZero()) {
    834     // But note that getTypeInfo returns 0 for a VLA.
    835     if (const VariableArrayType *vlaType =
    836           dyn_cast_or_null<VariableArrayType>(
    837                                           getContext().getAsArrayType(Ty))) {
    838       QualType eltType;
    839       llvm::Value *numElts;
    840       llvm::tie(numElts, eltType) = getVLASize(vlaType);
    841 
    842       SizeVal = numElts;
    843       CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
    844       if (!eltSize.isOne())
    845         SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
    846       vla = vlaType;
    847     } else {
    848       return;
    849     }
    850   } else {
    851     SizeVal = CGM.getSize(Size);
    852     vla = 0;
    853   }
    854 
    855   // If the type contains a pointer to data member we can't memset it to zero.
    856   // Instead, create a null constant and copy it to the destination.
    857   // TODO: there are other patterns besides zero that we can usefully memset,
    858   // like -1, which happens to be the pattern used by member-pointers.
    859   if (!CGM.getTypes().isZeroInitializable(Ty)) {
    860     // For a VLA, emit a single element, then splat that over the VLA.
    861     if (vla) Ty = getContext().getBaseElementType(vla);
    862 
    863     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
    864 
    865     llvm::GlobalVariable *NullVariable =
    866       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
    867                                /*isConstant=*/true,
    868                                llvm::GlobalVariable::PrivateLinkage,
    869                                NullConstant, Twine());
    870     llvm::Value *SrcPtr =
    871       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
    872 
    873     if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
    874 
    875     // Get and call the appropriate llvm.memcpy overload.
    876     Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
    877     return;
    878   }
    879 
    880   // Otherwise, just memset the whole thing to zero.  This is legal
    881   // because in LLVM, all default initializers (other than the ones we just
    882   // handled above) are guaranteed to have a bit pattern of all zeros.
    883   Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
    884                        Align.getQuantity(), false);
    885 }
    886 
    887 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
    888   // Make sure that there is a block for the indirect goto.
    889   if (IndirectBranch == 0)
    890     GetIndirectGotoBlock();
    891 
    892   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
    893 
    894   // Make sure the indirect branch includes all of the address-taken blocks.
    895   IndirectBranch->addDestination(BB);
    896   return llvm::BlockAddress::get(CurFn, BB);
    897 }
    898 
    899 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
    900   // If we already made the indirect branch for indirect goto, return its block.
    901   if (IndirectBranch) return IndirectBranch->getParent();
    902 
    903   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
    904 
    905   // Create the PHI node that indirect gotos will add entries to.
    906   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
    907                                               "indirect.goto.dest");
    908 
    909   // Create the indirect branch instruction.
    910   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
    911   return IndirectBranch->getParent();
    912 }
    913 
    914 /// Computes the length of an array in elements, as well as the base
    915 /// element type and a properly-typed first element pointer.
    916 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
    917                                               QualType &baseType,
    918                                               llvm::Value *&addr) {
    919   const ArrayType *arrayType = origArrayType;
    920 
    921   // If it's a VLA, we have to load the stored size.  Note that
    922   // this is the size of the VLA in bytes, not its size in elements.
    923   llvm::Value *numVLAElements = 0;
    924   if (isa<VariableArrayType>(arrayType)) {
    925     numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
    926 
    927     // Walk into all VLAs.  This doesn't require changes to addr,
    928     // which has type T* where T is the first non-VLA element type.
    929     do {
    930       QualType elementType = arrayType->getElementType();
    931       arrayType = getContext().getAsArrayType(elementType);
    932 
    933       // If we only have VLA components, 'addr' requires no adjustment.
    934       if (!arrayType) {
    935         baseType = elementType;
    936         return numVLAElements;
    937       }
    938     } while (isa<VariableArrayType>(arrayType));
    939 
    940     // We get out here only if we find a constant array type
    941     // inside the VLA.
    942   }
    943 
    944   // We have some number of constant-length arrays, so addr should
    945   // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
    946   // down to the first element of addr.
    947   SmallVector<llvm::Value*, 8> gepIndices;
    948 
    949   // GEP down to the array type.
    950   llvm::ConstantInt *zero = Builder.getInt32(0);
    951   gepIndices.push_back(zero);
    952 
    953   uint64_t countFromCLAs = 1;
    954   QualType eltType;
    955 
    956   llvm::ArrayType *llvmArrayType =
    957     dyn_cast<llvm::ArrayType>(
    958       cast<llvm::PointerType>(addr->getType())->getElementType());
    959   while (llvmArrayType) {
    960     assert(isa<ConstantArrayType>(arrayType));
    961     assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
    962              == llvmArrayType->getNumElements());
    963 
    964     gepIndices.push_back(zero);
    965     countFromCLAs *= llvmArrayType->getNumElements();
    966     eltType = arrayType->getElementType();
    967 
    968     llvmArrayType =
    969       dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
    970     arrayType = getContext().getAsArrayType(arrayType->getElementType());
    971     assert((!llvmArrayType || arrayType) &&
    972            "LLVM and Clang types are out-of-synch");
    973   }
    974 
    975   if (arrayType) {
    976     // From this point onwards, the Clang array type has been emitted
    977     // as some other type (probably a packed struct). Compute the array
    978     // size, and just emit the 'begin' expression as a bitcast.
    979     while (arrayType) {
    980       countFromCLAs *=
    981           cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
    982       eltType = arrayType->getElementType();
    983       arrayType = getContext().getAsArrayType(eltType);
    984     }
    985 
    986     unsigned AddressSpace =
    987         cast<llvm::PointerType>(addr->getType())->getAddressSpace();
    988     llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
    989     addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
    990   } else {
    991     // Create the actual GEP.
    992     addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
    993   }
    994 
    995   baseType = eltType;
    996 
    997   llvm::Value *numElements
    998     = llvm::ConstantInt::get(SizeTy, countFromCLAs);
    999 
   1000   // If we had any VLA dimensions, factor them in.
   1001   if (numVLAElements)
   1002     numElements = Builder.CreateNUWMul(numVLAElements, numElements);
   1003 
   1004   return numElements;
   1005 }
   1006 
   1007 std::pair<llvm::Value*, QualType>
   1008 CodeGenFunction::getVLASize(QualType type) {
   1009   const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
   1010   assert(vla && "type was not a variable array type!");
   1011   return getVLASize(vla);
   1012 }
   1013 
   1014 std::pair<llvm::Value*, QualType>
   1015 CodeGenFunction::getVLASize(const VariableArrayType *type) {
   1016   // The number of elements so far; always size_t.
   1017   llvm::Value *numElements = 0;
   1018 
   1019   QualType elementType;
   1020   do {
   1021     elementType = type->getElementType();
   1022     llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
   1023     assert(vlaSize && "no size for VLA!");
   1024     assert(vlaSize->getType() == SizeTy);
   1025 
   1026     if (!numElements) {
   1027       numElements = vlaSize;
   1028     } else {
   1029       // It's undefined behavior if this wraps around, so mark it that way.
   1030       numElements = Builder.CreateNUWMul(numElements, vlaSize);
   1031     }
   1032   } while ((type = getContext().getAsVariableArrayType(elementType)));
   1033 
   1034   return std::pair<llvm::Value*,QualType>(numElements, elementType);
   1035 }
   1036 
   1037 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
   1038   assert(type->isVariablyModifiedType() &&
   1039          "Must pass variably modified type to EmitVLASizes!");
   1040 
   1041   EnsureInsertPoint();
   1042 
   1043   // We're going to walk down into the type and look for VLA
   1044   // expressions.
   1045   do {
   1046     assert(type->isVariablyModifiedType());
   1047 
   1048     const Type *ty = type.getTypePtr();
   1049     switch (ty->getTypeClass()) {
   1050 
   1051 #define TYPE(Class, Base)
   1052 #define ABSTRACT_TYPE(Class, Base)
   1053 #define NON_CANONICAL_TYPE(Class, Base)
   1054 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   1055 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   1056 #include "clang/AST/TypeNodes.def"
   1057       llvm_unreachable("unexpected dependent type!");
   1058 
   1059     // These types are never variably-modified.
   1060     case Type::Builtin:
   1061     case Type::Complex:
   1062     case Type::Vector:
   1063     case Type::ExtVector:
   1064     case Type::Record:
   1065     case Type::Enum:
   1066     case Type::Elaborated:
   1067     case Type::TemplateSpecialization:
   1068     case Type::ObjCObject:
   1069     case Type::ObjCInterface:
   1070     case Type::ObjCObjectPointer:
   1071       llvm_unreachable("type class is never variably-modified!");
   1072 
   1073     case Type::Pointer:
   1074       type = cast<PointerType>(ty)->getPointeeType();
   1075       break;
   1076 
   1077     case Type::BlockPointer:
   1078       type = cast<BlockPointerType>(ty)->getPointeeType();
   1079       break;
   1080 
   1081     case Type::LValueReference:
   1082     case Type::RValueReference:
   1083       type = cast<ReferenceType>(ty)->getPointeeType();
   1084       break;
   1085 
   1086     case Type::MemberPointer:
   1087       type = cast<MemberPointerType>(ty)->getPointeeType();
   1088       break;
   1089 
   1090     case Type::ConstantArray:
   1091     case Type::IncompleteArray:
   1092       // Losing element qualification here is fine.
   1093       type = cast<ArrayType>(ty)->getElementType();
   1094       break;
   1095 
   1096     case Type::VariableArray: {
   1097       // Losing element qualification here is fine.
   1098       const VariableArrayType *vat = cast<VariableArrayType>(ty);
   1099 
   1100       // Unknown size indication requires no size computation.
   1101       // Otherwise, evaluate and record it.
   1102       if (const Expr *size = vat->getSizeExpr()) {
   1103         // It's possible that we might have emitted this already,
   1104         // e.g. with a typedef and a pointer to it.
   1105         llvm::Value *&entry = VLASizeMap[size];
   1106         if (!entry) {
   1107           // Always zexting here would be wrong if it weren't
   1108           // undefined behavior to have a negative bound.
   1109           entry = Builder.CreateIntCast(EmitScalarExpr(size), SizeTy,
   1110                                         /*signed*/ false);
   1111         }
   1112       }
   1113       type = vat->getElementType();
   1114       break;
   1115     }
   1116 
   1117     case Type::FunctionProto:
   1118     case Type::FunctionNoProto:
   1119       type = cast<FunctionType>(ty)->getResultType();
   1120       break;
   1121 
   1122     case Type::Paren:
   1123     case Type::TypeOf:
   1124     case Type::UnaryTransform:
   1125     case Type::Attributed:
   1126     case Type::SubstTemplateTypeParm:
   1127       // Keep walking after single level desugaring.
   1128       type = type.getSingleStepDesugaredType(getContext());
   1129       break;
   1130 
   1131     case Type::Typedef:
   1132     case Type::Decltype:
   1133     case Type::Auto:
   1134       // Stop walking: nothing to do.
   1135       return;
   1136 
   1137     case Type::TypeOfExpr:
   1138       // Stop walking: emit typeof expression.
   1139       EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
   1140       return;
   1141 
   1142     case Type::Atomic:
   1143       type = cast<AtomicType>(ty)->getValueType();
   1144       break;
   1145     }
   1146   } while (type->isVariablyModifiedType());
   1147 }
   1148 
   1149 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
   1150   if (getContext().getBuiltinVaListType()->isArrayType())
   1151     return EmitScalarExpr(E);
   1152   return EmitLValue(E).getAddress();
   1153 }
   1154 
   1155 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
   1156                                               llvm::Constant *Init) {
   1157   assert (Init && "Invalid DeclRefExpr initializer!");
   1158   if (CGDebugInfo *Dbg = getDebugInfo())
   1159     if (CGM.getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
   1160       Dbg->EmitGlobalVariable(E->getDecl(), Init);
   1161 }
   1162 
   1163 CodeGenFunction::PeepholeProtection
   1164 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
   1165   // At the moment, the only aggressive peephole we do in IR gen
   1166   // is trunc(zext) folding, but if we add more, we can easily
   1167   // extend this protection.
   1168 
   1169   if (!rvalue.isScalar()) return PeepholeProtection();
   1170   llvm::Value *value = rvalue.getScalarVal();
   1171   if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
   1172 
   1173   // Just make an extra bitcast.
   1174   assert(HaveInsertPoint());
   1175   llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
   1176                                                   Builder.GetInsertBlock());
   1177 
   1178   PeepholeProtection protection;
   1179   protection.Inst = inst;
   1180   return protection;
   1181 }
   1182 
   1183 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
   1184   if (!protection.Inst) return;
   1185 
   1186   // In theory, we could try to duplicate the peepholes now, but whatever.
   1187   protection.Inst->eraseFromParent();
   1188 }
   1189 
   1190 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
   1191                                                  llvm::Value *AnnotatedVal,
   1192                                                  llvm::StringRef AnnotationStr,
   1193                                                  SourceLocation Location) {
   1194   llvm::Value *Args[4] = {
   1195     AnnotatedVal,
   1196     Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
   1197     Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
   1198     CGM.EmitAnnotationLineNo(Location)
   1199   };
   1200   return Builder.CreateCall(AnnotationFn, Args);
   1201 }
   1202 
   1203 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
   1204   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1205   // FIXME We create a new bitcast for every annotation because that's what
   1206   // llvm-gcc was doing.
   1207   for (specific_attr_iterator<AnnotateAttr>
   1208        ai = D->specific_attr_begin<AnnotateAttr>(),
   1209        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
   1210     EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
   1211                        Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
   1212                        (*ai)->getAnnotation(), D->getLocation());
   1213 }
   1214 
   1215 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
   1216                                                    llvm::Value *V) {
   1217   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
   1218   llvm::Type *VTy = V->getType();
   1219   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
   1220                                     CGM.Int8PtrTy);
   1221 
   1222   for (specific_attr_iterator<AnnotateAttr>
   1223        ai = D->specific_attr_begin<AnnotateAttr>(),
   1224        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) {
   1225     // FIXME Always emit the cast inst so we can differentiate between
   1226     // annotation on the first field of a struct and annotation on the struct
   1227     // itself.
   1228     if (VTy != CGM.Int8PtrTy)
   1229       V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
   1230     V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation());
   1231     V = Builder.CreateBitCast(V, VTy);
   1232   }
   1233 
   1234   return V;
   1235 }
   1236